1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5//go:generate go run encgen.go -output enc_helpers.go
6
7package gob
8
9import (
10	"encoding"
11	"encoding/binary"
12	"math"
13	"math/bits"
14	"reflect"
15	"sync"
16)
17
18const uint64Size = 8
19
20type encHelper func(state *encoderState, v reflect.Value) bool
21
22// encoderState is the global execution state of an instance of the encoder.
23// Field numbers are delta encoded and always increase. The field
24// number is initialized to -1 so 0 comes out as delta(1). A delta of
25// 0 terminates the structure.
26type encoderState struct {
27	enc      *Encoder
28	b        *encBuffer
29	sendZero bool                 // encoding an array element or map key/value pair; send zero values
30	fieldnum int                  // the last field number written.
31	buf      [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
32	next     *encoderState        // for free list
33}
34
35// encBuffer is an extremely simple, fast implementation of a write-only byte buffer.
36// It never returns a non-nil error, but Write returns an error value so it matches io.Writer.
37type encBuffer struct {
38	data    []byte
39	scratch [64]byte
40}
41
42var encBufferPool = sync.Pool{
43	New: func() any {
44		e := new(encBuffer)
45		e.data = e.scratch[0:0]
46		return e
47	},
48}
49
50func (e *encBuffer) writeByte(c byte) {
51	e.data = append(e.data, c)
52}
53
54func (e *encBuffer) Write(p []byte) (int, error) {
55	e.data = append(e.data, p...)
56	return len(p), nil
57}
58
59func (e *encBuffer) WriteString(s string) {
60	e.data = append(e.data, s...)
61}
62
63func (e *encBuffer) Len() int {
64	return len(e.data)
65}
66
67func (e *encBuffer) Bytes() []byte {
68	return e.data
69}
70
71func (e *encBuffer) Reset() {
72	if len(e.data) >= tooBig {
73		e.data = e.scratch[0:0]
74	} else {
75		e.data = e.data[0:0]
76	}
77}
78
79func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState {
80	e := enc.freeList
81	if e == nil {
82		e = new(encoderState)
83		e.enc = enc
84	} else {
85		enc.freeList = e.next
86	}
87	e.sendZero = false
88	e.fieldnum = 0
89	e.b = b
90	if len(b.data) == 0 {
91		b.data = b.scratch[0:0]
92	}
93	return e
94}
95
96func (enc *Encoder) freeEncoderState(e *encoderState) {
97	e.next = enc.freeList
98	enc.freeList = e
99}
100
101// Unsigned integers have a two-state encoding. If the number is less
102// than 128 (0 through 0x7F), its value is written directly.
103// Otherwise the value is written in big-endian byte order preceded
104// by the byte length, negated.
105
106// encodeUint writes an encoded unsigned integer to state.b.
107func (state *encoderState) encodeUint(x uint64) {
108	if x <= 0x7F {
109		state.b.writeByte(uint8(x))
110		return
111	}
112
113	binary.BigEndian.PutUint64(state.buf[1:], x)
114	bc := bits.LeadingZeros64(x) >> 3      // 8 - bytelen(x)
115	state.buf[bc] = uint8(bc - uint64Size) // and then we subtract 8 to get -bytelen(x)
116
117	state.b.Write(state.buf[bc : uint64Size+1])
118}
119
120// encodeInt writes an encoded signed integer to state.w.
121// The low bit of the encoding says whether to bit complement the (other bits of the)
122// uint to recover the int.
123func (state *encoderState) encodeInt(i int64) {
124	var x uint64
125	if i < 0 {
126		x = uint64(^i<<1) | 1
127	} else {
128		x = uint64(i << 1)
129	}
130	state.encodeUint(x)
131}
132
133// encOp is the signature of an encoding operator for a given type.
134type encOp func(i *encInstr, state *encoderState, v reflect.Value)
135
136// The 'instructions' of the encoding machine
137type encInstr struct {
138	op    encOp
139	field int   // field number in input
140	index []int // struct index
141	indir int   // how many pointer indirections to reach the value in the struct
142}
143
144// update emits a field number and updates the state to record its value for delta encoding.
