1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CmpInstAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/OverflowInstAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <utility>
45
46 #define DEBUG_TYPE "instcombine"
47 #include "llvm/Transforms/Utils/InstructionWorklist.h"
48
49 using namespace llvm;
50 using namespace PatternMatch;
51
52
53 /// Replace a select operand based on an equality comparison with the identity
54 /// constant of a binop.
foldSelectBinOpIdentity(SelectInst & Sel,const TargetLibraryInfo & TLI,InstCombinerImpl & IC)55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56 const TargetLibraryInfo &TLI,
57 InstCombinerImpl &IC) {
58 // The select condition must be an equality compare with a constant operand.
59 Value *X;
60 Constant *C;
61 CmpInst::Predicate Pred;
62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63 return nullptr;
64
65 bool IsEq;
66 if (ICmpInst::isEquality(Pred))
67 IsEq = Pred == ICmpInst::ICMP_EQ;
68 else if (Pred == FCmpInst::FCMP_OEQ)
69 IsEq = true;
70 else if (Pred == FCmpInst::FCMP_UNE)
71 IsEq = false;
72 else
73 return nullptr;
74
75 // A select operand must be a binop.
76 BinaryOperator *BO;
77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78 return nullptr;
79
80 // The compare constant must be the identity constant for that binop.
81 // If this a floating-point compare with 0.0, any zero constant will do.
82 Type *Ty = BO->getType();
83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84 if (IdC != C) {
85 if (!IdC || !CmpInst::isFPPredicate(Pred))
86 return nullptr;
87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88 return nullptr;
89 }
90
91 // Last, match the compare variable operand with a binop operand.
92 Value *Y;
93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94 return nullptr;
95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96 return nullptr;
97
98 // +0.0 compares equal to -0.0, and so it does not behave as required for this
99 // transform. Bail out if we can not exclude that possibility.
100 if (isa<FPMathOperator>(BO))
101 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
102 return nullptr;
103
104 // BO = binop Y, X
105 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
106 // =>
107 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
108 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
109 }
110
111 /// This folds:
112 /// select (icmp eq (and X, C1)), TC, FC
113 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
114 /// To something like:
115 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
116 /// Or:
117 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
118 /// With some variations depending if FC is larger than TC, or the shift
119 /// isn't needed, or the bit widths don't match.
foldSelectICmpAnd(SelectInst & Sel,ICmpInst * Cmp,InstCombiner::BuilderTy & Builder)120 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
121 InstCombiner::BuilderTy &Builder) {
122 const APInt *SelTC, *SelFC;
123 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
124 !match(Sel.getFalseValue(), m_APInt(SelFC)))
125 return nullptr;
126
127 // If this is a vector select, we need a vector compare.
128 Type *SelType = Sel.getType();
129 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
130 return nullptr;
131
132 Value *V;
133 APInt AndMask;
134 bool CreateAnd = false;
135 ICmpInst::Predicate Pred = Cmp->getPredicate();
136 if (ICmpInst::isEquality(Pred)) {
137 if (!match(Cmp->getOperand(1), m_Zero()))
138 return nullptr;
139
140 V = Cmp->getOperand(0);
141 const APInt *AndRHS;
142 if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
143 return nullptr;
144
145 AndMask = *AndRHS;
146 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
147 Pred, V, AndMask)) {
148 assert(ICmpInst::isEquality(Pred) && "Not equality test?");
149 if (!AndMask.isPowerOf2())
150 return nullptr;
151
152 CreateAnd = true;
153 } else {
154 return nullptr;
155 }
156
157 // In general, when both constants are non-zero, we would need an offset to
158 // replace the select. This would require more instructions than we started
159 // with. But there's one special-case that we handle here because it can
160 // simplify/reduce the instructions.
161 APInt TC = *SelTC;
162 APInt FC = *SelFC;
163 if (!TC.isZero() && !FC.isZero()) {
164 // If the select constants differ by exactly one bit and that's the same
165 // bit that is masked and checked by the select condition, the select can
166 // be replaced by bitwise logic to set/clear one bit of the constant result.
167 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
168 return nullptr;
169 if (CreateAnd) {
170 // If we have to create an 'and', then we must kill the cmp to not
171 // increase the instruction count.
172 if (!Cmp->hasOneUse())
173 return nullptr;
174 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
175 }
176 bool ExtraBitInTC = TC.ugt(FC);
177 if (Pred == ICmpInst::ICMP_EQ) {
178 // If the masked bit in V is clear, clear or set the bit in the result:
179 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
180 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
181 Constant *C = ConstantInt::get(SelType, TC);
182 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
183 }
184 if (Pred == ICmpInst::ICMP_NE) {
185 // If the masked bit in V is set, set or clear the bit in the result:
186 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
187 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
188 Constant *C = ConstantInt::get(SelType, FC);
189 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
190 }
191 llvm_unreachable("Only expecting equality predicates");
192 }
193
194 // Make sure one of the select arms is a power-of-2.
195 if (!TC.isPowerOf2() && !FC.isPowerOf2())
196 return nullptr;
197
198 // Determine which shift is needed to transform result of the 'and' into the
199 // desired result.
200 const APInt &ValC = !TC.isZero() ? TC : FC;
201 unsigned ValZeros = ValC.logBase2();
202 unsigned AndZeros = AndMask.logBase2();
203
204 // Insert the 'and' instruction on the input to the truncate.
205 if (CreateAnd)
206 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
207
208 // If types don't match, we can still convert the select by introducing a zext
209 // or a trunc of the 'and'.
210 if (ValZeros > AndZeros) {
211 V = Builder.CreateZExtOrTrunc(V, SelType);
212 V = Builder.CreateShl(V, ValZeros - AndZeros);
213 } else if (ValZeros < AndZeros) {
214 V = Builder.CreateLShr(V, AndZeros - ValZeros);
215 V = Builder.CreateZExtOrTrunc(V, SelType);
216 } else {
217 V = Builder.CreateZExtOrTrunc(V, SelType);
218 }
219
220 // Okay, now we know that everything is set up, we just don't know whether we
221 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
222 bool ShouldNotVal = !TC.isZero();
223 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
224 if (ShouldNotVal)
225 V = Builder.CreateXor(V, ValC);
226
227 return V;
228 }
229
230 /// We want to turn code that looks like this:
231 /// %C = or %A, %B
232 /// %D = select %cond, %C, %A
233 /// into:
234 /// %C = select %cond, %B, 0
235 /// %D = or %A, %C
236 ///
237 /// Assuming that the specified instruction is an operand to the select, return
238 /// a bitmask indicating which operands of this instruction are foldable if they
239 /// equal the other incoming value of the select.
getSelectFoldableOperands(BinaryOperator * I)240 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
241 switch (I->getOpcode()) {
242 case Instruction::Add:
243 case Instruction::FAdd:
244 case Instruction::Mul:
245 case Instruction::FMul:
246 case Instruction::And:
247 case Instruction::Or:
248 case Instruction::Xor:
249 return 3; // Can fold through either operand.
250 case Instruction::Sub: // Can only fold on the amount subtracted.
251 case Instruction::FSub:
252 case Instruction::FDiv: // Can only fold on the divisor amount.
253 case Instruction::Shl: // Can only fold on the shift amount.
254 case Instruction::LShr:
255 case Instruction::AShr:
256 return 1;
257 default:
258 return 0; // Cannot fold
259 }
260 }
261
262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
foldSelectOpOp(SelectInst & SI,Instruction * TI,Instruction * FI)263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
264 Instruction *FI) {
265 // Don't break up min/max patterns. The hasOneUse checks below prevent that
266 // for most cases, but vector min/max with bitcasts can be transformed. If the
267 // one-use restrictions are eased for other patterns, we still don't want to
268 // obfuscate min/max.
269 if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
270 match(&SI, m_SMax(m_Value(), m_Value())) ||
271 match(&SI, m_UMin(m_Value(), m_Value())) ||
272 match(&SI, m_UMax(m_Value(), m_Value()))))
273 return nullptr;
274
275 // If this is a cast from the same type, merge.
276 Value *Cond = SI.getCondition();
277 Type *CondTy = Cond->getType();
278 if (TI->getNumOperands() == 1 && TI->isCast()) {
279 Type *FIOpndTy = FI->getOperand(0)->getType();
280 if (TI->getOperand(0)->getType() != FIOpndTy)
281 return nullptr;
282
283 // The select condition may be a vector. We may only change the operand
284 // type if the vector width remains the same (and matches the condition).
285 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
286 if (!FIOpndTy->isVectorTy() ||
287 CondVTy->getElementCount() !=
288 cast<VectorType>(FIOpndTy)->getElementCount())
289 return nullptr;
290
291 // TODO: If the backend knew how to deal with casts better, we could
292 // remove this limitation. For now, there's too much potential to create
293 // worse codegen by promoting the select ahead of size-altering casts
294 // (PR28160).
295 //
296 // Note that ValueTracking's matchSelectPattern() looks through casts
297 // without checking 'hasOneUse' when it matches min/max patterns, so this
298 // transform may end up happening anyway.
299 if (TI->getOpcode() != Instruction::BitCast &&
300 (!TI->hasOneUse() || !FI->hasOneUse()))
301 return nullptr;
302 } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
303 // TODO: The one-use restrictions for a scalar select could be eased if
304 // the fold of a select in visitLoadInst() was enhanced to match a pattern
305 // that includes a cast.
306 return nullptr;
307 }
308
309 // Fold this by inserting a select from the input values.
310 Value *NewSI =
311 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
312 SI.getName() + ".v", &SI);
313 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
314 TI->getType());
315 }
316
317 Value *OtherOpT, *OtherOpF;
318 bool MatchIsOpZero;
319 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
320 bool Swapped = false) -> Value * {
321 assert(!(Commute && Swapped) &&
322 "Commute and Swapped can't set at the same time");
323 if (!Swapped) {
324 if (TI->getOperand(0) == FI->getOperand(0)) {
325 OtherOpT = TI->getOperand(1);
326 OtherOpF = FI->getOperand(1);
327 MatchIsOpZero = true;
328 return TI->getOperand(0);
329 } else if (TI->getOperand(1) == FI->getOperand(1)) {
330 OtherOpT = TI->getOperand(0);
331 OtherOpF = FI->getOperand(0);
332 MatchIsOpZero = false;
333 return TI->getOperand(1);
334 }
335 }
336
337 if (!Commute && !Swapped)
338 return nullptr;
339
340 // If we are allowing commute or swap of operands, then
341 // allow a cross-operand match. In that case, MatchIsOpZero
342 // means that TI's operand 0 (FI's operand 1) is the common op.
343 if (TI->getOperand(0) == FI->getOperand(1)) {
344 OtherOpT = TI->getOperand(1);
345 OtherOpF = FI->getOperand(0);
346 MatchIsOpZero = true;
347 return TI->getOperand(0);
348 } else if (TI->getOperand(1) == FI->getOperand(0)) {
349 OtherOpT = TI->getOperand(0);
350 OtherOpF = FI->getOperand(1);
351 MatchIsOpZero = false;
352 return TI->getOperand(1);
353 }
354 return nullptr;
355 };
356
357 if (TI->hasOneUse() || FI->hasOneUse()) {
358 // Cond ? -X : -Y --> -(Cond ? X : Y)
359 Value *X, *Y;
360 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
361 // Intersect FMF from the fneg instructions and union those with the
362 // select.
363 FastMathFlags FMF = TI->getFastMathFlags();
364 FMF &= FI->getFastMathFlags();
365 FMF |= SI.getFastMathFlags();
366 Value *NewSel =
367 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
368 if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
369 NewSelI->setFastMathFlags(FMF);
370 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
371 NewFNeg->setFastMathFlags(FMF);
372 return NewFNeg;
373 }
374
375 // Min/max intrinsic with a common operand can have the common operand
376 // pulled after the select. This is the same transform as below for binops,
377 // but specialized for intrinsic matching and without the restrictive uses
378 // clause.
379 auto *TII = dyn_cast<IntrinsicInst>(TI);
380 auto *FII = dyn_cast<IntrinsicInst>(FI);
381 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
382 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
383 if (Value *MatchOp = getCommonOp(TI, FI, true)) {
384 Value *NewSel =
385 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
386 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
387 }
388 }
389 }
390
391 // icmp with a common operand also can have the common operand
392 // pulled after the select.
393 ICmpInst::Predicate TPred, FPred;
394 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
395 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
396 if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
397 bool Swapped = TPred != FPred;
398 if (Value *MatchOp =
399 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
400 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
401 SI.getName() + ".v", &SI);
402 return new ICmpInst(
403 MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
404 MatchOp, NewSel);
405 }
406 }
407 }
408 }
409
410 // Only handle binary operators (including two-operand getelementptr) with
411 // one-use here. As with the cast case above, it may be possible to relax the
412 // one-use constraint, but that needs be examined carefully since it may not
413 // reduce the total number of instructions.
414 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
415 !TI->isSameOperationAs(FI) ||
416 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
417 !TI->hasOneUse() || !FI->hasOneUse())
418 return nullptr;
419
420 // Figure out if the operations have any operands in common.
421 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
422 if (!MatchOp)
423 return nullptr;
424
425 // If the select condition is a vector, the operands of the original select's
426 // operands also must be vectors. This may not be the case for getelementptr
427 // for example.
428 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
429 !OtherOpF->getType()->isVectorTy()))
430 return nullptr;
431
432 // If we reach here, they do have operations in common.
433 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
434 SI.getName() + ".v", &SI);
435 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
436 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
437 if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
438 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
439 NewBO->copyIRFlags(TI);
440 NewBO->andIRFlags(FI);
441 return NewBO;
442 }
443 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
444 auto *FGEP = cast<GetElementPtrInst>(FI);
445 Type *ElementType = TGEP->getResultElementType();
446 return TGEP->isInBounds() && FGEP->isInBounds()
447 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
448 : GetElementPtrInst::Create(ElementType, Op0, {Op1});
449 }
450 llvm_unreachable("Expected BinaryOperator or GEP");
451 return nullptr;
452 }
453
isSelect01(const APInt & C1I,const APInt & C2I)454 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
455 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
456 return false;
457 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
458 }
459
460 /// Try to fold the select into one of the operands to allow further
461 /// optimization.
foldSelectIntoOp(SelectInst & SI,Value * TrueVal,Value * FalseVal)462 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
463 Value *FalseVal) {
464 // See the comment above GetSelectFoldableOperands for a description of the
465 // transformation we are doing here.
