1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/PatternMatch.h"
17 #include "llvm/Transforms/InstCombine/InstCombiner.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 #define DEBUG_TYPE "instcombine"
22
canTryToConstantAddTwoShiftAmounts(Value * Sh0,Value * ShAmt0,Value * Sh1,Value * ShAmt1)23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
24 Value *ShAmt1) {
25 // We have two shift amounts from two different shifts. The types of those
26 // shift amounts may not match. If that's the case let's bailout now..
27 if (ShAmt0->getType() != ShAmt1->getType())
28 return false;
29
30 // As input, we have the following pattern:
31 // Sh0 (Sh1 X, Q), K
32 // We want to rewrite that as:
33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
34 // While we know that originally (Q+K) would not overflow
35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
36 // shift amounts. so it may now overflow in smaller bitwidth.
37 // To ensure that does not happen, we need to ensure that the total maximal
38 // shift amount is still representable in that smaller bit width.
39 unsigned MaximalPossibleTotalShiftAmount =
40 (Sh0->getType()->getScalarSizeInBits() - 1) +
41 (Sh1->getType()->getScalarSizeInBits() - 1);
42 APInt MaximalRepresentableShiftAmount =
43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
45 }
46
47 // Given pattern:
48 // (x shiftopcode Q) shiftopcode K
49 // we should rewrite it as
50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
51 //
52 // This is valid for any shift, but they must be identical, and we must be
53 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
55 //
56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator * Sh0,const SimplifyQuery & SQ,bool AnalyzeForSignBitExtraction)58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
59 BinaryOperator *Sh0, const SimplifyQuery &SQ,
60 bool AnalyzeForSignBitExtraction) {
61 // Look for a shift of some instruction, ignore zext of shift amount if any.
62 Instruction *Sh0Op0;
63 Value *ShAmt0;
64 if (!match(Sh0,
65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66 return nullptr;
67
68 // If there is a truncation between the two shifts, we must make note of it
69 // and look through it. The truncation imposes additional constraints on the
70 // transform.
71 Instruction *Sh1;
72 Value *Trunc = nullptr;
73 match(Sh0Op0,
74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
75 m_Instruction(Sh1)));
76
77 // Inner shift: (x shiftopcode ShAmt1)
78 // Like with other shift, ignore zext of shift amount if any.
79 Value *X, *ShAmt1;
80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81 return nullptr;
82
83 // Verify that it would be safe to try to add those two shift amounts.
84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85 return nullptr;
86
87 // We are only looking for signbit extraction if we have two right shifts.
88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89 match(Sh1, m_Shr(m_Value(), m_Value()));
90 // ... and if it's not two right-shifts, we know the answer already.
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92 return nullptr;
93
94 // The shift opcodes must be identical, unless we are just checking whether
95 // this pattern can be interpreted as a sign-bit-extraction.
96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99 return nullptr;
100
101 // If we saw truncation, we'll need to produce extra instruction,
102 // and for that one of the operands of the shift must be one-use,
103 // unless of course we don't actually plan to produce any instructions here.
104 if (Trunc && !AnalyzeForSignBitExtraction &&
105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106 return nullptr;
107
108 // Can we fold (ShAmt0+ShAmt1) ?
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111 SQ.getWithInstruction(Sh0)));
112 if (!NewShAmt)
113 return nullptr; // Did not simplify.
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116 // Is the new shift amount smaller than the bit width of inner/new shift?
117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
118 APInt(NewShAmtBitWidth, XBitWidth))))
119 return nullptr; // FIXME: could perform constant-folding.
120
121 // If there was a truncation, and we have a right-shift, we can only fold if
122 // we are left with the original sign bit. Likewise, if we were just checking
123 // that this is a sighbit extraction, this is the place to check it.
124 // FIXME: zero shift amount is also legal here, but we can't *easily* check
125 // more than one predicate so it's not really worth it.
