xref: /aosp_15_r20/external/swiftshader/third_party/subzero/src/IceCfg.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- subzero/src/IceCfg.cpp - Control flow graph implementation ---------===//
2 //
3 //                        The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements the Cfg class.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "IceCfg.h"
16 
17 #include "IceAssembler.h"
18 #include "IceBitVector.h"
19 #include "IceCfgNode.h"
20 #include "IceClFlags.h"
21 #include "IceDefs.h"
22 #include "IceELFObjectWriter.h"
23 #include "IceGlobalInits.h"
24 #include "IceInst.h"
25 #include "IceInstVarIter.h"
26 #include "IceInstrumentation.h"
27 #include "IceLiveness.h"
28 #include "IceLoopAnalyzer.h"
29 #include "IceOperand.h"
30 #include "IceTargetLowering.h"
31 
32 #include <memory>
33 #include <utility>
34 
35 namespace Ice {
36 
Cfg(GlobalContext * Ctx,uint32_t SequenceNumber)37 Cfg::Cfg(GlobalContext *Ctx, uint32_t SequenceNumber)
38     : Allocator(createAllocator()), Ctx(Ctx), SequenceNumber(SequenceNumber),
39       VMask(getFlags().getVerbose()), FunctionName(),
40       NextInstNumber(Inst::NumberInitial), Live(nullptr) {
41   NodeStrings.reset(new StringPool);
42   VarStrings.reset(new StringPool);
43   CfgLocalAllocatorScope _(this);
44   Target = TargetLowering::createLowering(getFlags().getTargetArch(), this);
45   VMetadata.reset(new VariablesMetadata(this));
46   TargetAssembler = Target->createAssembler();
47 }
48 
~Cfg()49 Cfg::~Cfg() {
50   assert(CfgAllocatorTraits::current() == nullptr);
51   if (getFlags().getDumpStrings()) {
52     OstreamLocker _(Ctx);
53     Ostream &Str = Ctx->getStrDump();
54     getNodeStrings()->dump(Str);
55     getVarStrings()->dump(Str);
56   }
57 }
58 
59 // Called in the initalizer list of Cfg's constructor to create the Allocator
60 // and set it as TLS before any other member fields are constructed, since they
61 // may depend on it.
createAllocator()62 ArenaAllocator *Cfg::createAllocator() {
63   ArenaAllocator *Allocator = new ArenaAllocator();
64   CfgAllocatorTraits::set_current(Allocator);
65   return Allocator;
66 }
67 
68 /// Create a string like "foo(i=123:b=9)" indicating the function name, number
69 /// of high-level instructions, and number of basic blocks.  This string is only
70 /// used for dumping and other diagnostics, and the idea is that given a set of
71 /// functions to debug a problem on, it's easy to find the smallest or simplest
72 /// function to attack.  Note that the counts may change somewhat depending on
73 /// what point it is called during the translation passes.
getFunctionNameAndSize() const74 std::string Cfg::getFunctionNameAndSize() const {
75   if (!BuildDefs::dump())
76     return getFunctionName().toString();
77   SizeT NodeCount = 0;
78   SizeT InstCount = 0;
79   for (CfgNode *Node : getNodes()) {
80     ++NodeCount;
81     // Note: deleted instructions are *not* ignored.
82     InstCount += Node->getPhis().size();
83     for (Inst &I : Node->getInsts()) {
84       if (!llvm::isa<InstTarget>(&I))
85         ++InstCount;
86     }
87   }
88   return getFunctionName() + "(i=" + std::to_string(InstCount) +
89          ":b=" + std::to_string(NodeCount) + ")";
90 }
91 
setError(const std::string & Message)92 void Cfg::setError(const std::string &Message) {
93   HasError = true;
94   ErrorMessage = Message;
95 }
96 
makeNode()97 CfgNode *Cfg::makeNode() {
98   SizeT LabelIndex = Nodes.size();
99   auto *Node = CfgNode::create(this, LabelIndex);
100   Nodes.push_back(Node);
101   return Node;
102 }
103 
swapNodes(NodeList & NewNodes)104 void Cfg::swapNodes(NodeList &NewNodes) {
105   assert(Nodes.size() == NewNodes.size());
106   Nodes.swap(NewNodes);
107   for (SizeT I = 0, NumNodes = getNumNodes(); I < NumNodes; ++I)
108     Nodes[I]->resetIndex(I);
109 }
110 
makeVariable(Type Ty)111 template <> Variable *Cfg::makeVariable<Variable>(Type Ty) {
112   SizeT Index = Variables.size();
113   Variable *Var;
114   if (Target->shouldSplitToVariableVecOn32(Ty)) {
115     Var = VariableVecOn32::create(this, Ty, Index);
116   } else if (Target->shouldSplitToVariable64On32(Ty)) {
117     Var = Variable64On32::create(this, Ty, Index);
118   } else {
119     Var = Variable::create(this, Ty, Index);
120   }
121   Variables.push_back(Var);
122   return Var;
123 }
124 
addArg(Variable * Arg)125 void Cfg::addArg(Variable *Arg) {
126   Arg->setIsArg();
127   Args.push_back(Arg);
128 }
129 
addImplicitArg(Variable * Arg)130 void Cfg::addImplicitArg(Variable *Arg) {
131   Arg->setIsImplicitArg();
132   ImplicitArgs.push_back(Arg);
133 }
134 
135 // Returns whether the stack frame layout has been computed yet. This is used
136 // for dumping the stack frame location of Variables.
hasComputedFrame() const137 bool Cfg::hasComputedFrame() const { return getTarget()->hasComputedFrame(); }
138 
139 namespace {
140 constexpr char BlockNameGlobalPrefix[] = ".L$profiler$block_name$";
141 constexpr char BlockStatsGlobalPrefix[] = ".L$profiler$block_info$";
142 } // end of anonymous namespace
143 
createNodeNameDeclaration(const std::string & NodeAsmName)144 void Cfg::createNodeNameDeclaration(const std::string &NodeAsmName) {
145   auto *Var = VariableDeclaration::create(GlobalInits.get());
146   Var->setName(Ctx, BlockNameGlobalPrefix + NodeAsmName);
147   Var->setIsConstant(true);
148   Var->addInitializer(VariableDeclaration::DataInitializer::create(
149       GlobalInits.get(), NodeAsmName.data(), NodeAsmName.size() + 1));
150   const SizeT Int64ByteSize = typeWidthInBytes(IceType_i64);
151   Var->setAlignment(Int64ByteSize); // Wasteful, 32-bit could use 4 bytes.
152   GlobalInits->push_back(Var);
153 }
154 
createBlockProfilingInfoDeclaration(const std::string & NodeAsmName,VariableDeclaration * NodeNameDeclaration)155 void Cfg::createBlockProfilingInfoDeclaration(
156     const std::string &NodeAsmName, VariableDeclaration *NodeNameDeclaration) {
157   auto *Var = VariableDeclaration::create(GlobalInits.get());
158   Var->setName(Ctx, BlockStatsGlobalPrefix + NodeAsmName);
159   const SizeT Int64ByteSize = typeWidthInBytes(IceType_i64);
160   Var->addInitializer(VariableDeclaration::ZeroInitializer::create(
161       GlobalInits.get(), Int64ByteSize));
162 
163   const RelocOffsetT NodeNameDeclarationOffset = 0;
164   Var->addInitializer(VariableDeclaration::RelocInitializer::create(
165       GlobalInits.get(), NodeNameDeclaration,
166       {RelocOffset::create(Ctx, NodeNameDeclarationOffset)}));
167   Var->setAlignment(Int64ByteSize);
168   GlobalInits->push_back(Var);
169 }
170 
translate()171 void Cfg::translate() {
172   if (hasError())
173     return;
174   // Cache the possibly-overridden optimization level once translation begins.
175   // It would be nicer to do this in the constructor, but we need to wait until
176   // after setFunctionName() has a chance to be called.
177   OptimizationLevel =
178       getFlags().matchForceO2(getFunctionName(), getSequenceNumber())
179           ? Opt_2
180           : getFlags().getOptLevel();
181   if (BuildDefs::timers()) {
182     if (getFlags().matchTimingFocus(getFunctionName(), getSequenceNumber())) {
183       setFocusedTiming();
184       getContext()->resetTimer(GlobalContext::TSK_Default);
185     }
186   }
187   if (BuildDefs::dump()) {
188     if (isVerbose(IceV_Status) &&
189         getFlags().matchTestStatus(getFunctionName(), getSequenceNumber())) {
190       getContext()->getStrDump()
191           << ">>>Translating " << getFunctionNameAndSize()
192           << " seq=" << getSequenceNumber() << "\n";
193     }
194   }
195   TimerMarker T_func(getContext(), getFunctionName().toStringOrEmpty());
196   TimerMarker T(TimerStack::TT_translate, this);
197 
198   dump("Initial CFG");
199 
200   // Create the Hi and Lo variables where a split was needed
201   for (Variable *Var : Variables) {
202     if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Var)) {
203       Var64On32->initHiLo(this);
204     } else if (auto *VarVecOn32 = llvm::dyn_cast<VariableVecOn32>(Var)) {
205       VarVecOn32->initVecElement(this);
206     }
207   }
208 
209   // Instrument the Cfg, e.g. with AddressSanitizer
210   if (!BuildDefs::minimal() && getFlags().getSanitizeAddresses()) {
211     getContext()->instrumentFunc(this);
212     dump("Instrumented CFG");
213   }
214 
215   // The set of translation passes and their order are determined by the
216   // target.
217   getTarget()->translate();
218 
219   dump("Final output");
220   if (getFocusedTiming()) {
221     getContext()->dumpLocalTimers(getFunctionName().toString());
222   }
223 }
224 
fixPhiNodes()225 void Cfg::fixPhiNodes() {
226   for (auto *Node : Nodes) {
227     // Fix all the phi edges since WASM can't tell how to make them correctly at
228     // the beginning.