145// If the instruction pointer is nil, it does nothing
146func (state *encoderState) update(instr *encInstr) {
147	if instr != nil {
148		state.encodeUint(uint64(instr.field - state.fieldnum))
149		state.fieldnum = instr.field
150	}
151}
152
153// Each encoder for a composite is responsible for handling any
154// indirections associated with the elements of the data structure.
155// If any pointer so reached is nil, no bytes are written. If the
156// data item is zero, no bytes are written. Single values - ints,
157// strings etc. - are indirected before calling their encoders.
158// Otherwise, the output (for a scalar) is the field number, as an
159// encoded integer, followed by the field data in its appropriate
160// format.
161
162// encIndirect dereferences pv indir times and returns the result.
163func encIndirect(pv reflect.Value, indir int) reflect.Value {
164	for ; indir > 0; indir-- {
165		if pv.IsNil() {
166			break
167		}
168		pv = pv.Elem()
169	}
170	return pv
171}
172
173// encBool encodes the bool referenced by v as an unsigned 0 or 1.
174func encBool(i *encInstr, state *encoderState, v reflect.Value) {
175	b := v.Bool()
176	if b || state.sendZero {
177		state.update(i)
178		if b {
179			state.encodeUint(1)
180		} else {
181			state.encodeUint(0)
182		}
183	}
184}
185
186// encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v.
187func encInt(i *encInstr, state *encoderState, v reflect.Value) {
188	value := v.Int()
189	if value != 0 || state.sendZero {
190		state.update(i)
191		state.encodeInt(value)
192	}
193}
194
195// encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v.
196func encUint(i *encInstr, state *encoderState, v reflect.Value) {
197	value := v.Uint()
198	if value != 0 || state.sendZero {
199		state.update(i)
200		state.encodeUint(value)
201	}
202}
203
204// floatBits returns a uint64 holding the bits of a floating-point number.
205// Floating-point numbers are transmitted as uint64s holding the bits
206// of the underlying representation. They are sent byte-reversed, with
207// the exponent end coming out first, so integer floating point numbers
208// (for example) transmit more compactly. This routine does the
209// swizzling.
210func floatBits(f float64) uint64 {
211	u := math.Float64bits(f)
212	return bits.ReverseBytes64(u)
213}
214
215// encFloat encodes the floating point value (float32 float64) referenced by v.
216func encFloat(i *encInstr, state *encoderState, v reflect.Value) {
217	f := v.Float()
218	if f != 0 || state.sendZero {
219		bits := floatBits(f)
220		state.update(i)
221		state.encodeUint(bits)
222	}
223}
224
225// encComplex encodes the complex value (complex64 complex128) referenced by v.
226// Complex numbers are just a pair of floating-point numbers, real part first.
227func encComplex(i *encInstr, state *encoderState, v reflect.Value) {
228	c := v.Complex()
229	if c != 0+0i || state.sendZero {
230		rpart := floatBits(real(c))
231		ipart := floatBits(imag(c))
232		state.update(i)
233		state.encodeUint(rpart)
234		state.encodeUint(ipart)
235	}
236}
237
238// encUint8Array encodes the byte array referenced by v.
239// Byte arrays are encoded as an unsigned count followed by the raw bytes.
240func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) {
241	b := v.Bytes()
242	if len(b) > 0 || state.sendZero {
243		state.update(i)
244		state.encodeUint(uint64(len(b)))
245		state.b.Write(b)
246	}
247}
248
249// encString encodes the string referenced by v.
250// Strings are encoded as an unsigned count followed by the raw bytes.
251func encString(i *encInstr, state *encoderState, v reflect.Value) {
252	s := v.String()
253	if len(s) > 0 || state.sendZero {
254		state.update(i)
255		state.encodeUint(uint64(len(s)))
256		state.b.WriteString(s)
257	}
258}
259
260// encStructTerminator encodes the end of an encoded struct
261// as delta field number of 0.
262func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) {
263	state.encodeUint(0)
264}
265
266// Execution engine
267
268// encEngine an array of instructions indexed by field number of the encoding
269// data, typically a struct. It is executed top to bottom, walking the struct.
