1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		net_err_ratelimited("%s: DMA mapping error for empty frame\n",
1096 				    netdev_name(ring->netdev));
1097 		return -ENOMEM;
1098 	}
1099 
1100 	buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1101 	buffer->skb = skb;
1102 	buffer->protocol = 0;
1103 	buffer->bytecount = skb->len;
1104 	buffer->gso_segs = 1;
1105 	buffer->time_stamp = jiffies;
1106 	dma_unmap_len_set(buffer, len, skb->len);
1107 	dma_unmap_addr_set(buffer, dma, dma);
1108 
1109 	return 0;
1110 }
1111 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1112 static void igc_init_tx_empty_descriptor(struct igc_ring *ring,
1113 					 struct sk_buff *skb,
1114 					 struct igc_tx_buffer *first)
1115 {
1116 	union igc_adv_tx_desc *desc;
1117 	u32 cmd_type, olinfo_status;
1118 
1119 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1120 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1121 		   first->bytecount;
1122 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1123 
1124 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1125 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1126 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1127 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1128 
1129 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1130 
1131 	first->next_to_watch = desc;
1132 
1133 	ring->next_to_use++;
1134 	if (ring->next_to_use == ring->count)
1135 		ring->next_to_use = 0;
1136 }
1137 
1138 #define IGC_EMPTY_FRAME_SIZE 60
1139 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1140 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1141 			    __le32 launch_time, bool first_flag,
1142 			    u32 vlan_macip_lens, u32 type_tucmd,
1143 			    u32 mss_l4len_idx)
1144 {
1145 	struct igc_adv_tx_context_desc *context_desc;
1146 	u16 i = tx_ring->next_to_use;
1147 
1148 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1149 
1150 	i++;
1151 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1152 
1153 	/* set bits to identify this as an advanced context descriptor */
1154 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1155 
1156 	/* For i225, context index must be unique per ring. */
1157 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1158 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1159 
1160 	if (first_flag)
1161 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1162 
1163 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1164 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1165 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1166 	context_desc->launch_time	= launch_time;
1167 }
1168 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1169 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1170 			__le32 launch_time, bool first_flag)
1171 {
1172 	struct sk_buff *skb = first->skb;
1173 	u32 vlan_macip_lens = 0;
1174 	u32 type_tucmd = 0;
1175 
1176 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1177 csum_failed:
1178 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1179 		    !tx_ring->launchtime_enable)
1180 			return;
1181 		goto no_csum;
1182 	}
1183 
1184 	switch (skb->csum_offset) {
1185 	case offsetof(struct tcphdr, check):
1186 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1187 		fallthrough;
1188 	case offsetof(struct udphdr, check):
1189 		break;
1190 	case offsetof(struct sctphdr, checksum):
1191 		/* validate that this is actually an SCTP request */
1192 		if (skb_csum_is_sctp(skb)) {
1193 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1194 			break;
1195 		}
1196 		fallthrough;
1197 	default:
1198 		skb_checksum_help(skb);
1199 		goto csum_failed;
1200 	}
1201 
1202 	/* update TX checksum flag */
1203 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1204 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1205 			  skb_network_offset(skb);
1206 no_csum:
1207 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1208 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1209 
1210 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1211 			vlan_macip_lens, type_tucmd, 0);
1212 }
1213 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1214 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1215 {
1216 	struct net_device *netdev = tx_ring->netdev;
1217 
1218 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1219 
1220 	/* memory barriier comment */
1221 	smp_mb();
1222 
1223 	/* We need to check again in a case another CPU has just
1224 	 * made room available.
1225 	 */
1226 	if (igc_desc_unused(tx_ring) < size)
1227 		return -EBUSY;
1228 
1229 	/* A reprieve! */
1230 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1231 
1232 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1233 	tx_ring->tx_stats.restart_queue2++;
1234 	u64_stats_update_end(&tx_ring->tx_syncp2);
1235 
1236 	return 0;
1237 }
1238 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1239 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1240 {
1241 	if (igc_desc_unused(tx_ring) >= size)
1242 		return 0;
1243 	return __igc_maybe_stop_tx(tx_ring, size);
1244 }
1245 
1246 #define IGC_SET_FLAG(_input, _flag, _result) \
1247 	(((_flag) <= (_result)) ?				\
1248 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1249 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1250 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1251 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1252 {
1253 	/* set type for advanced descriptor with frame checksum insertion */
1254 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1255 		       IGC_ADVTXD_DCMD_DEXT |
1256 		       IGC_ADVTXD_DCMD_IFCS;
1257 
1258 	/* set HW vlan bit if vlan is present */
1259 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1260 				 IGC_ADVTXD_DCMD_VLE);
1261 
1262 	/* set segmentation bits for TSO */
1263 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1264 				 (IGC_ADVTXD_DCMD_TSE));
1265 
1266 	/* set timestamp bit if present, will select the register set
1267 	 * based on the _TSTAMP(_X) bit.
1268 	 */
1269 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1270 				 (IGC_ADVTXD_MAC_TSTAMP));
1271 
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1273 				 (IGC_ADVTXD_TSTAMP_REG_1));
1274 
1275 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1276 				 (IGC_ADVTXD_TSTAMP_REG_2));
1277 
1278 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1279 				 (IGC_ADVTXD_TSTAMP_REG_3));
1280 
1281 	/* insert frame checksum */
1282 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1283 
1284 	return cmd_type;
1285 }
1286 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1287 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1288 				 union igc_adv_tx_desc *tx_desc,
1289 				 u32 tx_flags, unsigned int paylen)
1290 {
1291 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1292 
1293 	/* insert L4 checksum */
1294 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1295 				      (IGC_TXD_POPTS_TXSM << 8));
1296 
1297 	/* insert IPv4 checksum */
1298 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1299 				      (IGC_TXD_POPTS_IXSM << 8));
1300 
1301 	/* Use the second timer (free running, in general) for the timestamp */
1302 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1303 				      IGC_TXD_PTP2_TIMER_1);
1304 
1305 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1306 }
1307 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1308 static int igc_tx_map(struct igc_ring *tx_ring,
1309 		      struct igc_tx_buffer *first,
1310 		      const u8 hdr_len)
1311 {
1312 	struct sk_buff *skb = first->skb;
1313 	struct igc_tx_buffer *tx_buffer;
1314 	union igc_adv_tx_desc *tx_desc;
1315 	u32 tx_flags = first->tx_flags;
1316 	skb_frag_t *frag;
1317 	u16 i = tx_ring->next_to_use;
1318 	unsigned int data_len, size;
1319 	dma_addr_t dma;
1320 	u32 cmd_type;
1321 
1322 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1323 	tx_desc = IGC_TX_DESC(tx_ring, i);
1324 
1325 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1326 
1327 	size = skb_headlen(skb);
1328 	data_len = skb->data_len;
1329 
1330 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1331 
1332 	tx_buffer = first;
1333 
1334 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1335 		if (dma_mapping_error(tx_ring->dev, dma))
1336 			goto dma_error;
1337 
1338 		/* record length, and DMA address */
1339 		dma_unmap_len_set(tx_buffer, len, size);
1340 		dma_unmap_addr_set(tx_buffer, dma, dma);
1341 
1342 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1343 
1344 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1345 			tx_desc->read.cmd_type_len =
1346 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1347 
1348 			i++;
1349 			tx_desc++;
1350 			if (i == tx_ring->count) {
1351 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1352 				i = 0;
1353 			}
1354 			tx_desc->read.olinfo_status = 0;
1355 
1356 			dma += IGC_MAX_DATA_PER_TXD;
1357 			size -= IGC_MAX_DATA_PER_TXD;
1358 
1359 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1360 		}
1361 
1362 		if (likely(!data_len))
1363 			break;
1364 
1365 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1366 
1367 		i++;
1368 		tx_desc++;
1369 		if (i == tx_ring->count) {
1370 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1371 			i = 0;
1372 		}
1373 		tx_desc->read.olinfo_status = 0;
1374 
1375 		size = skb_frag_size(frag);
1376 		data_len -= size;
1377 
1378 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1379 				       size, DMA_TO_DEVICE);
1380 
1381 		tx_buffer = &tx_ring->tx_buffer_info[i];
1382 	}
1383 
1384 	/* write last descriptor with RS and EOP bits */
1385 	cmd_type |= size | IGC_TXD_DCMD;
1386 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1387 
1388 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1389 
1390 	/* set the timestamp */
1391 	first->time_stamp = jiffies;
1392 
1393 	skb_tx_timestamp(skb);
1394 
1395 	/* Force memory writes to complete before letting h/w know there
1396 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1397 	 * memory model archs, such as IA-64).
1398 	 *
1399 	 * We also need this memory barrier to make certain all of the
1400 	 * status bits have been updated before next_to_watch is written.
1401 	 */
1402 	wmb();
1403 
1404 	/* set next_to_watch value indicating a packet is present */
1405 	first->next_to_watch = tx_desc;
1406 
1407 	i++;
1408 	if (i == tx_ring->count)
1409 		i = 0;
1410 
1411 	tx_ring->next_to_use = i;
1412 
1413 	/* Make sure there is space in the ring for the next send. */
1414 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1415 
1416 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1417 		writel(i, tx_ring->tail);
1418 	}
1419 
1420 	return 0;
1421 dma_error:
1422 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1423 	tx_buffer = &tx_ring->tx_buffer_info[i];
1424 
1425 	/* clear dma mappings for failed tx_buffer_info map */
1426 	while (tx_buffer != first) {
1427 		if (dma_unmap_len(tx_buffer, len))
1428 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1429 
1430 		if (i-- == 0)
1431 			i += tx_ring->count;
1432 		tx_buffer = &tx_ring->tx_buffer_info[i];
1433 	}
1434 
1435 	if (dma_unmap_len(tx_buffer, len))
1436 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437 
1438 	dev_kfree_skb_any(tx_buffer->skb);
1439 	tx_buffer->skb = NULL;
1440 
1441 	tx_ring->next_to_use = i;
1442 
1443 	return -1;
1444 }
1445 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1446 static int igc_tso(struct igc_ring *tx_ring,
1447 		   struct igc_tx_buffer *first,
1448 		   __le32 launch_time, bool first_flag,
1449 		   u8 *hdr_len)
1450 {
1451 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1452 	struct sk_buff *skb = first->skb;
1453 	union {
1454 		struct iphdr *v4;
1455 		struct ipv6hdr *v6;
1456 		unsigned char *hdr;
1457 	} ip;
1458 	union {
1459 		struct tcphdr *tcp;
1460 		struct udphdr *udp;
1461 		unsigned char *hdr;
1462 	} l4;
1463 	u32 paylen, l4_offset;
1464 	int err;
1465 
1466 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1467 		return 0;
1468 
1469 	if (!skb_is_gso(skb))
1470 		return 0;
1471 
1472 	err = skb_cow_head(skb, 0);
1473 	if (err < 0)
1474 		return err;
1475 
1476 	ip.hdr = skb_network_header(skb);
1477 	l4.hdr = skb_checksum_start(skb);
1478 
1479 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1480 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1481 
1482 	/* initialize outer IP header fields */
1483 	if (ip.v4->version == 4) {
1484 		unsigned char *csum_start = skb_checksum_start(skb);
1485 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1486 
1487 		/* IP header will have to cancel out any data that
1488 		 * is not a part of the outer IP header
1489 		 */
1490 		ip.v4->check = csum_fold(csum_partial(trans_start,
1491 						      csum_start - trans_start,
1492 						      0));
1493 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1494 
1495 		ip.v4->tot_len = 0;
1496 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 				   IGC_TX_FLAGS_CSUM |
1498 				   IGC_TX_FLAGS_IPV4;
1499 	} else {
1500 		ip.v6->payload_len = 0;
1501 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1502 				   IGC_TX_FLAGS_CSUM;
1503 	}
1504 
1505 	/* determine offset of inner transport header */
1506 	l4_offset = l4.hdr - skb->data;
1507 
1508 	/* remove payload length from inner checksum */
1509 	paylen = skb->len - l4_offset;
1510 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1511 		/* compute length of segmentation header */
1512 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1513 		csum_replace_by_diff(&l4.tcp->check,
1514 				     (__force __wsum)htonl(paylen));
1515 	} else {
1516 		/* compute length of segmentation header */
1517 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1518 		csum_replace_by_diff(&l4.udp->check,
1519 				     (__force __wsum)htonl(paylen));
1520 	}
1521 
1522 	/* update gso size and bytecount with header size */
1523 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1524 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1525 
1526 	/* MSS L4LEN IDX */
1527 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1528 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1529 
1530 	/* VLAN MACLEN IPLEN */
1531 	vlan_macip_lens = l4.hdr - ip.hdr;
1532 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1533 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1534 
1535 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1536 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1537 
1538 	return 1;
1539 }
1540 
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1541 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1542 {
1543 	int i;
1544 
1545 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1546 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1547 
1548 		if (tstamp->skb)
1549 			continue;
1550 
1551 		tstamp->skb = skb_get(skb);
1552 		tstamp->start = jiffies;
1553 		*flags = tstamp->flags;
1554 
1555 		return true;
1556 	}
1557 
1558 	return false;
1559 }
1560 
igc_insert_empty_frame(struct igc_ring * tx_ring)1561 static int igc_insert_empty_frame(struct igc_ring *tx_ring)
1562 {
1563 	struct igc_tx_buffer *empty_info;
1564 	struct sk_buff *empty_skb;
1565 	void *data;
1566 	int ret;
1567 
1568 	empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1569 	empty_skb = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1570 	if (unlikely(!empty_skb)) {
1571 		net_err_ratelimited("%s: skb alloc error for empty frame\n",
1572 				    netdev_name(tx_ring->netdev));
1573 		return -ENOMEM;
1574 	}
1575 
1576 	data = skb_put(empty_skb, IGC_EMPTY_FRAME_SIZE);
1577 	memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1578 
1579 	/* Prepare DMA mapping and Tx buffer information */
1580 	ret = igc_init_empty_frame(tx_ring, empty_info, empty_skb);
1581 	if (unlikely(ret)) {
1582 		dev_kfree_skb_any(empty_skb);
1583 		return ret;
1584 	}
1585 
1586 	/* Prepare advanced context descriptor for empty packet */
1587 	igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1588 
1589 	/* Prepare advanced data descriptor for empty packet */
1590 	igc_init_tx_empty_descriptor(tx_ring, empty_skb, empty_info);
1591 
1592 	return 0;
1593 }
1594 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1595 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1596 				       struct igc_ring *tx_ring)
1597 {
1598 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1599 	bool first_flag = false, insert_empty = false;
1600 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1601 	__be16 protocol = vlan_get_protocol(skb);
1602 	struct igc_tx_buffer *first;
1603 	__le32 launch_time = 0;
1604 	u32 tx_flags = 0;
1605 	unsigned short f;
1606 	ktime_t txtime;
1607 	u8 hdr_len = 0;
1608 	int tso = 0;
1609 
1610 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1611 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1612 	 *	+ 2 desc gap to keep tail from touching head,
1613 	 *	+ 1 desc for context descriptor,
1614 	 *	+ 2 desc for inserting an empty packet for launch time,
1615 	 * otherwise try next time
1616 	 */
1617 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1618 		count += TXD_USE_COUNT(skb_frag_size(
1619 						&skb_shinfo(skb)->frags[f]));
1620 
1621 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1622 		/* this is a hard error */
1623 		return NETDEV_TX_BUSY;
1624 	}
1625 
1626 	if (!tx_ring->launchtime_enable)
1627 		goto done;
1628 
1629 	txtime = skb->tstamp;
1630 	skb->tstamp = ktime_set(0, 0);
1631 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1632 
1633 	if (insert_empty) {
1634 		/* Reset the launch time if the required empty frame fails to
1635 		 * be inserted. However, this packet is not dropped, so it
1636 		 * "dirties" the current Qbv cycle. This ensures that the
1637 		 * upcoming packet, which is scheduled in the next Qbv cycle,
1638 		 * does not require an empty frame. This way, the launch time
1639 		 * continues to function correctly despite the current failure
1640 		 * to insert the empty frame.
1641 		 */
1642 		if (igc_insert_empty_frame(tx_ring))
1643 			launch_time = 0;
1644 	}
1645 
1646 done:
1647 	/* record the location of the first descriptor for this packet */
1648 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1649 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1650 	first->skb = skb;
1651 	first->bytecount = skb->len;
1652 	first->gso_segs = 1;
1653 
1654 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1655 		goto out_drop;
1656 
1657 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1658 		adapter->stats.txdrop++;
1659 		goto out_drop;
1660 	}
1661 
1662 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1663 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1664 		unsigned long flags;
1665 		u32 tstamp_flags;
1666 
1667 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1668 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1669 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1670 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1671 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1672 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1673 		} else {
1674 			adapter->tx_hwtstamp_skipped++;
1675 		}
1676 
1677 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1678 	}
1679 
1680 	if (skb_vlan_tag_present(skb)) {
1681 		tx_flags |= IGC_TX_FLAGS_VLAN;
1682 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1683 	}
1684 
1685 	/* record initial flags and protocol */
1686 	first->tx_flags = tx_flags;
1687 	first->protocol = protocol;
1688 
1689 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1690 	if (tso < 0)
1691 		goto out_drop;
1692 	else if (!tso)
1693 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1694 
1695 	igc_tx_map(tx_ring, first, hdr_len);
1696 
1697 	return NETDEV_TX_OK;
1698 
1699 out_drop:
1700 	dev_kfree_skb_any(first->skb);
1701 	first->skb = NULL;
1702 
1703 	return NETDEV_TX_OK;
1704 }
1705 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1706 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1707 						    struct sk_buff *skb)
1708 {
1709 	unsigned int r_idx = skb->queue_mapping;
1710 
1711 	if (r_idx >= adapter->num_tx_queues)
1712 		r_idx = r_idx % adapter->num_tx_queues;
1713 
1714 	return adapter->tx_ring[r_idx];
1715 }
1716 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1717 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1718 				  struct net_device *netdev)
1719 {
1720 	struct igc_adapter *adapter = netdev_priv(netdev);
1721 
1722 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1723 	 * in order to meet this minimum size requirement.
1724 	 */
1725 	if (skb->len < 17) {
1726 		if (skb_padto(skb, 17))
1727 			return NETDEV_TX_OK;
1728 		skb->len = 17;
1729 	}
1730 
1731 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1732 }
1733 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1734 static void igc_rx_checksum(struct igc_ring *ring,
1735 			    union igc_adv_rx_desc *rx_desc,
1736 			    struct sk_buff *skb)
1737 {
1738 	skb_checksum_none_assert(skb);
1739 
1740 	/* Ignore Checksum bit is set */
1741 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1742 		return;
1743 
1744 	/* Rx checksum disabled via ethtool */
1745 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1746 		return;
1747 
1748 	/* TCP/UDP checksum error bit is set */
1749 	if (igc_test_staterr(rx_desc,
1750 			     IGC_RXDEXT_STATERR_L4E |
1751 			     IGC_RXDEXT_STATERR_IPE)) {
1752 		/* work around errata with sctp packets where the TCPE aka
1753 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1754 		 * packets (aka let the stack check the crc32c)
1755 		 */
1756 		if (!(skb->len == 60 &&
1757 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1758 			u64_stats_update_begin(&ring->rx_syncp);
1759 			ring->rx_stats.csum_err++;
1760 			u64_stats_update_end(&ring->rx_syncp);
1761 		}
1762 		/* let the stack verify checksum errors */
1763 		return;
1764 	}
1765 	/* It must be a TCP or UDP packet with a valid checksum */
1766 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1767 				      IGC_RXD_STAT_UDPCS))
1768 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1769 
1770 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1771 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1772 }
1773 
1774 /* Mapping HW RSS Type to enum pkt_hash_types */
1775 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1776 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1777 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1778 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1779 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1780 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1781 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1782 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1783 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1784 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1785 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1786 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1787 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1788 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1789 	[13] = PKT_HASH_TYPE_NONE,
1790 	[14] = PKT_HASH_TYPE_NONE,
1791 	[15] = PKT_HASH_TYPE_NONE,
1792 };
1793 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1794 static inline void igc_rx_hash(struct igc_ring *ring,
1795 			       union igc_adv_rx_desc *rx_desc,
1796 			       struct sk_buff *skb)
1797 {
1798 	if (ring->netdev->features & NETIF_F_RXHASH) {
1799 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1800 		u32 rss_type = igc_rss_type(rx_desc);
1801 
1802 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1803 	}
1804 }
1805 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1806 static void igc_rx_vlan(struct igc_ring *rx_ring,
1807 			union igc_adv_rx_desc *rx_desc,
1808 			struct sk_buff *skb)
1809 {
1810 	struct net_device *dev = rx_ring->netdev;
1811 	u16 vid;
1812 
1813 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1814 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1815 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1816 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1817 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1818 		else
1819 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1820 
1821 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1822 	}
1823 }
1824 
1825 /**
1826  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1827  * @rx_ring: rx descriptor ring packet is being transacted on
1828  * @rx_desc: pointer to the EOP Rx descriptor
1829  * @skb: pointer to current skb being populated
1830  *
1831  * This function checks the ring, descriptor, and packet information in order
1832  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1833  * skb.
1834  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1835 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1836 				   union igc_adv_rx_desc *rx_desc,
1837 				   struct sk_buff *skb)
1838 {
1839 	igc_rx_hash(rx_ring, rx_desc, skb);
1840 
1841 	igc_rx_checksum(rx_ring, rx_desc, skb);
1842 
1843 	igc_rx_vlan(rx_ring, rx_desc, skb);
1844 
1845 	skb_record_rx_queue(skb, rx_ring->queue_index);
1846 
1847 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1848 }
1849 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1850 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1851 {
1852 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1853 	struct igc_adapter *adapter = netdev_priv(netdev);
1854 	struct igc_hw *hw = &adapter->hw;
1855 	u32 ctrl;
1856 
1857 	ctrl = rd32(IGC_CTRL);
1858 
1859 	if (enable) {
1860 		/* enable VLAN tag insert/strip */
1861 		ctrl |= IGC_CTRL_VME;
1862 	} else {
1863 		/* disable VLAN tag insert/strip */
1864 		ctrl &= ~IGC_CTRL_VME;
1865 	}
1866 	wr32(IGC_CTRL, ctrl);
1867 }
1868 
igc_restore_vlan(struct igc_adapter * adapter)1869 static void igc_restore_vlan(struct igc_adapter *adapter)
1870 {
1871 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1872 }
1873 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1874 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1875 					       const unsigned int size,
1876 					       int *rx_buffer_pgcnt)
1877 {
1878 	struct igc_rx_buffer *rx_buffer;
1879 
1880 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1881 	*rx_buffer_pgcnt =
1882 #if (PAGE_SIZE < 8192)
1883 		page_count(rx_buffer->page);
1884 #else
1885 		0;
1886 #endif
1887 	prefetchw(rx_buffer->page);
1888 
1889 	/* we are reusing so sync this buffer for CPU use */
1890 	dma_sync_single_range_for_cpu(rx_ring->dev,
1891 				      rx_buffer->dma,
1892 				      rx_buffer->page_offset,
1893 				      size,
1894 				      DMA_FROM_DEVICE);
1895 
1896 	rx_buffer->pagecnt_bias--;
1897 
1898 	return rx_buffer;
1899 }
1900 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1901 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1902 			       unsigned int truesize)
1903 {
1904 #if (PAGE_SIZE < 8192)
1905 	buffer->page_offset ^= truesize;
1906 #else
1907 	buffer->page_offset += truesize;
1908 #endif
1909 }
1910 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1911 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1912 					      unsigned int size)
1913 {
1914 	unsigned int truesize;
1915 
1916 #if (PAGE_SIZE < 8192)
1917 	truesize = igc_rx_pg_size(ring) / 2;
1918 #else
1919 	truesize = ring_uses_build_skb(ring) ?
1920 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1921 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1922 		   SKB_DATA_ALIGN(size);
1923 #endif
1924 	return truesize;
1925 }
1926 
1927 /**
1928  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1929  * @rx_ring: rx descriptor ring to transact packets on
1930  * @rx_buffer: buffer containing page to add
1931  * @skb: sk_buff to place the data into
1932  * @size: size of buffer to be added
1933  *
1934  * This function will add the data contained in rx_buffer->page to the skb.
1935  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1936 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1937 			    struct igc_rx_buffer *rx_buffer,
1938 			    struct sk_buff *skb,
1939 			    unsigned int size)
1940 {
1941 	unsigned int truesize;
1942 
1943 #if (PAGE_SIZE < 8192)
1944 	truesize = igc_rx_pg_size(rx_ring) / 2;
1945 #else
1946 	truesize = ring_uses_build_skb(rx_ring) ?