229     assert(Node);
230     const auto &InEdges = Node->getInEdges();
231     for (auto &Instr : Node->getPhis()) {
232       auto *Phi = llvm::cast<InstPhi>(&Instr);
233       assert(Phi);
234       for (SizeT i = 0; i < InEdges.size(); ++i) {
235         Phi->setLabel(i, InEdges[i]);
236       }
237     }
238   }
239 }
240 
computeInOutEdges()241 void Cfg::computeInOutEdges() {
242   // Compute the out-edges.
243   for (CfgNode *Node : Nodes) {
244     Node->computeSuccessors();
245   }
246 
247   // Prune any unreachable nodes before computing in-edges.
248   SizeT NumNodes = getNumNodes();
249   BitVector Reachable(NumNodes);
250   BitVector Pending(NumNodes);
251   Pending.set(getEntryNode()->getIndex());
252   while (true) {
253     int Index = Pending.find_first();
254     if (Index == -1)
255       break;
256     Pending.reset(Index);
257     Reachable.set(Index);
258     CfgNode *Node = Nodes[Index];
259     assert(Node->getIndex() == (SizeT)Index);
260     for (CfgNode *Succ : Node->getOutEdges()) {
261       SizeT SuccIndex = Succ->getIndex();
262       if (!Reachable.test(SuccIndex))
263         Pending.set(SuccIndex);
264     }
265   }
266   SizeT Dest = 0;
267   for (SizeT Source = 0; Source < NumNodes; ++Source) {
268     if (Reachable.test(Source)) {
269       Nodes[Dest] = Nodes[Source];
270       Nodes[Dest]->resetIndex(Dest);
271       // Compute the in-edges.
272       Nodes[Dest]->computePredecessors();
273       ++Dest;
274     }
275   }
276   Nodes.resize(Dest);
277 
278   TimerMarker T(TimerStack::TT_phiValidation, this);
279   for (CfgNode *Node : Nodes)
280     Node->enforcePhiConsistency();
281 }
282 
renumberInstructions()283 void Cfg::renumberInstructions() {
284   TimerMarker T(TimerStack::TT_renumberInstructions, this);
285   NextInstNumber = Inst::NumberInitial;
286   for (CfgNode *Node : Nodes)
287     Node->renumberInstructions();
288   // Make sure the entry node is the first node and therefore got the lowest
289   // instruction numbers, to facilitate live range computation of function
290   // arguments.  We want to model function arguments as being live on entry to
291   // the function, otherwise an argument whose only use is in the first
292   // instruction will be assigned a trivial live range and the register
293   // allocator will not recognize its live range as overlapping another
294   // variable's live range.
295   assert(Nodes.empty() || (*Nodes.begin() == getEntryNode()));
296 }
297 
298 // placePhiLoads() must be called before placePhiStores().
placePhiLoads()299 void Cfg::placePhiLoads() {
300   TimerMarker T(TimerStack::TT_placePhiLoads, this);
301   for (CfgNode *Node : Nodes)
302     Node->placePhiLoads();
303 }
304 
305 // placePhiStores() must be called after placePhiLoads().
placePhiStores()306 void Cfg::placePhiStores() {
307   TimerMarker T(TimerStack::TT_placePhiStores, this);
308   for (CfgNode *Node : Nodes)
309     Node->placePhiStores();
310 }
311 
deletePhis()312 void Cfg::deletePhis() {
313   TimerMarker T(TimerStack::TT_deletePhis, this);
314   for (CfgNode *Node : Nodes)
315     Node->deletePhis();
316 }
317 
advancedPhiLowering()318 void Cfg::advancedPhiLowering() {
319   TimerMarker T(TimerStack::TT_advancedPhiLowering, this);
320   // Clear all previously computed live ranges (but not live-in/live-out bit
321   // vectors or last-use markers), because the follow-on register allocation is
322   // only concerned with live ranges across the newly created blocks.
323   for (Variable *Var : Variables) {
324     Var->getLiveRange().reset();
325   }
326   // This splits edges and appends new nodes to the end of the node list. This
327   // can invalidate iterators, so don't use an iterator.
328   SizeT NumNodes = getNumNodes();
329   SizeT NumVars = getNumVariables();
330   for (SizeT I = 0; I < NumNodes; ++I)
331     Nodes[I]->advancedPhiLowering();
332 
333   TimerMarker TT(TimerStack::TT_lowerPhiAssignments, this);
334   if (true) {
335     // The following code does an in-place update of liveness and live ranges
336     // as a result of adding the new phi edge split nodes.
337     getLiveness()->initPhiEdgeSplits(Nodes.begin() + NumNodes,
338                                      Variables.begin() + NumVars);
339     TimerMarker TTT(TimerStack::TT_liveness, this);
340     // Iterate over the newly added nodes to add their liveness info.
341     for (auto I = Nodes.begin() + NumNodes, E = Nodes.end(); I != E; ++I) {
342       InstNumberT FirstInstNum = getNextInstNumber();
343       (*I)->renumberInstructions();
344       InstNumberT LastInstNum = getNextInstNumber() - 1;
345       (*I)->liveness(getLiveness());
346       (*I)->livenessAddIntervals(getLiveness(), FirstInstNum, LastInstNum);
347     }
348   } else {
349     // The following code does a brute-force recalculation of live ranges as a
350     // result of adding the new phi edge split nodes. The liveness calculation
351     // is particularly expensive because the new nodes are not yet in a proper
352     // topological order and so convergence is slower.
353     //
354     // This code is kept here for reference and can be temporarily enabled in
355     // case the incremental code is under suspicion.
356     renumberInstructions();
357     liveness(Liveness_Intervals);
358     getVMetadata()->init(VMK_All);
359   }
360   Target->regAlloc(RAK_Phi);
361 }
362 
363 // Find a reasonable placement for nodes that have not yet been placed, while
364 // maintaining the same relative ordering among already placed nodes.
reorderNodes()365 void Cfg::reorderNodes() {
366   // TODO(ascull): it would be nice if the switch tests were always followed by
367   // the default case to allow for fall through.
368   using PlacedList = CfgList<CfgNode *>;
369   PlacedList Placed;      // Nodes with relative placement locked down
370   PlacedList Unreachable; // Unreachable nodes
371   PlacedList::iterator NoPlace = Placed.end();
372   // Keep track of where each node has been tentatively placed so that we can
373   // manage insertions into the middle.
374   CfgVector<PlacedList::iterator> PlaceIndex(Nodes.size(), NoPlace);
375   for (CfgNode *Node : Nodes) {
376     // The "do ... while(0);" construct is to factor out the --PlaceIndex and
377     // assert() statements before moving to the next node.
378     do {
379       if (Node != getEntryNode() && Node->getInEdges().empty()) {
380         // The node has essentially been deleted since it is not a successor of
381         // any other node.
382         Unreachable.push_back(Node);
383         PlaceIndex[Node->getIndex()] = Unreachable.end();
384         Node->setNeedsPlacement(false);
385         continue;
386       }
387       if (!Node->needsPlacement()) {
388         // Add to the end of the Placed list.
389         Placed.push_back(Node);
390         PlaceIndex[Node->getIndex()] = Placed.end();
391         continue;
392       }
393       Node->setNeedsPlacement(false);
394       // Assume for now that the unplaced node is from edge-splitting and
395       // therefore has 1 in-edge and 1 out-edge (actually, possibly more than 1
396       // in-edge if the predecessor node was contracted). If this changes in
397       // the future, rethink the strategy.
398       assert(Node->getInEdges().size() >= 1);
399       assert(Node->hasSingleOutEdge());
400 
401       // If it's a (non-critical) edge where the successor has a single
402       // in-edge, then place it before the successor.
403       CfgNode *Succ = Node->getOutEdges().front();
404       if (Succ->getInEdges().size() == 1 &&
405           PlaceIndex[Succ->getIndex()] != NoPlace) {
406         Placed.insert(PlaceIndex[Succ->getIndex()], Node);
407         PlaceIndex[Node->getIndex()] = PlaceIndex[Succ->getIndex()];
408         continue;
409       }
410 
411       // Otherwise, place it after the (first) predecessor.
412       CfgNode *Pred = Node->getInEdges().front();
413       auto PredPosition = PlaceIndex[Pred->getIndex()];
414       // It shouldn't be the case that PredPosition==NoPlace, but if that
415       // somehow turns out to be true, we just insert Node before
416       // PredPosition=NoPlace=Placed.end() .
417       if (PredPosition != NoPlace)
418         ++PredPosition;
419       Placed.insert(PredPosition, Node);
420       PlaceIndex[Node->getIndex()] = PredPosition;
421     } while (0);
422 
423     --PlaceIndex[Node->getIndex()];
424     assert(*PlaceIndex[Node->getIndex()] == Node);
425   }
426 
427   // Reorder Nodes according to the built-up lists.
428   NodeList Reordered;
429   Reordered.reserve(Placed.size() + Unreachable.size());
430   for (CfgNode *Node : Placed)
431     Reordered.push_back(Node);
432   for (CfgNode *Node : Unreachable)
433     Reordered.push_back(Node);
434   assert(getNumNodes() == Reordered.size());
435   swapNodes(Reordered);
436 }
437 
localCSE(bool AssumeSSA)438 void Cfg::localCSE(bool AssumeSSA) {
439   // Performs basic-block local common-subexpression elimination
440   // If we have
441   // t1 = op b c
442   // t2 = op b c
443   // This pass will replace future references to t2 in a basic block by t1
444   // Points to note:
445   // 1. Assumes SSA by default. To change this, use -lcse=no-ssa
446   //      This is needed if this pass is moved to a point later in the pipeline.
447   //      If variables have a single definition (in the node), CSE can work just
448   //      on the basis of an equality compare on instructions (sans Dest). When
449   //      variables can be updated (hence, non-SSA) the result of a previous
450   //      instruction which used that variable as an operand can not be reused.
