xref: /aosp_15_r20/external/coreboot/util/cbfstool/fmd.c (revision b9411a12aaaa7e1e6a6fb7c5e057f44ee179a49c)
1 /* fmd.c, parser frontend and utility functions for flashmap descriptor language */
2 /* SPDX-License-Identifier: GPL-2.0-only */
3 
4 #include "fmd.h"
5 
6 #include "common.h"
7 #include "fmd_parser.h"
8 #include "fmd_scanner.h"
9 #include "option.h"
10 
11 #include <assert.h>
12 #include <search.h>
13 #include <string.h>
14 
15 /*
16  * Validate the given flashmap descriptor node's properties. In particular:
17  *  - Ensure its name is globally unique.
18  *  - Ensure its offset, if known, isn't located before the end of the previous
19  *    section, if this can be determined.
20  *  - Ensure its offset, if known, isn't located after the beginning of the next
21  *    section or off the end of its parent section, if this can be determined.
22  *  - Ensure its size is nonzero.
23  *  - Ensure that the combination of its size and offset, if they are both
24  *    known, doesn't place its end after the beginning of the next section or
25  *    off the end of its parent section, if this can be determined.
26  * In the case of a validation error, the particular problem is reported to
27  * standard error and this function returns false. It should be noted that this
28  * function makes no claim that the members of the node's child list are valid:
29  * under no circumstances is any recursive validation performed.
30  *
31  * @param node  The flashmap descriptor node to be validated
32  * @param start Optional minimum permissible base of the section to be
33  *              validated, to be provided if known
34  * @param end   Optional maximum permissible offset to the end of the section to
35  *              be validated, to be provided if known
36  * @return      Whether the node is valid
37  */
validate_descriptor_node(const struct flashmap_descriptor * node,struct unsigned_option start,struct unsigned_option end)38 static bool validate_descriptor_node(const struct flashmap_descriptor *node,
39 		struct unsigned_option start, struct unsigned_option end)
40 {
41 	assert(node);
42 
43 #if __GLIBC__
44 	/* GLIBC is different than the BSD libc implementations:
45 	 *   The  hdestroy() [function does] not free the buffers pointed
46 	 *   to by the key and data elements of the hash table entries.
47 	 * vs:
48 	 *   The hdestroy() function calls free(3) for each comparison key in
49 	 *   the search table but not the data item associated with the key.
50 	 */
51 	ENTRY search_key = {node->name, NULL};
52 #else
53 	ENTRY search_key = {strdup(node->name), NULL};
54 #endif
55 
56 	if (hsearch(search_key, FIND)) {
57 		ERROR("Multiple sections with name '%s'\n", node->name);
58 		return false;
59 	}
60 	if (!hsearch(search_key, ENTER))
61 		assert(false);
62 
63 	if (node->offset_known) {
64 		if (start.val_known && node->offset < start.val) {
65 			ERROR("Section '%s' starts too low\n", node->name);
66 			return false;
67 		} else if (end.val_known && node->offset > end.val) {
68 			ERROR("Section '%s' starts too high\n", node->name);
69 			return false;
70 		}
71 	}
72 
73 	if (node->size_known) {
74 		if (node->size == 0) {
75 			ERROR("Section '%s' given no space\n", node->name);
76 			return false;
77 		} else if (node->offset_known) {
78 			unsigned node_end = node->offset + node->size;
79 			if (end.val_known && node_end > end.val) {
80 				ERROR("Section '%s' too big\n", node->name);
81 				return false;
82 			}
83 		}
84 	}
85 
86 	return true;
87 }
88 
89 /*
90  * Performs reverse lateral processing of sibling nodes, as described by the
91  * documentation of its caller, validate_and_complete_info(). If it encounters
92  * a node that is invalid in a way that couldn't have been discovered earlier,
93  * it explains the problem to standard output and returns false.
94  *
95  * @param first_incomplete_it First node whose offset or size couldn't be
96  *                            determined during forward processing
97  * @param cur_incomplete_it   Last node whose offset or size is unknown
98  * @param end_watermark       Offset to the end of the unresolved region
99  * @return                    Whether all completed nodes were still valid
100  */
complete_missing_info_backward(flashmap_descriptor_iterator_t first_incomplete_it,flashmap_descriptor_iterator_t cur_incomplete_it,unsigned end_watermark)101 static bool complete_missing_info_backward(
102 			flashmap_descriptor_iterator_t first_incomplete_it,
103 			flashmap_descriptor_iterator_t cur_incomplete_it,
104 							unsigned end_watermark)
105 {
106 	assert(first_incomplete_it);
107 	assert(cur_incomplete_it);
108 	assert(cur_incomplete_it >= first_incomplete_it);
109 
110 	do {
111 		struct flashmap_descriptor *cur = *cur_incomplete_it;
112 
113 		assert(cur->offset_known || cur->size_known);
114 		if (!cur->offset_known) {
115 			if (cur->size > end_watermark) {
116 				ERROR("Section '%s' too big\n", cur->name);
117 				return false;
118 			}
119 			cur->offset_known = true;
120 			cur->offset = end_watermark -= cur->size;
121 		} else if (!cur->size_known) {
122 			if (cur->offset > end_watermark) {
123 				ERROR("Section '%s' starts too high\n",
124 								cur->name);
125 				return false;
126 			}
127 			cur->size_known = true;
128 			cur->size = end_watermark - cur->offset;
129 			end_watermark = cur->offset;
130 		}
131 	} while (--cur_incomplete_it >= first_incomplete_it);
132 
133 	return true;
134 }
135 
136 /*
137  * Recursively examine each descendant of the provided flashmap descriptor node
138  * to ensure its position and size are known, attempt to infer them otherwise,
139  * and validate their values once they've been populated.