1947 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1948 		   SKB_DATA_ALIGN(size);
1949 #endif
1950 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1951 			rx_buffer->page_offset, size, truesize);
1952 
1953 	igc_rx_buffer_flip(rx_buffer, truesize);
1954 }
1955 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1956 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1957 				     struct igc_rx_buffer *rx_buffer,
1958 				     struct xdp_buff *xdp)
1959 {
1960 	unsigned int size = xdp->data_end - xdp->data;
1961 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1962 	unsigned int metasize = xdp->data - xdp->data_meta;
1963 	struct sk_buff *skb;
1964 
1965 	/* prefetch first cache line of first page */
1966 	net_prefetch(xdp->data_meta);
1967 
1968 	/* build an skb around the page buffer */
1969 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1970 	if (unlikely(!skb))
1971 		return NULL;
1972 
1973 	/* update pointers within the skb to store the data */
1974 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1975 	__skb_put(skb, size);
1976 	if (metasize)
1977 		skb_metadata_set(skb, metasize);
1978 
1979 	igc_rx_buffer_flip(rx_buffer, truesize);
1980 	return skb;
1981 }
1982 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1983 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1984 					 struct igc_rx_buffer *rx_buffer,
1985 					 struct igc_xdp_buff *ctx)
1986 {
1987 	struct xdp_buff *xdp = &ctx->xdp;
1988 	unsigned int metasize = xdp->data - xdp->data_meta;
1989 	unsigned int size = xdp->data_end - xdp->data;
1990 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1991 	void *va = xdp->data;
1992 	unsigned int headlen;
1993 	struct sk_buff *skb;
1994 
1995 	/* prefetch first cache line of first page */
1996 	net_prefetch(xdp->data_meta);
1997 
1998 	/* allocate a skb to store the frags */
1999 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
2000 			     IGC_RX_HDR_LEN + metasize);
2001 	if (unlikely(!skb))
2002 		return NULL;
2003 
2004 	if (ctx->rx_ts) {
2005 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2006 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2007 	}
2008 
2009 	/* Determine available headroom for copy */
2010 	headlen = size;
2011 	if (headlen > IGC_RX_HDR_LEN)
2012 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
2013 
2014 	/* align pull length to size of long to optimize memcpy performance */
2015 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2016 	       ALIGN(headlen + metasize, sizeof(long)));
2017 
2018 	if (metasize) {
2019 		skb_metadata_set(skb, metasize);
2020 		__skb_pull(skb, metasize);
2021 	}
2022 
2023 	/* update all of the pointers */
2024 	size -= headlen;
2025 	if (size) {
2026 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2027 				(va + headlen) - page_address(rx_buffer->page),
2028 				size, truesize);
2029 		igc_rx_buffer_flip(rx_buffer, truesize);
2030 	} else {
2031 		rx_buffer->pagecnt_bias++;
2032 	}
2033 
2034 	return skb;
2035 }
2036 
2037 /**
2038  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2039  * @rx_ring: rx descriptor ring to store buffers on
2040  * @old_buff: donor buffer to have page reused
2041  *
2042  * Synchronizes page for reuse by the adapter
2043  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2044 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2045 			      struct igc_rx_buffer *old_buff)
2046 {
2047 	u16 nta = rx_ring->next_to_alloc;
2048 	struct igc_rx_buffer *new_buff;
2049 
2050 	new_buff = &rx_ring->rx_buffer_info[nta];
2051 
2052 	/* update, and store next to alloc */
2053 	nta++;
2054 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2055 
2056 	/* Transfer page from old buffer to new buffer.
2057 	 * Move each member individually to avoid possible store
2058 	 * forwarding stalls.
2059 	 */
2060 	new_buff->dma		= old_buff->dma;
2061 	new_buff->page		= old_buff->page;
2062 	new_buff->page_offset	= old_buff->page_offset;
2063 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2064 }
2065 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2066 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2067 				  int rx_buffer_pgcnt)
2068 {
2069 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2070 	struct page *page = rx_buffer->page;
2071 
2072 	/* avoid re-using remote and pfmemalloc pages */
2073 	if (!dev_page_is_reusable(page))
2074 		return false;
2075 
2076 #if (PAGE_SIZE < 8192)
2077 	/* if we are only owner of page we can reuse it */
2078 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2079 		return false;
2080 #else
2081 #define IGC_LAST_OFFSET \
2082 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2083 
2084 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2085 		return false;
2086 #endif
2087 
2088 	/* If we have drained the page fragment pool we need to update
2089 	 * the pagecnt_bias and page count so that we fully restock the
2090 	 * number of references the driver holds.
2091 	 */
2092 	if (unlikely(pagecnt_bias == 1)) {
2093 		page_ref_add(page, USHRT_MAX - 1);
2094 		rx_buffer->pagecnt_bias = USHRT_MAX;
2095 	}
2096 
2097 	return true;
2098 }
2099 
2100 /**
2101  * igc_is_non_eop - process handling of non-EOP buffers
2102  * @rx_ring: Rx ring being processed
2103  * @rx_desc: Rx descriptor for current buffer
2104  *
2105  * This function updates next to clean.  If the buffer is an EOP buffer
2106  * this function exits returning false, otherwise it will place the
2107  * sk_buff in the next buffer to be chained and return true indicating
2108  * that this is in fact a non-EOP buffer.
2109  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2110 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2111 			   union igc_adv_rx_desc *rx_desc)
2112 {
2113 	u32 ntc = rx_ring->next_to_clean + 1;
2114 
2115 	/* fetch, update, and store next to clean */
2116 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2117 	rx_ring->next_to_clean = ntc;
2118 
2119 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2120 
2121 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2122 		return false;
2123 
2124 	return true;
2125 }
2126 
2127 /**
2128  * igc_cleanup_headers - Correct corrupted or empty headers
2129  * @rx_ring: rx descriptor ring packet is being transacted on
2130  * @rx_desc: pointer to the EOP Rx descriptor
2131  * @skb: pointer to current skb being fixed
2132  *
2133  * Address the case where we are pulling data in on pages only
2134  * and as such no data is present in the skb header.
2135  *
2136  * In addition if skb is not at least 60 bytes we need to pad it so that
2137  * it is large enough to qualify as a valid Ethernet frame.
2138  *
2139  * Returns true if an error was encountered and skb was freed.
2140  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2141 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2142 				union igc_adv_rx_desc *rx_desc,
2143 				struct sk_buff *skb)
2144 {
2145 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2146 		struct net_device *netdev = rx_ring->netdev;
2147 
2148 		if (!(netdev->features & NETIF_F_RXALL)) {
2149 			dev_kfree_skb_any(skb);
2150 			return true;
2151 		}
2152 	}
2153 
2154 	/* if eth_skb_pad returns an error the skb was freed */
2155 	if (eth_skb_pad(skb))
2156 		return true;
2157 
2158 	return false;
2159 }
2160 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2161 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2162 			      struct igc_rx_buffer *rx_buffer,
2163 			      int rx_buffer_pgcnt)
2164 {
2165 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2166 		/* hand second half of page back to the ring */
2167 		igc_reuse_rx_page(rx_ring, rx_buffer);
2168 	} else {
2169 		/* We are not reusing the buffer so unmap it and free
2170 		 * any references we are holding to it
2171 		 */
2172 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2173 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2174 				     IGC_RX_DMA_ATTR);
2175 		__page_frag_cache_drain(rx_buffer->page,
2176 					rx_buffer->pagecnt_bias);
2177 	}
2178 
2179 	/* clear contents of rx_buffer */
2180 	rx_buffer->page = NULL;
2181 }
2182 
igc_rx_offset(struct igc_ring * rx_ring)2183 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2184 {
2185 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2186 
2187 	if (ring_uses_build_skb(rx_ring))
2188 		return IGC_SKB_PAD;
2189 	if (igc_xdp_is_enabled(adapter))
2190 		return XDP_PACKET_HEADROOM;
2191 
2192 	return 0;
2193 }
2194 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2195 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2196 				  struct igc_rx_buffer *bi)
2197 {
2198 	struct page *page = bi->page;
2199 	dma_addr_t dma;
2200 
2201 	/* since we are recycling buffers we should seldom need to alloc */
2202 	if (likely(page))
2203 		return true;
2204 
2205 	/* alloc new page for storage */
2206 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2207 	if (unlikely(!page)) {
2208 		rx_ring->rx_stats.alloc_failed++;
2209 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2210 		return false;
2211 	}
2212 
2213 	/* map page for use */
2214 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2215 				 igc_rx_pg_size(rx_ring),
2216 				 DMA_FROM_DEVICE,
2217 				 IGC_RX_DMA_ATTR);
2218 
2219 	/* if mapping failed free memory back to system since
2220 	 * there isn't much point in holding memory we can't use
2221 	 */
2222 	if (dma_mapping_error(rx_ring->dev, dma)) {
2223 		__free_page(page);
2224 
2225 		rx_ring->rx_stats.alloc_failed++;
2226 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2227 		return false;
2228 	}
2229 
2230 	bi->dma = dma;
2231 	bi->page = page;
2232 	bi->page_offset = igc_rx_offset(rx_ring);
2233 	page_ref_add(page, USHRT_MAX - 1);
2234 	bi->pagecnt_bias = USHRT_MAX;
2235 
2236 	return true;
2237 }
2238 
2239 /**
2240  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2241  * @rx_ring: rx descriptor ring
2242  * @cleaned_count: number of buffers to clean
2243  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2244 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2245 {
2246 	union igc_adv_rx_desc *rx_desc;
2247 	u16 i = rx_ring->next_to_use;
2248 	struct igc_rx_buffer *bi;
2249 	u16 bufsz;
2250 
2251 	/* nothing to do */
2252 	if (!cleaned_count)
2253 		return;
2254 
2255 	rx_desc = IGC_RX_DESC(rx_ring, i);
2256 	bi = &rx_ring->rx_buffer_info[i];
2257 	i -= rx_ring->count;
2258 
2259 	bufsz = igc_rx_bufsz(rx_ring);
2260 
2261 	do {
2262 		if (!igc_alloc_mapped_page(rx_ring, bi))
2263 			break;
2264 
2265 		/* sync the buffer for use by the device */
2266 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2267 						 bi->page_offset, bufsz,
2268 						 DMA_FROM_DEVICE);
2269 
2270 		/* Refresh the desc even if buffer_addrs didn't change
2271 		 * because each write-back erases this info.
2272 		 */
2273 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2274 
2275 		rx_desc++;
2276 		bi++;
2277 		i++;
2278 		if (unlikely(!i)) {
2279 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2280 			bi = rx_ring->rx_buffer_info;
2281 			i -= rx_ring->count;
2282 		}
2283 
2284 		/* clear the length for the next_to_use descriptor */
2285 		rx_desc->wb.upper.length = 0;
2286 
2287 		cleaned_count--;
2288 	} while (cleaned_count);
2289 
2290 	i += rx_ring->count;
2291 
2292 	if (rx_ring->next_to_use != i) {
2293 		/* record the next descriptor to use */
2294 		rx_ring->next_to_use = i;
2295 
2296 		/* update next to alloc since we have filled the ring */
2297 		rx_ring->next_to_alloc = i;
2298 
2299 		/* Force memory writes to complete before letting h/w
2300 		 * know there are new descriptors to fetch.  (Only
2301 		 * applicable for weak-ordered memory model archs,
2302 		 * such as IA-64).
2303 		 */
2304 		wmb();
2305 		writel(i, rx_ring->tail);
2306 	}
2307 }
2308 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2309 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2310 {
2311 	union igc_adv_rx_desc *desc;
2312 	u16 i = ring->next_to_use;
2313 	struct igc_rx_buffer *bi;
2314 	dma_addr_t dma;
2315 	bool ok = true;
2316 
2317 	if (!count)
2318 		return ok;
2319 
2320 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2321 
2322 	desc = IGC_RX_DESC(ring, i);
2323 	bi = &ring->rx_buffer_info[i];
2324 	i -= ring->count;
2325 
2326 	do {
2327 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2328 		if (!bi->xdp) {
2329 			ok = false;
2330 			break;
2331 		}
2332 
2333 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2334 		desc->read.pkt_addr = cpu_to_le64(dma);
2335 
2336 		desc++;
2337 		bi++;
2338 		i++;
2339 		if (unlikely(!i)) {
2340 			desc = IGC_RX_DESC(ring, 0);
2341 			bi = ring->rx_buffer_info;
2342 			i -= ring->count;
2343 		}
2344 
2345 		/* Clear the length for the next_to_use descriptor. */
2346 		desc->wb.upper.length = 0;
2347 
2348 		count--;
2349 	} while (count);
2350 
2351 	i += ring->count;
2352 
2353 	if (ring->next_to_use != i) {
2354 		ring->next_to_use = i;
2355 
2356 		/* Force memory writes to complete before letting h/w
2357 		 * know there are new descriptors to fetch.  (Only
2358 		 * applicable for weak-ordered memory model archs,
2359 		 * such as IA-64).
2360 		 */
2361 		wmb();
2362 		writel(i, ring->tail);
2363 	}
2364 
2365 	return ok;
2366 }
2367 
2368 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2369 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2370 				      struct xdp_frame *xdpf)
2371 {
2372 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2373 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2374 	u16 count, index = ring->next_to_use;
2375 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2376 	struct igc_tx_buffer *buffer = head;
2377 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2378 	u32 olinfo_status, len = xdpf->len, cmd_type;
2379 	void *data = xdpf->data;
2380 	u16 i;
2381 
2382 	count = TXD_USE_COUNT(len);
2383 	for (i = 0; i < nr_frags; i++)
2384 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2385 
2386 	if (igc_maybe_stop_tx(ring, count + 3)) {
2387 		/* this is a hard error */
2388 		return -EBUSY;
2389 	}
2390 
2391 	i = 0;
2392 	head->bytecount = xdp_get_frame_len(xdpf);
2393 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2394 	head->gso_segs = 1;
2395 	head->xdpf = xdpf;
2396 
2397 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2398 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2399 
2400 	for (;;) {
2401 		dma_addr_t dma;
2402 
2403 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2404 		if (dma_mapping_error(ring->dev, dma)) {
2405 			netdev_err_once(ring->netdev,
2406 					"Failed to map DMA for TX\n");
2407 			goto unmap;
2408 		}
2409 
2410 		dma_unmap_len_set(buffer, len, len);
2411 		dma_unmap_addr_set(buffer, dma, dma);
2412 
2413 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2414 			   IGC_ADVTXD_DCMD_IFCS | len;
2415 
2416 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2417 		desc->read.buffer_addr = cpu_to_le64(dma);
2418 
2419 		buffer->protocol = 0;
2420 
2421 		if (++index == ring->count)
2422 			index = 0;
2423 
2424 		if (i == nr_frags)
2425 			break;
2426 
2427 		buffer = &ring->tx_buffer_info[index];
2428 		desc = IGC_TX_DESC(ring, index);
2429 		desc->read.olinfo_status = 0;
2430 
2431 		data = skb_frag_address(&sinfo->frags[i]);
2432 		len = skb_frag_size(&sinfo->frags[i]);
2433 		i++;
2434 	}
2435 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2436 
2437 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2438 	/* set the timestamp */
2439 	head->time_stamp = jiffies;
2440 	/* set next_to_watch value indicating a packet is present */
2441 	head->next_to_watch = desc;
2442 	ring->next_to_use = index;
2443 
2444 	return 0;
2445 
2446 unmap:
2447 	for (;;) {
2448 		buffer = &ring->tx_buffer_info[index];
2449 		if (dma_unmap_len(buffer, len))
2450 			dma_unmap_page(ring->dev,
2451 				       dma_unmap_addr(buffer, dma),
2452 				       dma_unmap_len(buffer, len),
2453 				       DMA_TO_DEVICE);
2454 		dma_unmap_len_set(buffer, len, 0);
2455 		if (buffer == head)
2456 			break;
2457 
2458 		if (!index)
2459 			index += ring->count;
2460 		index--;
2461 	}
2462 
2463 	return -ENOMEM;
2464 }
2465 
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2466 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2467 					    int cpu)
2468 {
2469 	int index = cpu;
2470 
2471 	if (unlikely(index < 0))
2472 		index = 0;
2473 
2474 	while (index >= adapter->num_tx_queues)
2475 		index -= adapter->num_tx_queues;
2476 
2477 	return adapter->tx_ring[index];
2478 }
2479 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2480 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2481 {
2482 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2483 	int cpu = smp_processor_id();
2484 	struct netdev_queue *nq;
2485 	struct igc_ring *ring;
2486 	int res;
2487 
2488 	if (unlikely(!xdpf))
2489 		return -EFAULT;
2490 
2491 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2492 	nq = txring_txq(ring);
2493 
2494 	__netif_tx_lock(nq, cpu);
2495 	/* Avoid transmit queue timeout since we share it with the slow path */
2496 	txq_trans_cond_update(nq);
2497 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2498 	__netif_tx_unlock(nq);
2499 	return res;
2500 }
2501 
2502 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2503 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2504 			      struct bpf_prog *prog,
2505 			      struct xdp_buff *xdp)
2506 {
2507 	u32 act = bpf_prog_run_xdp(prog, xdp);
2508 
2509 	switch (act) {
2510 	case XDP_PASS:
2511 		return IGC_XDP_PASS;
2512 	case XDP_TX:
2513 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2514 			goto out_failure;
2515 		return IGC_XDP_TX;
2516 	case XDP_REDIRECT:
2517 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2518 			goto out_failure;
2519 		return IGC_XDP_REDIRECT;
2520 		break;
2521 	default:
2522 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2523 		fallthrough;
2524 	case XDP_ABORTED:
2525 out_failure:
2526 		trace_xdp_exception(adapter->netdev, prog, act);
2527 		fallthrough;
2528 	case XDP_DROP:
2529 		return IGC_XDP_CONSUMED;
2530 	}
2531 }
2532 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2533 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2534 {
2535 	struct bpf_prog *prog;
2536 	int res;
2537 
2538 	prog = READ_ONCE(adapter->xdp_prog);
2539 	if (!prog) {
2540 		res = IGC_XDP_PASS;
2541 		goto out;
2542 	}
2543 
2544 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2545 
2546 out:
2547 	return res;
2548 }
2549 
2550 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2551 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2552 {
2553 	/* Once tail pointer is updated, hardware can fetch the descriptors
2554 	 * any time so we issue a write membar here to ensure all memory
2555 	 * writes are complete before the tail pointer is updated.
2556 	 */
2557 	wmb();
2558 	writel(ring->next_to_use, ring->tail);
2559 }
2560 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2561 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2562 {
2563 	int cpu = smp_processor_id();
2564 	struct netdev_queue *nq;
2565 	struct igc_ring *ring;
2566 
2567 	if (status & IGC_XDP_TX) {
2568 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2569 		nq = txring_txq(ring);
2570 
2571 		__netif_tx_lock(nq, cpu);
2572 		igc_flush_tx_descriptors(ring);
2573 		__netif_tx_unlock(nq);
2574 	}
2575 
2576 	if (status & IGC_XDP_REDIRECT)
2577 		xdp_do_flush();
2578 }
2579 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2580 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2581 				unsigned int packets, unsigned int bytes)
2582 {
2583 	struct igc_ring *ring = q_vector->rx.ring;
2584 
2585 	u64_stats_update_begin(&ring->rx_syncp);
2586 	ring->rx_stats.packets += packets;
2587 	ring->rx_stats.bytes += bytes;
2588 	u64_stats_update_end(&ring->rx_syncp);
2589 
2590 	q_vector->rx.total_packets += packets;
2591 	q_vector->rx.total_bytes += bytes;
2592 }
2593 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2594 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2595 {
2596 	unsigned int total_bytes = 0, total_packets = 0;
2597 	struct igc_adapter *adapter = q_vector->adapter;
2598 	struct igc_ring *rx_ring = q_vector->rx.ring;
2599 	struct sk_buff *skb = rx_ring->skb;
2600 	u16 cleaned_count = igc_desc_unused(rx_ring);
2601 	int xdp_status = 0, rx_buffer_pgcnt;
2602 	int xdp_res = 0;
2603 
2604 	while (likely(total_packets < budget)) {
2605 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2606 		struct igc_rx_buffer *rx_buffer;
2607 		union igc_adv_rx_desc *rx_desc;
2608 		unsigned int size, truesize;
2609 		int pkt_offset = 0;
2610 		void *pktbuf;
2611 
2612 		/* return some buffers to hardware, one at a time is too slow */
2613 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2614 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2615 			cleaned_count = 0;
2616 		}
2617 
2618 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2619 		size = le16_to_cpu(rx_desc->wb.upper.length);
2620 		if (!size)
2621 			break;
2622 
2623 		/* This memory barrier is needed to keep us from reading
2624 		 * any other fields out of the rx_desc until we know the
2625 		 * descriptor has been written back
2626 		 */
2627 		dma_rmb();
2628 
2629 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2630 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2631 
2632 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2633 
2634 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2635 			ctx.rx_ts = pktbuf;
2636 			pkt_offset = IGC_TS_HDR_LEN;
2637 			size -= IGC_TS_HDR_LEN;
2638 		}
2639 
2640 		if (!skb) {
2641 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2642 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2643 					 igc_rx_offset(rx_ring) + pkt_offset,
2644 					 size, true);
2645 			xdp_buff_clear_frags_flag(&ctx.xdp);
2646 			ctx.rx_desc = rx_desc;
2647 
2648 			xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2649 		}
2650 
2651 		if (xdp_res) {
2652 			switch (xdp_res) {
2653 			case IGC_XDP_CONSUMED:
2654 				rx_buffer->pagecnt_bias++;
2655 				break;
2656 			case IGC_XDP_TX:
2657 			case IGC_XDP_REDIRECT:
2658 				igc_rx_buffer_flip(rx_buffer, truesize);
2659 				xdp_status |= xdp_res;
2660 				break;
2661 			}
2662 
2663 			total_packets++;
2664 			total_bytes += size;
2665 		} else if (skb)
2666 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2667 		else if (ring_uses_build_skb(rx_ring))
2668 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2669 		else
2670 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2671 
2672 		/* exit if we failed to retrieve a buffer */
2673 		if (!xdp_res && !skb) {
2674 			rx_ring->rx_stats.alloc_failed++;
2675 			rx_buffer->pagecnt_bias++;
2676 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2677 			break;
2678 		}
2679 
2680 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2681 		cleaned_count++;
2682 
2683 		/* fetch next buffer in frame if non-eop */
2684 		if (igc_is_non_eop(rx_ring, rx_desc))
2685 			continue;
2686 
2687 		/* verify the packet layout is correct */
2688 		if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2689 			skb = NULL;
2690 			continue;
2691 		}
2692 
2693 		/* probably a little skewed due to removing CRC */
2694 		total_bytes += skb->len;
2695 
2696 		/* populate checksum, VLAN, and protocol */
2697 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2698 
2699 		napi_gro_receive(&q_vector->napi, skb);
2700 
2701 		/* reset skb pointer */
2702 		skb = NULL;
2703 
2704 		/* update budget accounting */
2705 		total_packets++;
2706 	}
2707 
2708 	if (xdp_status)
2709 		igc_finalize_xdp(adapter, xdp_status);
2710 
2711 	/* place incomplete frames back on ring for completion */
2712 	rx_ring->skb = skb;
2713 
2714 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2715 
2716 	if (cleaned_count)
2717 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2718 
2719 	return total_packets;
2720 }
2721 
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2722 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2723 					    struct igc_xdp_buff *ctx)
2724 {
2725 	struct xdp_buff *xdp = &ctx->xdp;
2726 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2727 	unsigned int metasize = xdp->data - xdp->data_meta;
2728 	struct sk_buff *skb;
2729 
2730 	net_prefetch(xdp->data_meta);
2731 
2732 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2733 	if (unlikely(!skb))
2734 		return NULL;
2735 
2736 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2737 	       ALIGN(totalsize, sizeof(long)));
2738 
2739 	if (metasize) {
2740 		skb_metadata_set(skb, metasize);
2741 		__skb_pull(skb, metasize);
2742 	}
2743 
2744 	if (ctx->rx_ts) {
2745 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2746 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2747 	}
2748 
2749 	return skb;
2750 }
2751 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2752 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2753 				union igc_adv_rx_desc *desc,
2754 				struct igc_xdp_buff *ctx)
2755 {
2756 	struct igc_ring *ring = q_vector->rx.ring;
2757 	struct sk_buff *skb;
2758 
2759 	skb = igc_construct_skb_zc(ring, ctx);
2760 	if (!skb) {
2761 		ring->rx_stats.alloc_failed++;
2762 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2763 		return;
2764 	}
2765 
2766 	if (igc_cleanup_headers(ring, desc, skb))
2767 		return;
2768 
2769 	igc_process_skb_fields(ring, desc, skb);
2770 	napi_gro_receive(&q_vector->napi, skb);
2771 }
2772 
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2773 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2774 {
2775 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2776 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2777 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2778 	 */
2779        return (struct igc_xdp_buff *)xdp;
2780 }
2781 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2782 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2783 {
2784 	struct igc_adapter *adapter = q_vector->adapter;
2785 	struct igc_ring *ring = q_vector->rx.ring;
2786 	u16 cleaned_count = igc_desc_unused(ring);
2787 	int total_bytes = 0, total_packets = 0;
2788 	u16 ntc = ring->next_to_clean;
2789 	struct bpf_prog *prog;
2790 	bool failure = false;
2791 	int xdp_status = 0;
2792 
2793 	rcu_read_lock();
2794 
2795 	prog = READ_ONCE(adapter->xdp_prog);
2796 
2797 	while (likely(total_packets < budget)) {
2798 		union igc_adv_rx_desc *desc;
2799 		struct igc_rx_buffer *bi;
2800 		struct igc_xdp_buff *ctx;
2801 		unsigned int size;
2802 		int res;
2803 
2804 		desc = IGC_RX_DESC(ring, ntc);
2805 		size = le16_to_cpu(desc->wb.upper.length);
2806 		if (!size)
2807 			break;
2808 
2809 		/* This memory barrier is needed to keep us from reading
2810 		 * any other fields out of the rx_desc until we know the
2811 		 * descriptor has been written back
2812 		 */
2813 		dma_rmb();
2814 
2815 		bi = &ring->rx_buffer_info[ntc];
2816 
2817 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2818 		ctx->rx_desc = desc;
2819 
2820 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2821 			ctx->rx_ts = bi->xdp->data;
2822 
2823 			bi->xdp->data += IGC_TS_HDR_LEN;
2824 
2825 			/* HW timestamp has been copied into local variable. Metadata
2826 			 * length when XDP program is called should be 0.
