1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <map>
67 #include <utility>
68 #include <vector>
69
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73
74 #define DEBUG_TYPE "code-extractor"
75
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82 cl::desc("Aggregate arguments to code-extracted functions"));
83
84 /// Test whether a block is valid for extraction.
isBlockValidForExtraction(const BasicBlock & BB,const SetVector<BasicBlock * > & Result,bool AllowVarArgs,bool AllowAlloca)85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86 const SetVector<BasicBlock *> &Result,
87 bool AllowVarArgs, bool AllowAlloca) {
88 // taking the address of a basic block moved to another function is illegal
89 if (BB.hasAddressTaken())
90 return false;
91
92 // don't hoist code that uses another basicblock address, as it's likely to
93 // lead to unexpected behavior, like cross-function jumps
94 SmallPtrSet<User const *, 16> Visited;
95 SmallVector<User const *, 16> ToVisit;
96
97 for (Instruction const &Inst : BB)
98 ToVisit.push_back(&Inst);
99
100 while (!ToVisit.empty()) {
101 User const *Curr = ToVisit.pop_back_val();
102 if (!Visited.insert(Curr).second)
103 continue;
104 if (isa<BlockAddress const>(Curr))
105 return false; // even a reference to self is likely to be not compatible
106
107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108 continue;
109
110 for (auto const &U : Curr->operands()) {
111 if (auto *UU = dyn_cast<User>(U))
112 ToVisit.push_back(UU);
113 }
114 }
115
116 // If explicitly requested, allow vastart and alloca. For invoke instructions
117 // verify that extraction is valid.
118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119 if (isa<AllocaInst>(I)) {
120 if (!AllowAlloca)
121 return false;
122 continue;
123 }
124
125 if (const auto *II = dyn_cast<InvokeInst>(I)) {
126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127 // must be a part of the subgraph which is being extracted.
128 if (auto *UBB = II->getUnwindDest())
129 if (!Result.count(UBB))
130 return false;
131 continue;
132 }
133
134 // All catch handlers of a catchswitch instruction as well as the unwind
135 // destination must be in the subgraph.
136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137 if (auto *UBB = CSI->getUnwindDest())
138 if (!Result.count(UBB))
139 return false;
140 for (const auto *HBB : CSI->handlers())
141 if (!Result.count(const_cast<BasicBlock*>(HBB)))
142 return false;
143 continue;
144 }
145
146 // Make sure that entire catch handler is within subgraph. It is sufficient
147 // to check that catch return's block is in the list.
148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149 for (const auto *U : CPI->users())
150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152 return false;
153 continue;
154 }
155
156 // And do similar checks for cleanup handler - the entire handler must be
157 // in subgraph which is going to be extracted. For cleanup return should
158 // additionally check that the unwind destination is also in the subgraph.
159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160 for (const auto *U : CPI->users())
161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163 return false;
164 continue;
165 }
166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167 if (auto *UBB = CRI->getUnwindDest())
168 if (!Result.count(UBB))
169 return false;
170 continue;
171 }
172
173 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174 if (const Function *F = CI->getCalledFunction()) {
175 auto IID = F->getIntrinsicID();
176 if (IID == Intrinsic::vastart) {
177 if (AllowVarArgs)
178 continue;
179 else
180 return false;
181 }
182
183 // Currently, we miscompile outlined copies of eh_typid_for. There are
184 // proposals for fixing this in llvm.org/PR39545.
185 if (IID == Intrinsic::eh_typeid_for)
186 return false;
187 }
188 }
189 }
190
191 return true;
192 }
193
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AllowVarArgs,bool AllowAlloca)196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197 bool AllowVarArgs, bool AllowAlloca) {
198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199 SetVector<BasicBlock *> Result;
200
201 // Loop over the blocks, adding them to our set-vector, and aborting with an
202 // empty set if we encounter invalid blocks.
203 for (BasicBlock *BB : BBs) {
204 // If this block is dead, don't process it.
205 if (DT && !DT->isReachableFromEntry(BB))
206 continue;
207
208 if (!Result.insert(BB))
209 llvm_unreachable("Repeated basic blocks in extraction input");
210 }
211
212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213 << '\n');
214
215 for (auto *BB : Result) {
216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217 return {};
218
219 // Make sure that the first block is not a landing pad.
220 if (BB == Result.front()) {
221 if (BB->isEHPad()) {
222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223 return {};
224 }
225 continue;
226 }
227
228 // All blocks other than the first must not have predecessors outside of
229 // the subgraph which is being extracted.
230 for (auto *PBB : predecessors(BB))
231 if (!Result.count(PBB)) {
232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233 "outside the region except for the first block!\n"
234 << "Problematic source BB: " << BB->getName() << "\n"
235 << "Problematic destination BB: " << PBB->getName()
236 << "\n");
237 return {};
238 }
239 }
240
241 return Result;
242 }
243
CodeExtractor(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,bool AllowVarArgs,bool AllowAlloca,BasicBlock * AllocationBlock,std::string Suffix)244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245 bool AggregateArgs, BlockFrequencyInfo *BFI,
246 BranchProbabilityInfo *BPI, AssumptionCache *AC,
247 bool AllowVarArgs, bool AllowAlloca,
248 BasicBlock *AllocationBlock, std::string Suffix)
249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251 AllowVarArgs(AllowVarArgs),
252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253 Suffix(Suffix) {}
254
CodeExtractor(DominatorTree & DT,Loop & L,bool AggregateArgs,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,AssumptionCache * AC,std::string Suffix)255 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
256 BlockFrequencyInfo *BFI,
257 BranchProbabilityInfo *BPI, AssumptionCache *AC,
258 std::string Suffix)
259 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
260 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
261 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
262 /* AllowVarArgs */ false,
263 /* AllowAlloca */ false)),
264 Suffix(Suffix) {}
265
266 /// definedInRegion - Return true if the specified value is defined in the
267 /// extracted region.
definedInRegion(const SetVector<BasicBlock * > & Blocks,Value * V)268 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
269 if (Instruction *I = dyn_cast<Instruction>(V))
270 if (Blocks.count(I->getParent()))
271 return true;
272 return false;
273 }
274
275 /// definedInCaller - Return true if the specified value is defined in the
276 /// function being code extracted, but not in the region being extracted.
277 /// These values must be passed in as live-ins to the function.
definedInCaller(const SetVector<BasicBlock * > & Blocks,Value * V)278 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
279 if (isa<Argument>(V)) return true;
280 if (Instruction *I = dyn_cast<Instruction>(V))
281 if (!Blocks.count(I->getParent()))
282 return true;
283 return false;
284 }
285
getCommonExitBlock(const SetVector<BasicBlock * > & Blocks)286 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
287 BasicBlock *CommonExitBlock = nullptr;
288 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
289 for (auto *Succ : successors(Block)) {
290 // Internal edges, ok.
291 if (Blocks.count(Succ))
292 continue;
293 if (!CommonExitBlock) {
294 CommonExitBlock = Succ;
295 continue;
296 }
297 if (CommonExitBlock != Succ)
298 return true;
299 }
300 return false;
301 };
302
303 if (any_of(Blocks, hasNonCommonExitSucc))
304 return nullptr;
305
306 return CommonExitBlock;
307 }
308
CodeExtractorAnalysisCache(Function & F)309 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
310 for (BasicBlock &BB : F) {
311 for (Instruction &II : BB.instructionsWithoutDebug())
312 if (auto *AI = dyn_cast<AllocaInst>(&II))
313 Allocas.push_back(AI);
314
315 findSideEffectInfoForBlock(BB);
316 }
317 }
318
findSideEffectInfoForBlock(BasicBlock & BB)319 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
320 for (Instruction &II : BB.instructionsWithoutDebug()) {
321 unsigned Opcode = II.getOpcode();
322 Value *MemAddr = nullptr;
323 switch (Opcode) {
324 case Instruction::Store:
325 case Instruction::Load: {
326 if (Opcode == Instruction::Store) {
327 StoreInst *SI = cast<StoreInst>(&II);
328 MemAddr = SI->getPointerOperand();
329 } else {
330 LoadInst *LI = cast<LoadInst>(&II);
331 MemAddr = LI->getPointerOperand();
332 }
333 // Global variable can not be aliased with locals.