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127 // If it's not a sign bit extraction, then we're done.
128 if (!match(NewShAmt,
129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
131 return nullptr;
132 // If it is, and that was the question, return the base value.
133 if (AnalyzeForSignBitExtraction)
134 return X;
135 }
136
137 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
138
139 // All good, we can do this fold.
140 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
141
142 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
143
144 // The flags can only be propagated if there wasn't a trunc.
145 if (!Trunc) {
146 // If the pattern did not involve trunc, and both of the original shifts
147 // had the same flag set, preserve the flag.
148 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
149 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
150 Sh1->hasNoUnsignedWrap());
151 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
152 Sh1->hasNoSignedWrap());
153 } else {
154 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
155 }
156 }
157
158 Instruction *Ret = NewShift;
159 if (Trunc) {
160 Builder.Insert(NewShift);
161 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
162 }
163
164 return Ret;
165 }
166
167 // If we have some pattern that leaves only some low bits set, and then performs
168 // left-shift of those bits, if none of the bits that are left after the final
169 // shift are modified by the mask, we can omit the mask.
170 //
171 // There are many variants to this pattern:
172 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
173 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
174 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
175 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
176 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
177 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
178 // All these patterns can be simplified to just:
179 // x << ShiftShAmt
180 // iff:
181 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
182 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
183 static Instruction *
dropRedundantMaskingOfLeftShiftInput(BinaryOperator * OuterShift,const SimplifyQuery & Q,InstCombiner::BuilderTy & Builder)184 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
185 const SimplifyQuery &Q,
186 InstCombiner::BuilderTy &Builder) {
187 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
188 "The input must be 'shl'!");
189
190 Value *Masked, *ShiftShAmt;
191 match(OuterShift,
192 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
193
194 // *If* there is a truncation between an outer shift and a possibly-mask,
195 // then said truncation *must* be one-use, else we can't perform the fold.
196 Value *Trunc;
197 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
198 !Trunc->hasOneUse())
199 return nullptr;
200
201 Type *NarrowestTy = OuterShift->getType();
202 Type *WidestTy = Masked->getType();
203 bool HadTrunc = WidestTy != NarrowestTy;
204
205 // The mask must be computed in a type twice as wide to ensure
206 // that no bits are lost if the sum-of-shifts is wider than the base type.
207 Type *ExtendedTy = WidestTy->getExtendedType();
208
209 Value *MaskShAmt;
210
211 // ((1 << MaskShAmt) - 1)
212 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
213 // (~(-1 << maskNbits))
214 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
215 // (-1 l>> MaskShAmt)
216 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
217 // ((-1 << MaskShAmt) l>> MaskShAmt)
218 auto MaskD =
219 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
220
221 Value *X;
222 Constant *NewMask;
223
224 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
225 // Peek through an optional zext of the shift amount.
226 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
227
228 // Verify that it would be safe to try to add those two shift amounts.
229 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
230 MaskShAmt))
231 return nullptr;
232
233 // Can we simplify (MaskShAmt+ShiftShAmt) ?
234 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
235 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
236 if (!SumOfShAmts)
237 return nullptr; // Did not simplify.
238 // In this pattern SumOfShAmts correlates with the number of low bits
239 // that shall remain in the root value (OuterShift).
240
241 // An extend of an undef value becomes zero because the high bits are never
242 // completely unknown. Replace the `undef` shift amounts with final
243 // shift bitwidth to ensure that the value remains undef when creating the
244 // subsequent shift op.
245 SumOfShAmts = Constant::replaceUndefsWith(
246 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
247 ExtendedTy->getScalarSizeInBits()));
248 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
249 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
250 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
251 auto *ExtendedInvertedMask =
252 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
253 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
254 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
255 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
256 m_Deferred(MaskShAmt)))) {
257 // Peek through an optional zext of the shift amount.
258 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
259
260 // Verify that it would be safe to try to add those two shift amounts.