2827 			 */
2828 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2829 			size -= IGC_TS_HDR_LEN;
2830 		} else {
2831 			ctx->rx_ts = NULL;
2832 		}
2833 
2834 		bi->xdp->data_end = bi->xdp->data + size;
2835 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2836 
2837 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2838 		switch (res) {
2839 		case IGC_XDP_PASS:
2840 			igc_dispatch_skb_zc(q_vector, desc, ctx);
2841 			fallthrough;
2842 		case IGC_XDP_CONSUMED:
2843 			xsk_buff_free(bi->xdp);
2844 			break;
2845 		case IGC_XDP_TX:
2846 		case IGC_XDP_REDIRECT:
2847 			xdp_status |= res;
2848 			break;
2849 		}
2850 
2851 		bi->xdp = NULL;
2852 		total_bytes += size;
2853 		total_packets++;
2854 		cleaned_count++;
2855 		ntc++;
2856 		if (ntc == ring->count)
2857 			ntc = 0;
2858 	}
2859 
2860 	ring->next_to_clean = ntc;
2861 	rcu_read_unlock();
2862 
2863 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2864 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2865 
2866 	if (xdp_status)
2867 		igc_finalize_xdp(adapter, xdp_status);
2868 
2869 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2870 
2871 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2872 		if (failure || ring->next_to_clean == ring->next_to_use)
2873 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2874 		else
2875 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2876 		return total_packets;
2877 	}
2878 
2879 	return failure ? budget : total_packets;
2880 }
2881 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2882 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2883 				unsigned int packets, unsigned int bytes)
2884 {
2885 	struct igc_ring *ring = q_vector->tx.ring;
2886 
2887 	u64_stats_update_begin(&ring->tx_syncp);
2888 	ring->tx_stats.bytes += bytes;
2889 	ring->tx_stats.packets += packets;
2890 	u64_stats_update_end(&ring->tx_syncp);
2891 
2892 	q_vector->tx.total_bytes += bytes;
2893 	q_vector->tx.total_packets += packets;
2894 }
2895 
igc_xsk_request_timestamp(void * _priv)2896 static void igc_xsk_request_timestamp(void *_priv)
2897 {
2898 	struct igc_metadata_request *meta_req = _priv;
2899 	struct igc_ring *tx_ring = meta_req->tx_ring;
2900 	struct igc_tx_timestamp_request *tstamp;
2901 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2902 	struct igc_adapter *adapter;
2903 	unsigned long lock_flags;
2904 	bool found = false;
2905 	int i;
2906 
2907 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2908 		adapter = netdev_priv(tx_ring->netdev);
2909 
2910 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2911 
2912 		/* Search for available tstamp regs */
2913 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2914 			tstamp = &adapter->tx_tstamp[i];
2915 
2916 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2917 			 * When tstamp->skb is equal to NULL,
2918 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2919 			 * This condition means that the particular tstamp reg
2920 			 * is not occupied by other packet.
2921 			 */
2922 			if (!tstamp->skb) {
2923 				found = true;
2924 				break;
2925 			}
2926 		}
2927 
2928 		/* Return if no available tstamp regs */
2929 		if (!found) {
2930 			adapter->tx_hwtstamp_skipped++;
2931 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2932 					       lock_flags);
2933 			return;
2934 		}
2935 
2936 		tstamp->start = jiffies;
2937 		tstamp->xsk_queue_index = tx_ring->queue_index;
2938 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2939 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2940 
2941 		/* Hold the transmit completion until timestamp is ready */
2942 		meta_req->tx_buffer->xsk_pending_ts = true;
2943 
2944 		/* Keep the pointer to tx_timestamp, which is located in XDP
2945 		 * metadata area. It is the location to store the value of
2946 		 * tx hardware timestamp.
2947 		 */
2948 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2949 
2950 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2951 		tx_flags |= tstamp->flags;
2952 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2953 						   IGC_TX_FLAGS_TSTAMP,
2954 						   (IGC_ADVTXD_MAC_TSTAMP));
2955 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2956 						   IGC_TX_FLAGS_TSTAMP_1,
2957 						   (IGC_ADVTXD_TSTAMP_REG_1));
2958 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2959 						   IGC_TX_FLAGS_TSTAMP_2,
2960 						   (IGC_ADVTXD_TSTAMP_REG_2));
2961 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2962 						   IGC_TX_FLAGS_TSTAMP_3,
2963 						   (IGC_ADVTXD_TSTAMP_REG_3));
2964 
2965 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2966 	}
2967 }
2968 
igc_xsk_fill_timestamp(void * _priv)2969 static u64 igc_xsk_fill_timestamp(void *_priv)
2970 {
2971 	return *(u64 *)_priv;
2972 }
2973 
igc_xsk_request_launch_time(u64 launch_time,void * _priv)2974 static void igc_xsk_request_launch_time(u64 launch_time, void *_priv)
2975 {
2976 	struct igc_metadata_request *meta_req = _priv;
2977 	struct igc_ring *tx_ring = meta_req->tx_ring;
2978 	__le32 launch_time_offset;
2979 	bool insert_empty = false;
2980 	bool first_flag = false;
2981 	u16 used_desc = 0;
2982 
2983 	if (!tx_ring->launchtime_enable)
2984 		return;
2985 
2986 	launch_time_offset = igc_tx_launchtime(tx_ring,
2987 					       ns_to_ktime(launch_time),
2988 					       &first_flag, &insert_empty);
2989 	if (insert_empty) {
2990 		/* Disregard the launch time request if the required empty frame
2991 		 * fails to be inserted.
2992 		 */
2993 		if (igc_insert_empty_frame(tx_ring))
2994 			return;
2995 
2996 		meta_req->tx_buffer =
2997 			&tx_ring->tx_buffer_info[tx_ring->next_to_use];
2998 		/* Inserting an empty packet requires two descriptors:
2999 		 * one data descriptor and one context descriptor.
3000 		 */
3001 		used_desc += 2;
3002 	}
3003 
3004 	/* Use one context descriptor to specify launch time and first flag. */
3005 	igc_tx_ctxtdesc(tx_ring, launch_time_offset, first_flag, 0, 0, 0);
3006 	used_desc += 1;
3007 
3008 	/* Update the number of used descriptors in this request */
3009 	meta_req->used_desc += used_desc;
3010 }
3011 
3012 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
3013 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
3014 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
3015 	.tmo_request_launch_time	= igc_xsk_request_launch_time,
3016 };
3017 
igc_xdp_xmit_zc(struct igc_ring * ring)3018 static void igc_xdp_xmit_zc(struct igc_ring *ring)
3019 {
3020 	struct xsk_buff_pool *pool = ring->xsk_pool;
3021 	struct netdev_queue *nq = txring_txq(ring);
3022 	union igc_adv_tx_desc *tx_desc = NULL;
3023 	int cpu = smp_processor_id();
3024 	struct xdp_desc xdp_desc;
3025 	u16 budget, ntu;
3026 
3027 	if (!netif_carrier_ok(ring->netdev))
3028 		return;
3029 
3030 	__netif_tx_lock(nq, cpu);
3031 
3032 	/* Avoid transmit queue timeout since we share it with the slow path */
3033 	txq_trans_cond_update(nq);
3034 
3035 	ntu = ring->next_to_use;
3036 	budget = igc_desc_unused(ring);
3037 
3038 	/* Packets with launch time require one data descriptor and one context
3039 	 * descriptor. When the launch time falls into the next Qbv cycle, we
3040 	 * may need to insert an empty packet, which requires two more
3041 	 * descriptors. Therefore, to be safe, we always ensure we have at least
3042 	 * 4 descriptors available.
3043 	 */
3044 	while (budget >= 4 && xsk_tx_peek_desc(pool, &xdp_desc)) {
3045 		struct igc_metadata_request meta_req;
3046 		struct xsk_tx_metadata *meta = NULL;
3047 		struct igc_tx_buffer *bi;
3048 		u32 olinfo_status;
3049 		dma_addr_t dma;
3050 
3051 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
3052 				    IGC_ADVTXD_DCMD_DEXT |
3053 				    IGC_ADVTXD_DCMD_IFCS |
3054 				    IGC_TXD_DCMD | xdp_desc.len;
3055 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
3056 
3057 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3058 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3059 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3060 		bi = &ring->tx_buffer_info[ntu];
3061 
3062 		meta_req.tx_ring = ring;
3063 		meta_req.tx_buffer = bi;
3064 		meta_req.meta = meta;
3065 		meta_req.used_desc = 0;
3066 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3067 					&meta_req);
3068 
3069 		/* xsk_tx_metadata_request() may have updated next_to_use */
3070 		ntu = ring->next_to_use;
3071 
3072 		/* xsk_tx_metadata_request() may have updated Tx buffer info */
3073 		bi = meta_req.tx_buffer;
3074 
3075 		/* xsk_tx_metadata_request() may use a few descriptors */
3076 		budget -= meta_req.used_desc;
3077 
3078 		tx_desc = IGC_TX_DESC(ring, ntu);
3079 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3080 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3081 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3082 
3083 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3084 		bi->protocol = 0;
3085 		bi->bytecount = xdp_desc.len;
3086 		bi->gso_segs = 1;
3087 		bi->time_stamp = jiffies;
3088 		bi->next_to_watch = tx_desc;
3089 
3090 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3091 
3092 		ntu++;
3093 		if (ntu == ring->count)
3094 			ntu = 0;
3095 
3096 		ring->next_to_use = ntu;
3097 		budget--;
3098 	}
3099 
3100 	if (tx_desc) {
3101 		igc_flush_tx_descriptors(ring);
3102 		xsk_tx_release(pool);
3103 	}
3104 
3105 	__netif_tx_unlock(nq);
3106 }
3107 
3108 /**
3109  * igc_clean_tx_irq - Reclaim resources after transmit completes
3110  * @q_vector: pointer to q_vector containing needed info
3111  * @napi_budget: Used to determine if we are in netpoll
3112  *
3113  * returns true if ring is completely cleaned
3114  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3115 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3116 {
3117 	struct igc_adapter *adapter = q_vector->adapter;
3118 	unsigned int total_bytes = 0, total_packets = 0;
3119 	unsigned int budget = q_vector->tx.work_limit;
3120 	struct igc_ring *tx_ring = q_vector->tx.ring;
3121 	unsigned int i = tx_ring->next_to_clean;
3122 	struct igc_tx_buffer *tx_buffer;
3123 	union igc_adv_tx_desc *tx_desc;
3124 	u32 xsk_frames = 0;
3125 
3126 	if (test_bit(__IGC_DOWN, &adapter->state))
3127 		return true;
3128 
3129 	tx_buffer = &tx_ring->tx_buffer_info[i];
3130 	tx_desc = IGC_TX_DESC(tx_ring, i);
3131 	i -= tx_ring->count;
3132 
3133 	do {
3134 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3135 
3136 		/* if next_to_watch is not set then there is no work pending */
3137 		if (!eop_desc)
3138 			break;
3139 
3140 		/* prevent any other reads prior to eop_desc */
3141 		smp_rmb();
3142 
3143 		/* if DD is not set pending work has not been completed */
3144 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3145 			break;
3146 
3147 		/* Hold the completions while there's a pending tx hardware
3148 		 * timestamp request from XDP Tx metadata.
3149 		 */
3150 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3151 		    tx_buffer->xsk_pending_ts)
3152 			break;
3153 
3154 		/* clear next_to_watch to prevent false hangs */
3155 		tx_buffer->next_to_watch = NULL;
3156 
3157 		/* update the statistics for this packet */
3158 		total_bytes += tx_buffer->bytecount;
3159 		total_packets += tx_buffer->gso_segs;
3160 
3161 		switch (tx_buffer->type) {
3162 		case IGC_TX_BUFFER_TYPE_XSK:
3163 			xsk_frames++;
3164 			break;
3165 		case IGC_TX_BUFFER_TYPE_XDP:
3166 			xdp_return_frame(tx_buffer->xdpf);
3167 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3168 			break;
3169 		case IGC_TX_BUFFER_TYPE_SKB:
3170 			napi_consume_skb(tx_buffer->skb, napi_budget);
3171 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3172 			break;
3173 		default:
3174 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3175 			break;
3176 		}
3177 
3178 		/* clear last DMA location and unmap remaining buffers */
3179 		while (tx_desc != eop_desc) {
3180 			tx_buffer++;
3181 			tx_desc++;
3182 			i++;
3183 			if (unlikely(!i)) {
3184 				i -= tx_ring->count;
3185 				tx_buffer = tx_ring->tx_buffer_info;
3186 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3187 			}
3188 
3189 			/* unmap any remaining paged data */
3190 			if (dma_unmap_len(tx_buffer, len))
3191 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3192 		}
3193 
3194 		/* move us one more past the eop_desc for start of next pkt */
3195 		tx_buffer++;
3196 		tx_desc++;
3197 		i++;
3198 		if (unlikely(!i)) {
3199 			i -= tx_ring->count;
3200 			tx_buffer = tx_ring->tx_buffer_info;
3201 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3202 		}
3203 
3204 		/* issue prefetch for next Tx descriptor */
3205 		prefetch(tx_desc);
3206 
3207 		/* update budget accounting */
3208 		budget--;
3209 	} while (likely(budget));
3210 
3211 	netdev_tx_completed_queue(txring_txq(tx_ring),
3212 				  total_packets, total_bytes);
3213 
3214 	i += tx_ring->count;
3215 	tx_ring->next_to_clean = i;
3216 
3217 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3218 
3219 	if (tx_ring->xsk_pool) {
3220 		if (xsk_frames)
3221 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3222 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3223 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3224 		igc_xdp_xmit_zc(tx_ring);
3225 	}
3226 
3227 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3228 		struct igc_hw *hw = &adapter->hw;
3229 
3230 		/* Detect a transmit hang in hardware, this serializes the
3231 		 * check with the clearing of time_stamp and movement of i
3232 		 */
3233 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3234 		if (tx_buffer->next_to_watch &&
3235 		    time_after(jiffies, tx_buffer->time_stamp +
3236 		    (adapter->tx_timeout_factor * HZ)) &&
3237 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3238 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3239 		    !tx_ring->oper_gate_closed) {
3240 			/* detected Tx unit hang */
3241 			netdev_err(tx_ring->netdev,
3242 				   "Detected Tx Unit Hang\n"
3243 				   "  Tx Queue             <%d>\n"
3244 				   "  TDH                  <%x>\n"
3245 				   "  TDT                  <%x>\n"
3246 				   "  next_to_use          <%x>\n"
3247 				   "  next_to_clean        <%x>\n"
3248 				   "buffer_info[next_to_clean]\n"
3249 				   "  time_stamp           <%lx>\n"
3250 				   "  next_to_watch        <%p>\n"
3251 				   "  jiffies              <%lx>\n"
3252 				   "  desc.status          <%x>\n",
3253 				   tx_ring->queue_index,
3254 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3255 				   readl(tx_ring->tail),
3256 				   tx_ring->next_to_use,
3257 				   tx_ring->next_to_clean,
3258 				   tx_buffer->time_stamp,
3259 				   tx_buffer->next_to_watch,
3260 				   jiffies,
3261 				   tx_buffer->next_to_watch->wb.status);
3262 			netif_stop_subqueue(tx_ring->netdev,
3263 					    tx_ring->queue_index);
3264 
3265 			/* we are about to reset, no point in enabling stuff */
3266 			return true;
3267 		}
3268 	}
3269 
3270 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3271 	if (unlikely(total_packets &&
3272 		     netif_carrier_ok(tx_ring->netdev) &&
3273 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3274 		/* Make sure that anybody stopping the queue after this
3275 		 * sees the new next_to_clean.
3276 		 */
3277 		smp_mb();
3278 		if (__netif_subqueue_stopped(tx_ring->netdev,
3279 					     tx_ring->queue_index) &&
3280 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3281 			netif_wake_subqueue(tx_ring->netdev,
3282 					    tx_ring->queue_index);
3283 
3284 			u64_stats_update_begin(&tx_ring->tx_syncp);
3285 			tx_ring->tx_stats.restart_queue++;
3286 			u64_stats_update_end(&tx_ring->tx_syncp);
3287 		}
3288 	}
3289 
3290 	return !!budget;
3291 }
3292 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3293 static int igc_find_mac_filter(struct igc_adapter *adapter,
3294 			       enum igc_mac_filter_type type, const u8 *addr)
3295 {
3296 	struct igc_hw *hw = &adapter->hw;
3297 	int max_entries = hw->mac.rar_entry_count;
3298 	u32 ral, rah;
3299 	int i;
3300 
3301 	for (i = 0; i < max_entries; i++) {
3302 		ral = rd32(IGC_RAL(i));
3303 		rah = rd32(IGC_RAH(i));
3304 
3305 		if (!(rah & IGC_RAH_AV))
3306 			continue;
3307 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3308 			continue;
3309 		if ((rah & IGC_RAH_RAH_MASK) !=
3310 		    le16_to_cpup((__le16 *)(addr + 4)))
3311 			continue;
3312 		if (ral != le32_to_cpup((__le32 *)(addr)))
3313 			continue;
3314 
3315 		return i;
3316 	}
3317 
3318 	return -1;
3319 }
3320 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3321 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3322 {
3323 	struct igc_hw *hw = &adapter->hw;
3324 	int max_entries = hw->mac.rar_entry_count;
3325 	u32 rah;
3326 	int i;
3327 
3328 	for (i = 0; i < max_entries; i++) {
3329 		rah = rd32(IGC_RAH(i));
3330 
3331 		if (!(rah & IGC_RAH_AV))
3332 			return i;
3333 	}
3334 
3335 	return -1;
3336 }
3337 
3338 /**
3339  * igc_add_mac_filter() - Add MAC address filter
3340  * @adapter: Pointer to adapter where the filter should be added
3341  * @type: MAC address filter type (source or destination)
3342  * @addr: MAC address
3343  * @queue: If non-negative, queue assignment feature is enabled and frames
3344  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3345  *         assignment is disabled.
3346  *
3347  * Return: 0 in case of success, negative errno code otherwise.
3348  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3349 static int igc_add_mac_filter(struct igc_adapter *adapter,
3350 			      enum igc_mac_filter_type type, const u8 *addr,
3351 			      int queue)
3352 {
3353 	struct net_device *dev = adapter->netdev;
3354 	int index;
3355 
3356 	index = igc_find_mac_filter(adapter, type, addr);
3357 	if (index >= 0)
3358 		goto update_filter;
3359 
3360 	index = igc_get_avail_mac_filter_slot(adapter);
3361 	if (index < 0)
3362 		return -ENOSPC;
3363 
3364 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3365 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3366 		   addr, queue);
3367 
3368 update_filter:
3369 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3370 	return 0;
3371 }
3372 
3373 /**
3374  * igc_del_mac_filter() - Delete MAC address filter
3375  * @adapter: Pointer to adapter where the filter should be deleted from
3376  * @type: MAC address filter type (source or destination)
3377  * @addr: MAC address
3378  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3379 static void igc_del_mac_filter(struct igc_adapter *adapter,
3380 			       enum igc_mac_filter_type type, const u8 *addr)
3381 {
3382 	struct net_device *dev = adapter->netdev;
3383 	int index;
3384 
3385 	index = igc_find_mac_filter(adapter, type, addr);
3386 	if (index < 0)
3387 		return;
3388 
3389 	if (index == 0) {
3390 		/* If this is the default filter, we don't actually delete it.
3391 		 * We just reset to its default value i.e. disable queue
3392 		 * assignment.
3393 		 */
3394 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3395 
3396 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3397 	} else {
3398 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3399 			   index,
3400 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3401 			   addr);
3402 
3403 		igc_clear_mac_filter_hw(adapter, index);
3404 	}
3405 }
3406 
3407 /**
3408  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3409  * @adapter: Pointer to adapter where the filter should be added
3410  * @prio: VLAN priority value
3411  * @queue: Queue number which matching frames are assigned to
3412  *
3413  * Return: 0 in case of success, negative errno code otherwise.
3414  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3415 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3416 				    int queue)
3417 {
3418 	struct net_device *dev = adapter->netdev;
3419 	struct igc_hw *hw = &adapter->hw;
3420 	u32 vlanpqf;
3421 
3422 	vlanpqf = rd32(IGC_VLANPQF);
3423 
3424 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3425 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3426 		return -EEXIST;
3427 	}
3428 
3429 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3430 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3431 
3432 	wr32(IGC_VLANPQF, vlanpqf);
3433 
3434 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3435 		   prio, queue);
3436 	return 0;
3437 }
3438 
3439 /**
3440  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3441  * @adapter: Pointer to adapter where the filter should be deleted from
3442  * @prio: VLAN priority value
3443  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3444 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3445 {
3446 	struct igc_hw *hw = &adapter->hw;
3447 	u32 vlanpqf;
3448 
3449 	vlanpqf = rd32(IGC_VLANPQF);
3450 
3451 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3452 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3453 
3454 	wr32(IGC_VLANPQF, vlanpqf);
3455 
3456 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3457 		   prio);
3458 }
3459 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3460 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3461 {
3462 	struct igc_hw *hw = &adapter->hw;
3463 	int i;
3464 
3465 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3466 		u32 etqf = rd32(IGC_ETQF(i));
3467 
3468 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3469 			return i;
3470 	}
3471 
3472 	return -1;
3473 }
3474 
3475 /**
3476  * igc_add_etype_filter() - Add ethertype filter
3477  * @adapter: Pointer to adapter where the filter should be added
3478  * @etype: Ethertype value
3479  * @queue: If non-negative, queue assignment feature is enabled and frames
3480  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3481  *         assignment is disabled.
3482  *
3483  * Return: 0 in case of success, negative errno code otherwise.
3484  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3485 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3486 				int queue)
3487 {
3488 	struct igc_hw *hw = &adapter->hw;
3489 	int index;
3490 	u32 etqf;
3491 
3492 	index = igc_get_avail_etype_filter_slot(adapter);
3493 	if (index < 0)
3494 		return -ENOSPC;
3495 
3496 	etqf = rd32(IGC_ETQF(index));
3497 
3498 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3499 	etqf |= etype;
3500 
3501 	if (queue >= 0) {
3502 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3503 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3504 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3505 	}
3506 
3507 	etqf |= IGC_ETQF_FILTER_ENABLE;
3508 
3509 	wr32(IGC_ETQF(index), etqf);
3510 
3511 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3512 		   etype, queue);
3513 	return 0;
3514 }
3515 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3516 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3517 {
3518 	struct igc_hw *hw = &adapter->hw;
3519 	int i;
3520 
3521 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3522 		u32 etqf = rd32(IGC_ETQF(i));
3523 
3524 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3525 			return i;
3526 	}
3527 
3528 	return -1;
3529 }
3530 
3531 /**
3532  * igc_del_etype_filter() - Delete ethertype filter
3533  * @adapter: Pointer to adapter where the filter should be deleted from
3534  * @etype: Ethertype value
3535  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3536 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3537 {
3538 	struct igc_hw *hw = &adapter->hw;
3539 	int index;
3540 
3541 	index = igc_find_etype_filter(adapter, etype);
3542 	if (index < 0)
3543 		return;
3544 
3545 	wr32(IGC_ETQF(index), 0);
3546 
3547 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3548 		   etype);
3549 }
3550 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3551 static int igc_flex_filter_select(struct igc_adapter *adapter,
3552 				  struct igc_flex_filter *input,
3553 				  u32 *fhft)
3554 {
3555 	struct igc_hw *hw = &adapter->hw;
3556 	u8 fhft_index;
3557 	u32 fhftsl;
3558 
3559 	if (input->index >= MAX_FLEX_FILTER) {
3560 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3561 		return -EINVAL;
3562 	}
3563 
3564 	/* Indirect table select register */
3565 	fhftsl = rd32(IGC_FHFTSL);
3566 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3567 	switch (input->index) {
3568 	case 0 ... 7:
3569 		fhftsl |= 0x00;
3570 		break;
3571 	case 8 ... 15:
3572 		fhftsl |= 0x01;
3573 		break;
3574 	case 16 ... 23:
3575 		fhftsl |= 0x02;
3576 		break;
3577 	case 24 ... 31:
3578 		fhftsl |= 0x03;
3579 		break;
3580 	}
3581 	wr32(IGC_FHFTSL, fhftsl);
3582 
3583 	/* Normalize index down to host table register */
3584 	fhft_index = input->index % 8;
3585 
3586 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3587 		IGC_FHFT_EXT(fhft_index - 4);
3588 
3589 	return 0;
3590 }
3591 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3592 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3593 				    struct igc_flex_filter *input)
3594 {
3595 	struct igc_hw *hw = &adapter->hw;
3596 	u8 *data = input->data;
3597 	u8 *mask = input->mask;
3598 	u32 queuing;
3599 	u32 fhft;
3600 	u32 wufc;
3601 	int ret;
3602 	int i;
3603 
3604 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3605 	 * out early to avoid surprises later.
3606 	 */
3607 	if (input->length % 8 != 0) {
3608 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3609 		return -EINVAL;
3610 	}
3611 
3612 	/* Select corresponding flex filter register and get base for host table. */
3613 	ret = igc_flex_filter_select(adapter, input, &fhft);
3614 	if (ret)
3615 		return ret;
3616 
3617 	/* When adding a filter globally disable flex filter feature. That is
3618 	 * recommended within the datasheet.