270type encEngine struct {
271	instr []encInstr
272}
273
274const singletonField = 0
275
276// valid reports whether the value is valid and a non-nil pointer.
277// (Slices, maps, and chans take care of themselves.)
278func valid(v reflect.Value) bool {
279	switch v.Kind() {
280	case reflect.Invalid:
281		return false
282	case reflect.Pointer:
283		return !v.IsNil()
284	}
285	return true
286}
287
288// encodeSingle encodes a single top-level non-struct value.
289func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) {
290	state := enc.newEncoderState(b)
291	defer enc.freeEncoderState(state)
292	state.fieldnum = singletonField
293	// There is no surrounding struct to frame the transmission, so we must
294	// generate data even if the item is zero. To do this, set sendZero.
295	state.sendZero = true
296	instr := &engine.instr[singletonField]
297	if instr.indir > 0 {
298		value = encIndirect(value, instr.indir)
299	}
300	if valid(value) {
301		instr.op(instr, state, value)
302	}
303}
304
305// encodeStruct encodes a single struct value.
306func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) {
307	if !valid(value) {
308		return
309	}
310	state := enc.newEncoderState(b)
311	defer enc.freeEncoderState(state)
312	state.fieldnum = -1
313	for i := 0; i < len(engine.instr); i++ {
314		instr := &engine.instr[i]
315		if i >= value.NumField() {
316			// encStructTerminator
317			instr.op(instr, state, reflect.Value{})
318			break
319		}
320		field := value.FieldByIndex(instr.index)
321		if instr.indir > 0 {
322			field = encIndirect(field, instr.indir)
323			// TODO: Is field guaranteed valid? If so we could avoid this check.
324			if !valid(field) {
325				continue
326			}
327		}
328		instr.op(instr, state, field)
329	}
330}
331
332// encodeArray encodes an array.
333func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) {
334	state := enc.newEncoderState(b)
335	defer enc.freeEncoderState(state)
336	state.fieldnum = -1
337	state.sendZero = true
338	state.encodeUint(uint64(length))
339	if helper != nil && helper(state, value) {
340		return
341	}
342	for i := 0; i < length; i++ {
343		elem := value.Index(i)
344		if elemIndir > 0 {
345			elem = encIndirect(elem, elemIndir)
346			// TODO: Is elem guaranteed valid? If so we could avoid this check.
347			if !valid(elem) {
348				errorf("encodeArray: nil element")
349			}
350		}
351		op(nil, state, elem)
352	}
353}
354
355// encodeReflectValue is a helper for maps. It encodes the value v.
356func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
357	for i := 0; i < indir && v.IsValid(); i++ {
358		v = reflect.Indirect(v)
359	}
360	if !v.IsValid() {
361		errorf("encodeReflectValue: nil element")
362	}
363	op(nil, state, v)
364}
365
366// encodeMap encodes a map as unsigned count followed by key:value pairs.
367func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
368	state := enc.newEncoderState(b)
369	state.fieldnum = -1
370	state.sendZero = true
371	state.encodeUint(uint64(mv.Len()))
372	mi := mv.MapRange()
373	for mi.Next() {
374		encodeReflectValue(state, mi.Key(), keyOp, keyIndir)
375		encodeReflectValue(state, mi.Value(), elemOp, elemIndir)
376	}
377	enc.freeEncoderState(state)
378}
379
380// encodeInterface encodes the interface value iv.
381// To send an interface, we send a string identifying the concrete type, followed
382// by the type identifier (which might require defining that type right now), followed
383// by the concrete value. A nil value gets sent as the empty string for the name,
384// followed by no value.
385func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) {
386	// Gobs can encode nil interface values but not typed interface
387	// values holding nil pointers, since nil pointers point to no value.
388	elem := iv.Elem()
389	if elem.Kind() == reflect.Pointer && elem.IsNil() {
390		errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
391	}
392	state := enc.newEncoderState(b)
393	state.fieldnum = -1
394	state.sendZero = true
395	if iv.IsNil() {
396		state.encodeUint(0)
397		return
398	}
399
400	ut := userType(iv.Elem().Type())
401	namei, ok := concreteTypeToName.Load(ut.base)
402	if !ok {
403		errorf("type not registered for interface: %s", ut.base)
404	}
405	name := namei.(string)
406
407	// Send the name.