334 if (isa<Constant>(MemAddr))
335 break;
336 Value *Base = MemAddr->stripInBoundsConstantOffsets();
337 if (!isa<AllocaInst>(Base)) {
338 SideEffectingBlocks.insert(&BB);
339 return;
340 }
341 BaseMemAddrs[&BB].insert(Base);
342 break;
343 }
344 default: {
345 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
346 if (IntrInst) {
347 if (IntrInst->isLifetimeStartOrEnd())
348 break;
349 SideEffectingBlocks.insert(&BB);
350 return;
351 }
352 // Treat all the other cases conservatively if it has side effects.
353 if (II.mayHaveSideEffects()) {
354 SideEffectingBlocks.insert(&BB);
355 return;
356 }
357 }
358 }
359 }
360 }
361
doesBlockContainClobberOfAddr(BasicBlock & BB,AllocaInst * Addr) const362 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
363 BasicBlock &BB, AllocaInst *Addr) const {
364 if (SideEffectingBlocks.count(&BB))
365 return true;
366 auto It = BaseMemAddrs.find(&BB);
367 if (It != BaseMemAddrs.end())
368 return It->second.count(Addr);
369 return false;
370 }
371
isLegalToShrinkwrapLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr) const372 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
373 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
374 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
375 Function *Func = (*Blocks.begin())->getParent();
376 for (BasicBlock &BB : *Func) {
377 if (Blocks.count(&BB))
378 continue;
379 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
380 return false;
381 }
382 return true;
383 }
384
385 BasicBlock *
findOrCreateBlockForHoisting(BasicBlock * CommonExitBlock)386 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
387 BasicBlock *SinglePredFromOutlineRegion = nullptr;
388 assert(!Blocks.count(CommonExitBlock) &&
389 "Expect a block outside the region!");
390 for (auto *Pred : predecessors(CommonExitBlock)) {
391 if (!Blocks.count(Pred))
392 continue;
393 if (!SinglePredFromOutlineRegion) {
394 SinglePredFromOutlineRegion = Pred;
395 } else if (SinglePredFromOutlineRegion != Pred) {
396 SinglePredFromOutlineRegion = nullptr;
397 break;
398 }
399 }
400
401 if (SinglePredFromOutlineRegion)
402 return SinglePredFromOutlineRegion;
403
404 #ifndef NDEBUG
405 auto getFirstPHI = [](BasicBlock *BB) {
406 BasicBlock::iterator I = BB->begin();
407 PHINode *FirstPhi = nullptr;
408 while (I != BB->end()) {
409 PHINode *Phi = dyn_cast<PHINode>(I);
410 if (!Phi)
411 break;
412 if (!FirstPhi) {
413 FirstPhi = Phi;
414 break;
415 }
416 }
417 return FirstPhi;
418 };
419 // If there are any phi nodes, the single pred either exists or has already
420 // be created before code extraction.
421 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
422 #endif
423
424 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
425 CommonExitBlock->getFirstNonPHI()->getIterator());
426
427 for (BasicBlock *Pred :
428 llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
429 if (Blocks.count(Pred))
430 continue;
431 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
432 }
433 // Now add the old exit block to the outline region.
434 Blocks.insert(CommonExitBlock);
435 OldTargets.push_back(NewExitBlock);
436 return CommonExitBlock;
437 }
438
439 // Find the pair of life time markers for address 'Addr' that are either
440 // defined inside the outline region or can legally be shrinkwrapped into the
441 // outline region. If there are not other untracked uses of the address, return
442 // the pair of markers if found; otherwise return a pair of nullptr.
443 CodeExtractor::LifetimeMarkerInfo
getLifetimeMarkers(const CodeExtractorAnalysisCache & CEAC,Instruction * Addr,BasicBlock * ExitBlock) const444 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
445 Instruction *Addr,
446 BasicBlock *ExitBlock) const {
447 LifetimeMarkerInfo Info;
448
449 for (User *U : Addr->users()) {
450 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
451 if (IntrInst) {
452 // We don't model addresses with multiple start/end markers, but the
453 // markers do not need to be in the region.
454 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
455 if (Info.LifeStart)
456 return {};
457 Info.LifeStart = IntrInst;
458 continue;
459 }
460 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
461 if (Info.LifeEnd)
462 return {};
463 Info.LifeEnd = IntrInst;
464 continue;
465 }
466 // At this point, permit debug uses outside of the region.
467 // This is fixed in a later call to fixupDebugInfoPostExtraction().
468 if (isa<DbgInfoIntrinsic>(IntrInst))
469 continue;
470 }
471 // Find untracked uses of the address, bail.
472 if (!definedInRegion(Blocks, U))
473 return {};
474 }
475
476 if (!Info.LifeStart || !Info.LifeEnd)
477 return {};
478
479 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
480 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
481 // Do legality check.
482 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
483 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
484 return {};
485
486 // Check to see if we have a place to do hoisting, if not, bail.
487 if (Info.HoistLifeEnd && !ExitBlock)
488 return {};
489
490 return Info;
491 }
492
findAllocas(const CodeExtractorAnalysisCache & CEAC,ValueSet & SinkCands,ValueSet & HoistCands,BasicBlock * & ExitBlock) const493 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
494 ValueSet &SinkCands, ValueSet &HoistCands,
495 BasicBlock *&ExitBlock) const {
496 Function *Func = (*Blocks.begin())->getParent();
497 ExitBlock = getCommonExitBlock(Blocks);
498
499 auto moveOrIgnoreLifetimeMarkers =
500 [&](const LifetimeMarkerInfo &LMI) -> bool {
501 if (!LMI.LifeStart)
502 return false;
503 if (LMI.SinkLifeStart) {
504 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
505 << "\n");
506 SinkCands.insert(LMI.LifeStart);
507 }
508 if (LMI.HoistLifeEnd) {
509 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
510 HoistCands.insert(LMI.LifeEnd);
511 }
512 return true;
513 };
514
515 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
516 // this is much faster than walking all the instructions.
517 for (AllocaInst *AI : CEAC.getAllocas()) {
518 BasicBlock *BB = AI->getParent();
519 if (Blocks.count(BB))
520 continue;
521
522 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
523 // check whether it is actually still in the original function.
524 Function *AIFunc = BB->getParent();
525 if (AIFunc != Func)
526 continue;
527
528 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
529 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
530 if (Moved) {
531 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
532 SinkCands.insert(AI);
533 continue;
534 }
535
536 // Find bitcasts in the outlined region that have lifetime marker users
537 // outside that region. Replace the lifetime marker use with an
538 // outside region bitcast to avoid unnecessary alloca/reload instructions
539 // and extra lifetime markers.
540 SmallVector<Instruction *, 2> LifetimeBitcastUsers;
541 for (User *U : AI->users()) {
542 if (!definedInRegion(Blocks, U))
543 continue;
544
545 if (U->stripInBoundsConstantOffsets() != AI)
546 continue;
547
548 Instruction *Bitcast = cast<Instruction>(U);
549 for (User *BU : Bitcast->users()) {
550 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
551 if (!IntrInst)
552 continue;
553
554 if (!IntrInst->isLifetimeStartOrEnd())
555 continue;
556
557 if (definedInRegion(Blocks, IntrInst))
558 continue;
559
560 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
561 << *Bitcast << " in out-of-region lifetime marker "
562 << *IntrInst << "\n");
563 LifetimeBitcastUsers.push_back(IntrInst);
564 }
565 }
566
567 for (Instruction *I : LifetimeBitcastUsers) {
568 Module *M = AIFunc->getParent();
569 LLVMContext &Ctx = M->getContext();
570 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
571 CastInst *CastI =
572 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
573 I->replaceUsesOfWith(I->getOperand(1), CastI);
574 }
575
576 // Follow any bitcasts.