3619 	 */
3620 	wufc = rd32(IGC_WUFC);
3621 	wufc &= ~IGC_WUFC_FLEX_HQ;
3622 	wr32(IGC_WUFC, wufc);
3623 
3624 	/* Configure filter */
3625 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3626 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3627 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3628 
3629 	if (input->immediate_irq)
3630 		queuing |= IGC_FHFT_IMM_INT;
3631 
3632 	if (input->drop)
3633 		queuing |= IGC_FHFT_DROP;
3634 
3635 	wr32(fhft + 0xFC, queuing);
3636 
3637 	/* Write data (128 byte) and mask (128 bit) */
3638 	for (i = 0; i < 16; ++i) {
3639 		const size_t data_idx = i * 8;
3640 		const size_t row_idx = i * 16;
3641 		u32 dw0 =
3642 			(data[data_idx + 0] << 0) |
3643 			(data[data_idx + 1] << 8) |
3644 			(data[data_idx + 2] << 16) |
3645 			(data[data_idx + 3] << 24);
3646 		u32 dw1 =
3647 			(data[data_idx + 4] << 0) |
3648 			(data[data_idx + 5] << 8) |
3649 			(data[data_idx + 6] << 16) |
3650 			(data[data_idx + 7] << 24);
3651 		u32 tmp;
3652 
3653 		/* Write row: dw0, dw1 and mask */
3654 		wr32(fhft + row_idx, dw0);
3655 		wr32(fhft + row_idx + 4, dw1);
3656 
3657 		/* mask is only valid for MASK(7, 0) */
3658 		tmp = rd32(fhft + row_idx + 8);
3659 		tmp &= ~GENMASK(7, 0);
3660 		tmp |= mask[i];
3661 		wr32(fhft + row_idx + 8, tmp);
3662 	}
3663 
3664 	/* Enable filter. */
3665 	wufc |= IGC_WUFC_FLEX_HQ;
3666 	if (input->index > 8) {
3667 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3668 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3669 
3670 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3671 
3672 		wr32(IGC_WUFC_EXT, wufc_ext);
3673 	} else {
3674 		wufc |= (IGC_WUFC_FLX0 << input->index);
3675 	}
3676 	wr32(IGC_WUFC, wufc);
3677 
3678 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3679 		   input->index);
3680 
3681 	return 0;
3682 }
3683 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3684 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3685 				      const void *src, unsigned int offset,
3686 				      size_t len, const void *mask)
3687 {
3688 	int i;
3689 
3690 	/* data */
3691 	memcpy(&flex->data[offset], src, len);
3692 
3693 	/* mask */
3694 	for (i = 0; i < len; ++i) {
3695 		const unsigned int idx = i + offset;
3696 		const u8 *ptr = mask;
3697 
3698 		if (mask) {
3699 			if (ptr[i] & 0xff)
3700 				flex->mask[idx / 8] |= BIT(idx % 8);
3701 
3702 			continue;
3703 		}
3704 
3705 		flex->mask[idx / 8] |= BIT(idx % 8);
3706 	}
3707 }
3708 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3709 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3710 {
3711 	struct igc_hw *hw = &adapter->hw;
3712 	u32 wufc, wufc_ext;
3713 	int i;
3714 
3715 	wufc = rd32(IGC_WUFC);
3716 	wufc_ext = rd32(IGC_WUFC_EXT);
3717 
3718 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3719 		if (i < 8) {
3720 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3721 				return i;
3722 		} else {
3723 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3724 				return i;
3725 		}
3726 	}
3727 
3728 	return -ENOSPC;
3729 }
3730 
igc_flex_filter_in_use(struct igc_adapter * adapter)3731 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3732 {
3733 	struct igc_hw *hw = &adapter->hw;
3734 	u32 wufc, wufc_ext;
3735 
3736 	wufc = rd32(IGC_WUFC);
3737 	wufc_ext = rd32(IGC_WUFC_EXT);
3738 
3739 	if (wufc & IGC_WUFC_FILTER_MASK)
3740 		return true;
3741 
3742 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3743 		return true;
3744 
3745 	return false;
3746 }
3747 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3748 static int igc_add_flex_filter(struct igc_adapter *adapter,
3749 			       struct igc_nfc_rule *rule)
3750 {
3751 	struct igc_nfc_filter *filter = &rule->filter;
3752 	unsigned int eth_offset, user_offset;
3753 	struct igc_flex_filter flex = { };
3754 	int ret, index;
3755 	bool vlan;
3756 
3757 	index = igc_find_avail_flex_filter_slot(adapter);
3758 	if (index < 0)
3759 		return -ENOSPC;
3760 
3761 	/* Construct the flex filter:
3762 	 *  -> dest_mac [6]
3763 	 *  -> src_mac [6]
3764 	 *  -> tpid [2]
3765 	 *  -> vlan tci [2]
3766 	 *  -> ether type [2]
3767 	 *  -> user data [8]
3768 	 *  -> = 26 bytes => 32 length
3769 	 */
3770 	flex.index    = index;
3771 	flex.length   = 32;
3772 	flex.rx_queue = rule->action;
3773 
3774 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3775 	eth_offset = vlan ? 16 : 12;
3776 	user_offset = vlan ? 18 : 14;
3777 
3778 	/* Add destination MAC  */
3779 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3780 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3781 					  ETH_ALEN, NULL);
3782 
3783 	/* Add source MAC */
3784 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3785 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3786 					  ETH_ALEN, NULL);
3787 
3788 	/* Add VLAN etype */
3789 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3790 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3791 
3792 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3793 					  sizeof(vlan_etype), NULL);
3794 	}
3795 
3796 	/* Add VLAN TCI */
3797 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3798 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3799 					  sizeof(filter->vlan_tci), NULL);
3800 
3801 	/* Add Ether type */
3802 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3803 		__be16 etype = cpu_to_be16(filter->etype);
3804 
3805 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3806 					  sizeof(etype), NULL);
3807 	}
3808 
3809 	/* Add user data */
3810 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3811 		igc_flex_filter_add_field(&flex, &filter->user_data,
3812 					  user_offset,
3813 					  sizeof(filter->user_data),
3814 					  filter->user_mask);
3815 
3816 	/* Add it down to the hardware and enable it. */
3817 	ret = igc_write_flex_filter_ll(adapter, &flex);
3818 	if (ret)
3819 		return ret;
3820 
3821 	filter->flex_index = index;
3822 
3823 	return 0;
3824 }
3825 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3826 static void igc_del_flex_filter(struct igc_adapter *adapter,
3827 				u16 reg_index)
3828 {
3829 	struct igc_hw *hw = &adapter->hw;
3830 	u32 wufc;
3831 
3832 	/* Just disable the filter. The filter table itself is kept
3833 	 * intact. Another flex_filter_add() should override the "old" data
3834 	 * then.
3835 	 */
3836 	if (reg_index > 8) {
3837 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3838 
3839 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3840 		wr32(IGC_WUFC_EXT, wufc_ext);
3841 	} else {
3842 		wufc = rd32(IGC_WUFC);
3843 
3844 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3845 		wr32(IGC_WUFC, wufc);
3846 	}
3847 
3848 	if (igc_flex_filter_in_use(adapter))
3849 		return;
3850 
3851 	/* No filters are in use, we may disable flex filters */
3852 	wufc = rd32(IGC_WUFC);
3853 	wufc &= ~IGC_WUFC_FLEX_HQ;
3854 	wr32(IGC_WUFC, wufc);
3855 }
3856 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3857 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3858 			       struct igc_nfc_rule *rule)
3859 {
3860 	int err;
3861 
3862 	if (rule->flex) {
3863 		return igc_add_flex_filter(adapter, rule);
3864 	}
3865 
3866 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3867 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3868 					   rule->action);
3869 		if (err)
3870 			return err;
3871 	}
3872 
3873 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3874 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3875 					 rule->filter.src_addr, rule->action);
3876 		if (err)
3877 			return err;
3878 	}
3879 
3880 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3881 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3882 					 rule->filter.dst_addr, rule->action);
3883 		if (err)
3884 			return err;
3885 	}
3886 
3887 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3888 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3889 
3890 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3891 		if (err)
3892 			return err;
3893 	}
3894 
3895 	return 0;
3896 }
3897 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3898 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3899 				 const struct igc_nfc_rule *rule)
3900 {
3901 	if (rule->flex) {
3902 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3903 		return;
3904 	}
3905 
3906 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3907 		igc_del_etype_filter(adapter, rule->filter.etype);
3908 
3909 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3910 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3911 
3912 		igc_del_vlan_prio_filter(adapter, prio);
3913 	}
3914 
3915 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3916 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3917 				   rule->filter.src_addr);
3918 
3919 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3920 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3921 				   rule->filter.dst_addr);
3922 }
3923 
3924 /**
3925  * igc_get_nfc_rule() - Get NFC rule
3926  * @adapter: Pointer to adapter
3927  * @location: Rule location
3928  *
3929  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3930  *
3931  * Return: Pointer to NFC rule at @location. If not found, NULL.
3932  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3933 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3934 				      u32 location)
3935 {
3936 	struct igc_nfc_rule *rule;
3937 
3938 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3939 		if (rule->location == location)
3940 			return rule;
3941 		if (rule->location > location)
3942 			break;
3943 	}
3944 
3945 	return NULL;
3946 }
3947 
3948 /**
3949  * igc_del_nfc_rule() - Delete NFC rule
3950  * @adapter: Pointer to adapter
3951  * @rule: Pointer to rule to be deleted
3952  *
3953  * Disable NFC rule in hardware and delete it from adapter.
3954  *
3955  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3956  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3957 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3958 {
3959 	igc_disable_nfc_rule(adapter, rule);
3960 
3961 	list_del(&rule->list);
3962 	adapter->nfc_rule_count--;
3963 
3964 	kfree(rule);
3965 }
3966 
igc_flush_nfc_rules(struct igc_adapter * adapter)3967 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3968 {
3969 	struct igc_nfc_rule *rule, *tmp;
3970 
3971 	mutex_lock(&adapter->nfc_rule_lock);
3972 
3973 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3974 		igc_del_nfc_rule(adapter, rule);
3975 
3976 	mutex_unlock(&adapter->nfc_rule_lock);
3977 }
3978 
3979 /**
3980  * igc_add_nfc_rule() - Add NFC rule
3981  * @adapter: Pointer to adapter
3982  * @rule: Pointer to rule to be added
3983  *
3984  * Enable NFC rule in hardware and add it to adapter.
3985  *
3986  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3987  *
3988  * Return: 0 on success, negative errno on failure.
3989  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3990 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3991 {
3992 	struct igc_nfc_rule *pred, *cur;
3993 	int err;
3994 
3995 	err = igc_enable_nfc_rule(adapter, rule);
3996 	if (err)
3997 		return err;
3998 
3999 	pred = NULL;
4000 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
4001 		if (cur->location >= rule->location)
4002 			break;
4003 		pred = cur;
4004 	}
4005 
4006 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
4007 	adapter->nfc_rule_count++;
4008 	return 0;
4009 }
4010 
igc_restore_nfc_rules(struct igc_adapter * adapter)4011 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
4012 {
4013 	struct igc_nfc_rule *rule;
4014 
4015 	mutex_lock(&adapter->nfc_rule_lock);
4016 
4017 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
4018 		igc_enable_nfc_rule(adapter, rule);
4019 
4020 	mutex_unlock(&adapter->nfc_rule_lock);
4021 }
4022 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)4023 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
4024 {
4025 	struct igc_adapter *adapter = netdev_priv(netdev);
4026 
4027 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
4028 }
4029 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)4030 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
4031 {
4032 	struct igc_adapter *adapter = netdev_priv(netdev);
4033 
4034 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
4035 	return 0;
4036 }
4037 
4038 /**
4039  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4040  * @netdev: network interface device structure
4041  *
4042  * The set_rx_mode entry point is called whenever the unicast or multicast
4043  * address lists or the network interface flags are updated.  This routine is
4044  * responsible for configuring the hardware for proper unicast, multicast,
4045  * promiscuous mode, and all-multi behavior.
4046  */
igc_set_rx_mode(struct net_device * netdev)4047 static void igc_set_rx_mode(struct net_device *netdev)
4048 {
4049 	struct igc_adapter *adapter = netdev_priv(netdev);
4050 	struct igc_hw *hw = &adapter->hw;
4051 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4052 	int count;
4053 
4054 	/* Check for Promiscuous and All Multicast modes */
4055 	if (netdev->flags & IFF_PROMISC) {
4056 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
4057 	} else {
4058 		if (netdev->flags & IFF_ALLMULTI) {
4059 			rctl |= IGC_RCTL_MPE;
4060 		} else {
4061 			/* Write addresses to the MTA, if the attempt fails
4062 			 * then we should just turn on promiscuous mode so
4063 			 * that we can at least receive multicast traffic
4064 			 */
4065 			count = igc_write_mc_addr_list(netdev);
4066 			if (count < 0)
4067 				rctl |= IGC_RCTL_MPE;
4068 		}
4069 	}
4070 
4071 	/* Write addresses to available RAR registers, if there is not
4072 	 * sufficient space to store all the addresses then enable
4073 	 * unicast promiscuous mode
4074 	 */
4075 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4076 		rctl |= IGC_RCTL_UPE;
4077 
4078 	/* update state of unicast and multicast */
4079 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4080 	wr32(IGC_RCTL, rctl);
4081 
4082 #if (PAGE_SIZE < 8192)
4083 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4084 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4085 #endif
4086 	wr32(IGC_RLPML, rlpml);
4087 }
4088 
4089 /**
4090  * igc_configure - configure the hardware for RX and TX
4091  * @adapter: private board structure
4092  */
igc_configure(struct igc_adapter * adapter)4093 static void igc_configure(struct igc_adapter *adapter)
4094 {
4095 	struct net_device *netdev = adapter->netdev;
4096 	int i = 0;
4097 
4098 	igc_get_hw_control(adapter);
4099 	igc_set_rx_mode(netdev);
4100 
4101 	igc_restore_vlan(adapter);
4102 
4103 	igc_setup_tctl(adapter);
4104 	igc_setup_mrqc(adapter);
4105 	igc_setup_rctl(adapter);
4106 
4107 	igc_set_default_mac_filter(adapter);
4108 	igc_restore_nfc_rules(adapter);
4109 
4110 	igc_configure_tx(adapter);
4111 	igc_configure_rx(adapter);
4112 
4113 	igc_rx_fifo_flush_base(&adapter->hw);
4114 
4115 	/* call igc_desc_unused which always leaves
4116 	 * at least 1 descriptor unused to make sure
4117 	 * next_to_use != next_to_clean
4118 	 */
4119 	for (i = 0; i < adapter->num_rx_queues; i++) {
4120 		struct igc_ring *ring = adapter->rx_ring[i];
4121 
4122 		if (ring->xsk_pool)
4123 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4124 		else
4125 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4126 	}
4127 }
4128 
4129 /**
4130  * igc_write_ivar - configure ivar for given MSI-X vector
4131  * @hw: pointer to the HW structure
4132  * @msix_vector: vector number we are allocating to a given ring
4133  * @index: row index of IVAR register to write within IVAR table
4134  * @offset: column offset of in IVAR, should be multiple of 8
4135  *
4136  * The IVAR table consists of 2 columns,
4137  * each containing an cause allocation for an Rx and Tx ring, and a
4138  * variable number of rows depending on the number of queues supported.
4139  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4140 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4141 			   int index, int offset)
4142 {
4143 	u32 ivar = array_rd32(IGC_IVAR0, index);
4144 
4145 	/* clear any bits that are currently set */
4146 	ivar &= ~((u32)0xFF << offset);
4147 
4148 	/* write vector and valid bit */
4149 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4150 
4151 	array_wr32(IGC_IVAR0, index, ivar);
4152 }
4153 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4154 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4155 {
4156 	struct igc_adapter *adapter = q_vector->adapter;
4157 	struct igc_hw *hw = &adapter->hw;
4158 	int rx_queue = IGC_N0_QUEUE;
4159 	int tx_queue = IGC_N0_QUEUE;
4160 
4161 	if (q_vector->rx.ring)
4162 		rx_queue = q_vector->rx.ring->reg_idx;
4163 	if (q_vector->tx.ring)
4164 		tx_queue = q_vector->tx.ring->reg_idx;
4165 
4166 	switch (hw->mac.type) {
4167 	case igc_i225:
4168 		if (rx_queue > IGC_N0_QUEUE)
4169 			igc_write_ivar(hw, msix_vector,
4170 				       rx_queue >> 1,
4171 				       (rx_queue & 0x1) << 4);
4172 		if (tx_queue > IGC_N0_QUEUE)
4173 			igc_write_ivar(hw, msix_vector,
4174 				       tx_queue >> 1,
4175 				       ((tx_queue & 0x1) << 4) + 8);
4176 		q_vector->eims_value = BIT(msix_vector);
4177 		break;
4178 	default:
4179 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4180 		break;
4181 	}
4182 
4183 	/* add q_vector eims value to global eims_enable_mask */
4184 	adapter->eims_enable_mask |= q_vector->eims_value;
4185 
4186 	/* configure q_vector to set itr on first interrupt */
4187 	q_vector->set_itr = 1;
4188 }
4189 
4190 /**
4191  * igc_configure_msix - Configure MSI-X hardware
4192  * @adapter: Pointer to adapter structure
4193  *
4194  * igc_configure_msix sets up the hardware to properly
4195  * generate MSI-X interrupts.
4196  */
igc_configure_msix(struct igc_adapter * adapter)4197 static void igc_configure_msix(struct igc_adapter *adapter)
4198 {
4199 	struct igc_hw *hw = &adapter->hw;
4200 	int i, vector = 0;
4201 	u32 tmp;
4202 
4203 	adapter->eims_enable_mask = 0;
4204 
4205 	/* set vector for other causes, i.e. link changes */
4206 	switch (hw->mac.type) {
4207 	case igc_i225:
4208 		/* Turn on MSI-X capability first, or our settings
4209 		 * won't stick.  And it will take days to debug.
4210 		 */
4211 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4212 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4213 		     IGC_GPIE_NSICR);
4214 
4215 		/* enable msix_other interrupt */
4216 		adapter->eims_other = BIT(vector);
4217 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4218 
4219 		wr32(IGC_IVAR_MISC, tmp);
4220 		break;
4221 	default:
4222 		/* do nothing, since nothing else supports MSI-X */
4223 		break;
4224 	} /* switch (hw->mac.type) */
4225 
4226 	adapter->eims_enable_mask |= adapter->eims_other;
4227 
4228 	for (i = 0; i < adapter->num_q_vectors; i++)
4229 		igc_assign_vector(adapter->q_vector[i], vector++);
4230 
4231 	wrfl();
4232 }
4233 
4234 /**
4235  * igc_irq_enable - Enable default interrupt generation settings
4236  * @adapter: board private structure
4237  */
igc_irq_enable(struct igc_adapter * adapter)4238 static void igc_irq_enable(struct igc_adapter *adapter)
4239 {
4240 	struct igc_hw *hw = &adapter->hw;
4241 
4242 	if (adapter->msix_entries) {
4243 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4244 		u32 regval = rd32(IGC_EIAC);
4245 
4246 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4247 		regval = rd32(IGC_EIAM);
4248 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4249 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4250 		wr32(IGC_IMS, ims);
4251 	} else {
4252 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4253 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4254 	}
4255 }
4256 
4257 /**
4258  * igc_irq_disable - Mask off interrupt generation on the NIC
4259  * @adapter: board private structure
4260  */
igc_irq_disable(struct igc_adapter * adapter)4261 static void igc_irq_disable(struct igc_adapter *adapter)
4262 {
4263 	struct igc_hw *hw = &adapter->hw;
4264 
4265 	if (adapter->msix_entries) {
4266 		u32 regval = rd32(IGC_EIAM);
4267 
4268 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4269 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4270 		regval = rd32(IGC_EIAC);
4271 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4272 	}
4273 
4274 	wr32(IGC_IAM, 0);
4275 	wr32(IGC_IMC, ~0);
4276 	wrfl();
4277 
4278 	if (adapter->msix_entries) {
4279 		int vector = 0, i;
4280 
4281 		synchronize_irq(adapter->msix_entries[vector++].vector);
4282 
4283 		for (i = 0; i < adapter->num_q_vectors; i++)
4284 			synchronize_irq(adapter->msix_entries[vector++].vector);
4285 	} else {
4286 		synchronize_irq(adapter->pdev->irq);
4287 	}
4288 }
4289 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4290 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4291 			      const u32 max_rss_queues)
4292 {
4293 	/* Determine if we need to pair queues. */
4294 	/* If rss_queues > half of max_rss_queues, pair the queues in
4295 	 * order to conserve interrupts due to limited supply.
4296 	 */
4297 	if (adapter->rss_queues > (max_rss_queues / 2))
4298 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4299 	else
4300 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4301 }
4302 
igc_get_max_rss_queues(struct igc_adapter * adapter)4303 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4304 {
4305 	return IGC_MAX_RX_QUEUES;
4306 }
4307 
igc_init_queue_configuration(struct igc_adapter * adapter)4308 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4309 {
4310 	u32 max_rss_queues;
4311 
4312 	max_rss_queues = igc_get_max_rss_queues(adapter);
4313 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4314 
4315 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4316 }
4317 
4318 /**
4319  * igc_reset_q_vector - Reset config for interrupt vector
4320  * @adapter: board private structure to initialize
4321  * @v_idx: Index of vector to be reset
4322  *
4323  * If NAPI is enabled it will delete any references to the
4324  * NAPI struct. This is preparation for igc_free_q_vector.
4325  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4326 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4327 {
4328 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4329 
4330 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4331 	 * not yet allocated
4332 	 */
4333 	if (!q_vector)
4334 		return;
4335 
4336 	if (q_vector->tx.ring)
4337 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4338 
4339 	if (q_vector->rx.ring)
4340 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4341 
4342 	netif_napi_del(&q_vector->napi);
4343 }
4344 
4345 /**
4346  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4347  * @adapter: board private structure to initialize
4348  * @v_idx: Index of vector to be freed
4349  *
4350  * This function frees the memory allocated to the q_vector.
4351  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4352 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4353 {
4354 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4355 
4356 	adapter->q_vector[v_idx] = NULL;
4357 
4358 	/* igc_get_stats64() might access the rings on this vector,
4359 	 * we must wait a grace period before freeing it.
4360 	 */
4361 	if (q_vector)
4362 		kfree_rcu(q_vector, rcu);
4363 }
4364 
4365 /**
4366  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4367  * @adapter: board private structure to initialize
4368  *
4369  * This function frees the memory allocated to the q_vectors.  In addition if
4370  * NAPI is enabled it will delete any references to the NAPI struct prior
4371  * to freeing the q_vector.
4372  */
igc_free_q_vectors(struct igc_adapter * adapter)4373 static void igc_free_q_vectors(struct igc_adapter *adapter)
4374 {
4375 	int v_idx = adapter->num_q_vectors;
4376 
4377 	adapter->num_tx_queues = 0;
4378 	adapter->num_rx_queues = 0;
4379 	adapter->num_q_vectors = 0;
4380 
4381 	while (v_idx--) {
4382 		igc_reset_q_vector(adapter, v_idx);
4383 		igc_free_q_vector(adapter, v_idx);
4384 	}
4385 }
4386 
4387 /**
4388  * igc_update_itr - update the dynamic ITR value based on statistics
4389  * @q_vector: pointer to q_vector
4390  * @ring_container: ring info to update the itr for
4391  *
4392  * Stores a new ITR value based on packets and byte
4393  * counts during the last interrupt.  The advantage of per interrupt
4394  * computation is faster updates and more accurate ITR for the current
4395  * traffic pattern.  Constants in this function were computed
4396  * based on theoretical maximum wire speed and thresholds were set based
4397  * on testing data as well as attempting to minimize response time
4398  * while increasing bulk throughput.
4399  * NOTE: These calculations are only valid when operating in a single-
4400  * queue environment.
4401  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4402 static void igc_update_itr(struct igc_q_vector *q_vector,
4403 			   struct igc_ring_container *ring_container)
4404 {
4405 	unsigned int packets = ring_container->total_packets;
4406 	unsigned int bytes = ring_container->total_bytes;
4407 	u8 itrval = ring_container->itr;
4408 
4409 	/* no packets, exit with status unchanged */
4410 	if (packets == 0)
4411 		return;
4412 
4413 	switch (itrval) {
4414 	case lowest_latency:
4415 		/* handle TSO and jumbo frames */
4416 		if (bytes / packets > 8000)
4417 			itrval = bulk_latency;
4418 		else if ((packets < 5) && (bytes > 512))
4419 			itrval = low_latency;
4420 		break;
4421 	case low_latency:  /* 50 usec aka 20000 ints/s */
4422 		if (bytes > 10000) {
4423 			/* this if handles the TSO accounting */
4424 			if (bytes / packets > 8000)
4425 				itrval = bulk_latency;
4426 			else if ((packets < 10) || ((bytes / packets) > 1200))
4427 				itrval = bulk_latency;
4428 			else if ((packets > 35))
4429 				itrval = lowest_latency;
4430 		} else if (bytes / packets > 2000) {
4431 			itrval = bulk_latency;
4432 		} else if (packets <= 2 && bytes < 512) {
4433 			itrval = lowest_latency;
4434 		}
4435 		break;
4436 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4437 		if (bytes > 25000) {
4438 			if (packets > 35)
4439 				itrval = low_latency;
4440 		} else if (bytes < 1500) {
4441 			itrval = low_latency;
4442 		}
4443 		break;
4444 	}
4445 
4446 	/* clear work counters since we have the values we need */
4447 	ring_container->total_bytes = 0;
4448 	ring_container->total_packets = 0;
4449 
4450 	/* write updated itr to ring container */
4451 	ring_container->itr = itrval;
4452 }
4453 
igc_set_itr(struct igc_q_vector * q_vector)4454 static void igc_set_itr(struct igc_q_vector *q_vector)
4455 {
4456 	struct igc_adapter *adapter = q_vector->adapter;
4457 	u32 new_itr = q_vector->itr_val;
4458 	u8 current_itr = 0;
4459 
4460 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4461 	switch (adapter->link_speed) {
4462 	case SPEED_10:
4463 	case SPEED_100:
4464 		current_itr = 0;
4465 		new_itr = IGC_4K_ITR;
4466 		goto set_itr_now;
4467 	default:
4468 		break;
4469 	}
4470 
4471 	igc_update_itr(q_vector, &q_vector->tx);
4472 	igc_update_itr(q_vector, &q_vector->rx);
4473 
4474 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4475 
4476 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4477 	if (current_itr == lowest_latency &&
4478 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4479 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4480 		current_itr = low_latency;
4481 
4482 	switch (current_itr) {
4483 	/* counts and packets in update_itr are dependent on these numbers */
4484 	case lowest_latency:
4485 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4486 		break;
4487 	case low_latency:
4488 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4489 		break;
4490 	case bulk_latency:
4491 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4492 		break;
4493 	default:
4494 		break;
4495 	}
4496 
4497 set_itr_now:
4498 	if (new_itr != q_vector->itr_val) {
4499 		/* this attempts to bias the interrupt rate towards Bulk
4500 		 * by adding intermediate steps when interrupt rate is
4501 		 * increasing
4502 		 */
4503 		new_itr = new_itr > q_vector->itr_val ?
4504 			  max((new_itr * q_vector->itr_val) /
4505 			  (new_itr + (q_vector->itr_val >> 2)),
4506 			  new_itr) : new_itr;
4507 		/* Don't write the value here; it resets the adapter's
4508 		 * internal timer, and causes us to delay far longer than
4509 		 * we should between interrupts.  Instead, we write the ITR
4510 		 * value at the beginning of the next interrupt so the timing
4511 		 * ends up being correct.
4512 		 */
4513 		q_vector->itr_val = new_itr;
4514 		q_vector->set_itr = 1;
4515 	}
4516 }
4517 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4518 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4519 {
4520 	int v_idx = adapter->num_q_vectors;
4521 
4522 	if (adapter->msix_entries) {
4523 		pci_disable_msix(adapter->pdev);
4524 		kfree(adapter->msix_entries);
4525 		adapter->msix_entries = NULL;
4526 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4527 		pci_disable_msi(adapter->pdev);
4528 	}
4529 
4530 	while (v_idx--)
4531 		igc_reset_q_vector(adapter, v_idx);
4532 }
4533 
4534 /**
4535  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4536  * @adapter: Pointer to adapter structure
4537  * @msix: boolean value for MSI-X capability
4538  *
4539  * Attempt to configure interrupts using the best available
4540  * capabilities of the hardware and kernel.