261 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
262 MaskShAmt))
263 return nullptr;
264
265 // Can we simplify (ShiftShAmt-MaskShAmt) ?
266 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
267 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
268 if (!ShAmtsDiff)
269 return nullptr; // Did not simplify.
270 // In this pattern ShAmtsDiff correlates with the number of high bits that
271 // shall be unset in the root value (OuterShift).
272
273 // An extend of an undef value becomes zero because the high bits are never
274 // completely unknown. Replace the `undef` shift amounts with negated
275 // bitwidth of innermost shift to ensure that the value remains undef when
276 // creating the subsequent shift op.
277 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
278 ShAmtsDiff = Constant::replaceUndefsWith(
279 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
280 -WidestTyBitWidth));
281 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
282 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
283 WidestTyBitWidth,
284 /*isSigned=*/false),
285 ShAmtsDiff),
286 ExtendedTy);
287 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
288 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
289 NewMask =
290 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
291 } else
292 return nullptr; // Don't know anything about this pattern.
293
294 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
295
296 // Does this mask has any unset bits? If not then we can just not apply it.
297 bool NeedMask = !match(NewMask, m_AllOnes());
298
299 // If we need to apply a mask, there are several more restrictions we have.
300 if (NeedMask) {
301 // The old masking instruction must go away.
302 if (!Masked->hasOneUse())
303 return nullptr;
304 // The original "masking" instruction must not have been`ashr`.
305 if (match(Masked, m_AShr(m_Value(), m_Value())))
306 return nullptr;
307 }
308
309 // If we need to apply truncation, let's do it first, since we can.
310 // We have already ensured that the old truncation will go away.
311 if (HadTrunc)
312 X = Builder.CreateTrunc(X, NarrowestTy);
313
314 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
315 // We didn't change the Type of this outermost shift, so we can just do it.
316 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
317 OuterShift->getOperand(1));
318 if (!NeedMask)
319 return NewShift;
320
321 Builder.Insert(NewShift);
322 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
323 }
324
325 /// If we have a shift-by-constant of a bitwise logic op that itself has a
326 /// shift-by-constant operand with identical opcode, we may be able to convert
327 /// that into 2 independent shifts followed by the logic op. This eliminates a
328 /// a use of an intermediate value (reduces dependency chain).
foldShiftOfShiftedLogic(BinaryOperator & I,InstCombiner::BuilderTy & Builder)329 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
330 InstCombiner::BuilderTy &Builder) {
331 assert(I.isShift() && "Expected a shift as input");
332 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
333 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
334 return nullptr;
335
336 Constant *C0, *C1;
337 if (!match(I.getOperand(1), m_Constant(C1)))
338 return nullptr;
339
340 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
341 Type *Ty = I.getType();
342
343 // Find a matching one-use shift by constant. The fold is not valid if the sum
344 // of the shift values equals or exceeds bitwidth.
345 // TODO: Remove the one-use check if the other logic operand (Y) is constant.
346 Value *X, *Y;
347 auto matchFirstShift = [&](Value *V) {
348 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
349 return match(V,
350 m_OneUse(m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0)))) &&
351 match(ConstantExpr::getAdd(C0, C1),
352 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
353 };
354
355 // Logic ops are commutative, so check each operand for a match.
356 if (matchFirstShift(LogicInst->getOperand(0)))
357 Y = LogicInst->getOperand(1);
358 else if (matchFirstShift(LogicInst->getOperand(1)))
359 Y = LogicInst->getOperand(0);
360 else
361 return nullptr;
362
363 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
364 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
365 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
366 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1);
367 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
368 }
369
commonShiftTransforms(BinaryOperator & I)370 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
371 if (Instruction *Phi = foldBinopWithPhiOperands(I))
372 return Phi;
373
374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
375 assert(Op0->getType() == Op1->getType());
376 Type *Ty = I.getType();
377
378 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
379 Value *Y;
380 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
381 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
382 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
383 }
384
385 // See if we can fold away this shift.