451   // 2. Leaves removal of instructions to DCE.
452   // 3. Only enabled on arithmetic instructions. pnacl-clang (-O2) is expected
453   //    to take care of cases not arising from GEP simplification.
454   // 4. By default, a single pass is made over each basic block. Control this
455   //    with -lcse-max-iters=N
456 
457   TimerMarker T(TimerStack::TT_localCse, this);
458   struct VariableHash {
459     size_t operator()(const Variable *Var) const { return Var->hashValue(); }
460   };
461 
462   struct InstHash {
463     size_t operator()(const Inst *Instr) const {
464       auto Kind = Instr->getKind();
465       auto Result =
466           std::hash<typename std::underlying_type<Inst::InstKind>::type>()(
467               Kind);
468       for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
469         Result ^= Instr->getSrc(i)->hashValue();
470       }
471       return Result;
472     }
473   };
474   struct InstEq {
475     bool srcEq(const Operand *A, const Operand *B) const {
476       if (llvm::isa<Variable>(A) || llvm::isa<Constant>(A))
477         return (A == B);
478       return false;
479     }
480     bool operator()(const Inst *InstrA, const Inst *InstrB) const {
481       if ((InstrA->getKind() != InstrB->getKind()) ||
482           (InstrA->getSrcSize() != InstrB->getSrcSize()))
483         return false;
484 
485       if (auto *A = llvm::dyn_cast<InstArithmetic>(InstrA)) {
486         auto *B = llvm::cast<InstArithmetic>(InstrB);
487         // A, B are guaranteed to be of the same 'kind' at this point
488         // So, dyn_cast is not needed
489         if (A->getOp() != B->getOp())
490           return false;
491       }
492       // Does not enter loop if different kind or number of operands
493       for (SizeT i = 0; i < InstrA->getSrcSize(); ++i) {
494         if (!srcEq(InstrA->getSrc(i), InstrB->getSrc(i)))
495           return false;
496       }
497       return true;
498     }
499   };
500 
501   for (CfgNode *Node : getNodes()) {
502     CfgUnorderedSet<Inst *, InstHash, InstEq> Seen;
503     // Stores currently available instructions.
504 
505     CfgUnorderedMap<Variable *, Variable *, VariableHash> Replacements;
506     // Combining the above two into a single data structure might consume less
507     // memory but will be slower i.e map of Instruction -> Set of Variables
508 
509     CfgUnorderedMap<Variable *, std::vector<Inst *>, VariableHash> Dependency;
510     // Maps a variable to the Instructions that depend on it.
511     // a = op1 b c
512     // x = op2 c d
513     // Will result in the map : b -> {a}, c -> {a, x}, d -> {x}
514     // Not necessary for SSA as dependencies will never be invalidated, and the
515     // container will use minimal memory when left unused.
516 
517     auto IterCount = getFlags().getLocalCseMaxIterations();
518 
519     for (uint32_t i = 0; i < IterCount; ++i) {
520       // TODO(manasijm): Stats on IterCount -> performance
521       for (Inst &Instr : Node->getInsts()) {
522         if (Instr.isDeleted() || !llvm::isa<InstArithmetic>(&Instr))
523           continue;
524         if (!AssumeSSA) {
525           // Invalidate replacements
526           auto Iter = Replacements.find(Instr.getDest());
527           if (Iter != Replacements.end()) {
528             Replacements.erase(Iter);
529           }
530 
531           // Invalidate 'seen' instructions whose operands were just updated.
532           auto DepIter = Dependency.find(Instr.getDest());
533           if (DepIter != Dependency.end()) {
534             for (auto *DepInst : DepIter->second) {
535               Seen.erase(DepInst);
536             }
537           }
538         }
539 
540         // Replace - doing this before checking for repetitions might enable
541         // more optimizations
542         for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
543           auto *Opnd = Instr.getSrc(i);
544           if (auto *Var = llvm::dyn_cast<Variable>(Opnd)) {
545             if (Replacements.find(Var) != Replacements.end()) {
546               Instr.replaceSource(i, Replacements[Var]);
547             }
548           }
549         }
550 
551         // Check for repetitions
552         auto SeenIter = Seen.find(&Instr);
553         if (SeenIter != Seen.end()) { // seen before
554           const Inst *Found = *SeenIter;
555           Replacements[Instr.getDest()] = Found->getDest();
556         } else { // new
557           Seen.insert(&Instr);
558 
559           if (!AssumeSSA) {
560             // Update dependencies
561             for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
562               auto *Opnd = Instr.getSrc(i);
563               if (auto *Var = llvm::dyn_cast<Variable>(Opnd)) {
564                 Dependency[Var].push_back(&Instr);
565               }
566             }
567           }
568         }
569       }
570     }
571   }
572 }
573 
loopInvariantCodeMotion()574 void Cfg::loopInvariantCodeMotion() {
575   TimerMarker T(TimerStack::TT_loopInvariantCodeMotion, this);
576   // Does not introduce new nodes as of now.
577   for (auto &Loop : LoopInfo) {
578     CfgNode *Header = Loop.Header;
579     assert(Header);
580     if (Header->getLoopNestDepth() < 1)
581       return;
582     CfgNode *PreHeader = Loop.PreHeader;
583     if (PreHeader == nullptr || PreHeader->getInsts().size() == 0) {
584       return; // try next loop
585     }
586 
587     auto &Insts = PreHeader->getInsts();
588     auto &LastInst = Insts.back();
589     Insts.pop_back();
590 
591     for (auto *Inst : findLoopInvariantInstructions(Loop.Body)) {
592       PreHeader->appendInst(Inst);
593     }
594     PreHeader->appendInst(&LastInst);
595   }
596 }
597 
598 CfgVector<Inst *>
findLoopInvariantInstructions(const CfgUnorderedSet<SizeT> & Body)599 Cfg::findLoopInvariantInstructions(const CfgUnorderedSet<SizeT> &Body) {
600   CfgUnorderedSet<Inst *> InvariantInsts;
601   CfgUnorderedSet<Variable *> InvariantVars;
602   for (auto *Var : getArgs()) {
603     InvariantVars.insert(Var);
604   }
605   bool Changed = false;
606   do {
607     Changed = false;
608     for (auto NodeIndex : Body) {
609       auto *Node = Nodes[NodeIndex];
610       CfgVector<std::reference_wrapper<Inst>> Insts(Node->getInsts().begin(),
611                                                     Node->getInsts().end());
612 
613       for (auto &InstRef : Insts) {
614         auto &Inst = InstRef.get();
615         if (Inst.isDeleted() ||
616             InvariantInsts.find(&Inst) != InvariantInsts.end())
617           continue;
618         switch (Inst.getKind()) {
619         case Inst::InstKind::Alloca:
620         case Inst::InstKind::Br:
621         case Inst::InstKind::Ret:
622         case Inst::InstKind::Phi:
623         case Inst::InstKind::Call:
624         case Inst::InstKind::Intrinsic:
625         case Inst::InstKind::Load:
626         case Inst::InstKind::Store:
627         case Inst::InstKind::Switch:
628           continue;
629         default:
630           break;
631         }
632 
633         bool IsInvariant = true;
634         for (SizeT i = 0; i < Inst.getSrcSize(); ++i) {
635           if (auto *Var = llvm::dyn_cast<Variable>(Inst.getSrc(i))) {
636             if (InvariantVars.find(Var) == InvariantVars.end()) {
637               IsInvariant = false;
638             }
639           }
640         }
641         if (IsInvariant) {
642           Changed = true;
643           InvariantInsts.insert(&Inst);
644           Node->getInsts().remove(Inst);
645           if (Inst.getDest() != nullptr) {
646             InvariantVars.insert(Inst.getDest());
647           }
648         }
649       }
650     }
651   } while (Changed);
652 
653   CfgVector<Inst *> InstVector(InvariantInsts.begin(), InvariantInsts.end());
654   std::sort(InstVector.begin(), InstVector.end(),
655             [](Inst *A, Inst *B) { return A->getNumber() < B->getNumber(); });
656   return InstVector;
657 }
658 
shortCircuitJumps()659 void Cfg::shortCircuitJumps() {
660   // Split Nodes whenever an early jump is possible.
661   // __N :
662   //   a = <something>
663   //   Instruction 1 without side effect
664   //   ... b = <something> ...
665   //   Instruction N without side effect
666   //   t1 = or a b
667   //   br t1 __X __Y
668   //
669   // is transformed into:
670   // __N :
671   //   a = <something>
672   //   br a __X __N_ext
673   //
674   // __N_ext :
675   //   Instruction 1 without side effect
676   //   ... b = <something> ...
677   //   Instruction N without side effect
678   //   br b __X __Y
679   // (Similar logic for AND, jump to false instead of true target.)
680 
681   TimerMarker T(TimerStack::TT_shortCircuit, this);
682   getVMetadata()->init(VMK_Uses);
683   auto NodeStack = this->getNodes();
684   CfgUnorderedMap<SizeT, CfgVector<CfgNode *>> Splits;
685   while (!NodeStack.empty()) {
686     auto *Node = NodeStack.back();
687     NodeStack.pop_back();
688     auto NewNode = Node->shortCircuit();
689     if (NewNode) {
690       NodeStack.push_back(NewNode);
691       NodeStack.push_back(Node);
692       Splits[Node->getIndex()].push_back(NewNode);
693     }
694   }
695 
696   // Insert nodes in the right place
697   NodeList NewList;
698   NewList.reserve(Nodes.size());
699   CfgUnorderedSet<SizeT> Inserted;
700   for (auto *Node : Nodes) {
701     if (Inserted.find(Node->getIndex()) != Inserted.end())
702       continue; // already inserted
703     NodeList Stack{Node};
704     while (!Stack.empty()) {
705       auto *Current = Stack.back();
706       Stack.pop_back();
707       Inserted.insert(Current->getIndex());
708       NewList.push_back(Current);
709       for (auto *Next : Splits[Current->getIndex()]) {
710         Stack.push_back(Next);
711       }
712     }
713   }
714 
715   SizeT NodeIndex = 0;
716   for (auto *Node : NewList) {
717     Node->resetIndex(NodeIndex++);
718   }
719   Nodes = NewList;
720 }
721 
floatConstantCSE()722 void Cfg::floatConstantCSE() {
723   // Load multiple uses of a floating point constant (between two call
724   // instructions or block start/end) into a variable before its first use.