577 SmallVector<Instruction *, 2> Bitcasts;
578 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
579 for (User *U : AI->users()) {
580 if (U->stripInBoundsConstantOffsets() == AI) {
581 Instruction *Bitcast = cast<Instruction>(U);
582 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
583 if (LMI.LifeStart) {
584 Bitcasts.push_back(Bitcast);
585 BitcastLifetimeInfo.push_back(LMI);
586 continue;
587 }
588 }
589
590 // Found unknown use of AI.
591 if (!definedInRegion(Blocks, U)) {
592 Bitcasts.clear();
593 break;
594 }
595 }
596
597 // Either no bitcasts reference the alloca or there are unknown uses.
598 if (Bitcasts.empty())
599 continue;
600
601 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
602 SinkCands.insert(AI);
603 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
604 Instruction *BitcastAddr = Bitcasts[I];
605 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
606 assert(LMI.LifeStart &&
607 "Unsafe to sink bitcast without lifetime markers");
608 moveOrIgnoreLifetimeMarkers(LMI);
609 if (!definedInRegion(Blocks, BitcastAddr)) {
610 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
611 << "\n");
612 SinkCands.insert(BitcastAddr);
613 }
614 }
615 }
616 }
617
isEligible() const618 bool CodeExtractor::isEligible() const {
619 if (Blocks.empty())
620 return false;
621 BasicBlock *Header = *Blocks.begin();
622 Function *F = Header->getParent();
623
624 // For functions with varargs, check that varargs handling is only done in the
625 // outlined function, i.e vastart and vaend are only used in outlined blocks.
626 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
627 auto containsVarArgIntrinsic = [](const Instruction &I) {
628 if (const CallInst *CI = dyn_cast<CallInst>(&I))
629 if (const Function *Callee = CI->getCalledFunction())
630 return Callee->getIntrinsicID() == Intrinsic::vastart ||
631 Callee->getIntrinsicID() == Intrinsic::vaend;
632 return false;
633 };
634
635 for (auto &BB : *F) {
636 if (Blocks.count(&BB))
637 continue;
638 if (llvm::any_of(BB, containsVarArgIntrinsic))
639 return false;
640 }
641 }
642 return true;
643 }
644
findInputsOutputs(ValueSet & Inputs,ValueSet & Outputs,const ValueSet & SinkCands) const645 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
646 const ValueSet &SinkCands) const {
647 for (BasicBlock *BB : Blocks) {
648 // If a used value is defined outside the region, it's an input. If an
649 // instruction is used outside the region, it's an output.
650 for (Instruction &II : *BB) {
651 for (auto &OI : II.operands()) {
652 Value *V = OI;
653 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
654 Inputs.insert(V);
655 }
656
657 for (User *U : II.users())
658 if (!definedInRegion(Blocks, U)) {
659 Outputs.insert(&II);
660 break;
661 }
662 }
663 }
664 }
665
666 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
667 /// of the region, we need to split the entry block of the region so that the
668 /// PHI node is easier to deal with.
severSplitPHINodesOfEntry(BasicBlock * & Header)669 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
670 unsigned NumPredsFromRegion = 0;
671 unsigned NumPredsOutsideRegion = 0;
672
673 if (Header != &Header->getParent()->getEntryBlock()) {
674 PHINode *PN = dyn_cast<PHINode>(Header->begin());
675 if (!PN) return; // No PHI nodes.
676
677 // If the header node contains any PHI nodes, check to see if there is more
678 // than one entry from outside the region. If so, we need to sever the
679 // header block into two.
680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
681 if (Blocks.count(PN->getIncomingBlock(i)))
682 ++NumPredsFromRegion;
683 else
684 ++NumPredsOutsideRegion;
685
686 // If there is one (or fewer) predecessor from outside the region, we don't
687 // need to do anything special.
688 if (NumPredsOutsideRegion <= 1) return;
689 }
690
691 // Otherwise, we need to split the header block into two pieces: one
692 // containing PHI nodes merging values from outside of the region, and a
693 // second that contains all of the code for the block and merges back any
694 // incoming values from inside of the region.
695 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
696
697 // We only want to code extract the second block now, and it becomes the new
698 // header of the region.
699 BasicBlock *OldPred = Header;
700 Blocks.remove(OldPred);
701 Blocks.insert(NewBB);
702 Header = NewBB;
703
704 // Okay, now we need to adjust the PHI nodes and any branches from within the
705 // region to go to the new header block instead of the old header block.
706 if (NumPredsFromRegion) {
707 PHINode *PN = cast<PHINode>(OldPred->begin());
708 // Loop over all of the predecessors of OldPred that are in the region,
709 // changing them to branch to NewBB instead.
710 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
711 if (Blocks.count(PN->getIncomingBlock(i))) {
712 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
713 TI->replaceUsesOfWith(OldPred, NewBB);
714 }
715
716 // Okay, everything within the region is now branching to the right block, we
717 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
718 BasicBlock::iterator AfterPHIs;
719 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
720 PHINode *PN = cast<PHINode>(AfterPHIs);
721 // Create a new PHI node in the new region, which has an incoming value
722 // from OldPred of PN.
723 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
724 PN->getName() + ".ce", &NewBB->front());
725 PN->replaceAllUsesWith(NewPN);
726 NewPN->addIncoming(PN, OldPred);
727
728 // Loop over all of the incoming value in PN, moving them to NewPN if they
729 // are from the extracted region.
730 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
731 if (Blocks.count(PN->getIncomingBlock(i))) {
732 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
733 PN->removeIncomingValue(i);
734 --i;
735 }
736 }
737 }
738 }
739 }
740
741 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
742 /// outlined region, we split these PHIs on two: one with inputs from region
743 /// and other with remaining incoming blocks; then first PHIs are placed in
744 /// outlined region.
severSplitPHINodesOfExits(const SmallPtrSetImpl<BasicBlock * > & Exits)745 void CodeExtractor::severSplitPHINodesOfExits(
746 const SmallPtrSetImpl<BasicBlock *> &Exits) {
747 for (BasicBlock *ExitBB : Exits) {
748 BasicBlock *NewBB = nullptr;
749
750 for (PHINode &PN : ExitBB->phis()) {
751 // Find all incoming values from the outlining region.
752 SmallVector<unsigned, 2> IncomingVals;
753 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
754 if (Blocks.count(PN.getIncomingBlock(i)))
755 IncomingVals.push_back(i);
756
757 // Do not process PHI if there is one (or fewer) predecessor from region.
758 // If PHI has exactly one predecessor from region, only this one incoming
759 // will be replaced on codeRepl block, so it should be safe to skip PHI.
760 if (IncomingVals.size() <= 1)
761 continue;
762
763 // Create block for new PHIs and add it to the list of outlined if it
764 // wasn't done before.
765 if (!NewBB) {
766 NewBB = BasicBlock::Create(ExitBB->getContext(),
767 ExitBB->getName() + ".split",
768 ExitBB->getParent(), ExitBB);
769 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
770 for (BasicBlock *PredBB : Preds)
771 if (Blocks.count(PredBB))
772 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
773 BranchInst::Create(ExitBB, NewBB);
774 Blocks.insert(NewBB);
775 }
776
777 // Split this PHI.