386 if (SimplifyDemandedInstructionBits(I))
387 return &I;
388
389 // Try to fold constant and into select arguments.
390 if (isa<Constant>(Op0))
391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
392 if (Instruction *R = FoldOpIntoSelect(I, SI))
393 return R;
394
395 if (Constant *CUI = dyn_cast<Constant>(Op1))
396 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
397 return Res;
398
399 if (auto *NewShift = cast_or_null<Instruction>(
400 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
401 return NewShift;
402
403 // Pre-shift a constant shifted by a variable amount with constant offset:
404 // C shift (A add nuw C1) --> (C shift C1) shift A
405 Value *A;
406 Constant *C, *C1;
407 if (match(Op0, m_Constant(C)) &&
408 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) {
409 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
410 return BinaryOperator::Create(I.getOpcode(), NewC, A);
411 }
412
413 unsigned BitWidth = Ty->getScalarSizeInBits();
414
415 const APInt *AC, *AddC;
416 // Try to pre-shift a constant shifted by a variable amount added with a
417 // negative number:
418 // C << (X - AddC) --> (C >> AddC) << X
419 // and
420 // C >> (X - AddC) --> (C << AddC) >> X
421 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
422 AddC->isNegative() && (-*AddC).ult(BitWidth)) {
423 assert(!AC->isZero() && "Expected simplify of shifted zero");
424 unsigned PosOffset = (-*AddC).getZExtValue();
425
426 auto isSuitableForPreShift = [PosOffset, &I, AC]() {
427 switch (I.getOpcode()) {
428 default:
429 return false;
430 case Instruction::Shl:
431 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
432 AC->eq(AC->lshr(PosOffset).shl(PosOffset));
433 case Instruction::LShr:
434 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
435 case Instruction::AShr:
436 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
437 }
438 };
439 if (isSuitableForPreShift()) {
440 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
441 ? AC->lshr(PosOffset)
442 : AC->shl(PosOffset));
443 BinaryOperator *NewShiftOp =
444 BinaryOperator::Create(I.getOpcode(), NewC, A);
445 if (I.getOpcode() == Instruction::Shl) {
446 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
447 } else {
448 NewShiftOp->setIsExact();
449 }
450 return NewShiftOp;
451 }
452 }
453
454 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
455 // Because shifts by negative values (which could occur if A were negative)
456 // are undefined.
457 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
458 match(C, m_Power2())) {
459 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
460 // demand the sign bit (and many others) here??
461 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
462 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
463 return replaceOperand(I, 1, Rem);
464 }
465
466 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
467 return Logic;
468
469 return nullptr;
470 }
471
472 /// Return true if we can simplify two logical (either left or right) shifts
473 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
canEvaluateShiftedShift(unsigned OuterShAmt,bool IsOuterShl,Instruction * InnerShift,InstCombinerImpl & IC,Instruction * CxtI)474 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
475 Instruction *InnerShift,
476 InstCombinerImpl &IC, Instruction *CxtI) {
477 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
478
479 // We need constant scalar or constant splat shifts.
480 const APInt *InnerShiftConst;
481 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
482 return false;
483
484 // Two logical shifts in the same direction:
485 // shl (shl X, C1), C2 --> shl X, C1 + C2
486 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
487 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
488 if (IsInnerShl == IsOuterShl)
489 return true;
490
491 // Equal shift amounts in opposite directions become bitwise 'and':
492 // lshr (shl X, C), C --> and X, C'
493 // shl (lshr X, C), C --> and X, C'
494 if (*InnerShiftConst == OuterShAmt)
495 return true;
496
497 // If the 2nd shift is bigger than the 1st, we can fold:
498 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
499 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
500 // but it isn't profitable unless we know the and'd out bits are already zero.
