xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/UNIT/WeightsRetentionFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_UNIT_WEIGHTS_RETENTION
25 #define ARM_COMPUTE_TEST_UNIT_WEIGHTS_RETENTION
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "tests/AssetsLibrary.h"
30 #include "tests/Globals.h"
31 #include "tests/IAccessor.h"
32 #include "tests/framework/Asserts.h"
33 #include "tests/framework/Fixture.h"
34 #include "tests/validation/Helpers.h"
35 #include "tests/validation/reference/FullyConnectedLayer.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 /** Test case to run a fully connected layer with weights retention, reconfigure
44  *  with different shapes and rerun making sure the weights are retained.
45  *
46  * Runs a fully connected layer stimulating is_interleaved_transpose CLGEMM,
47  * then reconfigures with different batch size and reruns.
48  */
49 template <typename TensorType, typename AccessorType, typename FullyConnectedFunction>
50 class WeightsRetentionReconfigureTestCaseFixture : public framework::Fixture
51 {
52     using T = float;
53 
54 public:
setup()55     void setup()
56     {
57         _max_batches = 8;
58         _cur_batches = 6;
59         _target      = compute_target();
60         _reference   = compute_reference();
61     };
62 
63 protected:
64     template <typename U>
fill(U && tensor,int i)65     void fill(U &&tensor, int i)
66     {
67         static_assert(std::is_floating_point<T>::value || std::is_same<T, half>::value, "Only floating point data types supported.");
68         using DistributionType = typename std::conditional<std::is_same<T, half>::value, arm_compute::utils::uniform_real_distribution_16bit<T>, std::uniform_real_distribution<T>>::type;
69 
70         DistributionType distribution{ T(0.5f), T(1.0f) };
71         library->fill(tensor, distribution, i);
72     }
73 
compute_target()74     TensorType compute_target()
75     {
76         // Create tensors
77         TensorType w1  = create_tensor<TensorType>(TensorShape(6000U, 15U), DataType::F32, 1);
78         TensorType b1  = create_tensor<TensorType>(TensorShape(15U), DataType::F32, 1);
79         TensorType src = create_tensor<TensorType>(TensorShape(1U, 15U, 400U, _max_batches), DataType::F32, 1);
80         TensorType dst = create_tensor<TensorType>(TensorShape(15U, _max_batches), DataType::F32, 1);
81 
82         // Create and configure function
83         FullyConnectedFunction fc_layer_1;
84         fc_layer_1.configure(&src, &w1, &b1, &dst);
85 
86         // Allocate persistent tensors
87         w1.allocator()->allocate();
88         b1.allocator()->allocate();
89 
90         // Allocate tensors (1st iteration)
91         src.allocator()->allocate();
92         dst.allocator()->allocate();
93 
94         // Fill tensors (1st iteration)
95         fill(AccessorType(src), 0);
96         fill(AccessorType(w1), 1);
97         fill(AccessorType(b1), 2);
98 
99         // Compute functions (1st iteration)
100         fc_layer_1.run();
101 
102         // Update tensor shapes (2nd iteration)
103         auto src_padding     = src.allocator()->info().padding();
104         auto dst_padding     = dst.allocator()->info().padding();
105         int  diff            = _max_batches - _cur_batches;
106         auto new_src_padding = PaddingSize(src_padding.top, src_padding.right, src_padding.bottom + diff, src_padding.left);
107         auto new_dst_padding = PaddingSize(dst_padding.top, dst_padding.right, dst_padding.bottom + diff, dst_padding.left);
108         src.allocator()->info().set_tensor_shape(TensorShape(1U, 15U, 400U, _cur_batches)).set_is_resizable(true).extend_padding(new_src_padding);
109         src.allocator()->info().set_is_resizable(false);
110         dst.allocator()->info().set_tensor_shape(TensorShape(15U, _cur_batches)).set_is_resizable(true).extend_padding(new_dst_padding);
111         dst.allocator()->info().set_is_resizable(false);
112 
113         // Configure FC info
114         FullyConnectedLayerInfo fc_info;
115         fc_info.retain_internal_weights = true;
116 
117         // Configure functions (2nd iteration)
118         fc_layer_1.configure(&src, &w1, &b1, &dst, fc_info);
119 
120         // Fill tensors (2nd iteration)
121         fill(AccessorType(src), 5);
122 
123         // Compute functions (2nd iteration)
124         fc_layer_1.run();
125 
126         return dst;
127     }
128 
compute_reference()129     SimpleTensor<T> compute_reference()
130     {
131         // Create reference
132         SimpleTensor<T> w1{ TensorShape(6000U, 15U), DataType::F32 };
133         SimpleTensor<T> b1{ TensorShape(15U), DataType::F32 };
134         SimpleTensor<T> src{ TensorShape(1U, 15U, 400U, _cur_batches), DataType::F32 };
135 
136         // Fill reference
137         fill(src, 5);
138         fill(w1, 1);
139         fill(b1, 2);
140 
141         return reference::fully_connected_layer(src, w1, b1, TensorShape(15U, _cur_batches));
142     }
143 
144 protected:
145     TensorType      _target{};
146     SimpleTensor<T> _reference{};
147     unsigned int    _max_batches{};
148     unsigned int    _cur_batches{};
149 };
150 } // namespace validation
151 } // namespace test
152 } // namespace arm_compute
153 #endif /* ARM_COMPUTE_TEST_UNIT_WEIGHTS_RETENTION */
154