778 PHINode *NewPN =
779 PHINode::Create(PN.getType(), IncomingVals.size(),
780 PN.getName() + ".ce", NewBB->getFirstNonPHI());
781 for (unsigned i : IncomingVals)
782 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
783 for (unsigned i : reverse(IncomingVals))
784 PN.removeIncomingValue(i, false);
785 PN.addIncoming(NewPN, NewBB);
786 }
787 }
788 }
789
splitReturnBlocks()790 void CodeExtractor::splitReturnBlocks() {
791 for (BasicBlock *Block : Blocks)
792 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
793 BasicBlock *New =
794 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
795 if (DT) {
796 // Old dominates New. New node dominates all other nodes dominated
797 // by Old.
798 DomTreeNode *OldNode = DT->getNode(Block);
799 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
800 OldNode->end());
801
802 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
803
804 for (DomTreeNode *I : Children)
805 DT->changeImmediateDominator(I, NewNode);
806 }
807 }
808 }
809
810 /// constructFunction - make a function based on inputs and outputs, as follows:
811 /// f(in0, ..., inN, out0, ..., outN)
constructFunction(const ValueSet & inputs,const ValueSet & outputs,BasicBlock * header,BasicBlock * newRootNode,BasicBlock * newHeader,Function * oldFunction,Module * M)812 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
813 const ValueSet &outputs,
814 BasicBlock *header,
815 BasicBlock *newRootNode,
816 BasicBlock *newHeader,
817 Function *oldFunction,
818 Module *M) {
819 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
820 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
821
822 // This function returns unsigned, outputs will go back by reference.
823 switch (NumExitBlocks) {
824 case 0:
825 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
826 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
827 default: RetTy = Type::getInt16Ty(header->getContext()); break;
828 }
829
830 std::vector<Type *> ParamTy;
831 std::vector<Type *> AggParamTy;
832 ValueSet StructValues;
833 const DataLayout &DL = M->getDataLayout();
834
835 // Add the types of the input values to the function's argument list
836 for (Value *value : inputs) {
837 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
838 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
839 AggParamTy.push_back(value->getType());
840 StructValues.insert(value);
841 } else
842 ParamTy.push_back(value->getType());
843 }
844
845 // Add the types of the output values to the function's argument list.
846 for (Value *output : outputs) {
847 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
848 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
849 AggParamTy.push_back(output->getType());
850 StructValues.insert(output);
851 } else
852 ParamTy.push_back(
853 PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
854 }
855
856 assert(
857 (ParamTy.size() + AggParamTy.size()) ==
858 (inputs.size() + outputs.size()) &&
859 "Number of scalar and aggregate params does not match inputs, outputs");
860 assert((StructValues.empty() || AggregateArgs) &&
861 "Expeced StructValues only with AggregateArgs set");
862
863 // Concatenate scalar and aggregate params in ParamTy.
864 size_t NumScalarParams = ParamTy.size();
865 StructType *StructTy = nullptr;
866 if (AggregateArgs && !AggParamTy.empty()) {
867 StructTy = StructType::get(M->getContext(), AggParamTy);
868 ParamTy.push_back(PointerType::get(StructTy, DL.getAllocaAddrSpace()));
869 }
870
871 LLVM_DEBUG({
872 dbgs() << "Function type: " << *RetTy << " f(";
873 for (Type *i : ParamTy)
874 dbgs() << *i << ", ";
875 dbgs() << ")\n";
876 });
877
878 FunctionType *funcType = FunctionType::get(
879 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
880
881 std::string SuffixToUse =
882 Suffix.empty()
883 ? (header->getName().empty() ? "extracted" : header->getName().str())
884 : Suffix;
885 // Create the new function
886 Function *newFunction = Function::Create(
887 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
888 oldFunction->getName() + "." + SuffixToUse, M);
889
890 // Inherit all of the target dependent attributes and white-listed
891 // target independent attributes.
892 // (e.g. If the extracted region contains a call to an x86.sse
893 // instruction we need to make sure that the extracted region has the
894 // "target-features" attribute allowing it to be lowered.
895 // FIXME: This should be changed to check to see if a specific
896 // attribute can not be inherited.
897 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
898 if (Attr.isStringAttribute()) {
899 if (Attr.getKindAsString() == "thunk")
900 continue;
901 } else
902 switch (Attr.getKindAsEnum()) {
903 // Those attributes cannot be propagated safely. Explicitly list them
904 // here so we get a warning if new attributes are added.
905 case Attribute::AllocSize:
906 case Attribute::Builtin:
907 case Attribute::Convergent:
908 case Attribute::JumpTable:
909 case Attribute::Naked:
910 case Attribute::NoBuiltin:
911 case Attribute::NoMerge:
912 case Attribute::NoReturn:
913 case Attribute::NoSync:
914 case Attribute::ReturnsTwice:
915 case Attribute::Speculatable:
916 case Attribute::StackAlignment:
917 case Attribute::WillReturn:
918 case Attribute::AllocKind:
919 case Attribute::PresplitCoroutine:
920 case Attribute::Memory:
921 continue;
922 // Those attributes should be safe to propagate to the extracted function.
923 case Attribute::AlwaysInline:
924 case Attribute::Cold:
925 case Attribute::DisableSanitizerInstrumentation:
926 case Attribute::FnRetThunkExtern:
927 case Attribute::Hot:
928 case Attribute::NoRecurse:
929 case Attribute::InlineHint:
930 case Attribute::MinSize:
931 case Attribute::NoCallback:
932 case Attribute::NoDuplicate:
933 case Attribute::NoFree:
934 case Attribute::NoImplicitFloat:
935 case Attribute::NoInline:
936 case Attribute::NonLazyBind:
937 case Attribute::NoRedZone:
938 case Attribute::NoUnwind:
939 case Attribute::NoSanitizeBounds:
940 case Attribute::NoSanitizeCoverage:
941 case Attribute::NullPointerIsValid:
942 case Attribute::OptForFuzzing:
943 case Attribute::OptimizeNone:
944 case Attribute::OptimizeForSize:
945 case Attribute::SafeStack:
946 case Attribute::ShadowCallStack:
947 case Attribute::SanitizeAddress:
948 case Attribute::SanitizeMemory:
949 case Attribute::SanitizeThread:
950 case Attribute::SanitizeHWAddress:
951 case Attribute::SanitizeMemTag:
952 case Attribute::SpeculativeLoadHardening:
953 case Attribute::StackProtect:
954 case Attribute::StackProtectReq:
955 case Attribute::StackProtectStrong:
956 case Attribute::StrictFP:
957 case Attribute::UWTable:
958 case Attribute::VScaleRange:
959 case Attribute::NoCfCheck:
960 case Attribute::MustProgress:
961 case Attribute::NoProfile:
962 case Attribute::SkipProfile:
963 break;
964 // These attributes cannot be applied to functions.
965 case Attribute::Alignment:
966 case Attribute::AllocatedPointer:
967 case Attribute::AllocAlign:
968 case Attribute::ByVal:
969 case Attribute::Dereferenceable:
970 case Attribute::DereferenceableOrNull:
971 case Attribute::ElementType:
972 case Attribute::InAlloca:
973 case Attribute::InReg:
974 case Attribute::Nest:
975 case Attribute::NoAlias:
976 case Attribute::NoCapture:
977 case Attribute::NoUndef:
978 case Attribute::NonNull:
979 case Attribute::Preallocated:
980 case Attribute::ReadNone:
981 case Attribute::ReadOnly:
982 case Attribute::Returned:
983 case Attribute::SExt:
984 case Attribute::StructRet:
985 case Attribute::SwiftError:
986 case Attribute::SwiftSelf:
987 case Attribute::SwiftAsync:
988 case Attribute::ZExt:
989 case Attribute::ImmArg:
990 case Attribute::ByRef:
991 case Attribute::WriteOnly:
992 // These are not really attributes.