466 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
467 Value *FalseVal,
468 bool Swapped) -> Instruction * {
469 auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
470 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
471 return nullptr;
472
473 unsigned SFO = getSelectFoldableOperands(TVI);
474 unsigned OpToFold = 0;
475 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
476 OpToFold = 1;
477 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
478 OpToFold = 2;
479
480 if (!OpToFold)
481 return nullptr;
482
483 // TODO: We probably ought to revisit cases where the select and FP
484 // instructions have different flags and add tests to ensure the
485 // behaviour is correct.
486 FastMathFlags FMF;
487 if (isa<FPMathOperator>(&SI))
488 FMF = SI.getFastMathFlags();
489 Constant *C = ConstantExpr::getBinOpIdentity(
490 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
491 Value *OOp = TVI->getOperand(2 - OpToFold);
492 // Avoid creating select between 2 constants unless it's selecting
493 // between 0, 1 and -1.
494 const APInt *OOpC;
495 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
496 if (!isa<Constant>(OOp) ||
497 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
498 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
499 Swapped ? OOp : C);
500 if (isa<FPMathOperator>(&SI))
501 cast<Instruction>(NewSel)->setFastMathFlags(FMF);
502 NewSel->takeName(TVI);
503 BinaryOperator *BO =
504 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
505 BO->copyIRFlags(TVI);
506 return BO;
507 }
508 return nullptr;
509 };
510
511 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
512 return R;
513
514 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
515 return R;
516
517 return nullptr;
518 }
519
520 /// We want to turn:
521 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
522 /// into:
523 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
524 /// Note:
525 /// Z may be 0 if lshr is missing.
526 /// Worst-case scenario is that we will replace 5 instructions with 5 different
527 /// instructions, but we got rid of select.
foldSelectICmpAndAnd(Type * SelType,const ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)528 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
529 Value *TVal, Value *FVal,
530 InstCombiner::BuilderTy &Builder) {
531 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
532 Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
533 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
534 return nullptr;
535
536 // The TrueVal has general form of: and %B, 1
537 Value *B;
538 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
539 return nullptr;
540
541 // Where %B may be optionally shifted: lshr %X, %Z.
542 Value *X, *Z;
543 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
544
545 // The shift must be valid.
546 // TODO: This restricts the fold to constant shift amounts. Is there a way to
547 // handle variable shifts safely? PR47012
548 if (HasShift &&
549 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
550 APInt(SelType->getScalarSizeInBits(),
551 SelType->getScalarSizeInBits()))))
552 return nullptr;
553
554 if (!HasShift)
555 X = B;
556
557 Value *Y;
558 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
559 return nullptr;
560
561 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
562 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
563 Constant *One = ConstantInt::get(SelType, 1);
564 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
565 Value *FullMask = Builder.CreateOr(Y, MaskB);
566 Value *MaskedX = Builder.CreateAnd(X, FullMask);
567 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
568 return new ZExtInst(ICmpNeZero, SelType);
569 }
570
571 /// We want to turn:
572 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
573 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
574 /// into:
575 /// ashr (X, Y)
foldSelectICmpLshrAshr(const ICmpInst * IC,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)576 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
577 Value *FalseVal,
578 InstCombiner::BuilderTy &Builder) {
579 ICmpInst::Predicate Pred = IC->getPredicate();
580 Value *CmpLHS = IC->getOperand(0);
581 Value *CmpRHS = IC->getOperand(1);
582 if (!CmpRHS->getType()->isIntOrIntVectorTy())
583 return nullptr;
584
585 Value *X, *Y;
586 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
587 if ((Pred != ICmpInst::ICMP_SGT ||
588 !match(CmpRHS,
589 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
590 (Pred != ICmpInst::ICMP_SLT ||
591 !match(CmpRHS,
592 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
593 return nullptr;
594
595 // Canonicalize so that ashr is in FalseVal.
596 if (Pred == ICmpInst::ICMP_SLT)
597 std::swap(TrueVal, FalseVal);
598
599 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
600 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
601 match(CmpLHS, m_Specific(X))) {
602 const auto *Ashr = cast<Instruction>(FalseVal);
603 // if lshr is not exact and ashr is, this new ashr must not be exact.
604 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
605 return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
606 }
607
608 return nullptr;
609 }
610
611 /// We want to turn:
612 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
613 /// into:
614 /// (or (shl (and X, C1), C3), Y)
615 /// iff:
616 /// C1 and C2 are both powers of 2
617 /// where:
618 /// C3 = Log(C2) - Log(C1)
619 ///
620 /// This transform handles cases where:
621 /// 1. The icmp predicate is inverted
622 /// 2. The select operands are reversed
623 /// 3. The magnitude of C2 and C1 are flipped
foldSelectICmpAndOr(const ICmpInst * IC,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)624 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
625 Value *FalseVal,
626 InstCombiner::BuilderTy &Builder) {
627 // Only handle integer compares. Also, if this is a vector select, we need a
628 // vector compare.
629 if (!TrueVal->getType()->isIntOrIntVectorTy() ||
630 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
631 return nullptr;
632
633 Value *CmpLHS = IC->getOperand(0);
634 Value *CmpRHS = IC->getOperand(1);
635
636 Value *V;
637 unsigned C1Log;
638 bool IsEqualZero;
639 bool NeedAnd = false;
640 if (IC->isEquality()) {
641 if (!match(CmpRHS, m_Zero()))
642 return nullptr;
643
644 const APInt *C1;
645 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
646 return nullptr;
647
648 V = CmpLHS;
649 C1Log = C1->logBase2();
650 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
651 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
652 IC->getPredicate() == ICmpInst::ICMP_SGT) {
653 // We also need to recognize (icmp slt (trunc (X)), 0) and
654 // (icmp sgt (trunc (X)), -1).
655 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
656 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
657 (!IsEqualZero && !match(CmpRHS, m_Zero())))
658 return nullptr;
659
660 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
661 return nullptr;
662
663 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
664 NeedAnd = true;
665 } else {
666 return nullptr;
667 }
668
669 const APInt *C2;
670 bool OrOnTrueVal = false;
671 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
672 if (!OrOnFalseVal)
673 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
674
675 if (!OrOnFalseVal && !OrOnTrueVal)
676 return nullptr;
677
678 Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
679
680 unsigned C2Log = C2->logBase2();
681
682 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
683 bool NeedShift = C1Log != C2Log;
684 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
685 V->getType()->getScalarSizeInBits();
686
687 // Make sure we don't create more instructions than we save.
688 Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
689 if ((NeedShift + NeedXor + NeedZExtTrunc) >
690 (IC->hasOneUse() + Or->hasOneUse()))
691 return nullptr;
692
693 if (NeedAnd) {
694 // Insert the AND instruction on the input to the truncate.
695 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
696 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
697 }
698
699 if (C2Log > C1Log) {
700 V = Builder.CreateZExtOrTrunc(V, Y->getType());
701 V = Builder.CreateShl(V, C2Log - C1Log);
702 } else if (C1Log > C2Log) {
703 V = Builder.CreateLShr(V, C1Log - C2Log);
704 V = Builder.CreateZExtOrTrunc(V, Y->getType());
705 } else
706 V = Builder.CreateZExtOrTrunc(V, Y->getType());
707
708 if (NeedXor)
709 V = Builder.CreateXor(V, *C2);
710
711 return Builder.CreateOr(V, Y);
712 }
713
714 /// Canonicalize a set or clear of a masked set of constant bits to
715 /// select-of-constants form.
foldSetClearBits(SelectInst & Sel,InstCombiner::BuilderTy & Builder)716 static Instruction *foldSetClearBits(SelectInst &Sel,
717 InstCombiner::BuilderTy &Builder) {
718 Value *Cond = Sel.getCondition();
719 Value *T = Sel.getTrueValue();
720 Value *F = Sel.getFalseValue();
721 Type *Ty = Sel.getType();
722 Value *X;
723 const APInt *NotC, *C;
724
725 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
726 if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
727 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
728 Constant *Zero = ConstantInt::getNullValue(Ty);
729 Constant *OrC = ConstantInt::get(Ty, *C);
730 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
731 return BinaryOperator::CreateOr(T, NewSel);
732 }
733
734 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
735 if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
736 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
737 Constant *Zero = ConstantInt::getNullValue(Ty);
738 Constant *OrC = ConstantInt::get(Ty, *C);
739 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
740 return BinaryOperator::CreateOr(F, NewSel);
741 }
742
743 return nullptr;
744 }
745
746 // select (x == 0), 0, x * y --> freeze(y) * x
747 // select (y == 0), 0, x * y --> freeze(x) * y
748 // select (x == 0), undef, x * y --> freeze(y) * x
749 // select (x == undef), 0, x * y --> freeze(y) * x
750 // Usage of mul instead of 0 will make the result more poisonous,
751 // so the operand that was not checked in the condition should be frozen.
752 // The latter folding is applied only when a constant compared with x is
753 // is a vector consisting of 0 and undefs. If a constant compared with x
754 // is a scalar undefined value or undefined vector then an expression
755 // should be already folded into a constant.
foldSelectZeroOrMul(SelectInst & SI,InstCombinerImpl & IC)756 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
757 auto *CondVal = SI.getCondition();
758 auto *TrueVal = SI.getTrueValue();
759 auto *FalseVal = SI.getFalseValue();
760 Value *X, *Y;
761 ICmpInst::Predicate Predicate;
762
763 // Assuming that constant compared with zero is not undef (but it may be
764 // a vector with some undef elements). Otherwise (when a constant is undef)
765 // the select expression should be already simplified.
766 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
767 !ICmpInst::isEquality(Predicate))
768 return nullptr;
769
770 if (Predicate == ICmpInst::ICMP_NE)
771 std::swap(TrueVal, FalseVal);
772
773 // Check that TrueVal is a constant instead of matching it with m_Zero()
774 // to handle the case when it is a scalar undef value or a vector containing
775 // non-zero elements that are masked by undef elements in the compare
776 // constant.
777 auto *TrueValC = dyn_cast<Constant>(TrueVal);
778 if (TrueValC == nullptr ||
779 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
780 !isa<Instruction>(FalseVal))
781 return nullptr;
782
783 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
784 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
785 // If X is compared with 0 then TrueVal could be either zero or undef.
786 // m_Zero match vectors containing some undef elements, but for scalars
787 // m_Undef should be used explicitly.
788 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
789 return nullptr;
790
791 auto *FalseValI = cast<Instruction>(FalseVal);
792 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
793 *FalseValI);
794 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
795 return IC.replaceInstUsesWith(SI, FalseValI);
796 }
797
798 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
799 /// There are 8 commuted/swapped variants of this pattern.
800 /// TODO: Also support a - UMIN(a,b) patterns.
canonicalizeSaturatedSubtract(const ICmpInst * ICI,const Value * TrueVal,const Value * FalseVal,InstCombiner::BuilderTy & Builder)801 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
802 const Value *TrueVal,
803 const Value *FalseVal,
804 InstCombiner::BuilderTy &Builder) {
805 ICmpInst::Predicate Pred = ICI->getPredicate();
806 Value *A = ICI->getOperand(0);
807 Value *B = ICI->getOperand(1);
808
809 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
810 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
811 if (match(TrueVal, m_Zero())) {
812 Pred = ICmpInst::getInversePredicate(Pred);
813 std::swap(TrueVal, FalseVal);
814 }
815
816 if (!match(FalseVal, m_Zero()))
817 return nullptr;
818
819 // ugt 0 is canonicalized to ne 0 and requires special handling
820 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
821 if (Pred == ICmpInst::ICMP_NE) {
822 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
823 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
824 ConstantInt::get(A->getType(), 1));
825 return nullptr;
826 }
827
828 if (!ICmpInst::isUnsigned(Pred))
829 return nullptr;
830
831 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
832 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
833 std::swap(A, B);
834 Pred = ICmpInst::getSwappedPredicate(Pred);
835 }
836
837 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
838 "Unexpected isUnsigned predicate!");
839
840 // Ensure the sub is of the form:
841 // (a > b) ? a - b : 0 -> usub.sat(a, b)
842 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
843 // Checking for both a-b and a+(-b) as a constant.
844 bool IsNegative = false;
845 const APInt *C;
846 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
847 (match(A, m_APInt(C)) &&
848 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
849 IsNegative = true;
850 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
851 !(match(B, m_APInt(C)) &&
852 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
853 return nullptr;
854
855 // If we are adding a negate and the sub and icmp are used anywhere else, we
856 // would end up with more instructions.
857 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
858 return nullptr;
859
860 // (a > b) ? a - b : 0 -> usub.sat(a, b)
861 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
862 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
863 if (IsNegative)
864 Result = Builder.CreateNeg(Result);
865 return Result;
866 }
867
canonicalizeSaturatedAdd(ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)868 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
869 InstCombiner::BuilderTy &Builder) {
870 if (!Cmp->hasOneUse())
871 return nullptr;
872
873 // Match unsigned saturated add with constant.
874 Value *Cmp0 = Cmp->getOperand(0);
875 Value *Cmp1 = Cmp->getOperand(1);
876 ICmpInst::Predicate Pred = Cmp->getPredicate();
877 Value *X;
878 const APInt *C, *CmpC;
879 if (Pred == ICmpInst::ICMP_ULT &&
880 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
881 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
882 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
883 return Builder.CreateBinaryIntrinsic(
884 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
885 }
886
887 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
888 // There are 8 commuted variants.
889 // Canonicalize -1 (saturated result) to true value of the select.
890 if (match(FVal, m_AllOnes())) {
891 std::swap(TVal, FVal);
892 Pred = CmpInst::getInversePredicate(Pred);
893 }
894 if (!match(TVal, m_AllOnes()))
895 return nullptr;
896
897 // Canonicalize predicate to less-than or less-or-equal-than.
898 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
899 std::swap(Cmp0, Cmp1);
900 Pred = CmpInst::getSwappedPredicate(Pred);
901 }
902 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
903 return nullptr;
904
905 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
906 // Strictness of the comparison is irrelevant.