501 // Also, check that the inner shift is valid (less than the type width) or
502 // we'll crash trying to produce the bit mask for the 'and'.
503 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
504 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
505 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
506 unsigned MaskShift =
507 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
508 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
509 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
510 return true;
511 }
512
513 return false;
514 }
515
516 /// See if we can compute the specified value, but shifted logically to the left
517 /// or right by some number of bits. This should return true if the expression
518 /// can be computed for the same cost as the current expression tree. This is
519 /// used to eliminate extraneous shifting from things like:
520 /// %C = shl i128 %A, 64
521 /// %D = shl i128 %B, 96
522 /// %E = or i128 %C, %D
523 /// %F = lshr i128 %E, 64
524 /// where the client will ask if E can be computed shifted right by 64-bits. If
525 /// this succeeds, getShiftedValue() will be called to produce the value.
canEvaluateShifted(Value * V,unsigned NumBits,bool IsLeftShift,InstCombinerImpl & IC,Instruction * CxtI)526 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
527 InstCombinerImpl &IC, Instruction *CxtI) {
528 // We can always evaluate constants shifted.
529 if (isa<Constant>(V))
530 return true;
531
532 Instruction *I = dyn_cast<Instruction>(V);
533 if (!I) return false;
534
535 // We can't mutate something that has multiple uses: doing so would
536 // require duplicating the instruction in general, which isn't profitable.
537 if (!I->hasOneUse()) return false;
538
539 switch (I->getOpcode()) {
540 default: return false;
541 case Instruction::And:
542 case Instruction::Or:
543 case Instruction::Xor:
544 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
545 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
546 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
547
548 case Instruction::Shl:
549 case Instruction::LShr:
550 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
551
552 case Instruction::Select: {
553 SelectInst *SI = cast<SelectInst>(I);
554 Value *TrueVal = SI->getTrueValue();
555 Value *FalseVal = SI->getFalseValue();
556 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
557 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
558 }
559 case Instruction::PHI: {
560 // We can change a phi if we can change all operands. Note that we never
561 // get into trouble with cyclic PHIs here because we only consider
562 // instructions with a single use.
563 PHINode *PN = cast<PHINode>(I);
564 for (Value *IncValue : PN->incoming_values())
565 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
566 return false;
567 return true;
568 }
569 case Instruction::Mul: {
570 const APInt *MulConst;
571 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
572 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
573 MulConst->isNegatedPowerOf2() &&
574 MulConst->countTrailingZeros() == NumBits;
575 }
576 }
577 }
578
579 /// Fold OuterShift (InnerShift X, C1), C2.
580 /// See canEvaluateShiftedShift() for the constraints on these instructions.
foldShiftedShift(BinaryOperator * InnerShift,unsigned OuterShAmt,bool IsOuterShl,InstCombiner::BuilderTy & Builder)581 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
582 bool IsOuterShl,
583 InstCombiner::BuilderTy &Builder) {
584 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
585 Type *ShType = InnerShift->getType();
586 unsigned TypeWidth = ShType->getScalarSizeInBits();
587
588 // We only accept shifts-by-a-constant in canEvaluateShifted().
589 const APInt *C1;
590 match(InnerShift->getOperand(1), m_APInt(C1));
591 unsigned InnerShAmt = C1->getZExtValue();
592
593 // Change the shift amount and clear the appropriate IR flags.
594 auto NewInnerShift = [&](unsigned ShAmt) {
595 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
596 if (IsInnerShl) {
597 InnerShift->setHasNoUnsignedWrap(false);
598 InnerShift->setHasNoSignedWrap(false);
599 } else {
600 InnerShift->setIsExact(false);
601 }
602 return InnerShift;
603 };
604
605 // Two logical shifts in the same direction:
606 // shl (shl X, C1), C2 --> shl X, C1 + C2
607 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
608 if (IsInnerShl == IsOuterShl) {
609 // If this is an oversized composite shift, then unsigned shifts get 0.