993 case Attribute::None:
994 case Attribute::EndAttrKinds:
995 case Attribute::EmptyKey:
996 case Attribute::TombstoneKey:
997 llvm_unreachable("Not a function attribute");
998 }
999
1000 newFunction->addFnAttr(Attr);
1001 }
1002 newFunction->insert(newFunction->end(), newRootNode);
1003
1004 // Create scalar and aggregate iterators to name all of the arguments we
1005 // inserted.
1006 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1007 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1008
1009 // Rewrite all users of the inputs in the extracted region to use the
1010 // arguments (or appropriate addressing into struct) instead.
1011 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1012 Value *RewriteVal;
1013 if (AggregateArgs && StructValues.contains(inputs[i])) {
1014 Value *Idx[2];
1015 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1016 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1017 Instruction *TI = newFunction->begin()->getTerminator();
1018 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1019 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1020 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1021 "loadgep_" + inputs[i]->getName(), TI);
1022 ++aggIdx;
1023 } else
1024 RewriteVal = &*ScalarAI++;
1025
1026 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1027 for (User *use : Users)
1028 if (Instruction *inst = dyn_cast<Instruction>(use))
1029 if (Blocks.count(inst->getParent()))
1030 inst->replaceUsesOfWith(inputs[i], RewriteVal);
1031 }
1032
1033 // Set names for input and output arguments.
1034 if (NumScalarParams) {
1035 ScalarAI = newFunction->arg_begin();
1036 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1037 if (!StructValues.contains(inputs[i]))
1038 ScalarAI->setName(inputs[i]->getName());
1039 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1040 if (!StructValues.contains(outputs[i]))
1041 ScalarAI->setName(outputs[i]->getName() + ".out");
1042 }
1043
1044 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1045 // within the new function. This must be done before we lose track of which
1046 // blocks were originally in the code region.
1047 std::vector<User *> Users(header->user_begin(), header->user_end());
1048 for (auto &U : Users)
1049 // The BasicBlock which contains the branch is not in the region
1050 // modify the branch target to a new block
1051 if (Instruction *I = dyn_cast<Instruction>(U))
1052 if (I->isTerminator() && I->getFunction() == oldFunction &&
1053 !Blocks.count(I->getParent()))
1054 I->replaceUsesOfWith(header, newHeader);
1055
1056 return newFunction;
1057 }
1058
1059 /// Erase lifetime.start markers which reference inputs to the extraction
1060 /// region, and insert the referenced memory into \p LifetimesStart.
1061 ///
1062 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1063 /// of allocas which will be moved from the caller function into the extracted
1064 /// function (\p SunkAllocas).
eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock * > & Blocks,const SetVector<Value * > & SunkAllocas,SetVector<Value * > & LifetimesStart)1065 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1066 const SetVector<Value *> &SunkAllocas,
1067 SetVector<Value *> &LifetimesStart) {
1068 for (BasicBlock *BB : Blocks) {
1069 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1070 auto *II = dyn_cast<IntrinsicInst>(&I);
1071 if (!II || !II->isLifetimeStartOrEnd())
1072 continue;
1073
1074 // Get the memory operand of the lifetime marker. If the underlying
1075 // object is a sunk alloca, or is otherwise defined in the extraction
1076 // region, the lifetime marker must not be erased.
1077 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1078 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1079 continue;
1080
1081 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1082 LifetimesStart.insert(Mem);
1083 II->eraseFromParent();
1084 }
1085 }
1086 }
1087
1088 /// Insert lifetime start/end markers surrounding the call to the new function
1089 /// for objects defined in the caller.
insertLifetimeMarkersSurroundingCall(Module * M,ArrayRef<Value * > LifetimesStart,ArrayRef<Value * > LifetimesEnd,CallInst * TheCall)1090 static void insertLifetimeMarkersSurroundingCall(
1091 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1092 CallInst *TheCall) {
1093 LLVMContext &Ctx = M->getContext();
1094 auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1095 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1096 Instruction *Term = TheCall->getParent()->getTerminator();
1097
1098 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1099 // needed to satisfy this requirement so they may be reused.
1100 DenseMap<Value *, Value *> Bitcasts;
1101
1102 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1103 // markers before the call if \p InsertBefore, and after the call otherwise.
1104 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1105 bool InsertBefore) {
1106 for (Value *Mem : Objects) {
1107 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1108 TheCall->getFunction()) &&
1109 "Input memory not defined in original function");
1110 Value *&MemAsI8Ptr = Bitcasts[Mem];
1111 if (!MemAsI8Ptr) {
1112 if (Mem->getType() == Int8PtrTy)
1113 MemAsI8Ptr = Mem;
1114 else
1115 MemAsI8Ptr =
1116 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1117 }
1118
1119 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1120 if (InsertBefore)
1121 Marker->insertBefore(TheCall);
1122 else
1123 Marker->insertBefore(Term);
1124 }
1125 };
1126
1127 if (!LifetimesStart.empty()) {
1128 auto StartFn = llvm::Intrinsic::getDeclaration(
1129 M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1130 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1131 }
1132
1133 if (!LifetimesEnd.empty()) {
1134 auto EndFn = llvm::Intrinsic::getDeclaration(
1135 M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1136 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1137 }
1138 }
1139
1140 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1141 /// the call instruction, splitting any PHI nodes in the header block as
1142 /// necessary.
emitCallAndSwitchStatement(Function * newFunction,BasicBlock * codeReplacer,ValueSet & inputs,ValueSet & outputs)1143 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1144 BasicBlock *codeReplacer,
1145 ValueSet &inputs,
1146 ValueSet &outputs) {
1147 // Emit a call to the new function, passing in: *pointer to struct (if
1148 // aggregating parameters), or plan inputs and allocated memory for outputs
1149 std::vector<Value *> params, ReloadOutputs, Reloads;
1150 ValueSet StructValues;
1151
1152 Module *M = newFunction->getParent();
1153 LLVMContext &Context = M->getContext();
1154 const DataLayout &DL = M->getDataLayout();
1155 CallInst *call = nullptr;
1156
1157 // Add inputs as params, or to be filled into the struct
1158 unsigned ScalarInputArgNo = 0;
1159 SmallVector<unsigned, 1> SwiftErrorArgs;
1160 for (Value *input : inputs) {
1161 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1162 StructValues.insert(input);
1163 else {
1164 params.push_back(input);
1165 if (input->isSwiftError())
1166 SwiftErrorArgs.push_back(ScalarInputArgNo);
1167 }
1168 ++ScalarInputArgNo;
1169 }
1170
1171 // Create allocas for the outputs
1172 unsigned ScalarOutputArgNo = 0;
1173 for (Value *output : outputs) {
1174 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1175 StructValues.insert(output);
1176 } else {
1177 AllocaInst *alloca =
1178 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1179 nullptr, output->getName() + ".loc",
1180 &codeReplacer->getParent()->front().front());
1181 ReloadOutputs.push_back(alloca);
1182 params.push_back(alloca);
1183 ++ScalarOutputArgNo;
1184 }
1185 }
1186
1187 StructType *StructArgTy = nullptr;
1188 AllocaInst *Struct = nullptr;
1189 unsigned NumAggregatedInputs = 0;
1190 if (AggregateArgs && !StructValues.empty()) {
1191 std::vector<Type *> ArgTypes;
1192 for (Value *V : StructValues)
1193 ArgTypes.push_back(V->getType());
1194
1195 // Allocate a struct at the beginning of this function
1196 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1197 Struct = new AllocaInst(
1198 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1199 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1200 : &codeReplacer->getParent()->front().front());
1201 params.push_back(Struct);
1202
1203 // Store aggregated inputs in the struct.