907 Value *Y;
908 if (match(Cmp0, m_Not(m_Value(X))) &&
909 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
910 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
911 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
912 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
913 }
914 // The 'not' op may be included in the sum but not the compare.
915 // Strictness of the comparison is irrelevant.
916 X = Cmp0;
917 Y = Cmp1;
918 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
919 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
920 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
921 BinaryOperator *BO = cast<BinaryOperator>(FVal);
922 return Builder.CreateBinaryIntrinsic(
923 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
924 }
925 // The overflow may be detected via the add wrapping round.
926 // This is only valid for strict comparison!
927 if (Pred == ICmpInst::ICMP_ULT &&
928 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
929 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
930 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
931 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
932 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
933 }
934
935 return nullptr;
936 }
937
938 /// Fold the following code sequence:
939 /// \code
940 /// int a = ctlz(x & -x);
941 // x ? 31 - a : a;
942 /// \code
943 ///
944 /// into:
945 /// cttz(x)
foldSelectCtlzToCttz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)946 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
947 Value *FalseVal,
948 InstCombiner::BuilderTy &Builder) {
949 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
950 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
951 return nullptr;
952
953 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
954 std::swap(TrueVal, FalseVal);
955
956 if (!match(FalseVal,
957 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
958 return nullptr;
959
960 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
961 return nullptr;
962
963 Value *X = ICI->getOperand(0);
964 auto *II = cast<IntrinsicInst>(TrueVal);
965 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
966 return nullptr;
967
968 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
969 II->getType());
970 return CallInst::Create(F, {X, II->getArgOperand(1)});
971 }
972
973 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
974 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
975 ///
976 /// For example, we can fold the following code sequence:
977 /// \code
978 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
979 /// %1 = icmp ne i32 %x, 0
980 /// %2 = select i1 %1, i32 %0, i32 32
981 /// \code
982 ///
983 /// into:
984 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
foldSelectCttzCtlz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)985 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
986 InstCombiner::BuilderTy &Builder) {
987 ICmpInst::Predicate Pred = ICI->getPredicate();
988 Value *CmpLHS = ICI->getOperand(0);
989 Value *CmpRHS = ICI->getOperand(1);
990
991 // Check if the select condition compares a value for equality.
992 if (!ICI->isEquality())
993 return nullptr;
994
995 Value *SelectArg = FalseVal;
996 Value *ValueOnZero = TrueVal;
997 if (Pred == ICmpInst::ICMP_NE)
998 std::swap(SelectArg, ValueOnZero);
999
1000 // Skip zero extend/truncate.
1001 Value *Count = nullptr;
1002 if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1003 !match(SelectArg, m_Trunc(m_Value(Count))))
1004 Count = SelectArg;
1005
1006 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1007 // input to the cttz/ctlz is used as LHS for the compare instruction.
1008 Value *X;
1009 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1010 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1011 return nullptr;
1012
1013 // (X == 0) ? BitWidth : ctz(X)
1014 // (X == -1) ? BitWidth : ctz(~X)
1015 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1016 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1017 return nullptr;
1018
1019 IntrinsicInst *II = cast<IntrinsicInst>(Count);
1020
1021 // Check if the value propagated on zero is a constant number equal to the
1022 // sizeof in bits of 'Count'.
1023 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1024 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1025 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1026 // true to false on this flag, so we can replace it for all users.
1027 II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1028 return SelectArg;
1029 }
1030
1031 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1032 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1033 // not be used if the input is zero. Relax to 'zero is poison' for that case.
1034 if (II->hasOneUse() && SelectArg->hasOneUse() &&
1035 !match(II->getArgOperand(1), m_One()))
1036 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1037
1038 return nullptr;
1039 }
1040
1041 /// Return true if we find and adjust an icmp+select pattern where the compare
1042 /// is with a constant that can be incremented or decremented to match the
1043 /// minimum or maximum idiom.
adjustMinMax(SelectInst & Sel,ICmpInst & Cmp)1044 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1045 ICmpInst::Predicate Pred = Cmp.getPredicate();
1046 Value *CmpLHS = Cmp.getOperand(0);
1047 Value *CmpRHS = Cmp.getOperand(1);
1048 Value *TrueVal = Sel.getTrueValue();
1049 Value *FalseVal = Sel.getFalseValue();
1050
1051 // We may move or edit the compare, so make sure the select is the only user.
1052 const APInt *CmpC;
1053 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1054 return false;
1055
1056 // These transforms only work for selects of integers or vector selects of
1057 // integer vectors.
1058 Type *SelTy = Sel.getType();
1059 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1060 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1061 return false;
1062
1063 Constant *AdjustedRHS;
1064 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1065 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1066 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1067 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1068 else
1069 return false;
1070
1071 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
1072 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
1073 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1074 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1075 ; // Nothing to do here. Values match without any sign/zero extension.
1076 }
1077 // Types do not match. Instead of calculating this with mixed types, promote
1078 // all to the larger type. This enables scalar evolution to analyze this
1079 // expression.
1080 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1081 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1082
1083 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1084 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1085 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1086 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1087 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1088 CmpLHS = TrueVal;
1089 AdjustedRHS = SextRHS;
1090 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1091 SextRHS == TrueVal) {
1092 CmpLHS = FalseVal;
1093 AdjustedRHS = SextRHS;
1094 } else if (Cmp.isUnsigned()) {
1095 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1096 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1097 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1098 // zext + signed compare cannot be changed:
1099 // 0xff <s 0x00, but 0x00ff >s 0x0000
1100 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1101 CmpLHS = TrueVal;
1102 AdjustedRHS = ZextRHS;
1103 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1104 ZextRHS == TrueVal) {
1105 CmpLHS = FalseVal;
1106 AdjustedRHS = ZextRHS;
1107 } else {
1108 return false;
1109 }
1110 } else {
1111 return false;
1112 }
1113 } else {
1114 return false;
1115 }
1116
1117 Pred = ICmpInst::getSwappedPredicate(Pred);
1118 CmpRHS = AdjustedRHS;
1119 std::swap(FalseVal, TrueVal);
1120 Cmp.setPredicate(Pred);
1121 Cmp.setOperand(0, CmpLHS);
1122 Cmp.setOperand(1, CmpRHS);
1123 Sel.setOperand(1, TrueVal);
1124 Sel.setOperand(2, FalseVal);
1125 Sel.swapProfMetadata();
1126
1127 // Move the compare instruction right before the select instruction. Otherwise
1128 // the sext/zext value may be defined after the compare instruction uses it.
1129 Cmp.moveBefore(&Sel);
1130
1131 return true;
1132 }
1133
canonicalizeSPF(SelectInst & Sel,ICmpInst & Cmp,InstCombinerImpl & IC)1134 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1135 InstCombinerImpl &IC) {
1136 Value *LHS, *RHS;
1137 // TODO: What to do with pointer min/max patterns?
1138 if (!Sel.getType()->isIntOrIntVectorTy())
1139 return nullptr;
1140
1141 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1142 if (SPF == SelectPatternFlavor::SPF_ABS ||
1143 SPF == SelectPatternFlavor::SPF_NABS) {
1144 if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1145 return nullptr; // TODO: Relax this restriction.
1146
1147 // Note that NSW flag can only be propagated for normal, non-negated abs!
1148 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1149 match(RHS, m_NSWNeg(m_Specific(LHS)));
1150 Constant *IntMinIsPoisonC =
1151 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1152 Instruction *Abs =
1153 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1154
1155 if (SPF == SelectPatternFlavor::SPF_NABS)
1156 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1157 return IC.replaceInstUsesWith(Sel, Abs);
1158 }
1159
1160 if (SelectPatternResult::isMinOrMax(SPF)) {
1161 Intrinsic::ID IntrinsicID;
1162 switch (SPF) {
1163 case SelectPatternFlavor::SPF_UMIN:
1164 IntrinsicID = Intrinsic::umin;
1165 break;
1166 case SelectPatternFlavor::SPF_UMAX:
1167 IntrinsicID = Intrinsic::umax;
1168 break;
1169 case SelectPatternFlavor::SPF_SMIN:
1170 IntrinsicID = Intrinsic::smin;
1171 break;
1172 case SelectPatternFlavor::SPF_SMAX:
1173 IntrinsicID = Intrinsic::smax;
1174 break;
1175 default:
1176 llvm_unreachable("Unexpected SPF");
1177 }
1178 return IC.replaceInstUsesWith(
1179 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1180 }
1181
1182 return nullptr;
1183 }
1184
replaceInInstruction(Value * V,Value * Old,Value * New,InstCombiner & IC,unsigned Depth=0)1185 static bool replaceInInstruction(Value *V, Value *Old, Value *New,
1186 InstCombiner &IC, unsigned Depth = 0) {
1187 // Conservatively limit replacement to two instructions upwards.
1188 if (Depth == 2)
1189 return false;
1190
1191 auto *I = dyn_cast<Instruction>(V);
1192 if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
1193 return false;
1194
1195 bool Changed = false;
1196 for (Use &U : I->operands()) {
1197 if (U == Old) {
1198 IC.replaceUse(U, New);
1199 Changed = true;
1200 } else {
1201 Changed |= replaceInInstruction(U, Old, New, IC, Depth + 1);
1202 }
1203 }
1204 return Changed;
1205 }
1206
1207 /// If we have a select with an equality comparison, then we know the value in
1208 /// one of the arms of the select. See if substituting this value into an arm
1209 /// and simplifying the result yields the same value as the other arm.
1210 ///
1211 /// To make this transform safe, we must drop poison-generating flags
1212 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1213 /// that poison from propagating. If the existing binop already had no
1214 /// poison-generating flags, then this transform can be done by instsimplify.
1215 ///
1216 /// Consider:
1217 /// %cmp = icmp eq i32 %x, 2147483647
1218 /// %add = add nsw i32 %x, 1
1219 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1220 ///
1221 /// We can't replace %sel with %add unless we strip away the flags.
1222 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
foldSelectValueEquivalence(SelectInst & Sel,ICmpInst & Cmp)1223 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1224 ICmpInst &Cmp) {
1225 if (!Cmp.isEquality())
1226 return nullptr;
1227
1228 // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1229 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1230 bool Swapped = false;
1231 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1232 std::swap(TrueVal, FalseVal);
1233 Swapped = true;
1234 }
1235
1236 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1237 // Make sure Y cannot be undef though, as we might pick different values for
1238 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1239 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1240 // replacement cycle.
1241 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1242 if (TrueVal != CmpLHS &&
1243 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1244 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1245 /* AllowRefinement */ true))
1246 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1247
1248 // Even if TrueVal does not simplify, we can directly replace a use of
1249 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1250 // else and is safe to speculatively execute (we may end up executing it
1251 // with different operands, which should not cause side-effects or trigger
1252 // undefined behavior). Only do this if CmpRHS is a constant, as
1253 // profitability is not clear for other cases.
1254 // FIXME: Support vectors.
1255 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) &&
1256 !Cmp.getType()->isVectorTy())
1257 if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS, *this))
1258 return &Sel;
1259 }
1260 if (TrueVal != CmpRHS &&
1261 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1262 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1263 /* AllowRefinement */ true))
1264 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1265
1266 auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1267 if (!FalseInst)
1268 return nullptr;
1269
1270 // InstSimplify already performed this fold if it was possible subject to
1271 // current poison-generating flags. Try the transform again with
1272 // poison-generating flags temporarily dropped.
1273 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1274 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1275 WasNUW = OBO->hasNoUnsignedWrap();
1276 WasNSW = OBO->hasNoSignedWrap();
1277 FalseInst->setHasNoUnsignedWrap(false);
1278 FalseInst->setHasNoSignedWrap(false);
1279 }
1280 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1281 WasExact = PEO->isExact();
1282 FalseInst->setIsExact(false);
1283 }
1284 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1285 WasInBounds = GEP->isInBounds();
1286 GEP->setIsInBounds(false);
1287 }
1288
1289 // Try each equivalence substitution possibility.
1290 // We have an 'EQ' comparison, so the select's false value will propagate.
1291 // Example:
1292 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1293 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1294 /* AllowRefinement */ false) == TrueVal ||
1295 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1296 /* AllowRefinement */ false) == TrueVal) {
1297 return replaceInstUsesWith(Sel, FalseVal);
1298 }
1299
1300 // Restore poison-generating flags if the transform did not apply.
1301 if (WasNUW)
1302 FalseInst->setHasNoUnsignedWrap();
1303 if (WasNSW)
1304 FalseInst->setHasNoSignedWrap();
1305 if (WasExact)
1306 FalseInst->setIsExact();
1307 if (WasInBounds)
1308 cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1309
1310 return nullptr;
1311 }
1312
1313 // See if this is a pattern like:
1314 // %old_cmp1 = icmp slt i32 %x, C2
1315 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1316 // %old_x_offseted = add i32 %x, C1
1317 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1318 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1319 // This can be rewritten as more canonical pattern:
1320 // %new_cmp1 = icmp slt i32 %x, -C1
1321 // %new_cmp2 = icmp sge i32 %x, C0-C1
1322 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1323 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1324 // Iff -C1 s<= C2 s<= C0-C1
1325 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1326 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
canonicalizeClampLike(SelectInst & Sel0,ICmpInst & Cmp0,InstCombiner::BuilderTy & Builder)1327 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1328 InstCombiner::BuilderTy &Builder) {
1329 Value *X = Sel0.getTrueValue();
1330 Value *Sel1 = Sel0.getFalseValue();
1331
1332 // First match the condition of the outermost select.
1333 // Said condition must be one-use.
1334 if (!Cmp0.hasOneUse())
1335 return nullptr;
1336 ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1337 Value *Cmp00 = Cmp0.getOperand(0);
1338 Constant *C0;
1339 if (!match(Cmp0.getOperand(1),
1340 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1341 return nullptr;
1342
1343 if (!isa<SelectInst>(Sel1)) {
1344 Pred0 = ICmpInst::getInversePredicate(Pred0);
1345 std::swap(X, Sel1);
1346 }
1347
1348 // Canonicalize Cmp0 into ult or uge.