4541  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4542 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4543 					 bool msix)
4544 {
4545 	int numvecs, i;
4546 	int err;
4547 
4548 	if (!msix)
4549 		goto msi_only;
4550 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4551 
4552 	/* Number of supported queues. */
4553 	adapter->num_rx_queues = adapter->rss_queues;
4554 
4555 	adapter->num_tx_queues = adapter->rss_queues;
4556 
4557 	/* start with one vector for every Rx queue */
4558 	numvecs = adapter->num_rx_queues;
4559 
4560 	/* if Tx handler is separate add 1 for every Tx queue */
4561 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4562 		numvecs += adapter->num_tx_queues;
4563 
4564 	/* store the number of vectors reserved for queues */
4565 	adapter->num_q_vectors = numvecs;
4566 
4567 	/* add 1 vector for link status interrupts */
4568 	numvecs++;
4569 
4570 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4571 					GFP_KERNEL);
4572 
4573 	if (!adapter->msix_entries)
4574 		return;
4575 
4576 	/* populate entry values */
4577 	for (i = 0; i < numvecs; i++)
4578 		adapter->msix_entries[i].entry = i;
4579 
4580 	err = pci_enable_msix_range(adapter->pdev,
4581 				    adapter->msix_entries,
4582 				    numvecs,
4583 				    numvecs);
4584 	if (err > 0)
4585 		return;
4586 
4587 	kfree(adapter->msix_entries);
4588 	adapter->msix_entries = NULL;
4589 
4590 	igc_reset_interrupt_capability(adapter);
4591 
4592 msi_only:
4593 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4594 
4595 	adapter->rss_queues = 1;
4596 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4597 	adapter->num_rx_queues = 1;
4598 	adapter->num_tx_queues = 1;
4599 	adapter->num_q_vectors = 1;
4600 	if (!pci_enable_msi(adapter->pdev))
4601 		adapter->flags |= IGC_FLAG_HAS_MSI;
4602 }
4603 
4604 /**
4605  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4606  * @q_vector: pointer to q_vector
4607  *
4608  * Stores a new ITR value based on strictly on packet size.  This
4609  * algorithm is less sophisticated than that used in igc_update_itr,
4610  * due to the difficulty of synchronizing statistics across multiple
4611  * receive rings.  The divisors and thresholds used by this function
4612  * were determined based on theoretical maximum wire speed and testing
4613  * data, in order to minimize response time while increasing bulk
4614  * throughput.
4615  * NOTE: This function is called only when operating in a multiqueue
4616  * receive environment.
4617  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4618 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4619 {
4620 	struct igc_adapter *adapter = q_vector->adapter;
4621 	int new_val = q_vector->itr_val;
4622 	int avg_wire_size = 0;
4623 	unsigned int packets;
4624 
4625 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4626 	 * ints/sec - ITR timer value of 120 ticks.
4627 	 */
4628 	switch (adapter->link_speed) {
4629 	case SPEED_10:
4630 	case SPEED_100:
4631 		new_val = IGC_4K_ITR;
4632 		goto set_itr_val;
4633 	default:
4634 		break;
4635 	}
4636 
4637 	packets = q_vector->rx.total_packets;
4638 	if (packets)
4639 		avg_wire_size = q_vector->rx.total_bytes / packets;
4640 
4641 	packets = q_vector->tx.total_packets;
4642 	if (packets)
4643 		avg_wire_size = max_t(u32, avg_wire_size,
4644 				      q_vector->tx.total_bytes / packets);
4645 
4646 	/* if avg_wire_size isn't set no work was done */
4647 	if (!avg_wire_size)
4648 		goto clear_counts;
4649 
4650 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4651 	avg_wire_size += 24;
4652 
4653 	/* Don't starve jumbo frames */
4654 	avg_wire_size = min(avg_wire_size, 3000);
4655 
4656 	/* Give a little boost to mid-size frames */
4657 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4658 		new_val = avg_wire_size / 3;
4659 	else
4660 		new_val = avg_wire_size / 2;
4661 
4662 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4663 	if (new_val < IGC_20K_ITR &&
4664 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4665 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4666 		new_val = IGC_20K_ITR;
4667 
4668 set_itr_val:
4669 	if (new_val != q_vector->itr_val) {
4670 		q_vector->itr_val = new_val;
4671 		q_vector->set_itr = 1;
4672 	}
4673 clear_counts:
4674 	q_vector->rx.total_bytes = 0;
4675 	q_vector->rx.total_packets = 0;
4676 	q_vector->tx.total_bytes = 0;
4677 	q_vector->tx.total_packets = 0;
4678 }
4679 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4680 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4681 {
4682 	struct igc_adapter *adapter = q_vector->adapter;
4683 	struct igc_hw *hw = &adapter->hw;
4684 
4685 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4686 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4687 		if (adapter->num_q_vectors == 1)
4688 			igc_set_itr(q_vector);
4689 		else
4690 			igc_update_ring_itr(q_vector);
4691 	}
4692 
4693 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4694 		if (adapter->msix_entries)
4695 			wr32(IGC_EIMS, q_vector->eims_value);
4696 		else
4697 			igc_irq_enable(adapter);
4698 	}
4699 }
4700 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4701 static void igc_add_ring(struct igc_ring *ring,
4702 			 struct igc_ring_container *head)
4703 {
4704 	head->ring = ring;
4705 	head->count++;
4706 }
4707 
4708 /**
4709  * igc_cache_ring_register - Descriptor ring to register mapping
4710  * @adapter: board private structure to initialize
4711  *
4712  * Once we know the feature-set enabled for the device, we'll cache
4713  * the register offset the descriptor ring is assigned to.
4714  */
igc_cache_ring_register(struct igc_adapter * adapter)4715 static void igc_cache_ring_register(struct igc_adapter *adapter)
4716 {
4717 	int i = 0, j = 0;
4718 
4719 	switch (adapter->hw.mac.type) {
4720 	case igc_i225:
4721 	default:
4722 		for (; i < adapter->num_rx_queues; i++)
4723 			adapter->rx_ring[i]->reg_idx = i;
4724 		for (; j < adapter->num_tx_queues; j++)
4725 			adapter->tx_ring[j]->reg_idx = j;
4726 		break;
4727 	}
4728 }
4729 
4730 /**
4731  * igc_poll - NAPI Rx polling callback
4732  * @napi: napi polling structure
4733  * @budget: count of how many packets we should handle
4734  */
igc_poll(struct napi_struct * napi,int budget)4735 static int igc_poll(struct napi_struct *napi, int budget)
4736 {
4737 	struct igc_q_vector *q_vector = container_of(napi,
4738 						     struct igc_q_vector,
4739 						     napi);
4740 	struct igc_ring *rx_ring = q_vector->rx.ring;
4741 	bool clean_complete = true;
4742 	int work_done = 0;
4743 
4744 	if (q_vector->tx.ring)
4745 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4746 
4747 	if (rx_ring) {
4748 		int cleaned = rx_ring->xsk_pool ?
4749 			      igc_clean_rx_irq_zc(q_vector, budget) :
4750 			      igc_clean_rx_irq(q_vector, budget);
4751 
4752 		work_done += cleaned;
4753 		if (cleaned >= budget)
4754 			clean_complete = false;
4755 	}
4756 
4757 	/* If all work not completed, return budget and keep polling */
4758 	if (!clean_complete)
4759 		return budget;
4760 
4761 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4762 	 * poll us due to busy-polling
4763 	 */
4764 	if (likely(napi_complete_done(napi, work_done)))
4765 		igc_ring_irq_enable(q_vector);
4766 
4767 	return min(work_done, budget - 1);
4768 }
4769 
4770 /**
4771  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4772  * @adapter: board private structure to initialize
4773  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4774  * @v_idx: index of vector in adapter struct
4775  * @txr_count: total number of Tx rings to allocate
4776  * @txr_idx: index of first Tx ring to allocate
4777  * @rxr_count: total number of Rx rings to allocate
4778  * @rxr_idx: index of first Rx ring to allocate
4779  *
4780  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4781  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4782 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4783 			      unsigned int v_count, unsigned int v_idx,
4784 			      unsigned int txr_count, unsigned int txr_idx,
4785 			      unsigned int rxr_count, unsigned int rxr_idx)
4786 {
4787 	struct igc_q_vector *q_vector;
4788 	struct igc_ring *ring;
4789 	int ring_count;
4790 
4791 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4792 	if (txr_count > 1 || rxr_count > 1)
4793 		return -ENOMEM;
4794 
4795 	ring_count = txr_count + rxr_count;
4796 
4797 	/* allocate q_vector and rings */
4798 	q_vector = adapter->q_vector[v_idx];
4799 	if (!q_vector)
4800 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4801 				   GFP_KERNEL);
4802 	else
4803 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4804 	if (!q_vector)
4805 		return -ENOMEM;
4806 
4807 	/* initialize NAPI */
4808 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4809 
4810 	/* tie q_vector and adapter together */
4811 	adapter->q_vector[v_idx] = q_vector;
4812 	q_vector->adapter = adapter;
4813 
4814 	/* initialize work limits */
4815 	q_vector->tx.work_limit = adapter->tx_work_limit;
4816 
4817 	/* initialize ITR configuration */
4818 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4819 	q_vector->itr_val = IGC_START_ITR;
4820 
4821 	/* initialize pointer to rings */
4822 	ring = q_vector->ring;
4823 
4824 	/* initialize ITR */
4825 	if (rxr_count) {
4826 		/* rx or rx/tx vector */
4827 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4828 			q_vector->itr_val = adapter->rx_itr_setting;
4829 	} else {
4830 		/* tx only vector */
4831 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4832 			q_vector->itr_val = adapter->tx_itr_setting;
4833 	}
4834 
4835 	if (txr_count) {
4836 		/* assign generic ring traits */
4837 		ring->dev = &adapter->pdev->dev;
4838 		ring->netdev = adapter->netdev;
4839 
4840 		/* configure backlink on ring */
4841 		ring->q_vector = q_vector;
4842 
4843 		/* update q_vector Tx values */
4844 		igc_add_ring(ring, &q_vector->tx);
4845 
4846 		/* apply Tx specific ring traits */
4847 		ring->count = adapter->tx_ring_count;
4848 		ring->queue_index = txr_idx;
4849 
4850 		/* assign ring to adapter */
4851 		adapter->tx_ring[txr_idx] = ring;
4852 
4853 		/* push pointer to next ring */
4854 		ring++;
4855 	}
4856 
4857 	if (rxr_count) {
4858 		/* assign generic ring traits */
4859 		ring->dev = &adapter->pdev->dev;
4860 		ring->netdev = adapter->netdev;
4861 
4862 		/* configure backlink on ring */
4863 		ring->q_vector = q_vector;
4864 
4865 		/* update q_vector Rx values */
4866 		igc_add_ring(ring, &q_vector->rx);
4867 
4868 		/* apply Rx specific ring traits */
4869 		ring->count = adapter->rx_ring_count;
4870 		ring->queue_index = rxr_idx;
4871 
4872 		/* assign ring to adapter */
4873 		adapter->rx_ring[rxr_idx] = ring;
4874 	}
4875 
4876 	return 0;
4877 }
4878 
4879 /**
4880  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4881  * @adapter: board private structure to initialize
4882  *
4883  * We allocate one q_vector per queue interrupt.  If allocation fails we
4884  * return -ENOMEM.
4885  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4886 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4887 {
4888 	int rxr_remaining = adapter->num_rx_queues;
4889 	int txr_remaining = adapter->num_tx_queues;
4890 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4891 	int q_vectors = adapter->num_q_vectors;
4892 	int err;
4893 
4894 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4895 		for (; rxr_remaining; v_idx++) {
4896 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4897 						 0, 0, 1, rxr_idx);
4898 
4899 			if (err)
4900 				goto err_out;
4901 
4902 			/* update counts and index */
4903 			rxr_remaining--;
4904 			rxr_idx++;
4905 		}
4906 	}
4907 
4908 	for (; v_idx < q_vectors; v_idx++) {
4909 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4910 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4911 
4912 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4913 					 tqpv, txr_idx, rqpv, rxr_idx);
4914 
4915 		if (err)
4916 			goto err_out;
4917 
4918 		/* update counts and index */
4919 		rxr_remaining -= rqpv;
4920 		txr_remaining -= tqpv;
4921 		rxr_idx++;
4922 		txr_idx++;
4923 	}
4924 
4925 	return 0;
4926 
4927 err_out:
4928 	adapter->num_tx_queues = 0;
4929 	adapter->num_rx_queues = 0;
4930 	adapter->num_q_vectors = 0;
4931 
4932 	while (v_idx--)
4933 		igc_free_q_vector(adapter, v_idx);
4934 
4935 	return -ENOMEM;
4936 }
4937 
4938 /**
4939  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4940  * @adapter: Pointer to adapter structure
4941  * @msix: boolean for MSI-X capability
4942  *
4943  * This function initializes the interrupts and allocates all of the queues.
4944  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4945 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4946 {
4947 	struct net_device *dev = adapter->netdev;
4948 	int err = 0;
4949 
4950 	igc_set_interrupt_capability(adapter, msix);
4951 
4952 	err = igc_alloc_q_vectors(adapter);
4953 	if (err) {
4954 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4955 		goto err_alloc_q_vectors;
4956 	}
4957 
4958 	igc_cache_ring_register(adapter);
4959 
4960 	return 0;
4961 
4962 err_alloc_q_vectors:
4963 	igc_reset_interrupt_capability(adapter);
4964 	return err;
4965 }
4966 
4967 /**
4968  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4969  * @adapter: board private structure to initialize
4970  *
4971  * igc_sw_init initializes the Adapter private data structure.
4972  * Fields are initialized based on PCI device information and
4973  * OS network device settings (MTU size).
4974  */
igc_sw_init(struct igc_adapter * adapter)4975 static int igc_sw_init(struct igc_adapter *adapter)
4976 {
4977 	struct net_device *netdev = adapter->netdev;
4978 	struct pci_dev *pdev = adapter->pdev;
4979 	struct igc_hw *hw = &adapter->hw;
4980 
4981 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4982 
4983 	/* set default ring sizes */
4984 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4985 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4986 
4987 	/* set default ITR values */
4988 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4989 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4990 
4991 	/* set default work limits */
4992 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4993 
4994 	/* adjust max frame to be at least the size of a standard frame */
4995 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4996 				VLAN_HLEN;
4997 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4998 
4999 	mutex_init(&adapter->nfc_rule_lock);
5000 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
5001 	adapter->nfc_rule_count = 0;
5002 
5003 	spin_lock_init(&adapter->stats64_lock);
5004 	spin_lock_init(&adapter->qbv_tx_lock);
5005 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
5006 	adapter->flags |= IGC_FLAG_HAS_MSIX;
5007 
5008 	igc_init_queue_configuration(adapter);
5009 
5010 	/* This call may decrease the number of queues */
5011 	if (igc_init_interrupt_scheme(adapter, true)) {
5012 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5013 		return -ENOMEM;
5014 	}
5015 
5016 	/* Explicitly disable IRQ since the NIC can be in any state. */
5017 	igc_irq_disable(adapter);
5018 
5019 	set_bit(__IGC_DOWN, &adapter->state);
5020 
5021 	return 0;
5022 }
5023 
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)5024 static void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
5025 			       struct napi_struct *napi)
5026 {
5027 	struct igc_q_vector *q_vector = adapter->q_vector[vector];
5028 
5029 	if (q_vector->rx.ring)
5030 		netif_queue_set_napi(adapter->netdev,
5031 				     q_vector->rx.ring->queue_index,
5032 				     NETDEV_QUEUE_TYPE_RX, napi);
5033 
5034 	if (q_vector->tx.ring)
5035 		netif_queue_set_napi(adapter->netdev,
5036 				     q_vector->tx.ring->queue_index,
5037 				     NETDEV_QUEUE_TYPE_TX, napi);
5038 }
5039 
5040 /**
5041  * igc_up - Open the interface and prepare it to handle traffic
5042  * @adapter: board private structure
5043  */
igc_up(struct igc_adapter * adapter)5044 void igc_up(struct igc_adapter *adapter)
5045 {
5046 	struct igc_hw *hw = &adapter->hw;
5047 	struct napi_struct *napi;
5048 	int i = 0;
5049 
5050 	/* hardware has been reset, we need to reload some things */
5051 	igc_configure(adapter);
5052 
5053 	clear_bit(__IGC_DOWN, &adapter->state);
5054 
5055 	for (i = 0; i < adapter->num_q_vectors; i++) {
5056 		napi = &adapter->q_vector[i]->napi;
5057 		napi_enable(napi);
5058 		igc_set_queue_napi(adapter, i, napi);
5059 	}
5060 
5061 	if (adapter->msix_entries)
5062 		igc_configure_msix(adapter);
5063 	else
5064 		igc_assign_vector(adapter->q_vector[0], 0);
5065 
5066 	/* Clear any pending interrupts. */
5067 	rd32(IGC_ICR);
5068 	igc_irq_enable(adapter);
5069 
5070 	netif_tx_start_all_queues(adapter->netdev);
5071 
5072 	/* start the watchdog. */
5073 	hw->mac.get_link_status = true;
5074 	schedule_work(&adapter->watchdog_task);
5075 }
5076 
5077 /**
5078  * igc_update_stats - Update the board statistics counters
5079  * @adapter: board private structure
5080  */
igc_update_stats(struct igc_adapter * adapter)5081 void igc_update_stats(struct igc_adapter *adapter)
5082 {
5083 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5084 	struct pci_dev *pdev = adapter->pdev;
5085 	struct igc_hw *hw = &adapter->hw;
5086 	u64 _bytes, _packets;
5087 	u64 bytes, packets;
5088 	unsigned int start;
5089 	u32 mpc;
5090 	int i;
5091 
5092 	/* Prevent stats update while adapter is being reset, or if the pci
5093 	 * connection is down.
5094 	 */
5095 	if (adapter->link_speed == 0)
5096 		return;
5097 	if (pci_channel_offline(pdev))
5098 		return;
5099 
5100 	packets = 0;
5101 	bytes = 0;
5102 
5103 	rcu_read_lock();
5104 	for (i = 0; i < adapter->num_rx_queues; i++) {
5105 		struct igc_ring *ring = adapter->rx_ring[i];
5106 		u32 rqdpc = rd32(IGC_RQDPC(i));
5107 
5108 		if (hw->mac.type >= igc_i225)
5109 			wr32(IGC_RQDPC(i), 0);
5110 
5111 		if (rqdpc) {
5112 			ring->rx_stats.drops += rqdpc;
5113 			net_stats->rx_fifo_errors += rqdpc;
5114 		}
5115 
5116 		do {
5117 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5118 			_bytes = ring->rx_stats.bytes;
5119 			_packets = ring->rx_stats.packets;
5120 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5121 		bytes += _bytes;
5122 		packets += _packets;
5123 	}
5124 
5125 	net_stats->rx_bytes = bytes;
5126 	net_stats->rx_packets = packets;
5127 
5128 	packets = 0;
5129 	bytes = 0;
5130 	for (i = 0; i < adapter->num_tx_queues; i++) {
5131 		struct igc_ring *ring = adapter->tx_ring[i];
5132 
5133 		do {
5134 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5135 			_bytes = ring->tx_stats.bytes;
5136 			_packets = ring->tx_stats.packets;
5137 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5138 		bytes += _bytes;
5139 		packets += _packets;
5140 	}
5141 	net_stats->tx_bytes = bytes;
5142 	net_stats->tx_packets = packets;
5143 	rcu_read_unlock();
5144 
5145 	/* read stats registers */
5146 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5147 	adapter->stats.gprc += rd32(IGC_GPRC);
5148 	adapter->stats.gorc += rd32(IGC_GORCL);
5149 	rd32(IGC_GORCH); /* clear GORCL */
5150 	adapter->stats.bprc += rd32(IGC_BPRC);
5151 	adapter->stats.mprc += rd32(IGC_MPRC);
5152 	adapter->stats.roc += rd32(IGC_ROC);
5153 
5154 	adapter->stats.prc64 += rd32(IGC_PRC64);
5155 	adapter->stats.prc127 += rd32(IGC_PRC127);
5156 	adapter->stats.prc255 += rd32(IGC_PRC255);
5157 	adapter->stats.prc511 += rd32(IGC_PRC511);
5158 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5159 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5160 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5161 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5162 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5163 
5164 	mpc = rd32(IGC_MPC);
5165 	adapter->stats.mpc += mpc;
5166 	net_stats->rx_fifo_errors += mpc;
5167 	adapter->stats.scc += rd32(IGC_SCC);
5168 	adapter->stats.ecol += rd32(IGC_ECOL);
5169 	adapter->stats.mcc += rd32(IGC_MCC);
5170 	adapter->stats.latecol += rd32(IGC_LATECOL);
5171 	adapter->stats.dc += rd32(IGC_DC);
5172 	adapter->stats.rlec += rd32(IGC_RLEC);
5173 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5174 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5175 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5176 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5177 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5178 	adapter->stats.gptc += rd32(IGC_GPTC);
5179 	adapter->stats.gotc += rd32(IGC_GOTCL);
5180 	rd32(IGC_GOTCH); /* clear GOTCL */
5181 	adapter->stats.rnbc += rd32(IGC_RNBC);
5182 	adapter->stats.ruc += rd32(IGC_RUC);
5183 	adapter->stats.rfc += rd32(IGC_RFC);
5184 	adapter->stats.rjc += rd32(IGC_RJC);
5185 	adapter->stats.tor += rd32(IGC_TORH);
5186 	adapter->stats.tot += rd32(IGC_TOTH);
5187 	adapter->stats.tpr += rd32(IGC_TPR);
5188 
5189 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5190 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5191 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5192 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5193 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5194 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5195 
5196 	adapter->stats.mptc += rd32(IGC_MPTC);
5197 	adapter->stats.bptc += rd32(IGC_BPTC);
5198 
5199 	adapter->stats.tpt += rd32(IGC_TPT);
5200 	adapter->stats.colc += rd32(IGC_COLC);
5201 	adapter->stats.colc += rd32(IGC_RERC);
5202 
5203 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5204 
5205 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5206 
5207 	adapter->stats.iac += rd32(IGC_IAC);
5208 
5209 	/* Fill out the OS statistics structure */
5210 	net_stats->multicast = adapter->stats.mprc;
5211 	net_stats->collisions = adapter->stats.colc;
5212 
5213 	/* Rx Errors */
5214 
5215 	/* RLEC on some newer hardware can be incorrect so build
5216 	 * our own version based on RUC and ROC
5217 	 */
5218 	net_stats->rx_errors = adapter->stats.rxerrc +
5219 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5220 		adapter->stats.ruc + adapter->stats.roc +
5221 		adapter->stats.cexterr;
5222 	net_stats->rx_length_errors = adapter->stats.ruc +
5223 				      adapter->stats.roc;
5224 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5225 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5226 	net_stats->rx_missed_errors = adapter->stats.mpc;
5227 
5228 	/* Tx Errors */
5229 	net_stats->tx_errors = adapter->stats.ecol +
5230 			       adapter->stats.latecol;
5231 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5232 	net_stats->tx_window_errors = adapter->stats.latecol;
5233 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5234 
5235 	/* Tx Dropped */
5236 	net_stats->tx_dropped = adapter->stats.txdrop;
5237 
5238 	/* Management Stats */
5239 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5240 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5241 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5242 }
5243 
5244 /**
5245  * igc_down - Close the interface
5246  * @adapter: board private structure
5247  */
igc_down(struct igc_adapter * adapter)5248 void igc_down(struct igc_adapter *adapter)
5249 {
5250 	struct net_device *netdev = adapter->netdev;
5251 	struct igc_hw *hw = &adapter->hw;
5252 	u32 tctl, rctl;
5253 	int i = 0;
5254 
5255 	set_bit(__IGC_DOWN, &adapter->state);
5256 
5257 	igc_ptp_suspend(adapter);
5258 
5259 	if (pci_device_is_present(adapter->pdev)) {
5260 		/* disable receives in the hardware */
5261 		rctl = rd32(IGC_RCTL);
5262 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5263 		/* flush and sleep below */
5264 	}
5265 	/* set trans_start so we don't get spurious watchdogs during reset */
5266 	netif_trans_update(netdev);
5267 
5268 	netif_carrier_off(netdev);
5269 	netif_tx_stop_all_queues(netdev);
5270 
5271 	if (pci_device_is_present(adapter->pdev)) {
5272 		/* disable transmits in the hardware */
5273 		tctl = rd32(IGC_TCTL);
5274 		tctl &= ~IGC_TCTL_EN;
5275 		wr32(IGC_TCTL, tctl);
5276 		/* flush both disables and wait for them to finish */
5277 		wrfl();
5278 		usleep_range(10000, 20000);
5279 
5280 		igc_irq_disable(adapter);
5281 	}
5282 
5283 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5284 
5285 	for (i = 0; i < adapter->num_q_vectors; i++) {
5286 		if (adapter->q_vector[i]) {
5287 			napi_synchronize(&adapter->q_vector[i]->napi);
5288 			igc_set_queue_napi(adapter, i, NULL);
5289 			napi_disable(&adapter->q_vector[i]->napi);
5290 		}
5291 	}
5292 
5293 	del_timer_sync(&adapter->watchdog_timer);
5294 	del_timer_sync(&adapter->phy_info_timer);
5295 
5296 	/* record the stats before reset*/
5297 	spin_lock(&adapter->stats64_lock);
5298 	igc_update_stats(adapter);
5299 	spin_unlock(&adapter->stats64_lock);
5300 
5301 	adapter->link_speed = 0;
5302 	adapter->link_duplex = 0;
5303 
5304 	if (!pci_channel_offline(adapter->pdev))
5305 		igc_reset(adapter);
5306 
5307 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5308 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5309 
5310 	igc_disable_all_tx_rings_hw(adapter);
5311 	igc_clean_all_tx_rings(adapter);
5312 	igc_clean_all_rx_rings(adapter);
5313 }
5314 
igc_reinit_locked(struct igc_adapter * adapter)5315 void igc_reinit_locked(struct igc_adapter *adapter)
5316 {
5317 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5318 		usleep_range(1000, 2000);
5319 	igc_down(adapter);
5320 	igc_up(adapter);
5321 	clear_bit(__IGC_RESETTING, &adapter->state);
5322 }
5323 
igc_reset_task(struct work_struct * work)5324 static void igc_reset_task(struct work_struct *work)
5325 {
5326 	struct igc_adapter *adapter;
5327 
5328 	adapter = container_of(work, struct igc_adapter, reset_task);
5329 
5330 	rtnl_lock();
5331 	/* If we're already down or resetting, just bail */
5332 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5333 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5334 		rtnl_unlock();
5335 		return;
5336 	}
5337 
5338 	igc_rings_dump(adapter);
5339 	igc_regs_dump(adapter);
5340 	netdev_err(adapter->netdev, "Reset adapter\n");
5341 	igc_reinit_locked(adapter);
5342 	rtnl_unlock();
5343 }
5344 
5345 /**
5346  * igc_change_mtu - Change the Maximum Transfer Unit
5347  * @netdev: network interface device structure
5348  * @new_mtu: new value for maximum frame size
5349  *
5350  * Returns 0 on success, negative on failure
5351  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5352 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5353 {
5354 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5355 	struct igc_adapter *adapter = netdev_priv(netdev);
5356 
5357 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5358 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5359 		return -EINVAL;
5360 	}
5361 
5362 	/* adjust max frame to be at least the size of a standard frame */
5363 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5364 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5365 
5366 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5367 		usleep_range(1000, 2000);
5368 
5369 	/* igc_down has a dependency on max_frame_size */
5370 	adapter->max_frame_size = max_frame;
5371 
5372 	if (netif_running(netdev))
5373 		igc_down(adapter);
5374 
5375 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5376 	WRITE_ONCE(netdev->mtu, new_mtu);
5377 
5378 	if (netif_running(netdev))
5379 		igc_up(adapter);
5380 	else
5381 		igc_reset(adapter);
5382 
5383 	clear_bit(__IGC_RESETTING, &adapter->state);
5384 
5385 	return 0;
5386 }
5387 
5388 /**
5389  * igc_tx_timeout - Respond to a Tx Hang
5390  * @netdev: network interface device structure
5391  * @txqueue: queue number that timed out
5392  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5393 static void igc_tx_timeout(struct net_device *netdev,
5394 			   unsigned int __always_unused txqueue)
5395 {
5396 	struct igc_adapter *adapter = netdev_priv(netdev);
5397 	struct igc_hw *hw = &adapter->hw;
5398 
5399 	/* Do the reset outside of interrupt context */
5400 	adapter->tx_timeout_count++;
5401 	schedule_work(&adapter->reset_task);
5402 	wr32(IGC_EICS,
5403 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5404 }
5405 
5406 /**
5407  * igc_get_stats64 - Get System Network Statistics
5408  * @netdev: network interface device structure
5409  * @stats: rtnl_link_stats64 pointer
5410  *
5411  * Returns the address of the device statistics structure.