1204 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1205 if (inputs.contains(StructValues[i])) {
1206 Value *Idx[2];
1207 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1208 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1209 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1210 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1211 GEP->insertInto(codeReplacer, codeReplacer->end());
1212 new StoreInst(StructValues[i], GEP, codeReplacer);
1213 NumAggregatedInputs++;
1214 }
1215 }
1216 }
1217
1218 // Emit the call to the function
1219 call = CallInst::Create(newFunction, params,
1220 NumExitBlocks > 1 ? "targetBlock" : "");
1221 // Add debug location to the new call, if the original function has debug
1222 // info. In that case, the terminator of the entry block of the extracted
1223 // function contains the first debug location of the extracted function,
1224 // set in extractCodeRegion.
1225 if (codeReplacer->getParent()->getSubprogram()) {
1226 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1227 call->setDebugLoc(DL);
1228 }
1229 call->insertInto(codeReplacer, codeReplacer->end());
1230
1231 // Set swifterror parameter attributes.
1232 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1233 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1234 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1235 }
1236
1237 // Reload the outputs passed in by reference, use the struct if output is in
1238 // the aggregate or reload from the scalar argument.
1239 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1240 aggIdx = NumAggregatedInputs;
1241 i != e; ++i) {
1242 Value *Output = nullptr;
1243 if (AggregateArgs && StructValues.contains(outputs[i])) {
1244 Value *Idx[2];
1245 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1246 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1247 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1248 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1249 GEP->insertInto(codeReplacer, codeReplacer->end());
1250 Output = GEP;
1251 ++aggIdx;
1252 } else {
1253 Output = ReloadOutputs[scalarIdx];
1254 ++scalarIdx;
1255 }
1256 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1257 outputs[i]->getName() + ".reload",
1258 codeReplacer);
1259 Reloads.push_back(load);
1260 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1261 for (User *U : Users) {
1262 Instruction *inst = cast<Instruction>(U);
1263 if (!Blocks.count(inst->getParent()))
1264 inst->replaceUsesOfWith(outputs[i], load);
1265 }
1266 }
1267
1268 // Now we can emit a switch statement using the call as a value.
1269 SwitchInst *TheSwitch =
1270 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1271 codeReplacer, 0, codeReplacer);
1272
1273 // Since there may be multiple exits from the original region, make the new
1274 // function return an unsigned, switch on that number. This loop iterates
1275 // over all of the blocks in the extracted region, updating any terminator
1276 // instructions in the to-be-extracted region that branch to blocks that are
1277 // not in the region to be extracted.
1278 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1279
1280 // Iterate over the previously collected targets, and create new blocks inside
1281 // the function to branch to.
1282 unsigned switchVal = 0;
1283 for (BasicBlock *OldTarget : OldTargets) {
1284 if (Blocks.count(OldTarget))
1285 continue;
1286 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1287 if (NewTarget)
1288 continue;
1289
1290 // If we don't already have an exit stub for this non-extracted
1291 // destination, create one now!
1292 NewTarget = BasicBlock::Create(Context,
1293 OldTarget->getName() + ".exitStub",
1294 newFunction);
1295 unsigned SuccNum = switchVal++;
1296
1297 Value *brVal = nullptr;
1298 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1299 switch (NumExitBlocks) {
1300 case 0:
1301 case 1: break; // No value needed.
1302 case 2: // Conditional branch, return a bool
1303 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1304 break;
1305 default:
1306 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1307 break;
1308 }
1309
1310 ReturnInst::Create(Context, brVal, NewTarget);
1311
1312 // Update the switch instruction.
1313 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1314 SuccNum),
1315 OldTarget);
1316 }
1317
1318 for (BasicBlock *Block : Blocks) {
1319 Instruction *TI = Block->getTerminator();
1320 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1321 if (Blocks.count(TI->getSuccessor(i)))
1322 continue;
1323 BasicBlock *OldTarget = TI->getSuccessor(i);
1324 // add a new basic block which returns the appropriate value
1325 BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1326 assert(NewTarget && "Unknown target block!");
1327
1328 // rewrite the original branch instruction with this new target
1329 TI->setSuccessor(i, NewTarget);
1330 }
1331 }
1332
1333 // Store the arguments right after the definition of output value.
1334 // This should be proceeded after creating exit stubs to be ensure that invoke
1335 // result restore will be placed in the outlined function.
1336 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1337 std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1338 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1339 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1340
1341 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1342 ++i) {
1343 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1344 if (!OutI)
1345 continue;
1346
1347 // Find proper insertion point.
1348 BasicBlock::iterator InsertPt;
1349 // In case OutI is an invoke, we insert the store at the beginning in the
1350 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1351 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1352 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1353 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1354 InsertPt = Phi->getParent()->getFirstInsertionPt();
1355 else
1356 InsertPt = std::next(OutI->getIterator());
1357
1358 Instruction *InsertBefore = &*InsertPt;
1359 assert((InsertBefore->getFunction() == newFunction ||
1360 Blocks.count(InsertBefore->getParent())) &&
1361 "InsertPt should be in new function");
1362 if (AggregateArgs && StructValues.contains(outputs[i])) {
1363 assert(AggOutputArgBegin != newFunction->arg_end() &&
1364 "Number of aggregate output arguments should match "
1365 "the number of defined values");
1366 Value *Idx[2];
1367 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1368 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1369 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1370 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1371 InsertBefore);
1372 new StoreInst(outputs[i], GEP, InsertBefore);
1373 ++aggIdx;
1374 // Since there should be only one struct argument aggregating
1375 // all the output values, we shouldn't increment AggOutputArgBegin, which
1376 // always points to the struct argument, in this case.
1377 } else {
1378 assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1379 "Number of scalar output arguments should match "
1380 "the number of defined values");
1381 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1382 ++ScalarOutputArgBegin;
1383 }
1384 }
1385
1386 // Now that we've done the deed, simplify the switch instruction.
1387 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1388 switch (NumExitBlocks) {
1389 case 0:
1390 // There are no successors (the block containing the switch itself), which
1391 // means that previously this was the last part of the function, and hence
1392 // this should be rewritten as a `ret'
1393
1394 // Check if the function should return a value
1395 if (OldFnRetTy->isVoidTy()) {
1396 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1397 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1398 // return what we have
1399 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1400 } else {
1401 // Otherwise we must have code extracted an unwind or something, just
1402 // return whatever we want.
1403 ReturnInst::Create(Context,
1404 Constant::getNullValue(OldFnRetTy), TheSwitch);
1405 }
1406
1407 TheSwitch->eraseFromParent();
1408 break;
1409 case 1:
1410 // Only a single destination, change the switch into an unconditional
1411 // branch.
1412 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1413 TheSwitch->eraseFromParent();
1414 break;
1415 case 2:
1416 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1417 call, TheSwitch);
1418 TheSwitch->eraseFromParent();
1419 break;
1420 default:
1421 // Otherwise, make the default destination of the switch instruction be one
1422 // of the other successors.
1423 TheSwitch->setCondition(call);
1424 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1425 // Remove redundant case
1426 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1427 break;
1428 }
1429
1430 // Insert lifetime markers around the reloads of any output values. The
1431 // allocas output values are stored in are only in-use in the codeRepl block.
1432 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1433
1434 return call;
1435 }
1436
moveCodeToFunction(Function * newFunction)1437 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1438 auto newFuncIt = newFunction->front().getIterator();
1439 for (BasicBlock *Block : Blocks) {
1440 // Delete the basic block from the old function, and the list of blocks
1441 Block->removeFromParent();
1442
1443 // Insert this basic block into the new function
1444 // Insert the original blocks after the entry block created
1445 // for the new function. The entry block may be followed
1446 // by a set of exit blocks at this point, but these exit
1447 // blocks better be placed at the end of the new function.