1349 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1350 switch (Pred0) {
1351 case ICmpInst::Predicate::ICMP_ULT:
1352 case ICmpInst::Predicate::ICMP_UGE:
1353 // Although icmp ult %x, 0 is an unusual thing to try and should generally
1354 // have been simplified, it does not verify with undef inputs so ensure we
1355 // are not in a strange state.
1356 if (!match(C0, m_SpecificInt_ICMP(
1357 ICmpInst::Predicate::ICMP_NE,
1358 APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1359 return nullptr;
1360 break; // Great!
1361 case ICmpInst::Predicate::ICMP_ULE:
1362 case ICmpInst::Predicate::ICMP_UGT:
1363 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1364 // C0, which again means it must not have any all-ones elements.
1365 if (!match(C0,
1366 m_SpecificInt_ICMP(
1367 ICmpInst::Predicate::ICMP_NE,
1368 APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1369 return nullptr; // Can't do, have all-ones element[s].
1370 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1371 C0 = InstCombiner::AddOne(C0);
1372 break;
1373 default:
1374 return nullptr; // Unknown predicate.
1375 }
1376
1377 // Now that we've canonicalized the ICmp, we know the X we expect;
1378 // the select in other hand should be one-use.
1379 if (!Sel1->hasOneUse())
1380 return nullptr;
1381
1382 // If the types do not match, look through any truncs to the underlying
1383 // instruction.
1384 if (Cmp00->getType() != X->getType() && X->hasOneUse())
1385 match(X, m_TruncOrSelf(m_Value(X)));
1386
1387 // We now can finish matching the condition of the outermost select:
1388 // it should either be the X itself, or an addition of some constant to X.
1389 Constant *C1;
1390 if (Cmp00 == X)
1391 C1 = ConstantInt::getNullValue(X->getType());
1392 else if (!match(Cmp00,
1393 m_Add(m_Specific(X),
1394 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1395 return nullptr;
1396
1397 Value *Cmp1;
1398 ICmpInst::Predicate Pred1;
1399 Constant *C2;
1400 Value *ReplacementLow, *ReplacementHigh;
1401 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1402 m_Value(ReplacementHigh))) ||
1403 !match(Cmp1,
1404 m_ICmp(Pred1, m_Specific(X),
1405 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1406 return nullptr;
1407
1408 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1409 return nullptr; // Not enough one-use instructions for the fold.
1410 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1411 // two comparisons we'll need to build.
1412
1413 // Canonicalize Cmp1 into the form we expect.
1414 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1415 switch (Pred1) {
1416 case ICmpInst::Predicate::ICMP_SLT:
1417 break;
1418 case ICmpInst::Predicate::ICMP_SLE:
1419 // We'd have to increment C2 by one, and for that it must not have signed
1420 // max element, but then it would have been canonicalized to 'slt' before
1421 // we get here. So we can't do anything useful with 'sle'.
1422 return nullptr;
1423 case ICmpInst::Predicate::ICMP_SGT:
1424 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1425 // which again means it must not have any signed max elements.
1426 if (!match(C2,
1427 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1428 APInt::getSignedMaxValue(
1429 C2->getType()->getScalarSizeInBits()))))
1430 return nullptr; // Can't do, have signed max element[s].
1431 C2 = InstCombiner::AddOne(C2);
1432 [[fallthrough]];
1433 case ICmpInst::Predicate::ICMP_SGE:
1434 // Also non-canonical, but here we don't need to change C2,
1435 // so we don't have any restrictions on C2, so we can just handle it.
1436 Pred1 = ICmpInst::Predicate::ICMP_SLT;
1437 std::swap(ReplacementLow, ReplacementHigh);
1438 break;
1439 default:
1440 return nullptr; // Unknown predicate.
1441 }
1442 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1443 "Unexpected predicate type.");
1444
1445 // The thresholds of this clamp-like pattern.
1446 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1447 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1448
1449 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1450 Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1451 "Unexpected predicate type.");
1452 if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1453 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1454
1455 // The fold has a precondition 1: C2 s>= ThresholdLow
1456 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1457 ThresholdLowIncl);
1458 if (!match(Precond1, m_One()))
1459 return nullptr;
1460 // The fold has a precondition 2: C2 s<= ThresholdHigh
1461 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1462 ThresholdHighExcl);
1463 if (!match(Precond2, m_One()))
1464 return nullptr;
1465
1466 // If we are matching from a truncated input, we need to sext the
1467 // ReplacementLow and ReplacementHigh values. Only do the transform if they
1468 // are free to extend due to being constants.
1469 if (X->getType() != Sel0.getType()) {
1470 Constant *LowC, *HighC;
1471 if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1472 !match(ReplacementHigh, m_ImmConstant(HighC)))
1473 return nullptr;
1474 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1475 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1476 }
1477
1478 // All good, finally emit the new pattern.
1479 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1480 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1481 Value *MaybeReplacedLow =
1482 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1483
1484 // Create the final select. If we looked through a truncate above, we will
1485 // need to retruncate the result.
1486 Value *MaybeReplacedHigh = Builder.CreateSelect(
1487 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1488 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1489 }
1490
1491 // If we have
1492 // %cmp = icmp [canonical predicate] i32 %x, C0
1493 // %r = select i1 %cmp, i32 %y, i32 C1
1494 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1495 // will have if we flip the strictness of the predicate (i.e. without changing
1496 // the result) is identical to the C1 in select. If it matches we can change
1497 // original comparison to one with swapped predicate, reuse the constant,
1498 // and swap the hands of select.
1499 static Instruction *
tryToReuseConstantFromSelectInComparison(SelectInst & Sel,ICmpInst & Cmp,InstCombinerImpl & IC)1500 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1501 InstCombinerImpl &IC) {
1502 ICmpInst::Predicate Pred;
1503 Value *X;
1504 Constant *C0;
1505 if (!match(&Cmp, m_OneUse(m_ICmp(
1506 Pred, m_Value(X),
1507 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1508 return nullptr;
1509
1510 // If comparison predicate is non-relational, we won't be able to do anything.
1511 if (ICmpInst::isEquality(Pred))
1512 return nullptr;
1513
1514 // If comparison predicate is non-canonical, then we certainly won't be able
1515 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1516 if (!InstCombiner::isCanonicalPredicate(Pred))
1517 return nullptr;
1518
1519 // If the [input] type of comparison and select type are different, lets abort
1520 // for now. We could try to compare constants with trunc/[zs]ext though.
1521 if (C0->getType() != Sel.getType())
1522 return nullptr;
1523
1524 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1525 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1526 // Or should we just abandon this transform entirely?
1527 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1528 return nullptr;
1529
1530
1531 Value *SelVal0, *SelVal1; // We do not care which one is from where.
1532 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1533 // At least one of these values we are selecting between must be a constant
1534 // else we'll never succeed.
1535 if (!match(SelVal0, m_AnyIntegralConstant()) &&
1536 !match(SelVal1, m_AnyIntegralConstant()))
1537 return nullptr;
1538
1539 // Does this constant C match any of the `select` values?
1540 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1541 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1542 };
1543
1544 // If C0 *already* matches true/false value of select, we are done.
1545 if (MatchesSelectValue(C0))
1546 return nullptr;
1547
1548 // Check the constant we'd have with flipped-strictness predicate.
1549 auto FlippedStrictness =
1550 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1551 if (!FlippedStrictness)
1552 return nullptr;
1553
1554 // If said constant doesn't match either, then there is no hope,
1555 if (!MatchesSelectValue(FlippedStrictness->second))
1556 return nullptr;
1557
1558 // It matched! Lets insert the new comparison just before select.
1559 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1560 IC.Builder.SetInsertPoint(&Sel);
1561
1562 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1563 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1564 Cmp.getName() + ".inv");
1565 IC.replaceOperand(Sel, 0, NewCmp);
1566 Sel.swapValues();
1567 Sel.swapProfMetadata();
1568
1569 return &Sel;
1570 }
1571
foldSelectZeroOrOnes(ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)1572 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1573 Value *FVal,
1574 InstCombiner::BuilderTy &Builder) {
1575 if (!Cmp->hasOneUse())
1576 return nullptr;
1577
1578 const APInt *CmpC;
1579 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1580 return nullptr;
1581
1582 // (X u< 2) ? -X : -1 --> sext (X != 0)
1583 Value *X = Cmp->getOperand(0);
1584 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1585 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1586 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1587
1588 // (X u> 1) ? -1 : -X --> sext (X != 0)
1589 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1590 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1591 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1592
1593 return nullptr;
1594 }
1595
foldSelectInstWithICmpConst(SelectInst & SI,ICmpInst * ICI)1596 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) {
1597 const APInt *CmpC;
1598 Value *V;
1599 CmpInst::Predicate Pred;
1600 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1601 return nullptr;
1602
1603 BinaryOperator *BO;
1604 const APInt *C;
1605 CmpInst::Predicate CPred;
1606 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1607 CPred = ICI->getPredicate();
1608 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1609 CPred = ICI->getInversePredicate();
1610 else
1611 return nullptr;
1612
1613 const APInt *BinOpC;
1614 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1615 return nullptr;
1616
1617 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1618 .binaryOp(BO->getOpcode(), *BinOpC);
1619 if (R == *C) {
1620 BO->dropPoisonGeneratingFlags();
1621 return BO;
1622 }
1623 return nullptr;
1624 }
1625
1626 /// Visit a SelectInst that has an ICmpInst as its first operand.
foldSelectInstWithICmp(SelectInst & SI,ICmpInst * ICI)1627 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1628 ICmpInst *ICI) {
1629 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1630 return NewSel;
1631
1632 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1633 return NewSPF;
1634
1635 if (Value *V = foldSelectInstWithICmpConst(SI, ICI))
1636 return replaceInstUsesWith(SI, V);
1637
1638 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1639 return replaceInstUsesWith(SI, V);
1640
1641 if (Instruction *NewSel =
1642 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1643 return NewSel;
1644
1645 bool Changed = adjustMinMax(SI, *ICI);
1646
1647 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1648 return replaceInstUsesWith(SI, V);
1649
1650 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1651 Value *TrueVal = SI.getTrueValue();
1652 Value *FalseVal = SI.getFalseValue();
1653 ICmpInst::Predicate Pred = ICI->getPredicate();
1654 Value *CmpLHS = ICI->getOperand(0);
1655 Value *CmpRHS = ICI->getOperand(1);
1656 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1657 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1658 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1659 SI.setOperand(1, CmpRHS);
1660 Changed = true;
1661 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1662 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1663 SI.setOperand(2, CmpRHS);
1664 Changed = true;
1665 }
1666 }
1667
1668 // Canonicalize a signbit condition to use zero constant by swapping:
1669 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1670 // To avoid conflicts (infinite loops) with other canonicalizations, this is
1671 // not applied with any constant select arm.
1672 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1673 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1674 ICI->hasOneUse()) {
1675 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1676 Builder.SetInsertPoint(&SI);
1677 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1678 replaceOperand(SI, 0, IsNeg);
1679 SI.swapValues();
1680 SI.swapProfMetadata();
1681 return &SI;
1682 }
1683
1684 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1685 // decomposeBitTestICmp() might help.
1686 {
1687 unsigned BitWidth =
1688 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1689 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1690 Value *X;
1691 const APInt *Y, *C;
1692 bool TrueWhenUnset;
1693 bool IsBitTest = false;
1694 if (ICmpInst::isEquality(Pred) &&
1695 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1696 match(CmpRHS, m_Zero())) {
1697 IsBitTest = true;
1698 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1699 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1700 X = CmpLHS;
1701 Y = &MinSignedValue;
1702 IsBitTest = true;
1703 TrueWhenUnset = false;
1704 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1705 X = CmpLHS;
1706 Y = &MinSignedValue;
1707 IsBitTest = true;
1708 TrueWhenUnset = true;
1709 }
1710 if (IsBitTest) {
1711 Value *V = nullptr;
1712 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1713 if (TrueWhenUnset && TrueVal == X &&
1714 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1715 V = Builder.CreateAnd(X, ~(*Y));
1716 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1717 else if (!TrueWhenUnset && FalseVal == X &&
1718 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1719 V = Builder.CreateAnd(X, ~(*Y));
1720 // (X & Y) == 0 ? X ^ Y : X --> X | Y
1721 else if (TrueWhenUnset && FalseVal == X &&
1722 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1723 V = Builder.CreateOr(X, *Y);
1724 // (X & Y) != 0 ? X : X ^ Y --> X | Y
1725 else if (!TrueWhenUnset && TrueVal == X &&
1726 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1727 V = Builder.CreateOr(X, *Y);
1728
1729 if (V)
1730 return replaceInstUsesWith(SI, V);
1731 }
1732 }
1733
1734 if (Instruction *V =
1735 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1736 return V;
1737
1738 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1739 return V;
1740
1741 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1742 return V;
1743
1744 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1745 return replaceInstUsesWith(SI, V);
1746
1747 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1748 return replaceInstUsesWith(SI, V);
1749
1750 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1751 return replaceInstUsesWith(SI, V);
1752
1753 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1754 return replaceInstUsesWith(SI, V);
1755
1756 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1757 return replaceInstUsesWith(SI, V);
1758
1759 return Changed ? &SI : nullptr;
1760 }
1761
1762 /// SI is a select whose condition is a PHI node (but the two may be in
1763 /// different blocks). See if the true/false values (V) are live in all of the
1764 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1765 ///
1766 /// X = phi [ C1, BB1], [C2, BB2]
1767 /// Y = add
1768 /// Z = select X, Y, 0
1769 ///
1770 /// because Y is not live in BB1/BB2.
canSelectOperandBeMappingIntoPredBlock(const Value * V,const SelectInst & SI)1771 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1772 const SelectInst &SI) {
1773 // If the value is a non-instruction value like a constant or argument, it
1774 // can always be mapped.
1775 const Instruction *I = dyn_cast<Instruction>(V);
1776 if (!I) return true;
1777
1778 // If V is a PHI node defined in the same block as the condition PHI, we can
1779 // map the arguments.
1780 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1781
1782 if (const PHINode *VP = dyn_cast<PHINode>(I))
1783 if (VP->getParent() == CondPHI->getParent())
1784 return true;
1785
1786 // Otherwise, if the PHI and select are defined in the same block and if V is
1787 // defined in a different block, then we can transform it.