408	state.encodeUint(uint64(len(name)))
409	state.b.WriteString(name)
410	// Define the type id if necessary.
411	enc.sendTypeDescriptor(enc.writer(), state, ut)
412	// Send the type id.
413	enc.sendTypeId(state, ut)
414	// Encode the value into a new buffer. Any nested type definitions
415	// should be written to b, before the encoded value.
416	enc.pushWriter(b)
417	data := encBufferPool.Get().(*encBuffer)
418	data.Write(spaceForLength)
419	enc.encode(data, elem, ut)
420	if enc.err != nil {
421		error_(enc.err)
422	}
423	enc.popWriter()
424	enc.writeMessage(b, data)
425	data.Reset()
426	encBufferPool.Put(data)
427	if enc.err != nil {
428		error_(enc.err)
429	}
430	enc.freeEncoderState(state)
431}
432
433// encodeGobEncoder encodes a value that implements the GobEncoder interface.
434// The data is sent as a byte array.
435func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) {
436	// TODO: should we catch panics from the called method?
437
438	var data []byte
439	var err error
440	// We know it's one of these.
441	switch ut.externalEnc {
442	case xGob:
443		data, err = v.Interface().(GobEncoder).GobEncode()
444	case xBinary:
445		data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
446	case xText:
447		data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
448	}
449	if err != nil {
450		error_(err)
451	}
452	state := enc.newEncoderState(b)
453	state.fieldnum = -1
454	state.encodeUint(uint64(len(data)))
455	state.b.Write(data)
456	enc.freeEncoderState(state)
457}
458
459var encOpTable = [...]encOp{
460	reflect.Bool:       encBool,
461	reflect.Int:        encInt,
462	reflect.Int8:       encInt,
463	reflect.Int16:      encInt,
464	reflect.Int32:      encInt,
465	reflect.Int64:      encInt,
466	reflect.Uint:       encUint,
467	reflect.Uint8:      encUint,
468	reflect.Uint16:     encUint,
469	reflect.Uint32:     encUint,
470	reflect.Uint64:     encUint,
471	reflect.Uintptr:    encUint,
472	reflect.Float32:    encFloat,
473	reflect.Float64:    encFloat,
474	reflect.Complex64:  encComplex,
475	reflect.Complex128: encComplex,
476	reflect.String:     encString,
477}
478
479// encOpFor returns (a pointer to) the encoding op for the base type under rt and
480// the indirection count to reach it.
481func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) {
482	ut := userType(rt)
483	// If the type implements GobEncoder, we handle it without further processing.
484	if ut.externalEnc != 0 {
485		return gobEncodeOpFor(ut)
486	}
487	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
488	// Return the pointer to the op we're already building.
489	if opPtr := inProgress[rt]; opPtr != nil {
490		return opPtr, ut.indir
491	}
492	typ := ut.base
493	indir := ut.indir
494	k := typ.Kind()
495	var op encOp
496	if int(k) < len(encOpTable) {
497		op = encOpTable[k]
498	}
499	if op == nil {
500		inProgress[rt] = &op
501		// Special cases
502		switch t := typ; t.Kind() {
503		case reflect.Slice:
504			if t.Elem().Kind() == reflect.Uint8 {
505				op = encUint8Array
506				break
507			}
508			// Slices have a header; we decode it to find the underlying array.
509			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
510			helper := encSliceHelper[t.Elem().Kind()]
511			op = func(i *encInstr, state *encoderState, slice reflect.Value) {
512				if !state.sendZero && slice.Len() == 0 {
513					return
514				}
515				state.update(i)
516				state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper)
517			}
518		case reflect.Array:
519			// True arrays have size in the type.
520			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
521			helper := encArrayHelper[t.Elem().Kind()]
522			op = func(i *encInstr, state *encoderState, array reflect.Value) {
523				state.update(i)
524				state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper)
525			}
526		case reflect.Map:
527			keyOp, keyIndir := encOpFor(t.Key(), inProgress, building)
528			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
529			op = func(i *encInstr, state *encoderState, mv reflect.Value) {
530				// We send zero-length (but non-nil) maps because the
531				// receiver might want to use the map.  (Maps don't use append.)