1448 newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1449 }
1450 }
1451
calculateNewCallTerminatorWeights(BasicBlock * CodeReplacer,DenseMap<BasicBlock *,BlockFrequency> & ExitWeights,BranchProbabilityInfo * BPI)1452 void CodeExtractor::calculateNewCallTerminatorWeights(
1453 BasicBlock *CodeReplacer,
1454 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1455 BranchProbabilityInfo *BPI) {
1456 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1457 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1458
1459 // Update the branch weights for the exit block.
1460 Instruction *TI = CodeReplacer->getTerminator();
1461 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1462
1463 // Block Frequency distribution with dummy node.
1464 Distribution BranchDist;
1465
1466 SmallVector<BranchProbability, 4> EdgeProbabilities(
1467 TI->getNumSuccessors(), BranchProbability::getUnknown());
1468
1469 // Add each of the frequencies of the successors.
1470 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1471 BlockNode ExitNode(i);
1472 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1473 if (ExitFreq != 0)
1474 BranchDist.addExit(ExitNode, ExitFreq);
1475 else
1476 EdgeProbabilities[i] = BranchProbability::getZero();
1477 }
1478
1479 // Check for no total weight.
1480 if (BranchDist.Total == 0) {
1481 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1482 return;
1483 }
1484
1485 // Normalize the distribution so that they can fit in unsigned.
1486 BranchDist.normalize();
1487
1488 // Create normalized branch weights and set the metadata.
1489 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1490 const auto &Weight = BranchDist.Weights[I];
1491
1492 // Get the weight and update the current BFI.
1493 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1494 BranchProbability BP(Weight.Amount, BranchDist.Total);
1495 EdgeProbabilities[Weight.TargetNode.Index] = BP;
1496 }
1497 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1498 TI->setMetadata(
1499 LLVMContext::MD_prof,
1500 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1501 }
1502
1503 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1504 /// \p F.
eraseDebugIntrinsicsWithNonLocalRefs(Function & F)1505 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1506 for (Instruction &I : instructions(F)) {
1507 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1508 findDbgUsers(DbgUsers, &I);
1509 for (DbgVariableIntrinsic *DVI : DbgUsers)
1510 if (DVI->getFunction() != &F)
1511 DVI->eraseFromParent();
1512 }
1513 }
1514
1515 /// Fix up the debug info in the old and new functions by pointing line
1516 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1517 /// intrinsics which point to values outside of the new function.
fixupDebugInfoPostExtraction(Function & OldFunc,Function & NewFunc,CallInst & TheCall)1518 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1519 CallInst &TheCall) {
1520 DISubprogram *OldSP = OldFunc.getSubprogram();
1521 LLVMContext &Ctx = OldFunc.getContext();
1522
1523 if (!OldSP) {
1524 // Erase any debug info the new function contains.
1525 stripDebugInfo(NewFunc);
1526 // Make sure the old function doesn't contain any non-local metadata refs.
1527 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1528 return;
1529 }
1530
1531 // Create a subprogram for the new function. Leave out a description of the
1532 // function arguments, as the parameters don't correspond to anything at the
1533 // source level.
1534 assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1535 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1536 OldSP->getUnit());
1537 auto SPType =
1538 DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1539 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1540 DISubprogram::SPFlagOptimized |
1541 DISubprogram::SPFlagLocalToUnit;
1542 auto NewSP = DIB.createFunction(
1543 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1544 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1545 NewFunc.setSubprogram(NewSP);
1546
1547 // Debug intrinsics in the new function need to be updated in one of two
1548 // ways:
1549 // 1) They need to be deleted, because they describe a value in the old
1550 // function.
1551 // 2) They need to point to fresh metadata, e.g. because they currently
1552 // point to a variable in the wrong scope.
1553 SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1554 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1555 DenseMap<const MDNode *, MDNode *> Cache;
1556 for (Instruction &I : instructions(NewFunc)) {
1557 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1558 if (!DII)
1559 continue;
1560
1561 // Point the intrinsic to a fresh label within the new function if the
1562 // intrinsic was not inlined from some other function.
1563 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1564 if (DLI->getDebugLoc().getInlinedAt())
1565 continue;
1566 DILabel *OldLabel = DLI->getLabel();
1567 DINode *&NewLabel = RemappedMetadata[OldLabel];
1568 if (!NewLabel) {
1569 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1570 *OldLabel->getScope(), *NewSP, Ctx, Cache);
1571 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1572 OldLabel->getFile(), OldLabel->getLine());
1573 }
1574 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1575 continue;
1576 }
1577
1578 auto IsInvalidLocation = [&NewFunc](Value *Location) {
1579 // Location is invalid if it isn't a constant or an instruction, or is an
1580 // instruction but isn't in the new function.
1581 if (!Location ||
1582 (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1583 return true;
1584 Instruction *LocationInst = dyn_cast<Instruction>(Location);
1585 return LocationInst && LocationInst->getFunction() != &NewFunc;
1586 };
1587
1588 auto *DVI = cast<DbgVariableIntrinsic>(DII);
1589 // If any of the used locations are invalid, delete the intrinsic.
1590 if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1591 DebugIntrinsicsToDelete.push_back(DVI);
1592 continue;
1593 }
1594 // If the variable was in the scope of the old function, i.e. it was not
1595 // inlined, point the intrinsic to a fresh variable within the new function.
1596 if (!DVI->getDebugLoc().getInlinedAt()) {
1597 DILocalVariable *OldVar = DVI->getVariable();
1598 DINode *&NewVar = RemappedMetadata[OldVar];
1599 if (!NewVar) {
1600 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1601 *OldVar->getScope(), *NewSP, Ctx, Cache);
1602 NewVar = DIB.createAutoVariable(
1603 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1604 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1605 OldVar->getAlignInBits());
1606 }
1607 DVI->setVariable(cast<DILocalVariable>(NewVar));
1608 }
1609 }
1610
1611 for (auto *DII : DebugIntrinsicsToDelete)
1612 DII->eraseFromParent();
1613 DIB.finalizeSubprogram(NewSP);
1614
1615 // Fix up the scope information attached to the line locations in the new
1616 // function.
1617 for (Instruction &I : instructions(NewFunc)) {
1618 if (const DebugLoc &DL = I.getDebugLoc())
1619 I.setDebugLoc(
1620 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1621
1622 // Loop info metadata may contain line locations. Fix them up.
1623 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1624 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1625 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1626 return MD;
1627 };
1628 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1629 }
1630 if (!TheCall.getDebugLoc())
1631 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1632
1633 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1634 }
1635
1636 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC)1637 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1638 ValueSet Inputs, Outputs;
1639 return extractCodeRegion(CEAC, Inputs, Outputs);
1640 }
1641
1642 Function *
extractCodeRegion(const CodeExtractorAnalysisCache & CEAC,ValueSet & inputs,ValueSet & outputs)1643 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1644 ValueSet &inputs, ValueSet &outputs) {
1645 if (!isEligible())
1646 return nullptr;
1647
1648 // Assumption: this is a single-entry code region, and the header is the first
1649 // block in the region.
1650 BasicBlock *header = *Blocks.begin();
1651 Function *oldFunction = header->getParent();
1652
1653 // Calculate the entry frequency of the new function before we change the root
1654 // block.
1655 BlockFrequency EntryFreq;
1656 if (BFI) {
1657 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1658 for (BasicBlock *Pred : predecessors(header)) {
1659 if (Blocks.count(Pred))
1660 continue;
1661 EntryFreq +=
1662 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1663 }
1664 }
1665
1666 // Remove CondGuardInsts that will be moved to the new function from the old
1667 // function's assumption cache.