725   //   t1 = b + 1.0
726   //   t2 = c + 1.0
727   // Gets transformed to:
728   //   t0 = 1.0
729   //   t0_1 = t0
730   //   t1 = b + t0_1
731   //   t2 = c + t0_1
732   // Call instructions reset the procedure, but use the same variable, just in
733   // case it got a register. We are assuming floating point registers are not
734   // callee saved in general. Example, continuing from before:
735   //   result = call <some function>
736   //   t3 = d + 1.0
737   // Gets transformed to:
738   //   result = call <some function>
739   //   t0_2 = t0
740   //   t3 = d + t0_2
741   // TODO(manasijm, stichnot): Figure out how to 'link' t0 to the stack slot of
742   // 1.0. When t0 does not get a register, introducing an extra assignment
743   // statement does not make sense. The relevant portion is marked below.
744 
745   TimerMarker _(TimerStack::TT_floatConstantCse, this);
746   for (CfgNode *Node : getNodes()) {
747 
748     CfgUnorderedMap<Constant *, Variable *> ConstCache;
749     auto Current = Node->getInsts().begin();
750     auto End = Node->getInsts().end();
751     while (Current != End) {
752       CfgUnorderedMap<Constant *, CfgVector<InstList::iterator>> FloatUses;
753       if (llvm::isa<InstCall>(iteratorToInst(Current))) {
754         ++Current;
755         assert(Current != End);
756         // Block should not end with a call
757       }
758       while (Current != End && !llvm::isa<InstCall>(iteratorToInst(Current))) {
759         if (!Current->isDeleted()) {
760           for (SizeT i = 0; i < Current->getSrcSize(); ++i) {
761             if (auto *Const = llvm::dyn_cast<Constant>(Current->getSrc(i))) {
762               if (Const->getType() == IceType_f32 ||
763                   Const->getType() == IceType_f64) {
764                 FloatUses[Const].push_back(Current);
765               }
766             }
767           }
768         }
769         ++Current;
770       }
771       for (auto &Pair : FloatUses) {
772         static constexpr SizeT MinUseThreshold = 3;
773         if (Pair.second.size() < MinUseThreshold)
774           continue;
775         // Only consider constants with at least `MinUseThreshold` uses
776         auto &Insts = Node->getInsts();
777 
778         if (ConstCache.find(Pair.first) == ConstCache.end()) {
779           // Saw a constant (which is used at least twice) for the first time
780           auto *NewVar = makeVariable(Pair.first->getType());
781           // NewVar->setLinkedTo(Pair.first);
782           // TODO(manasijm): Plumbing for linking to an Operand.
783           auto *Assign = InstAssign::create(Node->getCfg(), NewVar, Pair.first);
784           Insts.insert(Pair.second[0], Assign);
785           ConstCache[Pair.first] = NewVar;
786         }
787 
788         auto *NewVar = makeVariable(Pair.first->getType());
789         NewVar->setLinkedTo(ConstCache[Pair.first]);
790         auto *Assign =
791             InstAssign::create(Node->getCfg(), NewVar, ConstCache[Pair.first]);
792 
793         Insts.insert(Pair.second[0], Assign);
794         for (auto InstUse : Pair.second) {
795           for (SizeT i = 0; i < InstUse->getSrcSize(); ++i) {
796             if (auto *Const = llvm::dyn_cast<Constant>(InstUse->getSrc(i))) {
797               if (Const == Pair.first) {
798                 InstUse->replaceSource(i, NewVar);
799               }
800             }
801           }
802         }
803       }
804     }
805   }
806 }
807 
doArgLowering()808 void Cfg::doArgLowering() {
809   TimerMarker T(TimerStack::TT_doArgLowering, this);
810   getTarget()->lowerArguments();
811 }
812 
sortAndCombineAllocas(CfgVector<InstAlloca * > & Allocas,uint32_t CombinedAlignment,InstList & Insts,AllocaBaseVariableType BaseVariableType)813 void Cfg::sortAndCombineAllocas(CfgVector<InstAlloca *> &Allocas,
814                                 uint32_t CombinedAlignment, InstList &Insts,
815                                 AllocaBaseVariableType BaseVariableType) {
816   if (Allocas.empty())
817     return;
818   // Sort by decreasing alignment.
819   std::sort(Allocas.begin(), Allocas.end(), [](InstAlloca *A1, InstAlloca *A2) {
820     uint32_t Align1 = A1->getAlignInBytes();
821     uint32_t Align2 = A2->getAlignInBytes();
822     if (Align1 == Align2)
823       return A1->getNumber() < A2->getNumber();
824     else
825       return Align1 > Align2;
826   });
827   // Process the allocas in order of decreasing stack alignment.  This allows
828   // us to pack less-aligned pieces after more-aligned ones, resulting in less
829   // stack growth.  It also allows there to be at most one stack alignment "and"
830   // instruction for a whole list of allocas.
831   uint32_t CurrentOffset = 0;
832   CfgVector<int32_t> Offsets;
833   for (Inst *Instr : Allocas) {
834     auto *Alloca = llvm::cast<InstAlloca>(Instr);
835     // Adjust the size of the allocation up to the next multiple of the
836     // object's alignment.
837     uint32_t Alignment = std::max(Alloca->getAlignInBytes(), 1u);
838     auto *ConstSize =
839         llvm::dyn_cast<ConstantInteger32>(Alloca->getSizeInBytes());
840     const uint32_t Size =
841         Utils::applyAlignment(ConstSize->getValue(), Alignment);
842 
843     // Ensure that the Size does not exceed StackSizeLimit which can lead to
844     // undefined behavior below.
845     if (Size > StackSizeLimit) {
846       llvm::report_fatal_error("Local variable exceeds stack size limit");
847       return; // NOTREACHED
848     }
849 
850     if (BaseVariableType == BVT_FramePointer) {
851       // Addressing is relative to the frame pointer.  Subtract the offset after
852       // adding the size of the alloca, because it grows downwards from the
853       // frame pointer.
854       Offsets.push_back(Target->getFramePointerOffset(CurrentOffset, Size));
855     } else {
856       // Addressing is relative to the stack pointer or to a user pointer.  Add
857       // the offset before adding the size of the object, because it grows
858       // upwards from the stack pointer. In addition, if the addressing is
859       // relative to the stack pointer, we need to add the pre-computed max out
860       // args size bytes.
861       const uint32_t OutArgsOffsetOrZero =
862           (BaseVariableType == BVT_StackPointer)
863               ? getTarget()->maxOutArgsSizeBytes()
864               : 0;
865       Offsets.push_back(CurrentOffset + OutArgsOffsetOrZero);
866     }
867 
868     // Ensure that the addition below does not overflow or exceed
869     // StackSizeLimit as this leads to undefined behavior.
870     if (CurrentOffset + Size > StackSizeLimit) {
871       llvm::report_fatal_error("Local variable exceeds stack size limit");
872       return; // NOTREACHED
873     }
874 
875     // Update the running offset of the fused alloca region.
876     CurrentOffset += Size;
877   }
878   // Round the offset up to the alignment granularity to use as the size.
879   uint32_t TotalSize = Utils::applyAlignment(CurrentOffset, CombinedAlignment);
880   // Ensure every alloca was assigned an offset.
881   assert(Allocas.size() == Offsets.size());
882 
883   switch (BaseVariableType) {
884   case BVT_UserPointer: {
885     Variable *BaseVariable = makeVariable(IceType_i32);
886     for (SizeT i = 0; i < Allocas.size(); ++i) {
887       auto *Alloca = llvm::cast<InstAlloca>(Allocas[i]);
888       // Emit a new addition operation to replace the alloca.
889       Operand *AllocaOffset = Ctx->getConstantInt32(Offsets[i]);
890       InstArithmetic *Add =
891           InstArithmetic::create(this, InstArithmetic::Add, Alloca->getDest(),
892                                  BaseVariable, AllocaOffset);
893       Insts.push_front(Add);
894       Alloca->setDeleted();
895     }
896     Operand *AllocaSize = Ctx->getConstantInt32(TotalSize);
897     InstAlloca *CombinedAlloca =
898         InstAlloca::create(this, BaseVariable, AllocaSize, CombinedAlignment);
899     CombinedAlloca->setKnownFrameOffset();
900     Insts.push_front(CombinedAlloca);
901   } break;
902   case BVT_StackPointer:
903   case BVT_FramePointer: {
904     for (SizeT i = 0; i < Allocas.size(); ++i) {
905       auto *Alloca = llvm::cast<InstAlloca>(Allocas[i]);
906       // Emit a fake definition of the rematerializable variable.
907       Variable *Dest = Alloca->getDest();
908       auto *Def = InstFakeDef::create(this, Dest);
909       if (BaseVariableType == BVT_StackPointer)
910         Dest->setRematerializable(getTarget()->getStackReg(), Offsets[i]);
911       else
912         Dest->setRematerializable(getTarget()->getFrameReg(), Offsets[i]);
913       Insts.push_front(Def);
914       Alloca->setDeleted();
915     }
916     // Allocate the fixed area in the function prolog.