610 if (InnerShAmt + OuterShAmt >= TypeWidth)
611 return Constant::getNullValue(ShType);
612
613 return NewInnerShift(InnerShAmt + OuterShAmt);
614 }
615
616 // Equal shift amounts in opposite directions become bitwise 'and':
617 // lshr (shl X, C), C --> and X, C'
618 // shl (lshr X, C), C --> and X, C'
619 if (InnerShAmt == OuterShAmt) {
620 APInt Mask = IsInnerShl
621 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
622 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
623 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
624 ConstantInt::get(ShType, Mask));
625 if (auto *AndI = dyn_cast<Instruction>(And)) {
626 AndI->moveBefore(InnerShift);
627 AndI->takeName(InnerShift);
628 }
629 return And;
630 }
631
632 assert(InnerShAmt > OuterShAmt &&
633 "Unexpected opposite direction logical shift pair");
634
635 // In general, we would need an 'and' for this transform, but
636 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
637 // lshr (shl X, C1), C2 --> shl X, C1 - C2
638 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
639 return NewInnerShift(InnerShAmt - OuterShAmt);
640 }
641
642 /// When canEvaluateShifted() returns true for an expression, this function
643 /// inserts the new computation that produces the shifted value.
getShiftedValue(Value * V,unsigned NumBits,bool isLeftShift,InstCombinerImpl & IC,const DataLayout & DL)644 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
645 InstCombinerImpl &IC, const DataLayout &DL) {
646 // We can always evaluate constants shifted.
647 if (Constant *C = dyn_cast<Constant>(V)) {
648 if (isLeftShift)
649 return IC.Builder.CreateShl(C, NumBits);
650 else
651 return IC.Builder.CreateLShr(C, NumBits);
652 }
653
654 Instruction *I = cast<Instruction>(V);
655 IC.addToWorklist(I);
656
657 switch (I->getOpcode()) {
658 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
659 case Instruction::And:
660 case Instruction::Or:
661 case Instruction::Xor:
662 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
663 I->setOperand(
664 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
665 I->setOperand(
666 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
667 return I;
668
669 case Instruction::Shl:
670 case Instruction::LShr:
671 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
672 IC.Builder);
673
674 case Instruction::Select:
675 I->setOperand(
676 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
677 I->setOperand(
678 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
679 return I;
680 case Instruction::PHI: {
681 // We can change a phi if we can change all operands. Note that we never
682 // get into trouble with cyclic PHIs here because we only consider
683 // instructions with a single use.
684 PHINode *PN = cast<PHINode>(I);
685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
686 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
687 isLeftShift, IC, DL));
688 return PN;
689 }
690 case Instruction::Mul: {
691 assert(!isLeftShift && "Unexpected shift direction!");
692 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
693 IC.InsertNewInstWith(Neg, *I);
694 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
695 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
696 auto *And = BinaryOperator::CreateAnd(Neg,
697 ConstantInt::get(I->getType(), Mask));
698 And->takeName(I);
699 return IC.InsertNewInstWith(And, *I);
700 }
701 }
702 }
703
704 // If this is a bitwise operator or add with a constant RHS we might be able
705 // to pull it through a shift.
canShiftBinOpWithConstantRHS(BinaryOperator & Shift,BinaryOperator * BO)706 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
707 BinaryOperator *BO) {
708 switch (BO->getOpcode()) {
709 default:
710 return false; // Do not perform transform!