1788 if (SI.getParent() == CondPHI->getParent() &&
1789 I->getParent() != CondPHI->getParent())
1790 return true;
1791
1792 // Otherwise we have a 'hard' case and we can't tell without doing more
1793 // detailed dominator based analysis, punt.
1794 return false;
1795 }
1796
1797 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1798 /// SPF2(SPF1(A, B), C)
foldSPFofSPF(Instruction * Inner,SelectPatternFlavor SPF1,Value * A,Value * B,Instruction & Outer,SelectPatternFlavor SPF2,Value * C)1799 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1800 SelectPatternFlavor SPF1, Value *A,
1801 Value *B, Instruction &Outer,
1802 SelectPatternFlavor SPF2,
1803 Value *C) {
1804 if (Outer.getType() != Inner->getType())
1805 return nullptr;
1806
1807 if (C == A || C == B) {
1808 // MAX(MAX(A, B), B) -> MAX(A, B)
1809 // MIN(MIN(a, b), a) -> MIN(a, b)
1810 // TODO: This could be done in instsimplify.
1811 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1812 return replaceInstUsesWith(Outer, Inner);
1813 }
1814
1815 return nullptr;
1816 }
1817
1818 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1819 /// This is even legal for FP.
foldAddSubSelect(SelectInst & SI,InstCombiner::BuilderTy & Builder)1820 static Instruction *foldAddSubSelect(SelectInst &SI,
1821 InstCombiner::BuilderTy &Builder) {
1822 Value *CondVal = SI.getCondition();
1823 Value *TrueVal = SI.getTrueValue();
1824 Value *FalseVal = SI.getFalseValue();
1825 auto *TI = dyn_cast<Instruction>(TrueVal);
1826 auto *FI = dyn_cast<Instruction>(FalseVal);
1827 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1828 return nullptr;
1829
1830 Instruction *AddOp = nullptr, *SubOp = nullptr;
1831 if ((TI->getOpcode() == Instruction::Sub &&
1832 FI->getOpcode() == Instruction::Add) ||
1833 (TI->getOpcode() == Instruction::FSub &&
1834 FI->getOpcode() == Instruction::FAdd)) {
1835 AddOp = FI;
1836 SubOp = TI;
1837 } else if ((FI->getOpcode() == Instruction::Sub &&
1838 TI->getOpcode() == Instruction::Add) ||
1839 (FI->getOpcode() == Instruction::FSub &&
1840 TI->getOpcode() == Instruction::FAdd)) {
1841 AddOp = TI;
1842 SubOp = FI;
1843 }
1844
1845 if (AddOp) {
1846 Value *OtherAddOp = nullptr;
1847 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1848 OtherAddOp = AddOp->getOperand(1);
1849 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1850 OtherAddOp = AddOp->getOperand(0);
1851 }
1852
1853 if (OtherAddOp) {
1854 // So at this point we know we have (Y -> OtherAddOp):
1855 // select C, (add X, Y), (sub X, Z)
1856 Value *NegVal; // Compute -Z
1857 if (SI.getType()->isFPOrFPVectorTy()) {
1858 NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1859 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1860 FastMathFlags Flags = AddOp->getFastMathFlags();
1861 Flags &= SubOp->getFastMathFlags();
1862 NegInst->setFastMathFlags(Flags);
1863 }
1864 } else {
1865 NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1866 }
1867
1868 Value *NewTrueOp = OtherAddOp;
1869 Value *NewFalseOp = NegVal;
1870 if (AddOp != TI)
1871 std::swap(NewTrueOp, NewFalseOp);
1872 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1873 SI.getName() + ".p", &SI);
1874
1875 if (SI.getType()->isFPOrFPVectorTy()) {
1876 Instruction *RI =
1877 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1878
1879 FastMathFlags Flags = AddOp->getFastMathFlags();
1880 Flags &= SubOp->getFastMathFlags();
1881 RI->setFastMathFlags(Flags);
1882 return RI;
1883 } else
1884 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1885 }
1886 }
1887 return nullptr;
1888 }
1889
1890 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1891 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1892 /// Along with a number of patterns similar to:
1893 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1894 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1895 static Instruction *
foldOverflowingAddSubSelect(SelectInst & SI,InstCombiner::BuilderTy & Builder)1896 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1897 Value *CondVal = SI.getCondition();
1898 Value *TrueVal = SI.getTrueValue();
1899 Value *FalseVal = SI.getFalseValue();
1900
1901 WithOverflowInst *II;
1902 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1903 !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1904 return nullptr;
1905
1906 Value *X = II->getLHS();
1907 Value *Y = II->getRHS();
1908
1909 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1910 Type *Ty = Limit->getType();
1911
1912 ICmpInst::Predicate Pred;
1913 Value *TrueVal, *FalseVal, *Op;
1914 const APInt *C;
1915 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1916 m_Value(TrueVal), m_Value(FalseVal))))
1917 return false;
1918
1919 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1920 auto IsMinMax = [&](Value *Min, Value *Max) {
1921 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1922 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1923 return match(Min, m_SpecificInt(MinVal)) &&
1924 match(Max, m_SpecificInt(MaxVal));
1925 };
1926
1927 if (Op != X && Op != Y)
1928 return false;
1929
1930 if (IsAdd) {
1931 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1932 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1933 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1934 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1935 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1936 IsMinMax(TrueVal, FalseVal))
1937 return true;
1938 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1939 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1940 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1941 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1942 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1943 IsMinMax(FalseVal, TrueVal))
1944 return true;
1945 } else {
1946 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1947 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1948 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1949 IsMinMax(TrueVal, FalseVal))
1950 return true;
1951 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1952 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1953 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1954 IsMinMax(FalseVal, TrueVal))
1955 return true;
1956 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1957 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1958 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1959 IsMinMax(FalseVal, TrueVal))
1960 return true;
1961 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1962 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1963 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1964 IsMinMax(TrueVal, FalseVal))
1965 return true;
1966 }
1967
1968 return false;
1969 };
1970
1971 Intrinsic::ID NewIntrinsicID;
1972 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1973 match(TrueVal, m_AllOnes()))
1974 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1975 NewIntrinsicID = Intrinsic::uadd_sat;
1976 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1977 match(TrueVal, m_Zero()))
1978 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1979 NewIntrinsicID = Intrinsic::usub_sat;
1980 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1981 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1982 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1983 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1984 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1985 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1986 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1987 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1988 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1989 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1990 NewIntrinsicID = Intrinsic::sadd_sat;
1991 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1992 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1993 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1994 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1995 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1996 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1997 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1998 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1999 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2000 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2001 NewIntrinsicID = Intrinsic::ssub_sat;
2002 else
2003 return nullptr;
2004
2005 Function *F =
2006 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2007 return CallInst::Create(F, {X, Y});
2008 }
2009
foldSelectExtConst(SelectInst & Sel)2010 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2011 Constant *C;
2012 if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2013 !match(Sel.getFalseValue(), m_Constant(C)))
2014 return nullptr;
2015
2016 Instruction *ExtInst;
2017 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2018 !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2019 return nullptr;
2020
2021 auto ExtOpcode = ExtInst->getOpcode();
2022 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2023 return nullptr;
2024
2025 // If we are extending from a boolean type or if we can create a select that
2026 // has the same size operands as its condition, try to narrow the select.
2027 Value *X = ExtInst->getOperand(0);
2028 Type *SmallType = X->getType();
2029 Value *Cond = Sel.getCondition();
2030 auto *Cmp = dyn_cast<CmpInst>(Cond);
2031 if (!SmallType->isIntOrIntVectorTy(1) &&
2032 (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2033 return nullptr;
2034
2035 // If the constant is the same after truncation to the smaller type and
2036 // extension to the original type, we can narrow the select.
2037 Type *SelType = Sel.getType();
2038 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2039 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2040 if (ExtC == C && ExtInst->hasOneUse()) {
2041 Value *TruncCVal = cast<Value>(TruncC);
2042 if (ExtInst == Sel.getFalseValue())
2043 std::swap(X, TruncCVal);
2044
2045 // select Cond, (ext X), C --> ext(select Cond, X, C')
2046 // select Cond, C, (ext X) --> ext(select Cond, C', X)
2047 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2048 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2049 }
2050
2051 // If one arm of the select is the extend of the condition, replace that arm
2052 // with the extension of the appropriate known bool value.
2053 if (Cond == X) {
2054 if (ExtInst == Sel.getTrueValue()) {
2055 // select X, (sext X), C --> select X, -1, C
2056 // select X, (zext X), C --> select X, 1, C
2057 Constant *One = ConstantInt::getTrue(SmallType);
2058 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2059 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2060 } else {
2061 // select X, C, (sext X) --> select X, C, 0
2062 // select X, C, (zext X) --> select X, C, 0
2063 Constant *Zero = ConstantInt::getNullValue(SelType);
2064 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2065 }
2066 }
2067
2068 return nullptr;
2069 }
2070
2071 /// Try to transform a vector select with a constant condition vector into a
2072 /// shuffle for easier combining with other shuffles and insert/extract.
canonicalizeSelectToShuffle(SelectInst & SI)2073 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2074 Value *CondVal = SI.getCondition();
2075 Constant *CondC;
2076 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2077 if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2078 return nullptr;
2079
2080 unsigned NumElts = CondValTy->getNumElements();
2081 SmallVector<int, 16> Mask;
2082 Mask.reserve(NumElts);
2083 for (unsigned i = 0; i != NumElts; ++i) {
2084 Constant *Elt = CondC->getAggregateElement(i);
2085 if (!Elt)
2086 return nullptr;
2087
2088 if (Elt->isOneValue()) {
2089 // If the select condition element is true, choose from the 1st vector.
2090 Mask.push_back(i);
2091 } else if (Elt->isNullValue()) {
2092 // If the select condition element is false, choose from the 2nd vector.
2093 Mask.push_back(i + NumElts);
2094 } else if (isa<UndefValue>(Elt)) {
2095 // Undef in a select condition (choose one of the operands) does not mean
2096 // the same thing as undef in a shuffle mask (any value is acceptable), so
2097 // give up.
2098 return nullptr;
2099 } else {
2100 // Bail out on a constant expression.
2101 return nullptr;
2102 }
2103 }
2104
2105 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2106 }
2107
2108 /// If we have a select of vectors with a scalar condition, try to convert that
2109 /// to a vector select by splatting the condition. A splat may get folded with
2110 /// other operations in IR and having all operands of a select be vector types
2111 /// is likely better for vector codegen.
canonicalizeScalarSelectOfVecs(SelectInst & Sel,InstCombinerImpl & IC)2112 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2113 InstCombinerImpl &IC) {
2114 auto *Ty = dyn_cast<VectorType>(Sel.getType());
2115 if (!Ty)
2116 return nullptr;
2117
2118 // We can replace a single-use extract with constant index.
2119 Value *Cond = Sel.getCondition();
2120 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2121 return nullptr;
2122
2123 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2124 // Splatting the extracted condition reduces code (we could directly create a
2125 // splat shuffle of the source vector to eliminate the intermediate step).
2126 return IC.replaceOperand(
2127 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2128 }
2129
2130 /// Reuse bitcasted operands between a compare and select:
2131 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2132 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
foldSelectCmpBitcasts(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2133 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2134 InstCombiner::BuilderTy &Builder) {
2135 Value *Cond = Sel.getCondition();
2136 Value *TVal = Sel.getTrueValue();
2137 Value *FVal = Sel.getFalseValue();
2138
2139 CmpInst::Predicate Pred;
2140 Value *A, *B;
2141 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2142 return nullptr;
2143
2144 // The select condition is a compare instruction. If the select's true/false
2145 // values are already the same as the compare operands, there's nothing to do.
2146 if (TVal == A || TVal == B || FVal == A || FVal == B)
2147 return nullptr;
2148
2149 Value *C, *D;
2150 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2151 return nullptr;
2152
2153 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2154 Value *TSrc, *FSrc;
2155 if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2156 !match(FVal, m_BitCast(m_Value(FSrc))))
2157 return nullptr;
2158
2159 // If the select true/false values are *different bitcasts* of the same source
2160 // operands, make the select operands the same as the compare operands and
2161 // cast the result. This is the canonical select form for min/max.
2162 Value *NewSel;
2163 if (TSrc == C && FSrc == D) {
2164 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2165 // bitcast (select (cmp A, B), A, B)
2166 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2167 } else if (TSrc == D && FSrc == C) {
2168 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2169 // bitcast (select (cmp A, B), B, A)
2170 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2171 } else {
2172 return nullptr;
2173 }
2174 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2175 }
2176
2177 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2178 /// instructions.
2179 ///
2180 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2181 /// selects between the returned value of the cmpxchg instruction its compare
2182 /// operand, the result of the select will always be equal to its false value.
2183 /// For example:
2184 ///
2185 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2186 /// %1 = extractvalue { i64, i1 } %0, 1
2187 /// %2 = extractvalue { i64, i1 } %0, 0
2188 /// %3 = select i1 %1, i64 %compare, i64 %2
2189 /// ret i64 %3
2190 ///
2191 /// The returned value of the cmpxchg instruction (%2) is the original value
2192 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2193 /// must have been equal to %compare. Thus, the result of the select is always
2194 /// equal to %2, and the code can be simplified to:
2195 ///
2196 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2197 /// %1 = extractvalue { i64, i1 } %0, 0
2198 /// ret i64 %1
2199 ///
foldSelectCmpXchg(SelectInst & SI)2200 static Value *foldSelectCmpXchg(SelectInst &SI) {
2201 // A helper that determines if V is an extractvalue instruction whose
2202 // aggregate operand is a cmpxchg instruction and whose single index is equal
2203 // to I. If such conditions are true, the helper returns the cmpxchg
2204 // instruction; otherwise, a nullptr is returned.
2205 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2206 auto *Extract = dyn_cast<ExtractValueInst>(V);
2207 if (!Extract)
2208 return nullptr;
2209 if (Extract->getIndices()[0] != I)
2210 return nullptr;
2211 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2212 };
2213
2214 // If the select has a single user, and this user is a select instruction that
2215 // we can simplify, skip the cmpxchg simplification for now.