5412  * The statistics are updated here and also from the timer callback.
5413  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5414 static void igc_get_stats64(struct net_device *netdev,
5415 			    struct rtnl_link_stats64 *stats)
5416 {
5417 	struct igc_adapter *adapter = netdev_priv(netdev);
5418 
5419 	spin_lock(&adapter->stats64_lock);
5420 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5421 		igc_update_stats(adapter);
5422 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5423 	spin_unlock(&adapter->stats64_lock);
5424 }
5425 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5426 static netdev_features_t igc_fix_features(struct net_device *netdev,
5427 					  netdev_features_t features)
5428 {
5429 	/* Since there is no support for separate Rx/Tx vlan accel
5430 	 * enable/disable make sure Tx flag is always in same state as Rx.
5431 	 */
5432 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5433 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5434 	else
5435 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5436 
5437 	return features;
5438 }
5439 
igc_set_features(struct net_device * netdev,netdev_features_t features)5440 static int igc_set_features(struct net_device *netdev,
5441 			    netdev_features_t features)
5442 {
5443 	netdev_features_t changed = netdev->features ^ features;
5444 	struct igc_adapter *adapter = netdev_priv(netdev);
5445 
5446 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5447 		igc_vlan_mode(netdev, features);
5448 
5449 	/* Add VLAN support */
5450 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5451 		return 0;
5452 
5453 	if (!(features & NETIF_F_NTUPLE))
5454 		igc_flush_nfc_rules(adapter);
5455 
5456 	netdev->features = features;
5457 
5458 	if (netif_running(netdev))
5459 		igc_reinit_locked(adapter);
5460 	else
5461 		igc_reset(adapter);
5462 
5463 	return 1;
5464 }
5465 
5466 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5467 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5468 		   netdev_features_t features)
5469 {
5470 	unsigned int network_hdr_len, mac_hdr_len;
5471 
5472 	/* Make certain the headers can be described by a context descriptor */
5473 	mac_hdr_len = skb_network_offset(skb);
5474 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5475 		return features & ~(NETIF_F_HW_CSUM |
5476 				    NETIF_F_SCTP_CRC |
5477 				    NETIF_F_HW_VLAN_CTAG_TX |
5478 				    NETIF_F_TSO |
5479 				    NETIF_F_TSO6);
5480 
5481 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5482 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5483 		return features & ~(NETIF_F_HW_CSUM |
5484 				    NETIF_F_SCTP_CRC |
5485 				    NETIF_F_TSO |
5486 				    NETIF_F_TSO6);
5487 
5488 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5489 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5490 	 */
5491 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5492 		features &= ~NETIF_F_TSO;
5493 
5494 	return features;
5495 }
5496 
igc_tsync_interrupt(struct igc_adapter * adapter)5497 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5498 {
5499 	struct igc_hw *hw = &adapter->hw;
5500 	u32 tsauxc, sec, nsec, tsicr;
5501 	struct ptp_clock_event event;
5502 	struct timespec64 ts;
5503 
5504 	tsicr = rd32(IGC_TSICR);
5505 
5506 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5507 		event.type = PTP_CLOCK_PPS;
5508 		if (adapter->ptp_caps.pps)
5509 			ptp_clock_event(adapter->ptp_clock, &event);
5510 	}
5511 
5512 	if (tsicr & IGC_TSICR_TXTS) {
5513 		/* retrieve hardware timestamp */
5514 		igc_ptp_tx_tstamp_event(adapter);
5515 	}
5516 
5517 	if (tsicr & IGC_TSICR_TT0) {
5518 		spin_lock(&adapter->tmreg_lock);
5519 		ts = timespec64_add(adapter->perout[0].start,
5520 				    adapter->perout[0].period);
5521 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5522 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5523 		tsauxc = rd32(IGC_TSAUXC);
5524 		tsauxc |= IGC_TSAUXC_EN_TT0;
5525 		wr32(IGC_TSAUXC, tsauxc);
5526 		adapter->perout[0].start = ts;
5527 		spin_unlock(&adapter->tmreg_lock);
5528 	}
5529 
5530 	if (tsicr & IGC_TSICR_TT1) {
5531 		spin_lock(&adapter->tmreg_lock);
5532 		ts = timespec64_add(adapter->perout[1].start,
5533 				    adapter->perout[1].period);
5534 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5535 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5536 		tsauxc = rd32(IGC_TSAUXC);
5537 		tsauxc |= IGC_TSAUXC_EN_TT1;
5538 		wr32(IGC_TSAUXC, tsauxc);
5539 		adapter->perout[1].start = ts;
5540 		spin_unlock(&adapter->tmreg_lock);
5541 	}
5542 
5543 	if (tsicr & IGC_TSICR_AUTT0) {
5544 		nsec = rd32(IGC_AUXSTMPL0);
5545 		sec  = rd32(IGC_AUXSTMPH0);
5546 		event.type = PTP_CLOCK_EXTTS;
5547 		event.index = 0;
5548 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5549 		ptp_clock_event(adapter->ptp_clock, &event);
5550 	}
5551 
5552 	if (tsicr & IGC_TSICR_AUTT1) {
5553 		nsec = rd32(IGC_AUXSTMPL1);
5554 		sec  = rd32(IGC_AUXSTMPH1);
5555 		event.type = PTP_CLOCK_EXTTS;
5556 		event.index = 1;
5557 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5558 		ptp_clock_event(adapter->ptp_clock, &event);
5559 	}
5560 }
5561 
5562 /**
5563  * igc_msix_other - msix other interrupt handler
5564  * @irq: interrupt number
5565  * @data: pointer to a q_vector
5566  */
igc_msix_other(int irq,void * data)5567 static irqreturn_t igc_msix_other(int irq, void *data)
5568 {
5569 	struct igc_adapter *adapter = data;
5570 	struct igc_hw *hw = &adapter->hw;
5571 	u32 icr = rd32(IGC_ICR);
5572 
5573 	/* reading ICR causes bit 31 of EICR to be cleared */
5574 	if (icr & IGC_ICR_DRSTA)
5575 		schedule_work(&adapter->reset_task);
5576 
5577 	if (icr & IGC_ICR_DOUTSYNC) {
5578 		/* HW is reporting DMA is out of sync */
5579 		adapter->stats.doosync++;
5580 	}
5581 
5582 	if (icr & IGC_ICR_LSC) {
5583 		hw->mac.get_link_status = true;
5584 		/* guard against interrupt when we're going down */
5585 		if (!test_bit(__IGC_DOWN, &adapter->state))
5586 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5587 	}
5588 
5589 	if (icr & IGC_ICR_TS)
5590 		igc_tsync_interrupt(adapter);
5591 
5592 	wr32(IGC_EIMS, adapter->eims_other);
5593 
5594 	return IRQ_HANDLED;
5595 }
5596 
igc_write_itr(struct igc_q_vector * q_vector)5597 static void igc_write_itr(struct igc_q_vector *q_vector)
5598 {
5599 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5600 
5601 	if (!q_vector->set_itr)
5602 		return;
5603 
5604 	if (!itr_val)
5605 		itr_val = IGC_ITR_VAL_MASK;
5606 
5607 	itr_val |= IGC_EITR_CNT_IGNR;
5608 
5609 	writel(itr_val, q_vector->itr_register);
5610 	q_vector->set_itr = 0;
5611 }
5612 
igc_msix_ring(int irq,void * data)5613 static irqreturn_t igc_msix_ring(int irq, void *data)
5614 {
5615 	struct igc_q_vector *q_vector = data;
5616 
5617 	/* Write the ITR value calculated from the previous interrupt. */
5618 	igc_write_itr(q_vector);
5619 
5620 	napi_schedule(&q_vector->napi);
5621 
5622 	return IRQ_HANDLED;
5623 }
5624 
5625 /**
5626  * igc_request_msix - Initialize MSI-X interrupts
5627  * @adapter: Pointer to adapter structure
5628  *
5629  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5630  * kernel.
5631  */
igc_request_msix(struct igc_adapter * adapter)5632 static int igc_request_msix(struct igc_adapter *adapter)
5633 {
5634 	unsigned int num_q_vectors = adapter->num_q_vectors;
5635 	int i = 0, err = 0, vector = 0, free_vector = 0;
5636 	struct net_device *netdev = adapter->netdev;
5637 
5638 	err = request_irq(adapter->msix_entries[vector].vector,
5639 			  &igc_msix_other, 0, netdev->name, adapter);
5640 	if (err)
5641 		goto err_out;
5642 
5643 	if (num_q_vectors > MAX_Q_VECTORS) {
5644 		num_q_vectors = MAX_Q_VECTORS;
5645 		dev_warn(&adapter->pdev->dev,
5646 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5647 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5648 	}
5649 	for (i = 0; i < num_q_vectors; i++) {
5650 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5651 
5652 		vector++;
5653 
5654 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5655 
5656 		if (q_vector->rx.ring && q_vector->tx.ring)
5657 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5658 				q_vector->rx.ring->queue_index);
5659 		else if (q_vector->tx.ring)
5660 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5661 				q_vector->tx.ring->queue_index);
5662 		else if (q_vector->rx.ring)
5663 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5664 				q_vector->rx.ring->queue_index);
5665 		else
5666 			sprintf(q_vector->name, "%s-unused", netdev->name);
5667 
5668 		err = request_irq(adapter->msix_entries[vector].vector,
5669 				  igc_msix_ring, 0, q_vector->name,
5670 				  q_vector);
5671 		if (err)
5672 			goto err_free;
5673 
5674 		netif_napi_set_irq(&q_vector->napi,
5675 				   adapter->msix_entries[vector].vector);
5676 	}
5677 
5678 	igc_configure_msix(adapter);
5679 	return 0;
5680 
5681 err_free:
5682 	/* free already assigned IRQs */
5683 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5684 
5685 	vector--;
5686 	for (i = 0; i < vector; i++) {
5687 		free_irq(adapter->msix_entries[free_vector++].vector,
5688 			 adapter->q_vector[i]);
5689 	}
5690 err_out:
5691 	return err;
5692 }
5693 
5694 /**
5695  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5696  * @adapter: Pointer to adapter structure
5697  *
5698  * This function resets the device so that it has 0 rx queues, tx queues, and
5699  * MSI-X interrupts allocated.
5700  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5701 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5702 {
5703 	igc_free_q_vectors(adapter);
5704 	igc_reset_interrupt_capability(adapter);
5705 }
5706 
5707 /* Need to wait a few seconds after link up to get diagnostic information from
5708  * the phy
5709  */
igc_update_phy_info(struct timer_list * t)5710 static void igc_update_phy_info(struct timer_list *t)
5711 {
5712 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5713 
5714 	igc_get_phy_info(&adapter->hw);
5715 }
5716 
5717 /**
5718  * igc_has_link - check shared code for link and determine up/down
5719  * @adapter: pointer to driver private info
5720  */
igc_has_link(struct igc_adapter * adapter)5721 bool igc_has_link(struct igc_adapter *adapter)
5722 {
5723 	struct igc_hw *hw = &adapter->hw;
5724 	bool link_active = false;
5725 
5726 	/* get_link_status is set on LSC (link status) interrupt or
5727 	 * rx sequence error interrupt.  get_link_status will stay
5728 	 * false until the igc_check_for_link establishes link
5729 	 * for copper adapters ONLY
5730 	 */
5731 	if (!hw->mac.get_link_status)
5732 		return true;
5733 	hw->mac.ops.check_for_link(hw);
5734 	link_active = !hw->mac.get_link_status;
5735 
5736 	if (hw->mac.type == igc_i225) {
5737 		if (!netif_carrier_ok(adapter->netdev)) {
5738 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5739 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5740 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5741 			adapter->link_check_timeout = jiffies;
5742 		}
5743 	}
5744 
5745 	return link_active;
5746 }
5747 
5748 /**
5749  * igc_watchdog - Timer Call-back
5750  * @t: timer for the watchdog
5751  */
igc_watchdog(struct timer_list * t)5752 static void igc_watchdog(struct timer_list *t)
5753 {
5754 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5755 	/* Do the rest outside of interrupt context */
5756 	schedule_work(&adapter->watchdog_task);
5757 }
5758 
igc_watchdog_task(struct work_struct * work)5759 static void igc_watchdog_task(struct work_struct *work)
5760 {
5761 	struct igc_adapter *adapter = container_of(work,
5762 						   struct igc_adapter,
5763 						   watchdog_task);
5764 	struct net_device *netdev = adapter->netdev;
5765 	struct igc_hw *hw = &adapter->hw;
5766 	struct igc_phy_info *phy = &hw->phy;
5767 	u16 phy_data, retry_count = 20;
5768 	u32 link;
5769 	int i;
5770 
5771 	link = igc_has_link(adapter);
5772 
5773 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5774 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5775 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5776 		else
5777 			link = false;
5778 	}
5779 
5780 	if (link) {
5781 		/* Cancel scheduled suspend requests. */
5782 		pm_runtime_resume(netdev->dev.parent);
5783 
5784 		if (!netif_carrier_ok(netdev)) {
5785 			u32 ctrl;
5786 
5787 			hw->mac.ops.get_speed_and_duplex(hw,
5788 							 &adapter->link_speed,
5789 							 &adapter->link_duplex);
5790 
5791 			ctrl = rd32(IGC_CTRL);
5792 			/* Link status message must follow this format */
5793 			netdev_info(netdev,
5794 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5795 				    adapter->link_speed,
5796 				    adapter->link_duplex == FULL_DUPLEX ?
5797 				    "Full" : "Half",
5798 				    (ctrl & IGC_CTRL_TFCE) &&
5799 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5800 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5801 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5802 
5803 			/* disable EEE if enabled */
5804 			if ((adapter->flags & IGC_FLAG_EEE) &&
5805 			    adapter->link_duplex == HALF_DUPLEX) {
5806 				netdev_info(netdev,
5807 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5808 				adapter->hw.dev_spec._base.eee_enable = false;
5809 				adapter->flags &= ~IGC_FLAG_EEE;
5810 			}
5811 
5812 			/* check if SmartSpeed worked */
5813 			igc_check_downshift(hw);
5814 			if (phy->speed_downgraded)
5815 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5816 
5817 			/* adjust timeout factor according to speed/duplex */
5818 			adapter->tx_timeout_factor = 1;
5819 			switch (adapter->link_speed) {
5820 			case SPEED_10:
5821 				adapter->tx_timeout_factor = 14;
5822 				break;
5823 			case SPEED_100:
5824 			case SPEED_1000:
5825 			case SPEED_2500:
5826 				adapter->tx_timeout_factor = 1;
5827 				break;
5828 			}
5829 
5830 			/* Once the launch time has been set on the wire, there
5831 			 * is a delay before the link speed can be determined
5832 			 * based on link-up activity. Write into the register
5833 			 * as soon as we know the correct link speed.
5834 			 */
5835 			igc_tsn_adjust_txtime_offset(adapter);
5836 
5837 			if (adapter->link_speed != SPEED_1000)
5838 				goto no_wait;
5839 
5840 			/* wait for Remote receiver status OK */
5841 retry_read_status:
5842 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5843 					      &phy_data)) {
5844 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5845 				    retry_count) {
5846 					msleep(100);
5847 					retry_count--;
5848 					goto retry_read_status;
5849 				} else if (!retry_count) {
5850 					netdev_err(netdev, "exceed max 2 second\n");
5851 				}
5852 			} else {
5853 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5854 			}
5855 no_wait:
5856 			netif_carrier_on(netdev);
5857 
5858 			/* link state has changed, schedule phy info update */
5859 			if (!test_bit(__IGC_DOWN, &adapter->state))
5860 				mod_timer(&adapter->phy_info_timer,
5861 					  round_jiffies(jiffies + 2 * HZ));
5862 		}
5863 	} else {
5864 		if (netif_carrier_ok(netdev)) {
5865 			adapter->link_speed = 0;
5866 			adapter->link_duplex = 0;
5867 
5868 			/* Links status message must follow this format */
5869 			netdev_info(netdev, "NIC Link is Down\n");
5870 			netif_carrier_off(netdev);
5871 
5872 			/* link state has changed, schedule phy info update */
5873 			if (!test_bit(__IGC_DOWN, &adapter->state))
5874 				mod_timer(&adapter->phy_info_timer,
5875 					  round_jiffies(jiffies + 2 * HZ));
5876 
5877 			pm_schedule_suspend(netdev->dev.parent,
5878 					    MSEC_PER_SEC * 5);
5879 		}
5880 	}
5881 
5882 	spin_lock(&adapter->stats64_lock);
5883 	igc_update_stats(adapter);
5884 	spin_unlock(&adapter->stats64_lock);
5885 
5886 	for (i = 0; i < adapter->num_tx_queues; i++) {
5887 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5888 
5889 		if (!netif_carrier_ok(netdev)) {
5890 			/* We've lost link, so the controller stops DMA,
5891 			 * but we've got queued Tx work that's never going
5892 			 * to get done, so reset controller to flush Tx.
5893 			 * (Do the reset outside of interrupt context).
5894 			 */
5895 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5896 				adapter->tx_timeout_count++;
5897 				schedule_work(&adapter->reset_task);
5898 				/* return immediately since reset is imminent */
5899 				return;
5900 			}
5901 		}
5902 
5903 		/* Force detection of hung controller every watchdog period */
5904 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5905 	}
5906 
5907 	/* Cause software interrupt to ensure Rx ring is cleaned */
5908 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5909 		u32 eics = 0;
5910 
5911 		for (i = 0; i < adapter->num_q_vectors; i++) {
5912 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5913 			struct igc_ring *rx_ring;
5914 
5915 			if (!q_vector->rx.ring)
5916 				continue;
5917 
5918 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5919 
5920 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5921 				eics |= q_vector->eims_value;
5922 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5923 			}
5924 		}
5925 		if (eics)
5926 			wr32(IGC_EICS, eics);
5927 	} else {
5928 		struct igc_ring *rx_ring = adapter->rx_ring[0];
5929 
5930 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5931 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5932 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
5933 		}
5934 	}
5935 
5936 	igc_ptp_tx_hang(adapter);
5937 
5938 	/* Reset the timer */
5939 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5940 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5941 			mod_timer(&adapter->watchdog_timer,
5942 				  round_jiffies(jiffies +  HZ));
5943 		else
5944 			mod_timer(&adapter->watchdog_timer,
5945 				  round_jiffies(jiffies + 2 * HZ));
5946 	}
5947 }
5948 
5949 /**
5950  * igc_intr_msi - Interrupt Handler
5951  * @irq: interrupt number
5952  * @data: pointer to a network interface device structure
5953  */
igc_intr_msi(int irq,void * data)5954 static irqreturn_t igc_intr_msi(int irq, void *data)
5955 {
5956 	struct igc_adapter *adapter = data;
5957 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5958 	struct igc_hw *hw = &adapter->hw;
5959 	/* read ICR disables interrupts using IAM */
5960 	u32 icr = rd32(IGC_ICR);
5961 
5962 	igc_write_itr(q_vector);
5963 
5964 	if (icr & IGC_ICR_DRSTA)
5965 		schedule_work(&adapter->reset_task);
5966 
5967 	if (icr & IGC_ICR_DOUTSYNC) {
5968 		/* HW is reporting DMA is out of sync */
5969 		adapter->stats.doosync++;
5970 	}
5971 
5972 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5973 		hw->mac.get_link_status = true;
5974 		if (!test_bit(__IGC_DOWN, &adapter->state))
5975 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5976 	}
5977 
5978 	if (icr & IGC_ICR_TS)
5979 		igc_tsync_interrupt(adapter);
5980 
5981 	napi_schedule(&q_vector->napi);
5982 
5983 	return IRQ_HANDLED;
5984 }
5985 
5986 /**
5987  * igc_intr - Legacy Interrupt Handler
5988  * @irq: interrupt number
5989  * @data: pointer to a network interface device structure
5990  */
igc_intr(int irq,void * data)5991 static irqreturn_t igc_intr(int irq, void *data)
5992 {
5993 	struct igc_adapter *adapter = data;
5994 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5995 	struct igc_hw *hw = &adapter->hw;
5996 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5997 	 * need for the IMC write
5998 	 */
5999 	u32 icr = rd32(IGC_ICR);
6000 
6001 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6002 	 * not set, then the adapter didn't send an interrupt
6003 	 */
6004 	if (!(icr & IGC_ICR_INT_ASSERTED))
6005 		return IRQ_NONE;
6006 
6007 	igc_write_itr(q_vector);
6008 
6009 	if (icr & IGC_ICR_DRSTA)
6010 		schedule_work(&adapter->reset_task);
6011 
6012 	if (icr & IGC_ICR_DOUTSYNC) {
6013 		/* HW is reporting DMA is out of sync */
6014 		adapter->stats.doosync++;
6015 	}
6016 
6017 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6018 		hw->mac.get_link_status = true;
6019 		/* guard against interrupt when we're going down */
6020 		if (!test_bit(__IGC_DOWN, &adapter->state))
6021 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6022 	}
6023 
6024 	if (icr & IGC_ICR_TS)
6025 		igc_tsync_interrupt(adapter);
6026 
6027 	napi_schedule(&q_vector->napi);
6028 
6029 	return IRQ_HANDLED;
6030 }
6031 
igc_free_irq(struct igc_adapter * adapter)6032 static void igc_free_irq(struct igc_adapter *adapter)
6033 {
6034 	if (adapter->msix_entries) {
6035 		int vector = 0, i;
6036 
6037 		free_irq(adapter->msix_entries[vector++].vector, adapter);
6038 
6039 		for (i = 0; i < adapter->num_q_vectors; i++)
6040 			free_irq(adapter->msix_entries[vector++].vector,
6041 				 adapter->q_vector[i]);
6042 	} else {
6043 		free_irq(adapter->pdev->irq, adapter);
6044 	}
6045 }
6046 
6047 /**
6048  * igc_request_irq - initialize interrupts
6049  * @adapter: Pointer to adapter structure
6050  *
6051  * Attempts to configure interrupts using the best available
6052  * capabilities of the hardware and kernel.
6053  */
igc_request_irq(struct igc_adapter * adapter)6054 static int igc_request_irq(struct igc_adapter *adapter)
6055 {
6056 	struct net_device *netdev = adapter->netdev;
6057 	struct pci_dev *pdev = adapter->pdev;
6058 	int err = 0;
6059 
6060 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
6061 		err = igc_request_msix(adapter);
6062 		if (!err)
6063 			goto request_done;
6064 		/* fall back to MSI */
6065 		igc_free_all_tx_resources(adapter);
6066 		igc_free_all_rx_resources(adapter);
6067 
6068 		igc_clear_interrupt_scheme(adapter);
6069 		err = igc_init_interrupt_scheme(adapter, false);
6070 		if (err)
6071 			goto request_done;
6072 		igc_setup_all_tx_resources(adapter);
6073 		igc_setup_all_rx_resources(adapter);
6074 		igc_configure(adapter);
6075 	}
6076 
6077 	igc_assign_vector(adapter->q_vector[0], 0);
6078 
6079 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
6080 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
6081 				  netdev->name, adapter);
6082 		if (!err)
6083 			goto request_done;
6084 
6085 		/* fall back to legacy interrupts */
6086 		igc_reset_interrupt_capability(adapter);
6087 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
6088 	}
6089 
6090 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6091 			  netdev->name, adapter);
6092 
6093 	if (err)
6094 		netdev_err(netdev, "Error %d getting interrupt\n", err);
6095 
6096 request_done:
6097 	return err;
6098 }
6099 
6100 /**
6101  * __igc_open - Called when a network interface is made active
6102  * @netdev: network interface device structure
6103  * @resuming: boolean indicating if the device is resuming
6104  *
6105  * Returns 0 on success, negative value on failure
6106  *
6107  * The open entry point is called when a network interface is made
6108  * active by the system (IFF_UP).  At this point all resources needed
6109  * for transmit and receive operations are allocated, the interrupt
6110  * handler is registered with the OS, the watchdog timer is started,
6111  * and the stack is notified that the interface is ready.