917     getTarget()->reserveFixedAllocaArea(TotalSize, CombinedAlignment);
918   } break;
919   }
920 }
921 
processAllocas(bool SortAndCombine)922 void Cfg::processAllocas(bool SortAndCombine) {
923   TimerMarker _(TimerStack::TT_alloca, this);
924   const uint32_t StackAlignment = getTarget()->getStackAlignment();
925   CfgNode *EntryNode = getEntryNode();
926   assert(EntryNode);
927   // LLVM enforces power of 2 alignment.
928   assert(llvm::isPowerOf2_32(StackAlignment));
929   // If the ABI's stack alignment is smaller than the vector size (16 bytes),
930   // conservatively use a frame pointer to allow for explicit alignment of the
931   // stack pointer. This needs to happen before register allocation so the frame
932   // pointer can be reserved.
933   if (getTarget()->needsStackPointerAlignment()) {
934     getTarget()->setHasFramePointer();
935   }
936   // Determine if there are large alignment allocations in the entry block or
937   // dynamic allocations (variable size in the entry block).
938   bool HasLargeAlignment = false;
939   bool HasDynamicAllocation = false;
940   for (Inst &Instr : EntryNode->getInsts()) {
941     if (Instr.isDeleted())
942       continue;
943     if (auto *Alloca = llvm::dyn_cast<InstAlloca>(&Instr)) {
944       uint32_t AlignmentParam = Alloca->getAlignInBytes();
945       if (AlignmentParam > StackAlignment)
946         HasLargeAlignment = true;
947       if (llvm::isa<Constant>(Alloca->getSizeInBytes()))
948         Alloca->setKnownFrameOffset();
949       else {
950         HasDynamicAllocation = true;
951         // If Allocas are not sorted, the first dynamic allocation causes
952         // later Allocas to be at unknown offsets relative to the stack/frame.
953         if (!SortAndCombine)
954           break;
955       }
956     }
957   }
958   // Don't do the heavyweight sorting and layout for low optimization levels.
959   if (!SortAndCombine)
960     return;
961   // Any alloca outside the entry block is a dynamic allocation.
962   for (CfgNode *Node : Nodes) {
963     if (Node == EntryNode)
964       continue;
965     for (Inst &Instr : Node->getInsts()) {
966       if (Instr.isDeleted())
967         continue;
968       if (llvm::isa<InstAlloca>(&Instr)) {
969         // Allocations outside the entry block require a frame pointer.
970         HasDynamicAllocation = true;
971         break;
972       }
973     }
974     if (HasDynamicAllocation)
975       break;
976   }
977   // Mark the target as requiring a frame pointer.
978   if (HasLargeAlignment || HasDynamicAllocation)
979     getTarget()->setHasFramePointer();
980   // Collect the Allocas into the two vectors.
981   // Allocas in the entry block that have constant size and alignment less
982   // than or equal to the function's stack alignment.
983   CfgVector<InstAlloca *> FixedAllocas;
984   // Allocas in the entry block that have constant size and alignment greater
985   // than the function's stack alignment.
986   CfgVector<InstAlloca *> AlignedAllocas;
987   // Maximum alignment used by any alloca.
988   uint32_t MaxAlignment = StackAlignment;
989   for (Inst &Instr : EntryNode->getInsts()) {
990     if (Instr.isDeleted())
991       continue;
992     if (auto *Alloca = llvm::dyn_cast<InstAlloca>(&Instr)) {
993       if (!llvm::isa<Constant>(Alloca->getSizeInBytes()))
994         continue;
995       uint32_t AlignmentParam = Alloca->getAlignInBytes();
996       // For default align=0, set it to the real value 1, to avoid any
997       // bit-manipulation problems below.
998       AlignmentParam = std::max(AlignmentParam, 1u);
999       assert(llvm::isPowerOf2_32(AlignmentParam));
1000       if (HasDynamicAllocation && AlignmentParam > StackAlignment) {
1001         // If we have both dynamic allocations and large stack alignments,
1002         // high-alignment allocations are pulled out with their own base.
1003         AlignedAllocas.push_back(Alloca);
1004       } else {
1005         FixedAllocas.push_back(Alloca);
1006       }
1007       MaxAlignment = std::max(AlignmentParam, MaxAlignment);
1008     }
1009   }
1010   // Add instructions to the head of the entry block in reverse order.
1011   InstList &Insts = getEntryNode()->getInsts();
1012   if (HasDynamicAllocation && HasLargeAlignment) {
1013     // We are using a frame pointer, but fixed large-alignment alloca addresses
1014     // do not have a known offset from either the stack or frame pointer.
1015     // They grow up from a user pointer from an alloca.
1016     sortAndCombineAllocas(AlignedAllocas, MaxAlignment, Insts, BVT_UserPointer);
1017     // Fixed size allocas are addressed relative to the frame pointer.
1018     sortAndCombineAllocas(FixedAllocas, StackAlignment, Insts,
1019                           BVT_FramePointer);
1020   } else {
1021     // Otherwise, fixed size allocas are addressed relative to the stack unless
1022     // there are dynamic allocas.
1023     const AllocaBaseVariableType BasePointerType =
1024         (HasDynamicAllocation ? BVT_FramePointer : BVT_StackPointer);
1025     sortAndCombineAllocas(FixedAllocas, MaxAlignment, Insts, BasePointerType);
1026   }
1027   if (!FixedAllocas.empty() || !AlignedAllocas.empty())
1028     // No use calling findRematerializable() unless there is some
1029     // rematerializable alloca instruction to seed it.
1030     findRematerializable();
1031 }
1032 
1033 namespace {
1034 
1035 // Helpers for findRematerializable().  For each of them, if a suitable
1036 // rematerialization is found, the instruction's Dest variable is set to be
1037 // rematerializable and it returns true, otherwise it returns false.
1038 
rematerializeArithmetic(const Inst * Instr)1039 bool rematerializeArithmetic(const Inst *Instr) {
1040   // Check that it's an Arithmetic instruction with an Add operation.
1041   auto *Arith = llvm::dyn_cast<InstArithmetic>(Instr);
1042   if (Arith == nullptr || Arith->getOp() != InstArithmetic::Add)
1043     return false;
1044   // Check that Src(0) is rematerializable.
1045   auto *Src0Var = llvm::dyn_cast<Variable>(Arith->getSrc(0));
1046   if (Src0Var == nullptr || !Src0Var->isRematerializable())
1047     return false;
1048   // Check that Src(1) is an immediate.
1049   auto *Src1Imm = llvm::dyn_cast<ConstantInteger32>(Arith->getSrc(1));
1050   if (Src1Imm == nullptr)
1051     return false;
1052   Arith->getDest()->setRematerializable(
1053       Src0Var->getRegNum(), Src0Var->getStackOffset() + Src1Imm->getValue());
1054   return true;
1055 }
1056 
rematerializeAssign(const Inst * Instr)1057 bool rematerializeAssign(const Inst *Instr) {
1058   // An InstAssign only originates from an inttoptr or ptrtoint instruction,
1059   // which never occurs in a MINIMAL build.
1060   if (BuildDefs::minimal())
1061     return false;
1062   // Check that it's an Assign instruction.
1063   if (!llvm::isa<InstAssign>(Instr))
1064     return false;
1065   // Check that Src(0) is rematerializable.
1066   auto *Src0Var = llvm::dyn_cast<Variable>(Instr->getSrc(0));
1067   if (Src0Var == nullptr || !Src0Var->isRematerializable())
1068     return false;
1069   Instr->getDest()->setRematerializable(Src0Var->getRegNum(),
1070                                         Src0Var->getStackOffset());
1071   return true;
1072 }
1073 
rematerializeCast(const Inst * Instr)1074 bool rematerializeCast(const Inst *Instr) {
1075   // An pointer-type bitcast never occurs in a MINIMAL build.
1076   if (BuildDefs::minimal())
1077     return false;
1078   // Check that it's a Cast instruction with a Bitcast operation.
1079   auto *Cast = llvm::dyn_cast<InstCast>(Instr);
1080   if (Cast == nullptr || Cast->getCastKind() != InstCast::Bitcast)
1081     return false;
1082   // Check that Src(0) is rematerializable.
1083   auto *Src0Var = llvm::dyn_cast<Variable>(Cast->getSrc(0));
1084   if (Src0Var == nullptr || !Src0Var->isRematerializable())
1085     return false;
1086   // Check that Dest and Src(0) have the same type.
1087   Variable *Dest = Cast->getDest();
1088   if (Dest->getType() != Src0Var->getType())
1089     return false;
1090   Dest->setRematerializable(Src0Var->getRegNum(), Src0Var->getStackOffset());
1091   return true;
1092 }
1093 
1094 } // end of anonymous namespace
1095 
1096 /// Scan the function to find additional rematerializable variables.  This is
1097 /// possible when the source operand of an InstAssignment is a rematerializable
1098 /// variable, or the same for a pointer-type InstCast::Bitcast, or when an
1099 /// InstArithmetic is an add of a rematerializable variable and an immediate.
1100 /// Note that InstAssignment instructions and pointer-type InstCast::Bitcast
1101 /// instructions generally only come about from the IceConverter's treatment of
1102 /// inttoptr, ptrtoint, and bitcast instructions.  TODO(stichnot): Consider
1103 /// other possibilities, however unlikely, such as InstArithmetic::Sub, or
1104 /// commutativity.
findRematerializable()1105 void Cfg::findRematerializable() {
1106   // Scan the instructions in order, and repeat until no new opportunities are
1107   // found.  It may take more than one iteration because a variable's defining
1108   // block may happen to come after a block where it is used, depending on the
1109   // CfgNode linearization order.
1110   bool FoundNewAssignment;
1111   do {
1112     FoundNewAssignment = false;
1113     for (CfgNode *Node : getNodes()) {
1114       // No need to process Phi instructions.