2216 if (SI.hasOneUse())
2217 if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2218 if (Select->getCondition() == SI.getCondition())
2219 if (Select->getFalseValue() == SI.getTrueValue() ||
2220 Select->getTrueValue() == SI.getFalseValue())
2221 return nullptr;
2222
2223 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2224 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2225 if (!CmpXchg)
2226 return nullptr;
2227
2228 // Check the true value case: The true value of the select is the returned
2229 // value of the same cmpxchg used by the condition, and the false value is the
2230 // cmpxchg instruction's compare operand.
2231 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2232 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2233 return SI.getFalseValue();
2234
2235 // Check the false value case: The false value of the select is the returned
2236 // value of the same cmpxchg used by the condition, and the true value is the
2237 // cmpxchg instruction's compare operand.
2238 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2239 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2240 return SI.getFalseValue();
2241
2242 return nullptr;
2243 }
2244
2245 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2246 /// into a funnel shift intrinsic. Example:
2247 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2248 /// --> call llvm.fshl.i32(a, a, b)
2249 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2250 /// --> call llvm.fshl.i32(a, b, c)
2251 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2252 /// --> call llvm.fshr.i32(a, b, c)
foldSelectFunnelShift(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2253 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2254 InstCombiner::BuilderTy &Builder) {
2255 // This must be a power-of-2 type for a bitmasking transform to be valid.
2256 unsigned Width = Sel.getType()->getScalarSizeInBits();
2257 if (!isPowerOf2_32(Width))
2258 return nullptr;
2259
2260 BinaryOperator *Or0, *Or1;
2261 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2262 return nullptr;
2263
2264 Value *SV0, *SV1, *SA0, *SA1;
2265 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2266 m_ZExtOrSelf(m_Value(SA0))))) ||
2267 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2268 m_ZExtOrSelf(m_Value(SA1))))) ||
2269 Or0->getOpcode() == Or1->getOpcode())
2270 return nullptr;
2271
2272 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2273 if (Or0->getOpcode() == BinaryOperator::LShr) {
2274 std::swap(Or0, Or1);
2275 std::swap(SV0, SV1);
2276 std::swap(SA0, SA1);
2277 }
2278 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2279 Or1->getOpcode() == BinaryOperator::LShr &&
2280 "Illegal or(shift,shift) pair");
2281
2282 // Check the shift amounts to see if they are an opposite pair.
2283 Value *ShAmt;
2284 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2285 ShAmt = SA0;
2286 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2287 ShAmt = SA1;
2288 else
2289 return nullptr;
2290
2291 // We should now have this pattern:
2292 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2293 // The false value of the select must be a funnel-shift of the true value:
2294 // IsFShl -> TVal must be SV0 else TVal must be SV1.
2295 bool IsFshl = (ShAmt == SA0);
2296 Value *TVal = Sel.getTrueValue();
2297 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2298 return nullptr;
2299
2300 // Finally, see if the select is filtering out a shift-by-zero.
2301 Value *Cond = Sel.getCondition();
2302 ICmpInst::Predicate Pred;
2303 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2304 Pred != ICmpInst::ICMP_EQ)
2305 return nullptr;
2306
2307 // If this is not a rotate then the select was blocking poison from the
2308 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2309 if (SV0 != SV1) {
2310 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2311 SV1 = Builder.CreateFreeze(SV1);
2312 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2313 SV0 = Builder.CreateFreeze(SV0);
2314 }
2315
2316 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2317 // Convert to funnel shift intrinsic.
2318 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2319 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2320 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2321 return CallInst::Create(F, { SV0, SV1, ShAmt });
2322 }
2323
foldSelectToCopysign(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2324 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2325 InstCombiner::BuilderTy &Builder) {
2326 Value *Cond = Sel.getCondition();
2327 Value *TVal = Sel.getTrueValue();
2328 Value *FVal = Sel.getFalseValue();
2329 Type *SelType = Sel.getType();
2330
2331 // Match select ?, TC, FC where the constants are equal but negated.
2332 // TODO: Generalize to handle a negated variable operand?
2333 const APFloat *TC, *FC;
2334 if (!match(TVal, m_APFloatAllowUndef(TC)) ||
2335 !match(FVal, m_APFloatAllowUndef(FC)) ||
2336 !abs(*TC).bitwiseIsEqual(abs(*FC)))
2337 return nullptr;
2338
2339 assert(TC != FC && "Expected equal select arms to simplify");
2340
2341 Value *X;
2342 const APInt *C;
2343 bool IsTrueIfSignSet;
2344 ICmpInst::Predicate Pred;
2345 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2346 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2347 X->getType() != SelType)
2348 return nullptr;
2349
2350 // If needed, negate the value that will be the sign argument of the copysign:
2351 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
2352 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
2353 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
2354 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
2355 // Note: FMF from the select can not be propagated to the new instructions.
2356 if (IsTrueIfSignSet ^ TC->isNegative())
2357 X = Builder.CreateFNeg(X);
2358
2359 // Canonicalize the magnitude argument as the positive constant since we do
2360 // not care about its sign.
2361 Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2362 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2363 Sel.getType());
2364 return CallInst::Create(F, { MagArg, X });
2365 }
2366
foldVectorSelect(SelectInst & Sel)2367 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2368 if (!isa<VectorType>(Sel.getType()))
2369 return nullptr;
2370
2371 Value *Cond = Sel.getCondition();
2372 Value *TVal = Sel.getTrueValue();
2373 Value *FVal = Sel.getFalseValue();
2374 Value *C, *X, *Y;
2375
2376 if (match(Cond, m_VecReverse(m_Value(C)))) {
2377 auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2378 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2379 if (auto *I = dyn_cast<Instruction>(V))
2380 I->copyIRFlags(&Sel);
2381 Module *M = Sel.getModule();
2382 Function *F = Intrinsic::getDeclaration(
2383 M, Intrinsic::experimental_vector_reverse, V->getType());
2384 return CallInst::Create(F, V);
2385 };
2386
2387 if (match(TVal, m_VecReverse(m_Value(X)))) {
2388 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2389 if (match(FVal, m_VecReverse(m_Value(Y))) &&
2390 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2391 return createSelReverse(C, X, Y);
2392
2393 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2394 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2395 return createSelReverse(C, X, FVal);
2396 }
2397 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2398 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2399 (Cond->hasOneUse() || FVal->hasOneUse()))
2400 return createSelReverse(C, TVal, Y);
2401 }
2402
2403 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2404 if (!VecTy)
2405 return nullptr;
2406
2407 unsigned NumElts = VecTy->getNumElements();
2408 APInt UndefElts(NumElts, 0);
2409 APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2410 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2411 if (V != &Sel)
2412 return replaceInstUsesWith(Sel, V);
2413 return &Sel;
2414 }
2415
2416 // A select of a "select shuffle" with a common operand can be rearranged
2417 // to select followed by "select shuffle". Because of poison, this only works
2418 // in the case of a shuffle with no undefined mask elements.
2419 ArrayRef<int> Mask;
2420 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2421 !is_contained(Mask, UndefMaskElem) &&
2422 cast<ShuffleVectorInst>(TVal)->isSelect()) {
2423 if (X == FVal) {
2424 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2425 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2426 return new ShuffleVectorInst(X, NewSel, Mask);
2427 }
2428 if (Y == FVal) {
2429 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2430 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2431 return new ShuffleVectorInst(NewSel, Y, Mask);
2432 }
2433 }
2434 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2435 !is_contained(Mask, UndefMaskElem) &&
2436 cast<ShuffleVectorInst>(FVal)->isSelect()) {
2437 if (X == TVal) {
2438 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2439 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2440 return new ShuffleVectorInst(X, NewSel, Mask);
2441 }
2442 if (Y == TVal) {
2443 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2444 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2445 return new ShuffleVectorInst(NewSel, Y, Mask);
2446 }
2447 }
2448
2449 return nullptr;
2450 }
2451
foldSelectToPhiImpl(SelectInst & Sel,BasicBlock * BB,const DominatorTree & DT,InstCombiner::BuilderTy & Builder)2452 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2453 const DominatorTree &DT,
2454 InstCombiner::BuilderTy &Builder) {
2455 // Find the block's immediate dominator that ends with a conditional branch
2456 // that matches select's condition (maybe inverted).
2457 auto *IDomNode = DT[BB]->getIDom();
2458 if (!IDomNode)
2459 return nullptr;
2460 BasicBlock *IDom = IDomNode->getBlock();
2461
2462 Value *Cond = Sel.getCondition();
2463 Value *IfTrue, *IfFalse;
2464 BasicBlock *TrueSucc, *FalseSucc;
2465 if (match(IDom->getTerminator(),
2466 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2467 m_BasicBlock(FalseSucc)))) {
2468 IfTrue = Sel.getTrueValue();
2469 IfFalse = Sel.getFalseValue();
2470 } else if (match(IDom->getTerminator(),
2471 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2472 m_BasicBlock(FalseSucc)))) {
2473 IfTrue = Sel.getFalseValue();
2474 IfFalse = Sel.getTrueValue();
2475 } else
2476 return nullptr;
2477
2478 // Make sure the branches are actually different.
2479 if (TrueSucc == FalseSucc)
2480 return nullptr;
2481
2482 // We want to replace select %cond, %a, %b with a phi that takes value %a
2483 // for all incoming edges that are dominated by condition `%cond == true`,
2484 // and value %b for edges dominated by condition `%cond == false`. If %a
2485 // or %b are also phis from the same basic block, we can go further and take
2486 // their incoming values from the corresponding blocks.
2487 BasicBlockEdge TrueEdge(IDom, TrueSucc);
2488 BasicBlockEdge FalseEdge(IDom, FalseSucc);
2489 DenseMap<BasicBlock *, Value *> Inputs;
2490 for (auto *Pred : predecessors(BB)) {
2491 // Check implication.
2492 BasicBlockEdge Incoming(Pred, BB);
2493 if (DT.dominates(TrueEdge, Incoming))
2494 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2495 else if (DT.dominates(FalseEdge, Incoming))
2496 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2497 else
2498 return nullptr;
2499 // Check availability.
2500 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2501 if (!DT.dominates(Insn, Pred->getTerminator()))
2502 return nullptr;
2503 }
2504
2505 Builder.SetInsertPoint(&*BB->begin());
2506 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2507 for (auto *Pred : predecessors(BB))
2508 PN->addIncoming(Inputs[Pred], Pred);
2509 PN->takeName(&Sel);
2510 return PN;
2511 }
2512
foldSelectToPhi(SelectInst & Sel,const DominatorTree & DT,InstCombiner::BuilderTy & Builder)2513 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2514 InstCombiner::BuilderTy &Builder) {
2515 // Try to replace this select with Phi in one of these blocks.
2516 SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2517 CandidateBlocks.insert(Sel.getParent());
2518 for (Value *V : Sel.operands())
2519 if (auto *I = dyn_cast<Instruction>(V))
2520 CandidateBlocks.insert(I->getParent());
2521
2522 for (BasicBlock *BB : CandidateBlocks)
2523 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2524 return PN;
2525 return nullptr;
2526 }
2527
foldSelectWithFrozenICmp(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2528 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2529 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2530 if (!FI)
2531 return nullptr;
2532
2533 Value *Cond = FI->getOperand(0);
2534 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2535
2536 // select (freeze(x == y)), x, y --> y
2537 // select (freeze(x != y)), x, y --> x
2538 // The freeze should be only used by this select. Otherwise, remaining uses of
2539 // the freeze can observe a contradictory value.
2540 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
2541 // a = select c, x, y ;
2542 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
2543 // ; to y, this can happen.
2544 CmpInst::Predicate Pred;
2545 if (FI->hasOneUse() &&
2546 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2547 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2548 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2549 }
2550
2551 return nullptr;
2552 }
2553
foldAndOrOfSelectUsingImpliedCond(Value * Op,SelectInst & SI,bool IsAnd)2554 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2555 SelectInst &SI,
2556 bool IsAnd) {
2557 Value *CondVal = SI.getCondition();
2558 Value *A = SI.getTrueValue();
2559 Value *B = SI.getFalseValue();
2560
2561 assert(Op->getType()->isIntOrIntVectorTy(1) &&
2562 "Op must be either i1 or vector of i1.");
2563
2564 std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2565 if (!Res)
2566 return nullptr;
2567
2568 Value *Zero = Constant::getNullValue(A->getType());
2569 Value *One = Constant::getAllOnesValue(A->getType());
2570
2571 if (*Res == true) {
2572 if (IsAnd)
2573 // select op, (select cond, A, B), false => select op, A, false
2574 // and op, (select cond, A, B) => select op, A, false
2575 // if op = true implies condval = true.
2576 return SelectInst::Create(Op, A, Zero);
2577 else
2578 // select op, true, (select cond, A, B) => select op, true, A
2579 // or op, (select cond, A, B) => select op, true, A
2580 // if op = false implies condval = true.
2581 return SelectInst::Create(Op, One, A);
2582 } else {
2583 if (IsAnd)
2584 // select op, (select cond, A, B), false => select op, B, false
2585 // and op, (select cond, A, B) => select op, B, false
2586 // if op = true implies condval = false.
2587 return SelectInst::Create(Op, B, Zero);
2588 else
2589 // select op, true, (select cond, A, B) => select op, true, B
2590 // or op, (select cond, A, B) => select op, true, B
2591 // if op = false implies condval = false.
2592 return SelectInst::Create(Op, One, B);
2593 }
2594 }
2595
2596 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2597 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
foldSelectWithFCmpToFabs(SelectInst & SI,InstCombinerImpl & IC)2598 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2599 InstCombinerImpl &IC) {
2600 Value *CondVal = SI.getCondition();
2601
2602 bool ChangedFMF = false;
2603 for (bool Swap : {false, true}) {
2604 Value *TrueVal = SI.getTrueValue();
2605 Value *X = SI.getFalseValue();
2606 CmpInst::Predicate Pred;
2607
2608 if (Swap)
2609 std::swap(TrueVal, X);
2610
2611 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2612 continue;
2613
2614 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2615 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2616 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2617 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2618 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2619 return IC.replaceInstUsesWith(SI, Fabs);
2620 }
2621 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2622 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2623 return IC.replaceInstUsesWith(SI, Fabs);
2624 }
2625 }
2626
2627 if (!match(TrueVal, m_FNeg(m_Specific(X))))
2628 return nullptr;
2629
2630 // Forward-propagate nnan and ninf from the fneg to the select.