140  * This processes nodes according to the following algorithm:
141  *  - At each level of the tree, it moves laterally between siblings, keeping
142  *    a watermark of its current offset relative to the previous section, which
143  *    it uses to fill in any unknown offsets it encounters along the way.
144  *  - The first time it encounters a sibling with unknown size, it loses track
145  *    of the watermark, and is therefore unable to complete further offsets;
146  *    instead, if the watermark was known before, it marks the current node as
147  *    the first that couldn't be completed in the initial pass.
148  *  - If the current watermark is unknown (i.e. a node has been marked as the
149  *    first incomplete one) and one with a fixed offset is encountered, a
150  *    reverse lateral traversal is dispatched that uses that provided offset as
151  *    a reverse watermark to complete all unknown fields until it finishes with
152  *    the node marked as the first incomplete one: at this point, that flag is
153  *    cleared, the watermark is updated, and forward processing resumes from
154  *    where it left off.
155  *  - If the watermark is unknown (i.e. node(s) are incomplete) after traversing
156  *    all children of a particular parent node, reverse processing is employed
157  *    as described above, except that the reverse watermark is initialized to
158  *    the parent node's size instead of the (nonexistent) next node's offset.
159  *  - Once all of a node's children have been processed, the algorithm applies
160  *    itself recursively to each of the child nodes; thus, lower levels of the
161  *    tree are processed only after their containing levels are finished.
162  * This approach can fail in two possible ways (in which case the problem is
163  * reported to standard output and this function returns false):
164  *  - Processing reveals that some node's provided value is invalid in some way.
165  *  - Processing determines that one or more provided values require an omitted
166  *    field to take a nonsensical value.
167  *  - Processing determines that it is impossible to determine a group of
168  *    omitted values. This state is detected when a node whose offset *and*
169  *    value are omitted is encountered during forward processing and while the
170  *    current watermark is unknown: in such a case, neither can be known without
171  *    being provided with either the other or more context.
172  * The function notably performs neither validation nor completion on the parent
173  * node it is passed; thus, it is important to ensure that that node is valid.
174  * (At the very least, it must have a valid size field in order for the
175  * algorithm to work on its children.)
176  *
177  * @param cur_level Parent node, which must minimally already have a valid size
178  * @return          Whether completing and validating the children succeeded
179  */
validate_and_complete_info(struct flashmap_descriptor * cur_level)180 static bool validate_and_complete_info(struct flashmap_descriptor *cur_level)
181 {
182 	assert(cur_level);
183 	assert(cur_level->size_known);
184 
185 	// Our watermark is only known when first_incomplete_it is NULL.
186 	flashmap_descriptor_iterator_t first_incomplete_it = NULL;
187 	unsigned watermark = 0;
188 
189 	fmd_foreach_child_iterator(cur_it, cur_level) {
190 		struct flashmap_descriptor *cur_section = *cur_it;
191 
192 		if (first_incomplete_it) {
193 			if (cur_section->offset_known) {
194 				if (complete_missing_info_backward(
195 						first_incomplete_it, cur_it - 1,
196 							cur_section->offset)) {
197 					first_incomplete_it = NULL;
198 					watermark = cur_section->offset;
199 				} else {
200 					return false;
201 				}
202 			}
203 			// Otherwise, we can't go back until a provided offset.
204 		} else if (!cur_section->offset_known) {
205 			cur_section->offset_known = true;
206 			cur_section->offset = watermark;
207 		}
208 
209 		assert(cur_level->size_known);
210 		struct unsigned_option max_endpoint = {true, cur_level->size};
211 		if (cur_it != cur_level->list + cur_level->list_len - 1) {
212 			struct flashmap_descriptor *next_section = cur_it[1];
213 			max_endpoint.val_known = next_section->offset_known;
214 			max_endpoint.val = next_section->offset;
215 		}
216 		if (!validate_descriptor_node(cur_section,
217 							(struct unsigned_option)
218 					{!first_incomplete_it, watermark},
219 								max_endpoint))
220 			return false;
221 
222 		if (!cur_section->size_known) {
223 			if (!cur_section->offset_known) {
224 				ERROR("Cannot determine either offset or size of section '%s'\n",
225 							cur_section->name);
226 				return false;
227 			} else if (!first_incomplete_it) {
228 				first_incomplete_it = cur_it;
229 			} else {
230 				// We shouldn't find an unknown size within an
231 				// incomplete region because the backward
232 				// traversal at the beginning of this node's
233 				// processing should have concluded said region.