532				if !state.sendZero && mv.IsNil() {
533					return
534				}
535				state.update(i)
536				state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
537			}
538		case reflect.Struct:
539			// Generate a closure that calls out to the engine for the nested type.
540			getEncEngine(userType(typ), building)
541			info := mustGetTypeInfo(typ)
542			op = func(i *encInstr, state *encoderState, sv reflect.Value) {
543				state.update(i)
544				// indirect through info to delay evaluation for recursive structs
545				enc := info.encoder.Load()
546				state.enc.encodeStruct(state.b, enc, sv)
547			}
548		case reflect.Interface:
549			op = func(i *encInstr, state *encoderState, iv reflect.Value) {
550				if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
551					return
552				}
553				state.update(i)
554				state.enc.encodeInterface(state.b, iv)
555			}
556		}
557	}
558	if op == nil {
559		errorf("can't happen: encode type %s", rt)
560	}
561	return &op, indir
562}
563
564// gobEncodeOpFor returns the op for a type that is known to implement GobEncoder.
565func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
566	rt := ut.user
567	if ut.encIndir == -1 {
568		rt = reflect.PointerTo(rt)
569	} else if ut.encIndir > 0 {
570		for i := int8(0); i < ut.encIndir; i++ {
571			rt = rt.Elem()
572		}
573	}
574	var op encOp
575	op = func(i *encInstr, state *encoderState, v reflect.Value) {
576		if ut.encIndir == -1 {
577			// Need to climb up one level to turn value into pointer.
578			if !v.CanAddr() {
579				errorf("unaddressable value of type %s", rt)
580			}
581			v = v.Addr()
582		}
583		if !state.sendZero && v.IsZero() {
584			return
585		}
586		state.update(i)
587		state.enc.encodeGobEncoder(state.b, ut, v)
588	}
589	return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
590}
591
592// compileEnc returns the engine to compile the type.
593func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
594	srt := ut.base
595	engine := new(encEngine)
596	seen := make(map[reflect.Type]*encOp)
597	rt := ut.base
598	if ut.externalEnc != 0 {
599		rt = ut.user
600	}
601	if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
602		for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
603			f := srt.Field(fieldNum)
604			if !isSent(&f) {
605				continue
606			}
607			op, indir := encOpFor(f.Type, seen, building)
608			engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir})
609			wireFieldNum++
610		}
611		if srt.NumField() > 0 && len(engine.instr) == 0 {
612			errorf("type %s has no exported fields", rt)
613		}
614		engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0})
615	} else {
616		engine.instr = make([]encInstr, 1)
617		op, indir := encOpFor(rt, seen, building)
618		engine.instr[0] = encInstr{*op, singletonField, nil, indir}
619	}
620	return engine
621}
622
623// getEncEngine returns the engine to compile the type.
624func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
625	info, err := getTypeInfo(ut)
626	if err != nil {
627		error_(err)
628	}
629	enc := info.encoder.Load()
630	if enc == nil {
631		enc = buildEncEngine(info, ut, building)
632	}
633	return enc
634}
635
636func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
637	// Check for recursive types.
638	if building != nil && building[info] {
639		return nil
640	}
641	info.encInit.Lock()
642	defer info.encInit.Unlock()
643	enc := info.encoder.Load()
644	if enc == nil {
645		if building == nil {
646			building = make(map[*typeInfo]bool)
647		}
648		building[info] = true
649		enc = compileEnc(ut, building)
650		info.encoder.Store(enc)
651	}
652	return enc
653}
654
655func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) {
656	defer catchError(&enc.err)
657	engine := getEncEngine(ut, nil)
658	indir := ut.indir
659	if ut.externalEnc != 0 {
660		indir = int(ut.encIndir)
661	}
662	for i := 0; i < indir; i++ {
663		value = reflect.Indirect(value)
664	}
665	if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
666		enc.encodeStruct(b, engine, value)
667	} else {
668		enc.encodeSingle(b, engine, value)
669	}
670}
671