6112  */
__igc_open(struct net_device * netdev,bool resuming)6113 static int __igc_open(struct net_device *netdev, bool resuming)
6114 {
6115 	struct igc_adapter *adapter = netdev_priv(netdev);
6116 	struct pci_dev *pdev = adapter->pdev;
6117 	struct igc_hw *hw = &adapter->hw;
6118 	struct napi_struct *napi;
6119 	int err = 0;
6120 	int i = 0;
6121 
6122 	/* disallow open during test */
6123 
6124 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6125 		WARN_ON(resuming);
6126 		return -EBUSY;
6127 	}
6128 
6129 	if (!resuming)
6130 		pm_runtime_get_sync(&pdev->dev);
6131 
6132 	netif_carrier_off(netdev);
6133 
6134 	/* allocate transmit descriptors */
6135 	err = igc_setup_all_tx_resources(adapter);
6136 	if (err)
6137 		goto err_setup_tx;
6138 
6139 	/* allocate receive descriptors */
6140 	err = igc_setup_all_rx_resources(adapter);
6141 	if (err)
6142 		goto err_setup_rx;
6143 
6144 	igc_power_up_link(adapter);
6145 
6146 	igc_configure(adapter);
6147 
6148 	err = igc_request_irq(adapter);
6149 	if (err)
6150 		goto err_req_irq;
6151 
6152 	clear_bit(__IGC_DOWN, &adapter->state);
6153 
6154 	for (i = 0; i < adapter->num_q_vectors; i++) {
6155 		napi = &adapter->q_vector[i]->napi;
6156 		napi_enable(napi);
6157 		igc_set_queue_napi(adapter, i, napi);
6158 	}
6159 
6160 	/* Clear any pending interrupts. */
6161 	rd32(IGC_ICR);
6162 	igc_irq_enable(adapter);
6163 
6164 	if (!resuming)
6165 		pm_runtime_put(&pdev->dev);
6166 
6167 	netif_tx_start_all_queues(netdev);
6168 
6169 	/* start the watchdog. */
6170 	hw->mac.get_link_status = true;
6171 	schedule_work(&adapter->watchdog_task);
6172 
6173 	return IGC_SUCCESS;
6174 
6175 err_req_irq:
6176 	igc_release_hw_control(adapter);
6177 	igc_power_down_phy_copper_base(&adapter->hw);
6178 	igc_free_all_rx_resources(adapter);
6179 err_setup_rx:
6180 	igc_free_all_tx_resources(adapter);
6181 err_setup_tx:
6182 	igc_reset(adapter);
6183 	if (!resuming)
6184 		pm_runtime_put(&pdev->dev);
6185 
6186 	return err;
6187 }
6188 
igc_open(struct net_device * netdev)6189 int igc_open(struct net_device *netdev)
6190 {
6191 	struct igc_adapter *adapter = netdev_priv(netdev);
6192 	int err;
6193 
6194 	/* Notify the stack of the actual queue counts. */
6195 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6196 					adapter->num_rx_queues);
6197 	if (err) {
6198 		netdev_err(netdev, "error setting real queue count\n");
6199 		return err;
6200 	}
6201 
6202 	return __igc_open(netdev, false);
6203 }
6204 
6205 /**
6206  * __igc_close - Disables a network interface
6207  * @netdev: network interface device structure
6208  * @suspending: boolean indicating the device is suspending
6209  *
6210  * Returns 0, this is not allowed to fail
6211  *
6212  * The close entry point is called when an interface is de-activated
6213  * by the OS.  The hardware is still under the driver's control, but
6214  * needs to be disabled.  A global MAC reset is issued to stop the
6215  * hardware, and all transmit and receive resources are freed.
6216  */
__igc_close(struct net_device * netdev,bool suspending)6217 static int __igc_close(struct net_device *netdev, bool suspending)
6218 {
6219 	struct igc_adapter *adapter = netdev_priv(netdev);
6220 	struct pci_dev *pdev = adapter->pdev;
6221 
6222 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6223 
6224 	if (!suspending)
6225 		pm_runtime_get_sync(&pdev->dev);
6226 
6227 	igc_down(adapter);
6228 
6229 	igc_release_hw_control(adapter);
6230 
6231 	igc_free_irq(adapter);
6232 
6233 	igc_free_all_tx_resources(adapter);
6234 	igc_free_all_rx_resources(adapter);
6235 
6236 	if (!suspending)
6237 		pm_runtime_put_sync(&pdev->dev);
6238 
6239 	return 0;
6240 }
6241 
igc_close(struct net_device * netdev)6242 int igc_close(struct net_device *netdev)
6243 {
6244 	if (netif_device_present(netdev) || netdev->dismantle)
6245 		return __igc_close(netdev, false);
6246 	return 0;
6247 }
6248 
6249 /**
6250  * igc_ioctl - Access the hwtstamp interface
6251  * @netdev: network interface device structure
6252  * @ifr: interface request data
6253  * @cmd: ioctl command
6254  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6255 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6256 {
6257 	switch (cmd) {
6258 	case SIOCGHWTSTAMP:
6259 		return igc_ptp_get_ts_config(netdev, ifr);
6260 	case SIOCSHWTSTAMP:
6261 		return igc_ptp_set_ts_config(netdev, ifr);
6262 	default:
6263 		return -EOPNOTSUPP;
6264 	}
6265 }
6266 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6267 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6268 				      bool enable)
6269 {
6270 	struct igc_ring *ring;
6271 
6272 	if (queue < 0 || queue >= adapter->num_tx_queues)
6273 		return -EINVAL;
6274 
6275 	ring = adapter->tx_ring[queue];
6276 	ring->launchtime_enable = enable;
6277 
6278 	return 0;
6279 }
6280 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6281 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6282 {
6283 	struct timespec64 b;
6284 
6285 	b = ktime_to_timespec64(base_time);
6286 
6287 	return timespec64_compare(now, &b) > 0;
6288 }
6289 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6290 static bool validate_schedule(struct igc_adapter *adapter,
6291 			      const struct tc_taprio_qopt_offload *qopt)
6292 {
6293 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6294 	struct igc_hw *hw = &adapter->hw;
6295 	struct timespec64 now;
6296 	size_t n;
6297 
6298 	if (qopt->cycle_time_extension)
6299 		return false;
6300 
6301 	igc_ptp_read(adapter, &now);
6302 
6303 	/* If we program the controller's BASET registers with a time
6304 	 * in the future, it will hold all the packets until that
6305 	 * time, causing a lot of TX Hangs, so to avoid that, we
6306 	 * reject schedules that would start in the future.
6307 	 * Note: Limitation above is no longer in i226.
6308 	 */
6309 	if (!is_base_time_past(qopt->base_time, &now) &&
6310 	    igc_is_device_id_i225(hw))
6311 		return false;
6312 
6313 	for (n = 0; n < qopt->num_entries; n++) {
6314 		const struct tc_taprio_sched_entry *e, *prev;
6315 		int i;
6316 
6317 		prev = n ? &qopt->entries[n - 1] : NULL;
6318 		e = &qopt->entries[n];
6319 
6320 		/* i225 only supports "global" frame preemption
6321 		 * settings.
6322 		 */
6323 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6324 			return false;
6325 
6326 		for (i = 0; i < adapter->num_tx_queues; i++)
6327 			if (e->gate_mask & BIT(i)) {
6328 				queue_uses[i]++;
6329 
6330 				/* There are limitations: A single queue cannot
6331 				 * be opened and closed multiple times per cycle
6332 				 * unless the gate stays open. Check for it.
6333 				 */
6334 				if (queue_uses[i] > 1 &&
6335 				    !(prev->gate_mask & BIT(i)))
6336 					return false;
6337 			}
6338 	}
6339 
6340 	return true;
6341 }
6342 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6343 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6344 				     struct tc_etf_qopt_offload *qopt)
6345 {
6346 	struct igc_hw *hw = &adapter->hw;
6347 	int err;
6348 
6349 	if (hw->mac.type != igc_i225)
6350 		return -EOPNOTSUPP;
6351 
6352 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6353 	if (err)
6354 		return err;
6355 
6356 	return igc_tsn_offload_apply(adapter);
6357 }
6358 
igc_qbv_clear_schedule(struct igc_adapter * adapter)6359 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6360 {
6361 	unsigned long flags;
6362 	int i;
6363 
6364 	adapter->base_time = 0;
6365 	adapter->cycle_time = NSEC_PER_SEC;
6366 	adapter->taprio_offload_enable = false;
6367 	adapter->qbv_config_change_errors = 0;
6368 	adapter->qbv_count = 0;
6369 
6370 	for (i = 0; i < adapter->num_tx_queues; i++) {
6371 		struct igc_ring *ring = adapter->tx_ring[i];
6372 
6373 		ring->start_time = 0;
6374 		ring->end_time = NSEC_PER_SEC;
6375 		ring->max_sdu = 0;
6376 	}
6377 
6378 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6379 
6380 	adapter->qbv_transition = false;
6381 
6382 	for (i = 0; i < adapter->num_tx_queues; i++) {
6383 		struct igc_ring *ring = adapter->tx_ring[i];
6384 
6385 		ring->oper_gate_closed = false;
6386 		ring->admin_gate_closed = false;
6387 	}
6388 
6389 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6390 
6391 	return 0;
6392 }
6393 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6394 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6395 {
6396 	igc_qbv_clear_schedule(adapter);
6397 
6398 	return 0;
6399 }
6400 
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6401 static void igc_taprio_stats(struct net_device *dev,
6402 			     struct tc_taprio_qopt_stats *stats)
6403 {
6404 	/* When Strict_End is enabled, the tx_overruns counter
6405 	 * will always be zero.
6406 	 */
6407 	stats->tx_overruns = 0;
6408 }
6409 
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6410 static void igc_taprio_queue_stats(struct net_device *dev,
6411 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6412 {
6413 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6414 
6415 	/* When Strict_End is enabled, the tx_overruns counter
6416 	 * will always be zero.
6417 	 */
6418 	stats->tx_overruns = 0;
6419 }
6420 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6421 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6422 				 struct tc_taprio_qopt_offload *qopt)
6423 {
6424 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6425 	struct igc_hw *hw = &adapter->hw;
6426 	u32 start_time = 0, end_time = 0;
6427 	struct timespec64 now;
6428 	unsigned long flags;
6429 	size_t n;
6430 	int i;
6431 
6432 	if (qopt->base_time < 0)
6433 		return -ERANGE;
6434 
6435 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6436 		return -EALREADY;
6437 
6438 	if (!validate_schedule(adapter, qopt))
6439 		return -EINVAL;
6440 
6441 	igc_ptp_read(adapter, &now);
6442 
6443 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6444 	    is_base_time_past(qopt->base_time, &now))
6445 		adapter->qbv_config_change_errors++;
6446 
6447 	adapter->cycle_time = qopt->cycle_time;
6448 	adapter->base_time = qopt->base_time;
6449 	adapter->taprio_offload_enable = true;
6450 
6451 	for (n = 0; n < qopt->num_entries; n++) {
6452 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6453 
6454 		end_time += e->interval;
6455 
6456 		/* If any of the conditions below are true, we need to manually
6457 		 * control the end time of the cycle.
6458 		 * 1. Qbv users can specify a cycle time that is not equal
6459 		 * to the total GCL intervals. Hence, recalculation is
6460 		 * necessary here to exclude the time interval that
6461 		 * exceeds the cycle time.
6462 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6463 		 * once the end of the list is reached, it will switch
6464 		 * to the END_OF_CYCLE state and leave the gates in the
6465 		 * same state until the next cycle is started.
6466 		 */
6467 		if (end_time > adapter->cycle_time ||
6468 		    n + 1 == qopt->num_entries)
6469 			end_time = adapter->cycle_time;
6470 
6471 		for (i = 0; i < adapter->num_tx_queues; i++) {
6472 			struct igc_ring *ring = adapter->tx_ring[i];
6473 
6474 			if (!(e->gate_mask & BIT(i)))
6475 				continue;
6476 
6477 			/* Check whether a queue stays open for more than one
6478 			 * entry. If so, keep the start and advance the end
6479 			 * time.
6480 			 */
6481 			if (!queue_configured[i])
6482 				ring->start_time = start_time;
6483 			ring->end_time = end_time;
6484 
6485 			if (ring->start_time >= adapter->cycle_time)
6486 				queue_configured[i] = false;
6487 			else
6488 				queue_configured[i] = true;
6489 		}
6490 
6491 		start_time += e->interval;
6492 	}
6493 
6494 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6495 
6496 	/* Check whether a queue gets configured.
6497 	 * If not, set the start and end time to be end time.
6498 	 */
6499 	for (i = 0; i < adapter->num_tx_queues; i++) {
6500 		struct igc_ring *ring = adapter->tx_ring[i];
6501 
6502 		if (!is_base_time_past(qopt->base_time, &now)) {
6503 			ring->admin_gate_closed = false;
6504 		} else {
6505 			ring->oper_gate_closed = false;
6506 			ring->admin_gate_closed = false;
6507 		}
6508 
6509 		if (!queue_configured[i]) {
6510 			if (!is_base_time_past(qopt->base_time, &now))
6511 				ring->admin_gate_closed = true;
6512 			else
6513 				ring->oper_gate_closed = true;
6514 
6515 			ring->start_time = end_time;
6516 			ring->end_time = end_time;
6517 		}
6518 	}
6519 
6520 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6521 
6522 	for (i = 0; i < adapter->num_tx_queues; i++) {
6523 		struct igc_ring *ring = adapter->tx_ring[i];
6524 		struct net_device *dev = adapter->netdev;
6525 
6526 		if (qopt->max_sdu[i])
6527 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6528 		else
6529 			ring->max_sdu = 0;
6530 	}
6531 
6532 	return 0;
6533 }
6534 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6535 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6536 					 struct tc_taprio_qopt_offload *qopt)
6537 {
6538 	struct igc_hw *hw = &adapter->hw;
6539 	int err;
6540 
6541 	if (hw->mac.type != igc_i225)
6542 		return -EOPNOTSUPP;
6543 
6544 	switch (qopt->cmd) {
6545 	case TAPRIO_CMD_REPLACE:
6546 		err = igc_save_qbv_schedule(adapter, qopt);
6547 		break;
6548 	case TAPRIO_CMD_DESTROY:
6549 		err = igc_tsn_clear_schedule(adapter);
6550 		break;
6551 	case TAPRIO_CMD_STATS:
6552 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6553 		return 0;
6554 	case TAPRIO_CMD_QUEUE_STATS:
6555 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6556 		return 0;
6557 	default:
6558 		return -EOPNOTSUPP;
6559 	}
6560 
6561 	if (err)
6562 		return err;
6563 
6564 	return igc_tsn_offload_apply(adapter);
6565 }
6566 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6567 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6568 			       bool enable, int idleslope, int sendslope,
6569 			       int hicredit, int locredit)
6570 {
6571 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6572 	struct net_device *netdev = adapter->netdev;
6573 	struct igc_ring *ring;
6574 	int i;
6575 
6576 	/* i225 has two sets of credit-based shaper logic.
6577 	 * Supporting it only on the top two priority queues
6578 	 */
6579 	if (queue < 0 || queue > 1)
6580 		return -EINVAL;
6581 
6582 	ring = adapter->tx_ring[queue];
6583 
6584 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6585 		if (adapter->tx_ring[i])
6586 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6587 
6588 	/* CBS should be enabled on the highest priority queue first in order
6589 	 * for the CBS algorithm to operate as intended.
6590 	 */
6591 	if (enable) {
6592 		if (queue == 1 && !cbs_status[0]) {
6593 			netdev_err(netdev,
6594 				   "Enabling CBS on queue1 before queue0\n");
6595 			return -EINVAL;
6596 		}
6597 	} else {
6598 		if (queue == 0 && cbs_status[1]) {
6599 			netdev_err(netdev,
6600 				   "Disabling CBS on queue0 before queue1\n");
6601 			return -EINVAL;
6602 		}
6603 	}
6604 
6605 	ring->cbs_enable = enable;
6606 	ring->idleslope = idleslope;
6607 	ring->sendslope = sendslope;
6608 	ring->hicredit = hicredit;
6609 	ring->locredit = locredit;
6610 
6611 	return 0;
6612 }
6613 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6614 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6615 			      struct tc_cbs_qopt_offload *qopt)
6616 {
6617 	struct igc_hw *hw = &adapter->hw;
6618 	int err;
6619 
6620 	if (hw->mac.type != igc_i225)
6621 		return -EOPNOTSUPP;
6622 
6623 	if (qopt->queue < 0 || qopt->queue > 1)
6624 		return -EINVAL;
6625 
6626 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6627 				  qopt->idleslope, qopt->sendslope,
6628 				  qopt->hicredit, qopt->locredit);
6629 	if (err)
6630 		return err;
6631 
6632 	return igc_tsn_offload_apply(adapter);
6633 }
6634 
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6635 static int igc_tc_query_caps(struct igc_adapter *adapter,
6636 			     struct tc_query_caps_base *base)
6637 {
6638 	struct igc_hw *hw = &adapter->hw;
6639 
6640 	switch (base->type) {
6641 	case TC_SETUP_QDISC_MQPRIO: {
6642 		struct tc_mqprio_caps *caps = base->caps;
6643 
6644 		caps->validate_queue_counts = true;
6645 
6646 		return 0;
6647 	}
6648 	case TC_SETUP_QDISC_TAPRIO: {
6649 		struct tc_taprio_caps *caps = base->caps;
6650 
6651 		caps->broken_mqprio = true;
6652 
6653 		if (hw->mac.type == igc_i225) {
6654 			caps->supports_queue_max_sdu = true;
6655 			caps->gate_mask_per_txq = true;
6656 		}
6657 
6658 		return 0;
6659 	}
6660 	default:
6661 		return -EOPNOTSUPP;
6662 	}
6663 }
6664 
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6665 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6666 				   u16 *offset)
6667 {
6668 	int i;
6669 
6670 	adapter->strict_priority_enable = true;
6671 	adapter->num_tc = num_tc;
6672 
6673 	for (i = 0; i < num_tc; i++)
6674 		adapter->queue_per_tc[i] = offset[i];
6675 }
6676 
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6677 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6678 				 struct tc_mqprio_qopt_offload *mqprio)
6679 {
6680 	struct igc_hw *hw = &adapter->hw;
6681 	int i;
6682 
6683 	if (hw->mac.type != igc_i225)
6684 		return -EOPNOTSUPP;
6685 
6686 	if (!mqprio->qopt.num_tc) {
6687 		adapter->strict_priority_enable = false;
6688 		goto apply;
6689 	}
6690 
6691 	/* There are as many TCs as Tx queues. */
6692 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6693 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6694 				       "Only %d traffic classes supported",
6695 				       adapter->num_tx_queues);
6696 		return -EOPNOTSUPP;
6697 	}
6698 
6699 	/* Only one queue per TC is supported. */
6700 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6701 		if (mqprio->qopt.count[i] != 1) {
6702 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6703 					   "Only one queue per TC supported");
6704 			return -EOPNOTSUPP;
6705 		}
6706 	}
6707 
6708 	/* Preemption is not supported yet. */
6709 	if (mqprio->preemptible_tcs) {
6710 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6711 				   "Preemption is not supported yet");
6712 		return -EOPNOTSUPP;
6713 	}
6714 
6715 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6716 			       mqprio->qopt.offset);
6717 
6718 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6719 
6720 apply:
6721 	return igc_tsn_offload_apply(adapter);
6722 }
6723 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6724 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6725 			void *type_data)
6726 {
6727 	struct igc_adapter *adapter = netdev_priv(dev);
6728 
6729 	adapter->tc_setup_type = type;
6730 
6731 	switch (type) {
6732 	case TC_QUERY_CAPS:
6733 		return igc_tc_query_caps(adapter, type_data);
6734 	case TC_SETUP_QDISC_TAPRIO:
6735 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6736 
6737 	case TC_SETUP_QDISC_ETF:
6738 		return igc_tsn_enable_launchtime(adapter, type_data);
6739 
6740 	case TC_SETUP_QDISC_CBS:
6741 		return igc_tsn_enable_cbs(adapter, type_data);
6742 
6743 	case TC_SETUP_QDISC_MQPRIO:
6744 		return igc_tsn_enable_mqprio(adapter, type_data);
6745 
6746 	default:
6747 		return -EOPNOTSUPP;
6748 	}
6749 }
6750 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6751 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6752 {
6753 	struct igc_adapter *adapter = netdev_priv(dev);
6754 
6755 	switch (bpf->command) {
6756 	case XDP_SETUP_PROG:
6757 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6758 	case XDP_SETUP_XSK_POOL:
6759 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6760 					  bpf->xsk.queue_id);
6761 	default:
6762 		return -EOPNOTSUPP;
6763 	}
6764 }
6765 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6766 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6767 			struct xdp_frame **frames, u32 flags)
6768 {
6769 	struct igc_adapter *adapter = netdev_priv(dev);
6770 	int cpu = smp_processor_id();
6771 	struct netdev_queue *nq;
6772 	struct igc_ring *ring;
6773 	int i, nxmit;
6774 
6775 	if (unlikely(!netif_carrier_ok(dev)))
6776 		return -ENETDOWN;
6777 
6778 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6779 		return -EINVAL;
6780 
6781 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6782 	nq = txring_txq(ring);
6783 
6784 	__netif_tx_lock(nq, cpu);
6785 
6786 	/* Avoid transmit queue timeout since we share it with the slow path */
6787 	txq_trans_cond_update(nq);
6788 
6789 	nxmit = 0;
6790 	for (i = 0; i < num_frames; i++) {
6791 		int err;
6792 		struct xdp_frame *xdpf = frames[i];
6793 
6794 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6795 		if (err)
6796 			break;
6797 		nxmit++;
6798 	}
6799 
6800 	if (flags & XDP_XMIT_FLUSH)
6801 		igc_flush_tx_descriptors(ring);
6802 
6803 	__netif_tx_unlock(nq);
6804 
6805 	return nxmit;
6806 }
6807 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6808 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6809 					struct igc_q_vector *q_vector)
6810 {
6811 	struct igc_hw *hw = &adapter->hw;
6812 	u32 eics = 0;
6813 
6814 	eics |= q_vector->eims_value;
6815 	wr32(IGC_EICS, eics);
6816 }
6817 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6818 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6819 {
6820 	struct igc_adapter *adapter = netdev_priv(dev);
6821 	struct igc_q_vector *q_vector;
6822 	struct igc_ring *ring;
6823 
6824 	if (test_bit(__IGC_DOWN, &adapter->state))
6825 		return -ENETDOWN;
6826 
6827 	if (!igc_xdp_is_enabled(adapter))
6828 		return -ENXIO;
6829 
6830 	if (queue_id >= adapter->num_rx_queues)
6831 		return -EINVAL;
6832 
6833 	ring = adapter->rx_ring[queue_id];
6834 
6835 	if (!ring->xsk_pool)
6836 		return -ENXIO;
6837 
6838 	q_vector = adapter->q_vector[queue_id];
6839 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6840 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6841 
6842 	return 0;
6843 }
6844 
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6845 static ktime_t igc_get_tstamp(struct net_device *dev,
6846 			      const struct skb_shared_hwtstamps *hwtstamps,
6847 			      bool cycles)
6848 {
6849 	struct igc_adapter *adapter = netdev_priv(dev);
6850 	struct igc_inline_rx_tstamps *tstamp;
6851 	ktime_t timestamp;
6852 
6853 	tstamp = hwtstamps->netdev_data;
6854 
6855 	if (cycles)
6856 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6857 	else
6858 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6859 
6860 	return timestamp;
6861 }
6862 
6863 static const struct net_device_ops igc_netdev_ops = {
6864 	.ndo_open		= igc_open,
6865 	.ndo_stop		= igc_close,
6866 	.ndo_start_xmit		= igc_xmit_frame,
6867 	.ndo_set_rx_mode	= igc_set_rx_mode,
6868 	.ndo_set_mac_address	= igc_set_mac,
6869 	.ndo_change_mtu		= igc_change_mtu,
6870 	.ndo_tx_timeout		= igc_tx_timeout,
6871 	.ndo_get_stats64	= igc_get_stats64,
6872 	.ndo_fix_features	= igc_fix_features,
6873 	.ndo_set_features	= igc_set_features,
6874 	.ndo_features_check	= igc_features_check,
6875 	.ndo_eth_ioctl		= igc_ioctl,
6876 	.ndo_setup_tc		= igc_setup_tc,
6877 	.ndo_bpf		= igc_bpf,
6878 	.ndo_xdp_xmit		= igc_xdp_xmit,
6879 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6880 	.ndo_get_tstamp		= igc_get_tstamp,
6881 };
6882 
igc_rd32(struct igc_hw * hw,u32 reg)6883 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6884 {
6885 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6886 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6887 	u32 value = 0;
6888 
6889 	if (IGC_REMOVED(hw_addr))
6890 		return ~value;
6891 
6892 	value = readl(&hw_addr[reg]);
6893 
6894 	/* reads should not return all F's */
6895 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6896 		struct net_device *netdev = igc->netdev;
6897 
6898 		hw->hw_addr = NULL;
6899 		netif_device_detach(netdev);
6900 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6901 		WARN(pci_device_is_present(igc->pdev),
6902 		     "igc: Failed to read reg 0x%x!\n", reg);
6903 	}
6904 
6905 	return value;
6906 }
6907 
6908 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6909 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6910 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6911 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6912 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6913 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6914 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6915 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6916 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6917 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6918 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6919 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6920 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6921 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6922 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6923 	[13] = XDP_RSS_TYPE_NONE,
6924 	[14] = XDP_RSS_TYPE_NONE,
6925 	[15] = XDP_RSS_TYPE_NONE,
6926 };
6927 
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6928 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6929 			   enum xdp_rss_hash_type *rss_type)
6930 {
6931 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6932 
6933 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6934 		return -ENODATA;
6935 
6936 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6937 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6938 
6939 	return 0;
6940 }
6941 
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6942 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6943 {
6944 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6945 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6946 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6947 
6948 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6949 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6950 
6951 		return 0;
6952 	}
6953 
6954 	return -ENODATA;
6955 }
6956 
6957 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6958 	.xmo_rx_hash			= igc_xdp_rx_hash,
6959 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6960 };
6961 
igc_qbv_scheduling_timer(struct hrtimer * timer)6962 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6963 {
6964 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6965 						   hrtimer);
6966 	unsigned long flags;
6967 	unsigned int i;
6968 
6969 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6970 
6971 	adapter->qbv_transition = true;
6972 	for (i = 0; i < adapter->num_tx_queues; i++) {
6973 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6974 
6975 		if (tx_ring->admin_gate_closed) {
6976 			tx_ring->admin_gate_closed = false;
6977 			tx_ring->oper_gate_closed = true;
6978 		} else {
6979 			tx_ring->oper_gate_closed = false;
6980 		}
6981 	}
6982 	adapter->qbv_transition = false;
6983 
6984 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6985 
6986 	return HRTIMER_NORESTART;
6987 }
6988 
6989 /**
6990  * igc_probe - Device Initialization Routine
6991  * @pdev: PCI device information struct
6992  * @ent: entry in igc_pci_tbl
6993  *
6994  * Returns 0 on success, negative on failure
6995  *
6996  * igc_probe initializes an adapter identified by a pci_dev structure.