1115       for (Inst &Instr : Node->getInsts()) {
1116         if (Instr.isDeleted())
1117           continue;
1118         Variable *Dest = Instr.getDest();
1119         if (Dest == nullptr || Dest->isRematerializable())
1120           continue;
1121         if (rematerializeArithmetic(&Instr) || rematerializeAssign(&Instr) ||
1122             rematerializeCast(&Instr)) {
1123           FoundNewAssignment = true;
1124         }
1125       }
1126     }
1127   } while (FoundNewAssignment);
1128 }
1129 
doAddressOpt()1130 void Cfg::doAddressOpt() {
1131   TimerMarker T(TimerStack::TT_doAddressOpt, this);
1132   for (CfgNode *Node : Nodes)
1133     Node->doAddressOpt();
1134 }
1135 
1136 namespace {
1137 // ShuffleVectorUtils implements helper functions for rematerializing
1138 // shufflevector instructions from a sequence of extractelement/insertelement
1139 // instructions. It looks for the following pattern:
1140 //
1141 // %t0 = extractelement A, %n0
1142 // %t1 = extractelement B, %n1
1143 // %t2 = extractelement C, %n2
1144 // ...
1145 // %tN = extractelement N, %nN
1146 // %d0 = insertelement undef, %t0, 0
1147 // %d1 = insertelement %d0, %t1, 1
1148 // %d2 = insertelement %d1, %t2, 2
1149 // ...
1150 // %dest = insertelement %d_N-1, %tN, N
1151 //
1152 // where N is num_element(typeof(%dest)), and A, B, C, ... N are at most two
1153 // distinct variables.
1154 namespace ShuffleVectorUtils {
1155 // findAllInserts is used when searching for all the insertelements that are
1156 // used in a shufflevector operation. This function works recursively, when
1157 // invoked with I = i, the function assumes Insts[i] is the last found
1158 // insertelement in the chain. The next insertelement insertruction is saved in
1159 // Insts[i+1].
findAllInserts(Cfg * Func,GlobalContext * Ctx,VariablesMetadata * VM,CfgVector<const Inst * > * Insts,SizeT I=0)1160 bool findAllInserts(Cfg *Func, GlobalContext *Ctx, VariablesMetadata *VM,
1161                     CfgVector<const Inst *> *Insts, SizeT I = 0) {
1162   const bool Verbose = BuildDefs::dump() && Func->isVerbose(IceV_ShufMat);
1163 
1164   if (I > Insts->size()) {
1165     if (Verbose) {
1166       Ctx->getStrDump() << "\tToo many inserts.\n";
1167     }
1168     return false;
1169   }
1170 
1171   const auto *LastInsert = Insts->at(I);
1172   assert(llvm::isa<InstInsertElement>(LastInsert));
1173 
1174   if (I == Insts->size() - 1) {
1175     // Matching against undef is not really needed because the value in Src(0)
1176     // will be totally overwritten. We still enforce it anyways because the
1177     // PNaCl toolchain generates the bitcode with it.
1178     if (!llvm::isa<ConstantUndef>(LastInsert->getSrc(0))) {
1179       if (Verbose) {
1180         Ctx->getStrDump() << "\tSrc0 is not undef: " << I << " "
1181                           << Insts->size();
1182         LastInsert->dump(Func);
1183         Ctx->getStrDump() << "\n";
1184       }
1185       return false;
1186     }
1187 
1188     // The following loop ensures that the insertelements are sorted. In theory,
1189     // we could relax this restriction and allow any order. As long as each
1190     // index appears exactly once, this chain is still a candidate for becoming
1191     // a shufflevector. The Insts vector is traversed backwards because the
1192     // instructions are "enqueued" in reverse order.
1193     int32_t ExpectedElement = 0;
1194     for (const auto *I : reverse_range(*Insts)) {
1195       if (llvm::cast<ConstantInteger32>(I->getSrc(2))->getValue() !=
1196           ExpectedElement) {
1197         return false;
1198       }
1199       ++ExpectedElement;
1200     }
1201     return true;
1202   }
1203 
1204   const auto *Src0V = llvm::cast<Variable>(LastInsert->getSrc(0));
1205   const auto *Def = VM->getSingleDefinition(Src0V);
1206 
1207   // Only optimize if the first operand in
1208   //
1209   //   Dest = insertelement A, B, 10
1210   //
1211   // is singly-def'ed.
1212   if (Def == nullptr) {
1213     if (Verbose) {
1214       Ctx->getStrDump() << "\tmulti-def: ";
1215       (*Insts)[I]->dump(Func);
1216       Ctx->getStrDump() << "\n";
1217     }
1218     return false;
1219   }
1220 
1221   // We also require the (single) definition to come from an insertelement
1222   // instruction.
1223   if (!llvm::isa<InstInsertElement>(Def)) {
1224     if (Verbose) {
1225       Ctx->getStrDump() << "\tnot insert element: ";
1226       Def->dump(Func);
1227       Ctx->getStrDump() << "\n";
1228     }
1229     return false;
1230   }
1231 
1232   // Everything seems fine, so we save Def in Insts, and delegate the decision
1233   // to findAllInserts.
1234   (*Insts)[I + 1] = Def;
1235 
1236   return findAllInserts(Func, Ctx, VM, Insts, I + 1);
1237 }
1238 
1239 // insertsLastElement returns true if Insert is inserting an element in the last
1240 // position of a vector.
insertsLastElement(const Inst & Insert)1241 bool insertsLastElement(const Inst &Insert) {
1242   const Type DestTy = Insert.getDest()->getType();
1243   assert(isVectorType(DestTy));
1244   const SizeT Elem =
1245       llvm::cast<ConstantInteger32>(Insert.getSrc(2))->getValue();
1246   return Elem == typeNumElements(DestTy) - 1;
1247 }
1248 
1249 // findAllExtracts goes over all the insertelement instructions that are
1250 // candidates to be replaced by a shufflevector, and searches for all the
1251 // definitions of the elements being inserted. If all of the elements are the
1252 // result of an extractelement instruction, and all of the extractelements
1253 // operate on at most two different sources, than the instructions can be
1254 // replaced by a shufflevector.
findAllExtracts(Cfg * Func,GlobalContext * Ctx,VariablesMetadata * VM,const CfgVector<const Inst * > & Insts,Variable ** Src0,Variable ** Src1,CfgVector<const Inst * > * Extracts)1255 bool findAllExtracts(Cfg *Func, GlobalContext *Ctx, VariablesMetadata *VM,
1256                      const CfgVector<const Inst *> &Insts, Variable **Src0,
1257                      Variable **Src1, CfgVector<const Inst *> *Extracts) {
1258   const bool Verbose = BuildDefs::dump() && Func->isVerbose(IceV_ShufMat);
1259 
1260   *Src0 = nullptr;
1261   *Src1 = nullptr;
1262   assert(Insts.size() > 0);
1263   for (SizeT I = 0; I < Insts.size(); ++I) {
1264     const auto *Insert = Insts.at(I);
1265     const auto *Src1V = llvm::dyn_cast<Variable>(Insert->getSrc(1));
1266     if (Src1V == nullptr) {
1267       if (Verbose) {
1268         Ctx->getStrDump() << "src(1) is not a variable: ";
1269         Insert->dump(Func);
1270         Ctx->getStrDump() << "\n";
1271       }
1272       return false;
1273     }
1274 
1275     const auto *Def = VM->getSingleDefinition(Src1V);
1276     if (Def == nullptr) {
1277       if (Verbose) {
1278         Ctx->getStrDump() << "multi-def src(1): ";
1279         Insert->dump(Func);
1280         Ctx->getStrDump() << "\n";
1281       }
1282       return false;
1283     }
1284 
1285     if (!llvm::isa<InstExtractElement>(Def)) {
1286       if (Verbose) {
1287         Ctx->getStrDump() << "not extractelement: ";
1288         Def->dump(Func);
1289         Ctx->getStrDump() << "\n";
1290       }
1291       return false;
1292     }
1293 
1294     auto *Src = llvm::cast<Variable>(Def->getSrc(0));
1295     if (*Src0 == nullptr) {
1296       // No sources yet. Save Src to Src0.
1297       *Src0 = Src;
1298     } else if (*Src1 == nullptr) {
1299       // We already have a source, so we might save Src in Src1 -- but only if
1300       // Src0 is not Src.
1301       if (*Src0 != Src) {
1302         *Src1 = Src;
1303       }
1304     } else if (Src != *Src0 && Src != *Src1) {
1305       // More than two sources, so we can't rematerialize the shufflevector
1306       // instruction.
1307       if (Verbose) {
1308         Ctx->getStrDump() << "Can't shuffle more than two sources.\n";
1309       }
1310       return false;
1311     }
1312 
1313     (*Extracts)[I] = Def;
1314   }
1315 
1316   // We should have seen at least one source operand.
1317   assert(*Src0 != nullptr);
1318 
1319   // If a second source was not seen, then we just make Src1 = Src0 to simplify
1320   // things down stream. This should not matter, as all of the indexes in the
1321   // shufflevector instruction will point to Src0.
1322   if (*Src1 == nullptr) {
1323     *Src1 = *Src0;
1324   }
1325 
1326   return true;
1327 }
1328 
1329 } // end of namespace ShuffleVectorUtils
1330 } // end of anonymous namespace
1331 
materializeVectorShuffles()1332 void Cfg::materializeVectorShuffles() {
1333   const bool Verbose = BuildDefs::dump() && isVerbose(IceV_ShufMat);
1334 
1335   std::unique_ptr<OstreamLocker> L;
1336   if (Verbose) {
1337     L.reset(new OstreamLocker(getContext()));
1338     getContext()->getStrDump() << "\nShuffle materialization:\n";
1339   }
1340 
1341   // MaxVectorElements is the maximum number of elements in the vector types
1342   // handled by Subzero. We use it to create the Inserts and Extracts vectors
1343   // with the appropriate size, thus avoiding resize() calls.