711 case Instruction::Add:
712 return Shift.getOpcode() == Instruction::Shl;
713 case Instruction::Or:
714 case Instruction::And:
715 return true;
716 case Instruction::Xor:
717 // Do not change a 'not' of logical shift because that would create a normal
718 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
719 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
720 }
721 }
722
FoldShiftByConstant(Value * Op0,Constant * C1,BinaryOperator & I)723 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
724 BinaryOperator &I) {
725 // (C2 << X) << C1 --> (C2 << C1) << X
726 // (C2 >> X) >> C1 --> (C2 >> C1) >> X
727 Constant *C2;
728 Value *X;
729 if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X))))
730 return BinaryOperator::Create(
731 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
732
733 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
734 Type *Ty = I.getType();
735 unsigned TypeBits = Ty->getScalarSizeInBits();
736
737 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC)
738 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC)
739 const APInt *DivC;
740 if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) &&
741 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() &&
742 !DivC->isMinSignedValue()) {
743 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
744 ICmpInst::Predicate Pred =
745 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE;
746 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC);
747 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt
748 : Instruction::ZExt;
749 return CastInst::Create(ExtOpcode, Cmp, Ty);
750 }
751
752 const APInt *Op1C;
753 if (!match(C1, m_APInt(Op1C)))
754 return nullptr;
755
756 assert(!Op1C->uge(TypeBits) &&
757 "Shift over the type width should have been removed already");
758
759 // See if we can propagate this shift into the input, this covers the trivial
760 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
761 if (I.getOpcode() != Instruction::AShr &&
762 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
763 LLVM_DEBUG(
764 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
765 " to eliminate shift:\n IN: "
766 << *Op0 << "\n SH: " << I << "\n");
767
768 return replaceInstUsesWith(
769 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
770 }
771
772 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
773 return FoldedShift;
774
775 if (!Op0->hasOneUse())
776 return nullptr;
777
778 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
779 // If the operand is a bitwise operator with a constant RHS, and the
780 // shift is the only use, we can pull it out of the shift.
781 const APInt *Op0C;
782 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
783 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
784 Value *NewRHS =
785 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
786
787 Value *NewShift =
788 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
789 NewShift->takeName(Op0BO);
790
791 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
792 }
793 }
794 }
795
796 // If we have a select that conditionally executes some binary operator,
797 // see if we can pull it the select and operator through the shift.
798 //
799 // For example, turning:
800 // shl (select C, (add X, C1), X), C2
801 // Into:
802 // Y = shl X, C2
803 // select C, (add Y, C1 << C2), Y
804 Value *Cond;
805 BinaryOperator *TBO;
806 Value *FalseVal;
807 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
808 m_Value(FalseVal)))) {
809 const APInt *C;
810 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
811 match(TBO->getOperand(1), m_APInt(C)) &&
812 canShiftBinOpWithConstantRHS(I, TBO)) {
813 Value *NewRHS =
814 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
815
816 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
817 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
818 return SelectInst::Create(Cond, NewOp, NewShift);
819 }
820 }
821
822 BinaryOperator *FBO;
823 Value *TrueVal;
824 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
825 m_OneUse(m_BinOp(FBO))))) {
826 const APInt *C;
827 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
828 match(FBO->getOperand(1), m_APInt(C)) &&
829 canShiftBinOpWithConstantRHS(I, FBO)) {
830 Value *NewRHS =
831 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
832
833 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
834 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
835 return SelectInst::Create(Cond, NewShift, NewOp);
836 }
837 }
838
839 return nullptr;
840 }
841
842 // Tries to perform
843 // (lshr (add (zext X), (zext Y)), K)
844 // -> (icmp ult (add X, Y), X)
845 // where
846 // - The add's operands are zexts from a K-bits integer to a bigger type.
847 // - The add is only used by the shr, or by iK (or narrower) truncates.
848 // - The lshr type has more than 2 bits (other types are boolean math).