6997  * The OS initialization, configuring the adapter private structure,
6998  * and a hardware reset occur.
6999  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7000 static int igc_probe(struct pci_dev *pdev,
7001 		     const struct pci_device_id *ent)
7002 {
7003 	struct igc_adapter *adapter;
7004 	struct net_device *netdev;
7005 	struct igc_hw *hw;
7006 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
7007 	int err;
7008 
7009 	err = pci_enable_device_mem(pdev);
7010 	if (err)
7011 		return err;
7012 
7013 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7014 	if (err) {
7015 		dev_err(&pdev->dev,
7016 			"No usable DMA configuration, aborting\n");
7017 		goto err_dma;
7018 	}
7019 
7020 	err = pci_request_mem_regions(pdev, igc_driver_name);
7021 	if (err)
7022 		goto err_pci_reg;
7023 
7024 	err = pci_enable_ptm(pdev, NULL);
7025 	if (err < 0)
7026 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
7027 
7028 	pci_set_master(pdev);
7029 
7030 	err = -ENOMEM;
7031 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
7032 				   IGC_MAX_TX_QUEUES);
7033 
7034 	if (!netdev)
7035 		goto err_alloc_etherdev;
7036 
7037 	SET_NETDEV_DEV(netdev, &pdev->dev);
7038 
7039 	pci_set_drvdata(pdev, netdev);
7040 	adapter = netdev_priv(netdev);
7041 	adapter->netdev = netdev;
7042 	adapter->pdev = pdev;
7043 	hw = &adapter->hw;
7044 	hw->back = adapter;
7045 	adapter->port_num = hw->bus.func;
7046 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7047 
7048 	err = pci_save_state(pdev);
7049 	if (err)
7050 		goto err_ioremap;
7051 
7052 	err = -EIO;
7053 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7054 				   pci_resource_len(pdev, 0));
7055 	if (!adapter->io_addr)
7056 		goto err_ioremap;
7057 
7058 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7059 	hw->hw_addr = adapter->io_addr;
7060 
7061 	netdev->netdev_ops = &igc_netdev_ops;
7062 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7063 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7064 	igc_ethtool_set_ops(netdev);
7065 	netdev->watchdog_timeo = 5 * HZ;
7066 
7067 	netdev->mem_start = pci_resource_start(pdev, 0);
7068 	netdev->mem_end = pci_resource_end(pdev, 0);
7069 
7070 	/* PCI config space info */
7071 	hw->vendor_id = pdev->vendor;
7072 	hw->device_id = pdev->device;
7073 	hw->revision_id = pdev->revision;
7074 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
7075 	hw->subsystem_device_id = pdev->subsystem_device;
7076 
7077 	/* Copy the default MAC and PHY function pointers */
7078 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7079 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7080 
7081 	/* Initialize skew-specific constants */
7082 	err = ei->get_invariants(hw);
7083 	if (err)
7084 		goto err_sw_init;
7085 
7086 	/* Add supported features to the features list*/
7087 	netdev->features |= NETIF_F_SG;
7088 	netdev->features |= NETIF_F_TSO;
7089 	netdev->features |= NETIF_F_TSO6;
7090 	netdev->features |= NETIF_F_TSO_ECN;
7091 	netdev->features |= NETIF_F_RXHASH;
7092 	netdev->features |= NETIF_F_RXCSUM;
7093 	netdev->features |= NETIF_F_HW_CSUM;
7094 	netdev->features |= NETIF_F_SCTP_CRC;
7095 	netdev->features |= NETIF_F_HW_TC;
7096 
7097 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7098 				  NETIF_F_GSO_GRE_CSUM | \
7099 				  NETIF_F_GSO_IPXIP4 | \
7100 				  NETIF_F_GSO_IPXIP6 | \
7101 				  NETIF_F_GSO_UDP_TUNNEL | \
7102 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7103 
7104 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7105 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7106 
7107 	/* setup the private structure */
7108 	err = igc_sw_init(adapter);
7109 	if (err)
7110 		goto err_sw_init;
7111 
7112 	/* copy netdev features into list of user selectable features */
7113 	netdev->hw_features |= NETIF_F_NTUPLE;
7114 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7115 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7116 	netdev->hw_features |= netdev->features;
7117 
7118 	netdev->features |= NETIF_F_HIGHDMA;
7119 
7120 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7121 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7122 	netdev->hw_enc_features |= netdev->vlan_features;
7123 
7124 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7125 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7126 
7127 	/* MTU range: 68 - 9216 */
7128 	netdev->min_mtu = ETH_MIN_MTU;
7129 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7130 
7131 	/* before reading the NVM, reset the controller to put the device in a
7132 	 * known good starting state
7133 	 */
7134 	hw->mac.ops.reset_hw(hw);
7135 
7136 	if (igc_get_flash_presence_i225(hw)) {
7137 		if (hw->nvm.ops.validate(hw) < 0) {
7138 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7139 			err = -EIO;
7140 			goto err_eeprom;
7141 		}
7142 	}
7143 
7144 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7145 		/* copy the MAC address out of the NVM */
7146 		if (hw->mac.ops.read_mac_addr(hw))
7147 			dev_err(&pdev->dev, "NVM Read Error\n");
7148 	}
7149 
7150 	eth_hw_addr_set(netdev, hw->mac.addr);
7151 
7152 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7153 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7154 		err = -EIO;
7155 		goto err_eeprom;
7156 	}
7157 
7158 	/* configure RXPBSIZE and TXPBSIZE */
7159 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7160 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7161 
7162 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7163 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7164 
7165 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7166 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7167 
7168 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7169 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7170 
7171 	/* Initialize link properties that are user-changeable */
7172 	adapter->fc_autoneg = true;
7173 	hw->phy.autoneg_advertised = 0xaf;
7174 
7175 	hw->fc.requested_mode = igc_fc_default;
7176 	hw->fc.current_mode = igc_fc_default;
7177 
7178 	/* By default, support wake on port A */
7179 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7180 
7181 	/* initialize the wol settings based on the eeprom settings */
7182 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7183 		adapter->wol |= IGC_WUFC_MAG;
7184 
7185 	device_set_wakeup_enable(&adapter->pdev->dev,
7186 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7187 
7188 	igc_ptp_init(adapter);
7189 
7190 	igc_tsn_clear_schedule(adapter);
7191 
7192 	/* reset the hardware with the new settings */
7193 	igc_reset(adapter);
7194 
7195 	/* let the f/w know that the h/w is now under the control of the
7196 	 * driver.
7197 	 */
7198 	igc_get_hw_control(adapter);
7199 
7200 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7201 	err = register_netdev(netdev);
7202 	if (err)
7203 		goto err_register;
7204 
7205 	 /* carrier off reporting is important to ethtool even BEFORE open */
7206 	netif_carrier_off(netdev);
7207 
7208 	/* Check if Media Autosense is enabled */
7209 	adapter->ei = *ei;
7210 
7211 	/* print pcie link status and MAC address */
7212 	pcie_print_link_status(pdev);
7213 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7214 
7215 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7216 	/* Disable EEE for internal PHY devices */
7217 	hw->dev_spec._base.eee_enable = false;
7218 	adapter->flags &= ~IGC_FLAG_EEE;
7219 	igc_set_eee_i225(hw, false, false, false);
7220 
7221 	pm_runtime_put_noidle(&pdev->dev);
7222 
7223 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7224 		err = igc_led_setup(adapter);
7225 		if (err)
7226 			goto err_register;
7227 	}
7228 
7229 	return 0;
7230 
7231 err_register:
7232 	igc_release_hw_control(adapter);
7233 	igc_ptp_stop(adapter);
7234 err_eeprom:
7235 	if (!igc_check_reset_block(hw))
7236 		igc_reset_phy(hw);
7237 err_sw_init:
7238 	igc_clear_interrupt_scheme(adapter);
7239 	iounmap(adapter->io_addr);
7240 err_ioremap:
7241 	free_netdev(netdev);
7242 err_alloc_etherdev:
7243 	pci_release_mem_regions(pdev);
7244 err_pci_reg:
7245 err_dma:
7246 	pci_disable_device(pdev);
7247 	return err;
7248 }
7249 
7250 /**
7251  * igc_remove - Device Removal Routine
7252  * @pdev: PCI device information struct
7253  *
7254  * igc_remove is called by the PCI subsystem to alert the driver
7255  * that it should release a PCI device.  This could be caused by a
7256  * Hot-Plug event, or because the driver is going to be removed from
7257  * memory.
7258  */
igc_remove(struct pci_dev * pdev)7259 static void igc_remove(struct pci_dev *pdev)
7260 {
7261 	struct net_device *netdev = pci_get_drvdata(pdev);
7262 	struct igc_adapter *adapter = netdev_priv(netdev);
7263 
7264 	pm_runtime_get_noresume(&pdev->dev);
7265 
7266 	igc_flush_nfc_rules(adapter);
7267 
7268 	igc_ptp_stop(adapter);
7269 
7270 	pci_disable_ptm(pdev);
7271 	pci_clear_master(pdev);
7272 
7273 	set_bit(__IGC_DOWN, &adapter->state);
7274 
7275 	del_timer_sync(&adapter->watchdog_timer);
7276 	del_timer_sync(&adapter->phy_info_timer);
7277 
7278 	cancel_work_sync(&adapter->reset_task);
7279 	cancel_work_sync(&adapter->watchdog_task);
7280 	hrtimer_cancel(&adapter->hrtimer);
7281 
7282 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7283 		igc_led_free(adapter);
7284 
7285 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7286 	 * would have already happened in close and is redundant.
7287 	 */
7288 	igc_release_hw_control(adapter);
7289 	unregister_netdev(netdev);
7290 
7291 	igc_clear_interrupt_scheme(adapter);
7292 	pci_iounmap(pdev, adapter->io_addr);
7293 	pci_release_mem_regions(pdev);
7294 
7295 	free_netdev(netdev);
7296 
7297 	pci_disable_device(pdev);
7298 }
7299 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7300 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7301 			  bool runtime)
7302 {
7303 	struct net_device *netdev = pci_get_drvdata(pdev);
7304 	struct igc_adapter *adapter = netdev_priv(netdev);
7305 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7306 	struct igc_hw *hw = &adapter->hw;
7307 	u32 ctrl, rctl, status;
7308 	bool wake;
7309 
7310 	rtnl_lock();
7311 	netif_device_detach(netdev);
7312 
7313 	if (netif_running(netdev))
7314 		__igc_close(netdev, true);
7315 
7316 	igc_ptp_suspend(adapter);
7317 
7318 	igc_clear_interrupt_scheme(adapter);
7319 	rtnl_unlock();
7320 
7321 	status = rd32(IGC_STATUS);
7322 	if (status & IGC_STATUS_LU)
7323 		wufc &= ~IGC_WUFC_LNKC;
7324 
7325 	if (wufc) {
7326 		igc_setup_rctl(adapter);
7327 		igc_set_rx_mode(netdev);
7328 
7329 		/* turn on all-multi mode if wake on multicast is enabled */
7330 		if (wufc & IGC_WUFC_MC) {
7331 			rctl = rd32(IGC_RCTL);
7332 			rctl |= IGC_RCTL_MPE;
7333 			wr32(IGC_RCTL, rctl);
7334 		}
7335 
7336 		ctrl = rd32(IGC_CTRL);
7337 		ctrl |= IGC_CTRL_ADVD3WUC;
7338 		wr32(IGC_CTRL, ctrl);
7339 
7340 		/* Allow time for pending master requests to run */
7341 		igc_disable_pcie_master(hw);
7342 
7343 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7344 		wr32(IGC_WUFC, wufc);
7345 	} else {
7346 		wr32(IGC_WUC, 0);
7347 		wr32(IGC_WUFC, 0);
7348 	}
7349 
7350 	wake = wufc || adapter->en_mng_pt;
7351 	if (!wake)
7352 		igc_power_down_phy_copper_base(&adapter->hw);
7353 	else
7354 		igc_power_up_link(adapter);
7355 
7356 	if (enable_wake)
7357 		*enable_wake = wake;
7358 
7359 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7360 	 * would have already happened in close and is redundant.
7361 	 */
7362 	igc_release_hw_control(adapter);
7363 
7364 	pci_disable_device(pdev);
7365 
7366 	return 0;
7367 }
7368 
igc_runtime_suspend(struct device * dev)7369 static int igc_runtime_suspend(struct device *dev)
7370 {
7371 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7372 }
7373 
igc_deliver_wake_packet(struct net_device * netdev)7374 static void igc_deliver_wake_packet(struct net_device *netdev)
7375 {
7376 	struct igc_adapter *adapter = netdev_priv(netdev);
7377 	struct igc_hw *hw = &adapter->hw;
7378 	struct sk_buff *skb;
7379 	u32 wupl;
7380 
7381 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7382 
7383 	/* WUPM stores only the first 128 bytes of the wake packet.
7384 	 * Read the packet only if we have the whole thing.
7385 	 */
7386 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7387 		return;
7388 
7389 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7390 	if (!skb)
7391 		return;
7392 
7393 	skb_put(skb, wupl);
7394 
7395 	/* Ensure reads are 32-bit aligned */
7396 	wupl = roundup(wupl, 4);
7397 
7398 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7399 
7400 	skb->protocol = eth_type_trans(skb, netdev);
7401 	netif_rx(skb);
7402 }
7403 
__igc_resume(struct device * dev,bool rpm)7404 static int __igc_resume(struct device *dev, bool rpm)
7405 {
7406 	struct pci_dev *pdev = to_pci_dev(dev);
7407 	struct net_device *netdev = pci_get_drvdata(pdev);
7408 	struct igc_adapter *adapter = netdev_priv(netdev);
7409 	struct igc_hw *hw = &adapter->hw;
7410 	u32 err, val;
7411 
7412 	pci_set_power_state(pdev, PCI_D0);
7413 	pci_restore_state(pdev);
7414 	pci_save_state(pdev);
7415 
7416 	if (!pci_device_is_present(pdev))
7417 		return -ENODEV;
7418 	err = pci_enable_device_mem(pdev);
7419 	if (err) {
7420 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7421 		return err;
7422 	}
7423 	pci_set_master(pdev);
7424 
7425 	pci_enable_wake(pdev, PCI_D3hot, 0);
7426 	pci_enable_wake(pdev, PCI_D3cold, 0);
7427 
7428 	if (igc_init_interrupt_scheme(adapter, true)) {
7429 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7430 		return -ENOMEM;
7431 	}
7432 
7433 	igc_reset(adapter);
7434 
7435 	/* let the f/w know that the h/w is now under the control of the
7436 	 * driver.
7437 	 */
7438 	igc_get_hw_control(adapter);
7439 
7440 	val = rd32(IGC_WUS);
7441 	if (val & WAKE_PKT_WUS)
7442 		igc_deliver_wake_packet(netdev);
7443 
7444 	wr32(IGC_WUS, ~0);
7445 
7446 	if (netif_running(netdev)) {
7447 		if (!rpm)
7448 			rtnl_lock();
7449 		err = __igc_open(netdev, true);
7450 		if (!rpm)
7451 			rtnl_unlock();
7452 		if (!err)
7453 			netif_device_attach(netdev);
7454 	}
7455 
7456 	return err;
7457 }
7458 
igc_resume(struct device * dev)7459 static int igc_resume(struct device *dev)
7460 {
7461 	return __igc_resume(dev, false);
7462 }
7463 
igc_runtime_resume(struct device * dev)7464 static int igc_runtime_resume(struct device *dev)
7465 {
7466 	return __igc_resume(dev, true);
7467 }
7468 
igc_suspend(struct device * dev)7469 static int igc_suspend(struct device *dev)
7470 {
7471 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7472 }
7473 
igc_runtime_idle(struct device * dev)7474 static int __maybe_unused igc_runtime_idle(struct device *dev)
7475 {
7476 	struct net_device *netdev = dev_get_drvdata(dev);
7477 	struct igc_adapter *adapter = netdev_priv(netdev);
7478 
7479 	if (!igc_has_link(adapter))
7480 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7481 
7482 	return -EBUSY;
7483 }
7484 
igc_shutdown(struct pci_dev * pdev)7485 static void igc_shutdown(struct pci_dev *pdev)
7486 {
7487 	bool wake;
7488 
7489 	__igc_shutdown(pdev, &wake, 0);
7490 
7491 	if (system_state == SYSTEM_POWER_OFF) {
7492 		pci_wake_from_d3(pdev, wake);
7493 		pci_set_power_state(pdev, PCI_D3hot);
7494 	}
7495 }
7496 
7497 /**
7498  *  igc_io_error_detected - called when PCI error is detected
7499  *  @pdev: Pointer to PCI device
7500  *  @state: The current PCI connection state
7501  *
7502  *  This function is called after a PCI bus error affecting
7503  *  this device has been detected.
7504  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7505 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7506 					      pci_channel_state_t state)
7507 {
7508 	struct net_device *netdev = pci_get_drvdata(pdev);
7509 	struct igc_adapter *adapter = netdev_priv(netdev);
7510 
7511 	rtnl_lock();
7512 	netif_device_detach(netdev);
7513 
7514 	if (state == pci_channel_io_perm_failure) {
7515 		rtnl_unlock();
7516 		return PCI_ERS_RESULT_DISCONNECT;
7517 	}
7518 
7519 	if (netif_running(netdev))
7520 		igc_down(adapter);
7521 	pci_disable_device(pdev);
7522 	rtnl_unlock();
7523 
7524 	/* Request a slot reset. */
7525 	return PCI_ERS_RESULT_NEED_RESET;
7526 }
7527 
7528 /**
7529  *  igc_io_slot_reset - called after the PCI bus has been reset.
7530  *  @pdev: Pointer to PCI device
7531  *
7532  *  Restart the card from scratch, as if from a cold-boot. Implementation
7533  *  resembles the first-half of the __igc_resume routine.
7534  **/
igc_io_slot_reset(struct pci_dev * pdev)7535 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7536 {
7537 	struct net_device *netdev = pci_get_drvdata(pdev);
7538 	struct igc_adapter *adapter = netdev_priv(netdev);
7539 	struct igc_hw *hw = &adapter->hw;
7540 	pci_ers_result_t result;
7541 
7542 	if (pci_enable_device_mem(pdev)) {
7543 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7544 		result = PCI_ERS_RESULT_DISCONNECT;
7545 	} else {
7546 		pci_set_master(pdev);
7547 		pci_restore_state(pdev);
7548 		pci_save_state(pdev);
7549 
7550 		pci_enable_wake(pdev, PCI_D3hot, 0);
7551 		pci_enable_wake(pdev, PCI_D3cold, 0);
7552 
7553 		/* In case of PCI error, adapter loses its HW address
7554 		 * so we should re-assign it here.
7555 		 */
7556 		hw->hw_addr = adapter->io_addr;
7557 
7558 		igc_reset(adapter);
7559 		wr32(IGC_WUS, ~0);
7560 		result = PCI_ERS_RESULT_RECOVERED;
7561 	}
7562 
7563 	return result;
7564 }
7565 
7566 /**
7567  *  igc_io_resume - called when traffic can start to flow again.
7568  *  @pdev: Pointer to PCI device
7569  *
7570  *  This callback is called when the error recovery driver tells us that
7571  *  its OK to resume normal operation. Implementation resembles the
7572  *  second-half of the __igc_resume routine.
7573  */
igc_io_resume(struct pci_dev * pdev)7574 static void igc_io_resume(struct pci_dev *pdev)
7575 {
7576 	struct net_device *netdev = pci_get_drvdata(pdev);
7577 	struct igc_adapter *adapter = netdev_priv(netdev);
7578 
7579 	rtnl_lock();
7580 	if (netif_running(netdev)) {
7581 		if (igc_open(netdev)) {
7582 			rtnl_unlock();
7583 			netdev_err(netdev, "igc_open failed after reset\n");
7584 			return;
7585 		}
7586 	}
7587 
7588 	netif_device_attach(netdev);
7589 
7590 	/* let the f/w know that the h/w is now under the control of the
7591 	 * driver.
7592 	 */
7593 	igc_get_hw_control(adapter);
7594 	rtnl_unlock();
7595 }
7596 
7597 static const struct pci_error_handlers igc_err_handler = {
7598 	.error_detected = igc_io_error_detected,
7599 	.slot_reset = igc_io_slot_reset,
7600 	.resume = igc_io_resume,
7601 };
7602 
7603 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7604 			  igc_runtime_suspend, igc_runtime_resume,
7605 			  igc_runtime_idle);
7606 
7607 static struct pci_driver igc_driver = {
7608 	.name     = igc_driver_name,
7609 	.id_table = igc_pci_tbl,
7610 	.probe    = igc_probe,
7611 	.remove   = igc_remove,
7612 	.driver.pm = pm_ptr(&igc_pm_ops),
7613 	.shutdown = igc_shutdown,
7614 	.err_handler = &igc_err_handler,
7615 };
7616 
7617 /**
7618  * igc_reinit_queues - return error
7619  * @adapter: pointer to adapter structure
7620  */
igc_reinit_queues(struct igc_adapter * adapter)7621 int igc_reinit_queues(struct igc_adapter *adapter)
7622 {
7623 	struct net_device *netdev = adapter->netdev;
7624 	int err = 0;
7625 
7626 	if (netif_running(netdev))
7627 		igc_close(netdev);
7628 
7629 	igc_reset_interrupt_capability(adapter);
7630 
7631 	if (igc_init_interrupt_scheme(adapter, true)) {
7632 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7633 		return -ENOMEM;
7634 	}
7635 
7636 	if (netif_running(netdev))
7637 		err = igc_open(netdev);
7638 
7639 	return err;
7640 }
7641 
7642 /**
7643  * igc_get_hw_dev - return device
7644  * @hw: pointer to hardware structure
7645  *
7646  * used by hardware layer to print debugging information
7647  */
igc_get_hw_dev(struct igc_hw * hw)7648 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7649 {
7650 	struct igc_adapter *adapter = hw->back;
7651 
7652 	return adapter->netdev;
7653 }
7654 
igc_disable_rx_ring_hw(struct igc_ring * ring)7655 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7656 {
7657 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7658 	u8 idx = ring->reg_idx;
7659 	u32 rxdctl;
7660 
7661 	rxdctl = rd32(IGC_RXDCTL(idx));
7662 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7663 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7664 	wr32(IGC_RXDCTL(idx), rxdctl);
7665 }
7666 
igc_disable_rx_ring(struct igc_ring * ring)7667 void igc_disable_rx_ring(struct igc_ring *ring)
7668 {
7669 	igc_disable_rx_ring_hw(ring);
7670 	igc_clean_rx_ring(ring);
7671 }
7672 
igc_enable_rx_ring(struct igc_ring * ring)7673 void igc_enable_rx_ring(struct igc_ring *ring)
7674 {
7675 	struct igc_adapter *adapter = ring->q_vector->adapter;
7676 
7677 	igc_configure_rx_ring(adapter, ring);
7678 
7679 	if (ring->xsk_pool)
7680 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7681 	else
7682 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7683 }
7684 
igc_disable_tx_ring(struct igc_ring * ring)7685 void igc_disable_tx_ring(struct igc_ring *ring)
7686 {
7687 	igc_disable_tx_ring_hw(ring);
7688 	igc_clean_tx_ring(ring);
7689 }
7690 
igc_enable_tx_ring(struct igc_ring * ring)7691 void igc_enable_tx_ring(struct igc_ring *ring)
7692 {
7693 	struct igc_adapter *adapter = ring->q_vector->adapter;
7694 
7695 	igc_configure_tx_ring(adapter, ring);
7696 }
7697 
7698 /**
7699  * igc_init_module - Driver Registration Routine
7700  *
7701  * igc_init_module is the first routine called when the driver is
7702  * loaded. All it does is register with the PCI subsystem.
7703  */
igc_init_module(void)7704 static int __init igc_init_module(void)
7705 {
7706 	int ret;
7707 
7708 	pr_info("%s\n", igc_driver_string);
7709 	pr_info("%s\n", igc_copyright);
7710 
7711 	ret = pci_register_driver(&igc_driver);
7712 	return ret;
7713 }
7714 
7715 module_init(igc_init_module);
7716 
7717 /**
7718  * igc_exit_module - Driver Exit Cleanup Routine
7719  *
7720  * igc_exit_module is called just before the driver is removed
7721  * from memory.
7722  */
igc_exit_module(void)7723 static void __exit igc_exit_module(void)
7724 {
7725 	pci_unregister_driver(&igc_driver);
7726 }
7727 
7728 module_exit(igc_exit_module);
7729 /* igc_main.c */
7730