234 				assert(!first_incomplete_it);
235 			}
236 		} else if (!first_incomplete_it) {
237 			watermark = cur_section->offset + cur_section->size;
238 		}
239 	}
240 
241 	if (first_incomplete_it &&
242 			!complete_missing_info_backward(first_incomplete_it,
243 				cur_level->list + cur_level->list_len - 1,
244 							cur_level->size))
245 		return false;
246 
247 	fmd_foreach_child(cur_section, cur_level) {
248 		assert(cur_section->offset_known);
249 		assert(cur_section->size_known);
250 
251 		if (!validate_and_complete_info(cur_section))
252 			return false;
253 	}
254 
255 	return true;
256 }
257 
print_with_prefix(const struct flashmap_descriptor * tree,const char * pre)258 static void print_with_prefix(const struct flashmap_descriptor *tree,
259 								const char *pre)
260 {
261 	assert(tree);
262 	assert(pre);
263 
264 	printf("%ssection '%s' has ", pre, tree->name);
265 
266 	if (tree->offset_known)
267 		printf("offset %uB, ", tree->offset);
268 	else
269 		fputs("unknown offset, ", stdout);
270 
271 	if (tree->size_known)
272 		printf("size %uB, ", tree->size);
273 	else
274 		fputs("unknown size, ", stdout);
275 
276 	printf("and %zu subsections", tree->list_len);
277 	if (tree->list_len) {
278 		puts(":");
279 
280 		char child_prefix[strlen(pre) + 2];
281 		strcpy(child_prefix, pre);
282 		strcat(child_prefix, "\t");
283 		fmd_foreach_child(each, tree)
284 			print_with_prefix(each, child_prefix);
285 	} else {
286 		puts("");
287 	}
288 }
289 
fmd_create(FILE * stream)290 struct flashmap_descriptor *fmd_create(FILE *stream)
291 {
292 	assert(stream);
293 
294 	yyin = stream;
295 
296 	struct flashmap_descriptor *ret = NULL;
297 	if (yyparse() == 0)
298 		ret = res;
299 
300 	yylex_destroy();
301 	yyin = NULL;
302 	res = NULL;
303 
304 	if (ret) {
305 		// This hash table is used to store the declared name of each
306 		// section and ensure that each is globally unique.
307 		if (!hcreate(fmd_count_nodes(ret))) {
308 			perror("E: While initializing hashtable");
309 			fmd_cleanup(ret);
310 			return NULL;
311 		}
312 
313 		// Even though we haven't checked that the root node (ret) has
314 		// a size field as required by this function, the parser
315 		// warrants that it does because the grammar requires it.
316 		if (!validate_and_complete_info(ret)) {
317 			hdestroy();
318 			fmd_cleanup(ret);
319 			return NULL;
320 		}
321 
322 		hdestroy();
323 	}
324 
325 	return ret;
326 }
327 
fmd_cleanup(struct flashmap_descriptor * victim)328 void fmd_cleanup(struct flashmap_descriptor *victim)
329 {
330 	if (!victim)
331 		return;
332 
333 	free(victim->name);
334 	for (unsigned idx = 0; idx < victim->list_len; ++idx)
335 		fmd_cleanup(victim->list[idx]);
336 	free(victim->list);
337 	free(victim);
338 }
339 
fmd_count_nodes(const struct flashmap_descriptor * tree)340 size_t fmd_count_nodes(const struct flashmap_descriptor *tree)
341 {
342 	assert(tree);
343 
344 	if (!tree->list_len)
345 		return 1;
346 
347 	unsigned count = 1;
348 	fmd_foreach_child(lower, tree)
349 		count += fmd_count_nodes(lower);
350 	return count;
351 }
352 
fmd_find_node(const struct flashmap_descriptor * root,const char * name)353 const struct flashmap_descriptor *fmd_find_node(
354 		const struct flashmap_descriptor *root, const char *name)
355 {
356 	assert(root);
357 	assert(name);
358 
359 	if (strcmp(root->name, name) == 0)
360 		return root;
361 
362 	fmd_foreach_child(descendant, root) {
363 		const struct flashmap_descriptor *match =
364 						fmd_find_node(descendant, name);
365 		if (match)
366 			return match;
367 	}
368 	return NULL;
369 }
370 
fmd_calc_absolute_offset(const struct flashmap_descriptor * root,const char * name)371 unsigned fmd_calc_absolute_offset(const struct flashmap_descriptor *root,
372 							const char *name)
373 {
374 	assert(root);
375 	assert(name);
376 
377 	if (strcmp(root->name, name) == 0)
378 		return 0;
379 
380 	fmd_foreach_child(descendant, root) {
381 		unsigned subtotal = fmd_calc_absolute_offset(descendant, name);
382 		if (subtotal != FMD_NOTFOUND)
383 			return descendant->offset + subtotal;
384 	}
385 	return FMD_NOTFOUND;
386 }
387 
fmd_print(const struct flashmap_descriptor * tree)388 void fmd_print(const struct flashmap_descriptor *tree)
389 {
390 	print_with_prefix(tree, "");
391 }
392