2631 // If all inputs are not those values, then the select is not either.
2632 // Note: nsz is defined differently, so it may not be correct to propagate.
2633 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2634 if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2635 SI.setHasNoNaNs(true);
2636 ChangedFMF = true;
2637 }
2638 if (FMF.noInfs() && !SI.hasNoInfs()) {
2639 SI.setHasNoInfs(true);
2640 ChangedFMF = true;
2641 }
2642
2643 // With nsz, when 'Swap' is false:
2644 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2645 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2646 // when 'Swap' is true:
2647 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2648 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2649 //
2650 // Note: We require "nnan" for this fold because fcmp ignores the signbit
2651 // of NAN, but IEEE-754 specifies the signbit of NAN values with
2652 // fneg/fabs operations.
2653 if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2654 return nullptr;
2655
2656 if (Swap)
2657 Pred = FCmpInst::getSwappedPredicate(Pred);
2658
2659 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2660 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2661 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2662 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2663
2664 if (IsLTOrLE) {
2665 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2666 return IC.replaceInstUsesWith(SI, Fabs);
2667 }
2668 if (IsGTOrGE) {
2669 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2670 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2671 NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2672 return NewFNeg;
2673 }
2674 }
2675
2676 return ChangedFMF ? &SI : nullptr;
2677 }
2678
2679 // Match the following IR pattern:
2680 // %x.lowbits = and i8 %x, %lowbitmask
2681 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2682 // %x.biased = add i8 %x, %bias
2683 // %x.biased.highbits = and i8 %x.biased, %highbitmask
2684 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2685 // Define:
2686 // %alignment = add i8 %lowbitmask, 1
2687 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2688 // and 2. %bias is equal to either %lowbitmask or %alignment,
2689 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2690 // then this pattern can be transformed into:
2691 // %x.offset = add i8 %x, %lowbitmask
2692 // %x.roundedup = and i8 %x.offset, %highbitmask
2693 static Value *
foldRoundUpIntegerWithPow2Alignment(SelectInst & SI,InstCombiner::BuilderTy & Builder)2694 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2695 InstCombiner::BuilderTy &Builder) {
2696 Value *Cond = SI.getCondition();
2697 Value *X = SI.getTrueValue();
2698 Value *XBiasedHighBits = SI.getFalseValue();
2699
2700 ICmpInst::Predicate Pred;
2701 Value *XLowBits;
2702 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2703 !ICmpInst::isEquality(Pred))
2704 return nullptr;
2705
2706 if (Pred == ICmpInst::Predicate::ICMP_NE)
2707 std::swap(X, XBiasedHighBits);
2708
2709 // FIXME: we could support non non-splats here.
2710
2711 const APInt *LowBitMaskCst;
2712 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
2713 return nullptr;
2714
2715 // Match even if the AND and ADD are swapped.
2716 const APInt *BiasCst, *HighBitMaskCst;
2717 if (!match(XBiasedHighBits,
2718 m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
2719 m_APIntAllowUndef(HighBitMaskCst))) &&
2720 !match(XBiasedHighBits,
2721 m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)),
2722 m_APIntAllowUndef(BiasCst))))
2723 return nullptr;
2724
2725 if (!LowBitMaskCst->isMask())
2726 return nullptr;
2727
2728 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2729 if (InvertedLowBitMaskCst != *HighBitMaskCst)
2730 return nullptr;
2731
2732 APInt AlignmentCst = *LowBitMaskCst + 1;
2733
2734 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2735 return nullptr;
2736
2737 if (!XBiasedHighBits->hasOneUse()) {
2738 if (*BiasCst == *LowBitMaskCst)
2739 return XBiasedHighBits;
2740 return nullptr;
2741 }
2742
2743 // FIXME: could we preserve undef's here?
2744 Type *Ty = X->getType();
2745 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
2746 X->getName() + ".biased");
2747 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
2748 R->takeName(&SI);
2749 return R;
2750 }
2751
2752 namespace {
2753 struct DecomposedSelect {
2754 Value *Cond = nullptr;
2755 Value *TrueVal = nullptr;
2756 Value *FalseVal = nullptr;
2757 };
2758 } // namespace
2759
2760 /// Look for patterns like
2761 /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
2762 /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
2763 /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
2764 /// and rewrite it as
2765 /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
2766 /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
foldNestedSelects(SelectInst & OuterSelVal,InstCombiner::BuilderTy & Builder)2767 static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
2768 InstCombiner::BuilderTy &Builder) {
2769 // We must start with a `select`.
2770 DecomposedSelect OuterSel;
2771 match(&OuterSelVal,
2772 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
2773 m_Value(OuterSel.FalseVal)));
2774
2775 // Canonicalize inversion of the outermost `select`'s condition.
2776 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
2777 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
2778
2779 // The condition of the outermost select must be an `and`/`or`.
2780 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
2781 return nullptr;
2782
2783 // Depending on the logical op, inner select might be in different hand.
2784 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
2785 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
2786
2787 // Profitability check - avoid increasing instruction count.
2788 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
2789 [](Value *V) { return V->hasOneUse(); }))
2790 return nullptr;
2791
2792 // The appropriate hand of the outermost `select` must be a select itself.
2793 DecomposedSelect InnerSel;
2794 if (!match(InnerSelVal,
2795 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
2796 m_Value(InnerSel.FalseVal))))
2797 return nullptr;
2798
2799 // Canonicalize inversion of the innermost `select`'s condition.
2800 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
2801 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2802
2803 Value *AltCond = nullptr;
2804 auto matchOuterCond = [OuterSel, &AltCond](auto m_InnerCond) {
2805 return match(OuterSel.Cond, m_c_LogicalOp(m_InnerCond, m_Value(AltCond)));
2806 };
2807
2808 // Finally, match the condition that was driving the outermost `select`,
2809 // it should be a logical operation between the condition that was driving
2810 // the innermost `select` (after accounting for the possible inversions
2811 // of the condition), and some other condition.
2812 if (matchOuterCond(m_Specific(InnerSel.Cond))) {
2813 // Done!
2814 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
2815 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
2816 // Done!
2817 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2818 InnerSel.Cond = NotInnerCond;
2819 } else // Not the pattern we were looking for.
2820 return nullptr;
2821
2822 Value *SelInner = Builder.CreateSelect(
2823 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
2824 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
2825 SelInner->takeName(InnerSelVal);
2826 return SelectInst::Create(InnerSel.Cond,
2827 IsAndVariant ? SelInner : InnerSel.TrueVal,
2828 !IsAndVariant ? SelInner : InnerSel.FalseVal);
2829 }
2830
foldSelectOfBools(SelectInst & SI)2831 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
2832 Value *CondVal = SI.getCondition();
2833 Value *TrueVal = SI.getTrueValue();
2834 Value *FalseVal = SI.getFalseValue();
2835 Type *SelType = SI.getType();
2836
2837 // Avoid potential infinite loops by checking for non-constant condition.
2838 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2839 // Scalar select must have simplified?
2840 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
2841 TrueVal->getType() != CondVal->getType())
2842 return nullptr;
2843
2844 auto *One = ConstantInt::getTrue(SelType);
2845 auto *Zero = ConstantInt::getFalse(SelType);
2846 Value *A, *B, *C, *D;
2847
2848 // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2849 // checks whether folding it does not convert a well-defined value into
2850 // poison.
2851 if (match(TrueVal, m_One())) {
2852 if (impliesPoison(FalseVal, CondVal)) {
2853 // Change: A = select B, true, C --> A = or B, C
2854 return BinaryOperator::CreateOr(CondVal, FalseVal);
2855 }
2856
2857 if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2858 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2859 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2860 /*IsSelectLogical*/ true))
2861 return replaceInstUsesWith(SI, V);
2862
2863 // (A && B) || (C && B) --> (A || C) && B
2864 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
2865 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
2866 (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
2867 bool CondLogicAnd = isa<SelectInst>(CondVal);
2868 bool FalseLogicAnd = isa<SelectInst>(FalseVal);
2869 auto AndFactorization = [&](Value *Common, Value *InnerCond,
2870 Value *InnerVal,
2871 bool SelFirst = false) -> Instruction * {
2872 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
2873 if (SelFirst)
2874 std::swap(Common, InnerSel);
2875 if (FalseLogicAnd || (CondLogicAnd && Common == A))
2876 return SelectInst::Create(Common, InnerSel, Zero);
2877 else
2878 return BinaryOperator::CreateAnd(Common, InnerSel);
2879 };
2880
2881 if (A == C)
2882 return AndFactorization(A, B, D);
2883 if (A == D)
2884 return AndFactorization(A, B, C);
2885 if (B == C)
2886 return AndFactorization(B, A, D);
2887 if (B == D)
2888 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
2889 }
2890 }
2891
2892 if (match(FalseVal, m_Zero())) {
2893 if (impliesPoison(TrueVal, CondVal)) {
2894 // Change: A = select B, C, false --> A = and B, C
2895 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2896 }
2897
2898 if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2899 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
2900 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
2901 /*IsSelectLogical*/ true))
2902 return replaceInstUsesWith(SI, V);
2903
2904 // (A || B) && (C || B) --> (A && C) || B
2905 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
2906 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
2907 (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
2908 bool CondLogicOr = isa<SelectInst>(CondVal);
2909 bool TrueLogicOr = isa<SelectInst>(TrueVal);
2910 auto OrFactorization = [&](Value *Common, Value *InnerCond,
2911 Value *InnerVal,
2912 bool SelFirst = false) -> Instruction * {
2913 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
2914 if (SelFirst)
2915 std::swap(Common, InnerSel);
2916 if (TrueLogicOr || (CondLogicOr && Common == A))
2917 return SelectInst::Create(Common, One, InnerSel);
2918 else
2919 return BinaryOperator::CreateOr(Common, InnerSel);
2920 };
2921
2922 if (A == C)
2923 return OrFactorization(A, B, D);
2924 if (A == D)
2925 return OrFactorization(A, B, C);
2926 if (B == C)
2927 return OrFactorization(B, A, D);
2928 if (B == D)
2929 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
2930 }
2931 }
2932
2933 // We match the "full" 0 or 1 constant here to avoid a potential infinite
2934 // loop with vectors that may have undefined/poison elements.
2935 // select a, false, b -> select !a, b, false
2936 if (match(TrueVal, m_Specific(Zero))) {
2937 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2938 return SelectInst::Create(NotCond, FalseVal, Zero);
2939 }
2940 // select a, b, true -> select !a, true, b
2941 if (match(FalseVal, m_Specific(One))) {
2942 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2943 return SelectInst::Create(NotCond, One, TrueVal);
2944 }
2945
2946 // DeMorgan in select form: !a && !b --> !(a || b)
2947 // select !a, !b, false --> not (select a, true, b)
2948 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2949 (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2950 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2951 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2952
2953 // DeMorgan in select form: !a || !b --> !(a && b)
2954 // select !a, true, !b --> not (select a, b, false)
2955 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2956 (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2957 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2958 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2959
2960 // select (select a, true, b), true, b -> select a, true, b
2961 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2962 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2963 return replaceOperand(SI, 0, A);
2964 // select (select a, b, false), b, false -> select a, b, false
2965 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2966 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2967 return replaceOperand(SI, 0, A);
2968
2969 // ~(A & B) & (A | B) --> A ^ B
2970 if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
2971 m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
2972 return BinaryOperator::CreateXor(A, B);
2973
2974 // select (~a | c), a, b -> and a, (or c, freeze(b))
2975 if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
2976 CondVal->hasOneUse()) {
2977 FalseVal = Builder.CreateFreeze(FalseVal);
2978 return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
2979 }
2980 // select (~c & b), a, b -> and b, (or freeze(a), c)
2981 if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
2982 CondVal->hasOneUse()) {
2983 TrueVal = Builder.CreateFreeze(TrueVal);
2984 return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
2985 }
2986
2987 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2988 Use *Y = nullptr;
2989 bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2990 Value *Op1 = IsAnd ? TrueVal : FalseVal;
2991 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2992 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2993 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2994 replaceUse(*Y, FI);
2995 return replaceInstUsesWith(SI, Op1);
2996 }
2997
2998 if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2999 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
3000 /* IsAnd */ IsAnd))
3001 return I;
3002
3003 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3004 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3005 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3006 /* IsLogical */ true))
3007 return replaceInstUsesWith(SI, V);
3008 }
3009
3010 // select (a || b), c, false -> select a, c, false
3011 // select c, (a || b), false -> select c, a, false
3012 // if c implies that b is false.
3013 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3014 match(FalseVal, m_Zero())) {
3015 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3016 if (Res && *Res == false)
3017 return replaceOperand(SI, 0, A);
3018 }
3019 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3020 match(FalseVal, m_Zero())) {
3021 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3022 if (Res && *Res == false)
3023 return replaceOperand(SI, 1, A);
3024 }
3025 // select c, true, (a && b) -> select c, true, a
3026 // select (a && b), true, c -> select a, true, c
3027 // if c = false implies that b = true
3028 if (match(TrueVal, m_One()) &&
3029 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3030 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3031 if (Res && *Res == true)
3032 return replaceOperand(SI, 2, A);
3033 }
3034 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3035 match(TrueVal, m_One())) {
3036 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3037 if (Res && *Res == true)
3038 return replaceOperand(SI, 0, A);
3039 }
3040
3041 if (match(TrueVal, m_One())) {
3042 Value *C;
3043
3044 // (C && A) || (!C && B) --> sel C, A, B
3045 // (A && C) || (!C && B) --> sel C, A, B
3046 // (C && A) || (B && !C) --> sel C, A, B
3047 // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3048 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3049 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3050 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3051 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3052 bool MayNeedFreeze = SelCond && SelFVal &&
3053 match(SelFVal->getTrueValue(),
3054 m_Not(m_Specific(SelCond->getTrueValue())));
3055 if (MayNeedFreeze)
3056 C = Builder.CreateFreeze(C);
3057 return SelectInst::Create(C, A, B);
3058 }
3059
3060 // (!C && A) || (C && B) --> sel C, B, A
3061 // (A && !C) || (C && B) --> sel C, B, A
3062 // (!C && A) || (B && C) --> sel C, B, A
3063 // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3064 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3065 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3066 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3067 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3068 bool MayNeedFreeze = SelCond && SelFVal &&
3069 match(SelCond->getTrueValue(),
3070 m_Not(m_Specific(SelFVal->getTrueValue())));
3071 if (MayNeedFreeze)
3072 C = Builder.CreateFreeze(C);
3073 return SelectInst::Create(C, B, A);
3074 }
3075 }
3076
3077 return nullptr;
3078 }
3079
visitSelectInst(SelectInst & SI)3080 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3081 Value *CondVal = SI.getCondition();
3082 Value *TrueVal = SI.getTrueValue();
3083 Value *FalseVal = SI.getFalseValue();
3084 Type *SelType = SI.getType();
3085
3086 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3087 SQ.getWithInstruction(&SI)))
3088 return replaceInstUsesWith(SI, V);
3089
3090 if (Instruction *I = canonicalizeSelectToShuffle(SI))
3091 return I;
3092
3093 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3094 return I;
3095
3096 // If the type of select is not an integer type or if the condition and
3097 // the selection type are not both scalar nor both vector types, there is no
3098 // point in attempting to match these patterns.