1344   const SizeT MaxVectorElements = typeNumElements(IceType_v16i8);
1345   CfgVector<const Inst *> Inserts(MaxVectorElements);
1346   CfgVector<const Inst *> Extracts(MaxVectorElements);
1347 
1348   TimerMarker T(TimerStack::TT_materializeVectorShuffles, this);
1349   for (CfgNode *Node : Nodes) {
1350     for (auto &Instr : Node->getInsts()) {
1351       if (!llvm::isa<InstInsertElement>(Instr)) {
1352         continue;
1353       }
1354       if (!ShuffleVectorUtils::insertsLastElement(Instr)) {
1355         // To avoid wasting time, we only start the pattern match at the last
1356         // insertelement instruction -- and go backwards from there.
1357         continue;
1358       }
1359       if (Verbose) {
1360         getContext()->getStrDump() << "\tCandidate: ";
1361         Instr.dump(this);
1362         getContext()->getStrDump() << "\n";
1363       }
1364       Inserts.resize(typeNumElements(Instr.getDest()->getType()));
1365       Inserts[0] = &Instr;
1366       if (!ShuffleVectorUtils::findAllInserts(this, getContext(),
1367                                               VMetadata.get(), &Inserts)) {
1368         // If we fail to find a sequence of insertelements, we stop the
1369         // optimization.
1370         if (Verbose) {
1371           getContext()->getStrDump() << "\tFalse alarm.\n";
1372         }
1373         continue;
1374       }
1375       if (Verbose) {
1376         getContext()->getStrDump() << "\tFound the following insertelement: \n";
1377         for (auto *I : reverse_range(Inserts)) {
1378           getContext()->getStrDump() << "\t\t";
1379           I->dump(this);
1380           getContext()->getStrDump() << "\n";
1381         }
1382       }
1383       Extracts.resize(Inserts.size());
1384       Variable *Src0;
1385       Variable *Src1;
1386       if (!ShuffleVectorUtils::findAllExtracts(this, getContext(),
1387                                                VMetadata.get(), Inserts, &Src0,
1388                                                &Src1, &Extracts)) {
1389         // If we fail to match the definitions of the insertelements' sources
1390         // with extractelement instructions -- or if those instructions operate
1391         // on more than two different variables -- we stop the optimization.
1392         if (Verbose) {
1393           getContext()->getStrDump() << "\tFailed to match extractelements.\n";
1394         }
1395         continue;
1396       }
1397       if (Verbose) {
1398         getContext()->getStrDump()
1399             << "\tFound the following insert/extract element pairs: \n";
1400         for (SizeT I = 0; I < Inserts.size(); ++I) {
1401           const SizeT Pos = Inserts.size() - I - 1;
1402           getContext()->getStrDump() << "\t\tInsert : ";
1403           Inserts[Pos]->dump(this);
1404           getContext()->getStrDump() << "\n\t\tExtract: ";
1405           Extracts[Pos]->dump(this);
1406           getContext()->getStrDump() << "\n";
1407         }
1408       }
1409 
1410       assert(Src0 != nullptr);
1411       assert(Src1 != nullptr);
1412 
1413       auto *ShuffleVector =
1414           InstShuffleVector::create(this, Instr.getDest(), Src0, Src1);
1415       assert(ShuffleVector->getSrc(0) == Src0);
1416       assert(ShuffleVector->getSrc(1) == Src1);
1417       for (SizeT I = 0; I < Extracts.size(); ++I) {
1418         const SizeT Pos = Extracts.size() - I - 1;
1419         auto *Index = llvm::cast<ConstantInteger32>(Extracts[Pos]->getSrc(1));
1420         if (Src0 == Extracts[Pos]->getSrc(0)) {
1421           ShuffleVector->addIndex(Index);
1422         } else {
1423           ShuffleVector->addIndex(llvm::cast<ConstantInteger32>(
1424               Ctx->getConstantInt32(Index->getValue() + Extracts.size())));
1425         }
1426       }
1427 
1428       if (Verbose) {
1429         getContext()->getStrDump() << "Created: ";
1430         ShuffleVector->dump(this);
1431         getContext()->getStrDump() << "\n";
1432       }
1433 
1434       Instr.setDeleted();
1435       auto &LoweringContext = getTarget()->getContext();
1436       LoweringContext.setInsertPoint(instToIterator(&Instr));
1437       LoweringContext.insert(ShuffleVector);
1438     }
1439   }
1440 }
1441 
genCode()1442 void Cfg::genCode() {
1443   TimerMarker T(TimerStack::TT_genCode, this);
1444   for (CfgNode *Node : Nodes)
1445     Node->genCode();
1446 }
1447 
1448 // Compute the stack frame layout.
genFrame()1449 void Cfg::genFrame() {
1450   TimerMarker T(TimerStack::TT_genFrame, this);
1451   getTarget()->addProlog(Entry);
1452   for (CfgNode *Node : Nodes)
1453     if (Node->getHasReturn())
1454       getTarget()->addEpilog(Node);
1455 }
1456 
generateLoopInfo()1457 void Cfg::generateLoopInfo() {
1458   TimerMarker T(TimerStack::TT_computeLoopNestDepth, this);
1459   LoopInfo = ComputeLoopInfo(this);
1460 }
1461 
1462 // This is a lightweight version of live-range-end calculation. Marks the last
1463 // use of only those variables whose definition and uses are completely with a
1464 // single block. It is a quick single pass and doesn't need to iterate until
1465 // convergence.
livenessLightweight()1466 void Cfg::livenessLightweight() {
1467   TimerMarker T(TimerStack::TT_livenessLightweight, this);
1468   getVMetadata()->init(VMK_Uses);
1469   for (CfgNode *Node : Nodes)
1470     Node->livenessLightweight();
1471 }
1472 
liveness(LivenessMode Mode)1473 void Cfg::liveness(LivenessMode Mode) {
1474   TimerMarker T(TimerStack::TT_liveness, this);
1475   // Destroying the previous (if any) Liveness information clears the Liveness
1476   // allocator TLS pointer.
1477   Live = nullptr;
1478   Live = Liveness::create(this, Mode);
1479 
1480   getVMetadata()->init(VMK_Uses);
1481   Live->init();
1482 
1483   // Initialize with all nodes needing to be processed.
1484   BitVector NeedToProcess(Nodes.size(), true);
1485   while (NeedToProcess.any()) {
1486     // Iterate in reverse topological order to speed up convergence.
1487     for (CfgNode *Node : reverse_range(Nodes)) {
1488       if (NeedToProcess[Node->getIndex()]) {
1489         NeedToProcess[Node->getIndex()] = false;
1490         bool Changed = Node->liveness(getLiveness());
1491         if (Changed) {
1492           // If the beginning-of-block liveness changed since the last
1493           // iteration, mark all in-edges as needing to be processed.
1494           for (CfgNode *Pred : Node->getInEdges())
1495             NeedToProcess[Pred->getIndex()] = true;
1496         }
1497       }
1498     }
1499   }
1500   if (Mode == Liveness_Intervals) {
1501     // Reset each variable's live range.
1502     for (Variable *Var : Variables)
1503       Var->resetLiveRange();
1504   }
1505   // Make a final pass over each node to delete dead instructions, collect the
1506   // first and last instruction numbers, and add live range segments for that
1507   // node.
1508   for (CfgNode *Node : Nodes) {
1509     InstNumberT FirstInstNum = Inst::NumberSentinel;
1510     InstNumberT LastInstNum = Inst::NumberSentinel;
1511     for (Inst &I : Node->getPhis()) {
1512       I.deleteIfDead();
1513       if (Mode == Liveness_Intervals && !I.isDeleted()) {
1514         if (FirstInstNum == Inst::NumberSentinel)
1515           FirstInstNum = I.getNumber();
1516         assert(I.getNumber() > LastInstNum);
1517         LastInstNum = I.getNumber();
1518       }
1519     }
1520     for (Inst &I : Node->getInsts()) {
1521       I.deleteIfDead();
1522       if (Mode == Liveness_Intervals && !I.isDeleted()) {
1523         if (FirstInstNum == Inst::NumberSentinel)
1524           FirstInstNum = I.getNumber();
1525         assert(I.getNumber() > LastInstNum);
1526         LastInstNum = I.getNumber();
1527       }
1528     }
1529     if (Mode == Liveness_Intervals) {
1530       // Special treatment for live in-args. Their liveness needs to extend
1531       // beyond the beginning of the function, otherwise an arg whose only use
1532       // is in the first instruction will end up having the trivial live range
1533       // [2,2) and will *not* interfere with other arguments. So if the first
1534       // instruction of the method is "r=arg1+arg2", both args may be assigned
1535       // the same register. This is accomplished by extending the entry block's
1536       // instruction range from [2,n) to [1,n) which will transform the
1537       // problematic [2,2) live ranges into [1,2).  This extension works because
1538       // the entry node is guaranteed to have the lowest instruction numbers.
1539       if (Node == getEntryNode()) {
1540         FirstInstNum = Inst::NumberExtended;
1541         // Just in case the entry node somehow contains no instructions...
1542         if (LastInstNum == Inst::NumberSentinel)
1543           LastInstNum = FirstInstNum;
1544       }
1545       // If this node somehow contains no instructions, don't bother trying to
1546       // add liveness intervals for it, because variables that are live-in and
1547       // live-out will have a bogus interval added.