1668 for (BasicBlock *Block : Blocks) {
1669 for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1670 if (auto *CI = dyn_cast<CondGuardInst>(&I)) {
1671 if (AC)
1672 AC->unregisterAssumption(CI);
1673 CI->eraseFromParent();
1674 }
1675 }
1676 }
1677
1678 // If we have any return instructions in the region, split those blocks so
1679 // that the return is not in the region.
1680 splitReturnBlocks();
1681
1682 // Calculate the exit blocks for the extracted region and the total exit
1683 // weights for each of those blocks.
1684 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1685 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1686 for (BasicBlock *Block : Blocks) {
1687 for (BasicBlock *Succ : successors(Block)) {
1688 if (!Blocks.count(Succ)) {
1689 // Update the branch weight for this successor.
1690 if (BFI) {
1691 BlockFrequency &BF = ExitWeights[Succ];
1692 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1693 }
1694 ExitBlocks.insert(Succ);
1695 }
1696 }
1697 }
1698 NumExitBlocks = ExitBlocks.size();
1699
1700 for (BasicBlock *Block : Blocks) {
1701 Instruction *TI = Block->getTerminator();
1702 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1703 if (Blocks.count(TI->getSuccessor(i)))
1704 continue;
1705 BasicBlock *OldTarget = TI->getSuccessor(i);
1706 OldTargets.push_back(OldTarget);
1707 }
1708 }
1709
1710 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1711 severSplitPHINodesOfEntry(header);
1712 severSplitPHINodesOfExits(ExitBlocks);
1713
1714 // This takes place of the original loop
1715 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1716 "codeRepl", oldFunction,
1717 header);
1718
1719 // The new function needs a root node because other nodes can branch to the
1720 // head of the region, but the entry node of a function cannot have preds.
1721 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1722 "newFuncRoot");
1723 auto *BranchI = BranchInst::Create(header);
1724 // If the original function has debug info, we have to add a debug location
1725 // to the new branch instruction from the artificial entry block.
1726 // We use the debug location of the first instruction in the extracted
1727 // blocks, as there is no other equivalent line in the source code.
1728 if (oldFunction->getSubprogram()) {
1729 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1730 return any_of(*BB, [&BranchI](const Instruction &I) {
1731 if (!I.getDebugLoc())
1732 return false;
1733 BranchI->setDebugLoc(I.getDebugLoc());
1734 return true;
1735 });
1736 });
1737 }
1738 BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1739
1740 ValueSet SinkingCands, HoistingCands;
1741 BasicBlock *CommonExit = nullptr;
1742 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1743 assert(HoistingCands.empty() || CommonExit);
1744
1745 // Find inputs to, outputs from the code region.
1746 findInputsOutputs(inputs, outputs, SinkingCands);
1747
1748 // Now sink all instructions which only have non-phi uses inside the region.
1749 // Group the allocas at the start of the block, so that any bitcast uses of
1750 // the allocas are well-defined.
1751 AllocaInst *FirstSunkAlloca = nullptr;
1752 for (auto *II : SinkingCands) {
1753 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1754 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1755 if (!FirstSunkAlloca)
1756 FirstSunkAlloca = AI;
1757 }
1758 }
1759 assert((SinkingCands.empty() || FirstSunkAlloca) &&
1760 "Did not expect a sink candidate without any allocas");
1761 for (auto *II : SinkingCands) {
1762 if (!isa<AllocaInst>(II)) {
1763 cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1764 }
1765 }
1766
1767 if (!HoistingCands.empty()) {
1768 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1769 Instruction *TI = HoistToBlock->getTerminator();
1770 for (auto *II : HoistingCands)
1771 cast<Instruction>(II)->moveBefore(TI);
1772 }
1773
1774 // Collect objects which are inputs to the extraction region and also
1775 // referenced by lifetime start markers within it. The effects of these
1776 // markers must be replicated in the calling function to prevent the stack
1777 // coloring pass from merging slots which store input objects.
1778 ValueSet LifetimesStart;
1779 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1780
1781 // Construct new function based on inputs/outputs & add allocas for all defs.
1782 Function *newFunction =
1783 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1784 oldFunction, oldFunction->getParent());
1785
1786 // Update the entry count of the function.
1787 if (BFI) {
1788 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1789 if (Count)
1790 newFunction->setEntryCount(
1791 ProfileCount(*Count, Function::PCT_Real)); // FIXME
1792 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1793 }
1794
1795 CallInst *TheCall =
1796 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1797
1798 moveCodeToFunction(newFunction);
1799
1800 // Replicate the effects of any lifetime start/end markers which referenced
1801 // input objects in the extraction region by placing markers around the call.
1802 insertLifetimeMarkersSurroundingCall(
1803 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1804
1805 // Propagate personality info to the new function if there is one.
1806 if (oldFunction->hasPersonalityFn())
1807 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1808
1809 // Update the branch weights for the exit block.
1810 if (BFI && NumExitBlocks > 1)
1811 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1812
1813 // Loop over all of the PHI nodes in the header and exit blocks, and change
1814 // any references to the old incoming edge to be the new incoming edge.
1815 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1816 PHINode *PN = cast<PHINode>(I);
1817 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1818 if (!Blocks.count(PN->getIncomingBlock(i)))
1819 PN->setIncomingBlock(i, newFuncRoot);
1820 }
1821
1822 for (BasicBlock *ExitBB : ExitBlocks)
1823 for (PHINode &PN : ExitBB->phis()) {
1824 Value *IncomingCodeReplacerVal = nullptr;
1825 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1826 // Ignore incoming values from outside of the extracted region.
1827 if (!Blocks.count(PN.getIncomingBlock(i)))
1828 continue;
1829
1830 // Ensure that there is only one incoming value from codeReplacer.
1831 if (!IncomingCodeReplacerVal) {
1832 PN.setIncomingBlock(i, codeReplacer);
1833 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1834 } else
1835 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1836 "PHI has two incompatbile incoming values from codeRepl");
1837 }
1838 }
1839
1840 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1841
1842 // Mark the new function `noreturn` if applicable. Terminators which resume
1843 // exception propagation are treated as returning instructions. This is to
1844 // avoid inserting traps after calls to outlined functions which unwind.
1845 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1846 const Instruction *Term = BB.getTerminator();
1847 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1848 });
1849 if (doesNotReturn)
1850 newFunction->setDoesNotReturn();
1851
1852 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1853 newFunction->dump();
1854 report_fatal_error("verification of newFunction failed!");
1855 });
1856 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1857 report_fatal_error("verification of oldFunction failed!"));
1858 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1859 report_fatal_error("Stale Asumption cache for old Function!"));
1860 return newFunction;
1861 }
1862
verifyAssumptionCache(const Function & OldFunc,const Function & NewFunc,AssumptionCache * AC)1863 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1864 const Function &NewFunc,
1865 AssumptionCache *AC) {
1866 for (auto AssumeVH : AC->assumptions()) {
1867 auto *I = dyn_cast_or_null<CondGuardInst>(AssumeVH);
1868 if (!I)
1869 continue;
1870
1871 // There shouldn't be any llvm.assume intrinsics in the new function.
1872 if (I->getFunction() != &OldFunc)
1873 return true;
1874
1875 // There shouldn't be any stale affected values in the assumption cache
1876 // that were previously in the old function, but that have now been moved
1877 // to the new function.
1878 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1879 auto *AffectedCI = dyn_cast_or_null<CondGuardInst>(AffectedValVH);
1880 if (!AffectedCI)
1881 continue;
1882 if (AffectedCI->getFunction() != &OldFunc)
1883 return true;
1884 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1885 if (AssumedInst->getFunction() != &OldFunc)
1886 return true;
1887 }
1888 }
1889 return false;
1890 }
1891
excludeArgFromAggregate(Value * Arg)1892 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1893 ExcludeArgsFromAggregate.insert(Arg);
1894 }
1895