3099 Type *CondType = CondVal->getType();
3100 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3101 CondType->isVectorTy() == SelType->isVectorTy()) {
3102 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3103 ConstantInt::getTrue(CondType), SQ,
3104 /* AllowRefinement */ true))
3105 return replaceOperand(SI, 1, S);
3106
3107 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3108 ConstantInt::getFalse(CondType), SQ,
3109 /* AllowRefinement */ true))
3110 return replaceOperand(SI, 2, S);
3111
3112 // Handle patterns involving sext/zext + not explicitly,
3113 // as simplifyWithOpReplaced() only looks past one instruction.
3114 Value *NotCond;
3115
3116 // select a, sext(!a), b -> select !a, b, 0
3117 // select a, zext(!a), b -> select !a, b, 0
3118 if (match(TrueVal, m_ZExtOrSExt(m_CombineAnd(m_Value(NotCond),
3119 m_Not(m_Specific(CondVal))))))
3120 return SelectInst::Create(NotCond, FalseVal,
3121 Constant::getNullValue(SelType));
3122
3123 // select a, b, zext(!a) -> select !a, 1, b
3124 if (match(FalseVal, m_ZExt(m_CombineAnd(m_Value(NotCond),
3125 m_Not(m_Specific(CondVal))))))
3126 return SelectInst::Create(NotCond, ConstantInt::get(SelType, 1), TrueVal);
3127
3128 // select a, b, sext(!a) -> select !a, -1, b
3129 if (match(FalseVal, m_SExt(m_CombineAnd(m_Value(NotCond),
3130 m_Not(m_Specific(CondVal))))))
3131 return SelectInst::Create(NotCond, Constant::getAllOnesValue(SelType),
3132 TrueVal);
3133 }
3134
3135 if (Instruction *R = foldSelectOfBools(SI))
3136 return R;
3137
3138 // Selecting between two integer or vector splat integer constants?
3139 //
3140 // Note that we don't handle a scalar select of vectors:
3141 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3142 // because that may need 3 instructions to splat the condition value:
3143 // extend, insertelement, shufflevector.
3144 //
3145 // Do not handle i1 TrueVal and FalseVal otherwise would result in
3146 // zext/sext i1 to i1.
3147 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3148 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3149 // select C, 1, 0 -> zext C to int
3150 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3151 return new ZExtInst(CondVal, SelType);
3152
3153 // select C, -1, 0 -> sext C to int
3154 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3155 return new SExtInst(CondVal, SelType);
3156
3157 // select C, 0, 1 -> zext !C to int
3158 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3159 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3160 return new ZExtInst(NotCond, SelType);
3161 }
3162
3163 // select C, 0, -1 -> sext !C to int
3164 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3165 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3166 return new SExtInst(NotCond, SelType);
3167 }
3168 }
3169
3170 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3171 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3172 // Are we selecting a value based on a comparison of the two values?
3173 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3174 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3175 // Canonicalize to use ordered comparisons by swapping the select
3176 // operands.
3177 //
3178 // e.g.
3179 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3180 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
3181 FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3182 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3183 // FIXME: The FMF should propagate from the select, not the fcmp.
3184 Builder.setFastMathFlags(FCmp->getFastMathFlags());
3185 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3186 FCmp->getName() + ".inv");
3187 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3188 return replaceInstUsesWith(SI, NewSel);
3189 }
3190 }
3191 }
3192
3193 if (isa<FPMathOperator>(SI)) {
3194 // TODO: Try to forward-propagate FMF from select arms to the select.
3195
3196 // Canonicalize select of FP values where NaN and -0.0 are not valid as
3197 // minnum/maxnum intrinsics.
3198 if (SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3199 Value *X, *Y;
3200 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3201 return replaceInstUsesWith(
3202 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3203
3204 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3205 return replaceInstUsesWith(
3206 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3207 }
3208 }
3209
3210 // Fold selecting to fabs.
3211 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3212 return Fabs;
3213
3214 // See if we are selecting two values based on a comparison of the two values.
3215 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3216 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3217 return Result;
3218
3219 if (Instruction *Add = foldAddSubSelect(SI, Builder))
3220 return Add;
3221 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3222 return Add;
3223 if (Instruction *Or = foldSetClearBits(SI, Builder))
3224 return Or;
3225 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3226 return Mul;
3227
3228 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3229 auto *TI = dyn_cast<Instruction>(TrueVal);
3230 auto *FI = dyn_cast<Instruction>(FalseVal);
3231 if (TI && FI && TI->getOpcode() == FI->getOpcode())
3232 if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3233 return IV;
3234
3235 if (Instruction *I = foldSelectExtConst(SI))
3236 return I;
3237
3238 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3239 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3240 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3241 bool Swap) -> GetElementPtrInst * {
3242 Value *Ptr = Gep->getPointerOperand();
3243 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3244 !Gep->hasOneUse())
3245 return nullptr;
3246 Value *Idx = Gep->getOperand(1);
3247 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3248 return nullptr;
3249 Type *ElementType = Gep->getResultElementType();
3250 Value *NewT = Idx;
3251 Value *NewF = Constant::getNullValue(Idx->getType());
3252 if (Swap)
3253 std::swap(NewT, NewF);
3254 Value *NewSI =
3255 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3256 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3257 };
3258 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3259 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3260 return NewGep;
3261 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3262 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3263 return NewGep;
3264
3265 // See if we can fold the select into one of our operands.
3266 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3267 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3268 return FoldI;
3269
3270 Value *LHS, *RHS;
3271 Instruction::CastOps CastOp;
3272 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3273 auto SPF = SPR.Flavor;
3274 if (SPF) {
3275 Value *LHS2, *RHS2;
3276 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3277 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3278 RHS2, SI, SPF, RHS))
3279 return R;
3280 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3281 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3282 RHS2, SI, SPF, LHS))
3283 return R;
3284 }
3285
3286 if (SelectPatternResult::isMinOrMax(SPF)) {
3287 // Canonicalize so that
3288 // - type casts are outside select patterns.
3289 // - float clamp is transformed to min/max pattern
3290
3291 bool IsCastNeeded = LHS->getType() != SelType;
3292 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3293 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3294 if (IsCastNeeded ||
3295 (LHS->getType()->isFPOrFPVectorTy() &&
3296 ((CmpLHS != LHS && CmpLHS != RHS) ||
3297 (CmpRHS != LHS && CmpRHS != RHS)))) {
3298 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3299
3300 Value *Cmp;
3301 if (CmpInst::isIntPredicate(MinMaxPred)) {
3302 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3303 } else {
3304 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3305 auto FMF =
3306 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3307 Builder.setFastMathFlags(FMF);
3308 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3309 }
3310
3311 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3312 if (!IsCastNeeded)
3313 return replaceInstUsesWith(SI, NewSI);
3314
3315 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3316 return replaceInstUsesWith(SI, NewCast);
3317 }
3318 }
3319 }
3320
3321 // See if we can fold the select into a phi node if the condition is a select.
3322 if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3323 // The true/false values have to be live in the PHI predecessor's blocks.
3324 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3325 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3326 if (Instruction *NV = foldOpIntoPhi(SI, PN))
3327 return NV;
3328
3329 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3330 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3331 // select(C, select(C, a, b), c) -> select(C, a, c)
3332 if (TrueSI->getCondition() == CondVal) {
3333 if (SI.getTrueValue() == TrueSI->getTrueValue())
3334 return nullptr;
3335 return replaceOperand(SI, 1, TrueSI->getTrueValue());
3336 }
3337 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3338 // We choose this as normal form to enable folding on the And and
3339 // shortening paths for the values (this helps getUnderlyingObjects() for
3340 // example).
3341 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3342 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3343 replaceOperand(SI, 0, And);
3344 replaceOperand(SI, 1, TrueSI->getTrueValue());
3345 return &SI;
3346 }
3347 }
3348 }
3349 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3350 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3351 // select(C, a, select(C, b, c)) -> select(C, a, c)
3352 if (FalseSI->getCondition() == CondVal) {
3353 if (SI.getFalseValue() == FalseSI->getFalseValue())
3354 return nullptr;
3355 return replaceOperand(SI, 2, FalseSI->getFalseValue());
3356 }
3357 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3358 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3359 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3360 replaceOperand(SI, 0, Or);
3361 replaceOperand(SI, 2, FalseSI->getFalseValue());
3362 return &SI;
3363 }
3364 }
3365 }
3366
3367 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3368 // The select might be preventing a division by 0.
3369 switch (BO->getOpcode()) {
3370 default:
3371 return true;
3372 case Instruction::SRem:
3373 case Instruction::URem:
3374 case Instruction::SDiv:
3375 case Instruction::UDiv:
3376 return false;
3377 }
3378 };
3379
3380 // Try to simplify a binop sandwiched between 2 selects with the same
3381 // condition.
3382 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3383 BinaryOperator *TrueBO;
3384 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3385 canMergeSelectThroughBinop(TrueBO)) {
3386 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3387 if (TrueBOSI->getCondition() == CondVal) {
3388 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3389 Worklist.push(TrueBO);
3390 return &SI;
3391 }
3392 }
3393 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3394 if (TrueBOSI->getCondition() == CondVal) {
3395 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3396 Worklist.push(TrueBO);
3397 return &SI;
3398 }
3399 }
3400 }
3401
3402 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3403 BinaryOperator *FalseBO;
3404 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3405 canMergeSelectThroughBinop(FalseBO)) {
3406 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3407 if (FalseBOSI->getCondition() == CondVal) {
3408 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3409 Worklist.push(FalseBO);
3410 return &SI;
3411 }
3412 }
3413 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3414 if (FalseBOSI->getCondition() == CondVal) {
3415 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3416 Worklist.push(FalseBO);
3417 return &SI;
3418 }
3419 }
3420 }
3421
3422 Value *NotCond;
3423 if (match(CondVal, m_Not(m_Value(NotCond))) &&
3424 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3425 replaceOperand(SI, 0, NotCond);
3426 SI.swapValues();
3427 SI.swapProfMetadata();
3428 return &SI;
3429 }
3430
3431 if (Instruction *I = foldVectorSelect(SI))
3432 return I;
3433
3434 // If we can compute the condition, there's no need for a select.
3435 // Like the above fold, we are attempting to reduce compile-time cost by
3436 // putting this fold here with limitations rather than in InstSimplify.
3437 // The motivation for this call into value tracking is to take advantage of
3438 // the assumption cache, so make sure that is populated.
3439 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3440 KnownBits Known(1);
3441 computeKnownBits(CondVal, Known, 0, &SI);
3442 if (Known.One.isOne())
3443 return replaceInstUsesWith(SI, TrueVal);
3444 if (Known.Zero.isOne())
3445 return replaceInstUsesWith(SI, FalseVal);
3446 }
3447
3448 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3449 return BitCastSel;
3450
3451 // Simplify selects that test the returned flag of cmpxchg instructions.
3452 if (Value *V = foldSelectCmpXchg(SI))
3453 return replaceInstUsesWith(SI, V);
3454
3455 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3456 return Select;
3457
3458 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3459 return Funnel;
3460
3461 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3462 return Copysign;
3463
3464 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3465 return replaceInstUsesWith(SI, PN);
3466
3467 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3468 return replaceInstUsesWith(SI, Fr);
3469
3470 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3471 return replaceInstUsesWith(SI, V);
3472
3473 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3474 // Load inst is intentionally not checked for hasOneUse()
3475 if (match(FalseVal, m_Zero()) &&
3476 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3477 m_CombineOr(m_Undef(), m_Zero()))) ||
3478 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3479 m_CombineOr(m_Undef(), m_Zero()))))) {
3480 auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3481 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3482 MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3483 return replaceInstUsesWith(SI, MaskedInst);
3484 }
3485
3486 Value *Mask;
3487 if (match(TrueVal, m_Zero()) &&
3488 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3489 m_CombineOr(m_Undef(), m_Zero()))) ||
3490 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3491 m_CombineOr(m_Undef(), m_Zero())))) &&
3492 (CondVal->getType() == Mask->getType())) {
3493 // We can remove the select by ensuring the load zeros all lanes the
3494 // select would have. We determine this by proving there is no overlap
3495 // between the load and select masks.
3496 // (i.e (load_mask & select_mask) == 0 == no overlap)
3497 bool CanMergeSelectIntoLoad = false;
3498 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3499 CanMergeSelectIntoLoad = match(V, m_Zero());
3500
3501 if (CanMergeSelectIntoLoad) {
3502 auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3503 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3504 MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3505 return replaceInstUsesWith(SI, MaskedInst);
3506 }
3507 }
3508
3509 if (Instruction *I = foldNestedSelects(SI, Builder))
3510 return I;
3511
3512 // Match logical variants of the pattern,
3513 // and transform them iff that gets rid of inversions.
3514 // (~x) | y --> ~(x & (~y))
3515 // (~x) & y --> ~(x | (~y))
3516 if (sinkNotIntoOtherHandOfLogicalOp(SI))
3517 return &SI;
3518
3519 return nullptr;
3520 }
3521