1548       if (FirstInstNum != Inst::NumberSentinel)
1549         Node->livenessAddIntervals(getLiveness(), FirstInstNum, LastInstNum);
1550     }
1551   }
1552 }
1553 
1554 // Traverse every Variable of every Inst and verify that it appears within the
1555 // Variable's computed live range.
validateLiveness() const1556 bool Cfg::validateLiveness() const {
1557   TimerMarker T(TimerStack::TT_validateLiveness, this);
1558   bool Valid = true;
1559   OstreamLocker L(Ctx);
1560   Ostream &Str = Ctx->getStrDump();
1561   for (CfgNode *Node : Nodes) {
1562     Inst *FirstInst = nullptr;
1563     for (Inst &Instr : Node->getInsts()) {
1564       if (Instr.isDeleted())
1565         continue;
1566       if (FirstInst == nullptr)
1567         FirstInst = &Instr;
1568       InstNumberT InstNumber = Instr.getNumber();
1569       if (Variable *Dest = Instr.getDest()) {
1570         if (!Dest->getIgnoreLiveness()) {
1571           bool Invalid = false;
1572           constexpr bool IsDest = true;
1573           if (!Dest->getLiveRange().containsValue(InstNumber, IsDest))
1574             Invalid = true;
1575           // Check that this instruction actually *begins* Dest's live range,
1576           // by checking that Dest is not live in the previous instruction. As
1577           // a special exception, we don't check this for the first instruction
1578           // of the block, because a Phi temporary may be live at the end of
1579           // the previous block, and if it is also assigned in the first
1580           // instruction of this block, the adjacent live ranges get merged.
1581           if (&Instr != FirstInst && !Instr.isDestRedefined() &&
1582               Dest->getLiveRange().containsValue(InstNumber - 1, IsDest))
1583             Invalid = true;
1584           if (Invalid) {
1585             Valid = false;
1586             Str << "Liveness error: inst " << Instr.getNumber() << " dest ";
1587             Dest->dump(this);
1588             Str << " live range " << Dest->getLiveRange() << "\n";
1589           }
1590         }
1591       }
1592       FOREACH_VAR_IN_INST(Var, Instr) {
1593         static constexpr bool IsDest = false;
1594         if (!Var->getIgnoreLiveness() &&
1595             !Var->getLiveRange().containsValue(InstNumber, IsDest)) {
1596           Valid = false;
1597           Str << "Liveness error: inst " << Instr.getNumber() << " var ";
1598           Var->dump(this);
1599           Str << " live range " << Var->getLiveRange() << "\n";
1600         }
1601       }
1602     }
1603   }
1604   return Valid;
1605 }
1606 
contractEmptyNodes()1607 void Cfg::contractEmptyNodes() {
1608   // If we're decorating the asm output with register liveness info, this
1609   // information may become corrupted or incorrect after contracting nodes that
1610   // contain only redundant assignments. As such, we disable this pass when
1611   // DecorateAsm is specified. This may make the resulting code look more
1612   // branchy, but it should have no effect on the register assignments.
1613   if (getFlags().getDecorateAsm())
1614     return;
1615   for (CfgNode *Node : Nodes) {
1616     Node->contractIfEmpty();
1617   }
1618 }
1619 
doBranchOpt()1620 void Cfg::doBranchOpt() {
1621   TimerMarker T(TimerStack::TT_doBranchOpt, this);
1622   for (auto I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
1623     auto NextNode = I + 1;
1624     (*I)->doBranchOpt(NextNode == E ? nullptr : *NextNode);
1625   }
1626 }
1627 
1628 // ======================== Dump routines ======================== //
1629 
1630 // emitTextHeader() is not target-specific (apart from what is abstracted by
1631 // the Assembler), so it is defined here rather than in the target lowering
1632 // class.
emitTextHeader(GlobalString Name,GlobalContext * Ctx,const Assembler * Asm)1633 void Cfg::emitTextHeader(GlobalString Name, GlobalContext *Ctx,
1634                          const Assembler *Asm) {
1635   if (!BuildDefs::dump())
1636     return;
1637   Ostream &Str = Ctx->getStrEmit();
1638   Str << "\t.text\n";
1639   if (getFlags().getFunctionSections())
1640     Str << "\t.section\t.text." << Name << ",\"ax\",%progbits\n";
1641   if (!Asm->getInternal() || getFlags().getDisableInternal()) {
1642     Str << "\t.globl\t" << Name << "\n";
1643     Str << "\t.type\t" << Name << ",%function\n";
1644   }
1645   Str << "\t" << Asm->getAlignDirective() << " "
1646       << Asm->getBundleAlignLog2Bytes() << ",0x";
1647   for (uint8_t I : Asm->getNonExecBundlePadding())
1648     Str.write_hex(I);
1649   Str << "\n";
1650   Str << Name << ":\n";
1651 }
1652 
emitJumpTables()1653 void Cfg::emitJumpTables() {
1654   switch (getFlags().getOutFileType()) {
1655   case FT_Elf:
1656   case FT_Iasm: {
1657     // The emission needs to be delayed until the after the text section so
1658     // save the offsets in the global context.
1659     for (const InstJumpTable *JumpTable : JumpTables) {
1660       Ctx->addJumpTableData(JumpTable->toJumpTableData(getAssembler()));
1661     }
1662   } break;
1663   case FT_Asm: {
1664     // Emit the assembly directly so we don't need to hang on to all the names
1665     for (const InstJumpTable *JumpTable : JumpTables)
1666       getTarget()->emitJumpTable(this, JumpTable);
1667   } break;
1668   }
1669 }
1670 
emit()1671 void Cfg::emit() {
1672   if (!BuildDefs::dump())
1673     return;
1674   TimerMarker T(TimerStack::TT_emitAsm, this);
1675   if (getFlags().getDecorateAsm()) {
1676     renumberInstructions();
1677     getVMetadata()->init(VMK_Uses);
1678     liveness(Liveness_Basic);
1679     dump("After recomputing liveness for -decorate-asm");
1680   }
1681   OstreamLocker L(Ctx);
1682   Ostream &Str = Ctx->getStrEmit();
1683   const Assembler *Asm = getAssembler<>();
1684 
1685   emitTextHeader(FunctionName, Ctx, Asm);
1686   if (getFlags().getDecorateAsm()) {
1687     for (Variable *Var : getVariables()) {
1688       if (Var->hasKnownStackOffset() && !Var->isRematerializable()) {
1689         Str << "\t" << Var->getSymbolicStackOffset() << " = "
1690             << Var->getStackOffset() << "\n";
1691       }
1692     }
1693   }
1694   for (CfgNode *Node : Nodes) {
1695     Node->emit(this);
1696   }
1697   emitJumpTables();
1698   Str << "\n";
1699 }
1700 
emitIAS()1701 void Cfg::emitIAS() {
1702   TimerMarker T(TimerStack::TT_emitAsm, this);
1703   // The emitIAS() routines emit into the internal assembler buffer, so there's
1704   // no need to lock the streams.
1705   for (CfgNode *Node : Nodes) {
1706     Node->emitIAS(this);
1707   }
1708   emitJumpTables();
1709 }
1710 
getTotalMemoryMB() const1711 size_t Cfg::getTotalMemoryMB() const {
1712   constexpr size_t _1MB = 1024 * 1024;
1713   assert(Allocator != nullptr);
1714   assert(CfgAllocatorTraits::current() == Allocator.get());
1715   return Allocator->getTotalMemory() / _1MB;
1716 }
1717 
getLivenessMemoryMB() const1718 size_t Cfg::getLivenessMemoryMB() const {
1719   constexpr size_t _1MB = 1024 * 1024;
1720   if (Live == nullptr) {
1721     return 0;
1722   }
1723   return Live->getAllocator()->getTotalMemory() / _1MB;
1724 }
1725 
1726 // Dumps the IR with an optional introductory message.
dump(const char * Message)1727 void Cfg::dump(const char *Message) {
1728   if (!BuildDefs::dump())
1729     return;
1730   if (!isVerbose())
1731     return;
1732   OstreamLocker L(Ctx);
1733   Ostream &Str = Ctx->getStrDump();
1734   if (Message[0])
1735     Str << "================ " << Message << " ================\n";
1736   if (isVerbose(IceV_Mem)) {
1737     Str << "Memory size = " << getTotalMemoryMB() << " MB\n";
1738   }
1739   setCurrentNode(getEntryNode());
1740   // Print function name+args
1741   if (isVerbose(IceV_Instructions)) {
1742     Str << "define ";
1743     if (getInternal() && !getFlags().getDisableInternal())
1744       Str << "internal ";
1745     Str << ReturnType << " @" << getFunctionName() << "(";
1746     for (SizeT i = 0; i < Args.size(); ++i) {
1747       if (i > 0)
1748         Str << ", ";
1749       Str << Args[i]->getType() << " ";
1750       Args[i]->dump(this);
1751     }
1752     // Append an extra copy of the function name here, in order to print its
1753     // size stats but not mess up lit tests.
1754     Str << ") { # " << getFunctionNameAndSize() << "\n";
1755   }
1756   resetCurrentNode();
1757   if (isVerbose(IceV_Liveness)) {
1758     // Print summary info about variables
1759     for (Variable *Var : Variables) {
1760       Str << "// multiblock=";
1761       if (getVMetadata()->isTracked(Var))
1762         Str << getVMetadata()->isMultiBlock(Var);
1763       else
1764         Str << "?";
1765       Str << " defs=";
1766       bool FirstPrint = true;
1767       if (VMetadata->getKind() != VMK_Uses) {
1768         if (const Inst *FirstDef = VMetadata->getFirstDefinition(Var)) {
1769           Str << FirstDef->getNumber();
1770           FirstPrint = false;
1771         }
1772       }
1773       if (VMetadata->getKind() == VMK_All) {
1774         for (const Inst *Instr : VMetadata->getLatterDefinitions(Var)) {
1775           if (!FirstPrint)
1776             Str << ",";
1777           Str << Instr->getNumber();
1778           FirstPrint = false;
1779         }
1780       }
1781       Str << " weight=" << Var->getWeight(this) << " ";
1782       Var->dump(this);
1783       Str << " LIVE=" << Var->getLiveRange() << "\n";
1784     }
1785   }
1786   // Print each basic block
1787   for (CfgNode *Node : Nodes)
1788     Node->dump(this);
1789   if (isVerbose(IceV_Instructions))
1790     Str << "}\n";
1791 }
1792 
1793 } // end of namespace Ice
1794