849 // - K > 1
850 // note that
851 // - The resulting add cannot have nuw/nsw, else on overflow we get a
852 // poison value and the transform isn't legal anymore.
foldLShrOverflowBit(BinaryOperator & I)853 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) {
854 assert(I.getOpcode() == Instruction::LShr);
855
856 Value *Add = I.getOperand(0);
857 Value *ShiftAmt = I.getOperand(1);
858 Type *Ty = I.getType();
859
860 if (Ty->getScalarSizeInBits() < 3)
861 return nullptr;
862
863 const APInt *ShAmtAPInt = nullptr;
864 Value *X = nullptr, *Y = nullptr;
865 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) ||
866 !match(Add,
867 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y))))))
868 return nullptr;
869
870 const unsigned ShAmt = ShAmtAPInt->getZExtValue();
871 if (ShAmt == 1)
872 return nullptr;
873
874 // X/Y are zexts from `ShAmt`-sized ints.
875 if (X->getType()->getScalarSizeInBits() != ShAmt ||
876 Y->getType()->getScalarSizeInBits() != ShAmt)
877 return nullptr;
878
879 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates.
880 if (!Add->hasOneUse()) {
881 for (User *U : Add->users()) {
882 if (U == &I)
883 continue;
884
885 TruncInst *Trunc = dyn_cast<TruncInst>(U);
886 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt)
887 return nullptr;
888 }
889 }
890
891 // Insert at Add so that the newly created `NarrowAdd` will dominate it's
892 // users (i.e. `Add`'s users).
893 Instruction *AddInst = cast<Instruction>(Add);
894 Builder.SetInsertPoint(AddInst);
895
896 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed");
897 Value *Overflow =
898 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow");
899
900 // Replace the uses of the original add with a zext of the
901 // NarrowAdd's result. Note that all users at this stage are known to
902 // be ShAmt-sized truncs, or the lshr itself.
903 if (!Add->hasOneUse())
904 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty));
905
906 // Replace the LShr with a zext of the overflow check.
907 return new ZExtInst(Overflow, Ty);
908 }
909
visitShl(BinaryOperator & I)910 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
911 const SimplifyQuery Q = SQ.getWithInstruction(&I);
912
913 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
914 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
915 return replaceInstUsesWith(I, V);
916
917 if (Instruction *X = foldVectorBinop(I))
918 return X;
919
920 if (Instruction *V = commonShiftTransforms(I))
921 return V;
922
923 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
924 return V;
925
926 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
927 Type *Ty = I.getType();
928 unsigned BitWidth = Ty->getScalarSizeInBits();
929
930 const APInt *C;
931 if (match(Op1, m_APInt(C))) {
932 unsigned ShAmtC = C->getZExtValue();
933
934 // shl (zext X), C --> zext (shl X, C)
935 // This is only valid if X would have zeros shifted out.
936 Value *X;
937 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
938 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
939 if (ShAmtC < SrcWidth &&
940 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
941 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
942 }
943
944 // (X >> C) << C --> X & (-1 << C)
945 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
946 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
947 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
948 }
949
950 const APInt *C1;
951 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
952 C1->ult(BitWidth)) {
953 unsigned ShrAmt = C1->getZExtValue();
954 if (ShrAmt < ShAmtC) {
955 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
956 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
957 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
958 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
959 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
960 return NewShl;
961 }
962 if (ShrAmt > ShAmtC) {
963 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
964 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
965 auto *NewShr = BinaryOperator::Create(
966 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
967 NewShr->setIsExact(true);
968 return NewShr;
969 }
970 }
971
972 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
973 C1->ult(BitWidth)) {
974 unsigned ShrAmt = C1->getZExtValue();
975 if (ShrAmt < ShAmtC) {
976 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
977 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
978 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
979 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
980 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
981 Builder.Insert(NewShl);
982 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
983 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
984 }
985 if (ShrAmt > ShAmtC) {
986 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
987 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
988 auto *OldShr = cast<BinaryOperator>(Op0);
989 auto *NewShr =
990 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
991 NewShr->setIsExact(OldShr->isExact());
992 Builder.Insert(NewShr);
993 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
994 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
995 }
996 }
997
998 // Similar to above, but look through an intermediate trunc instruction.
999 BinaryOperator *Shr;
1000 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
1001 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
1002 // The larger shift direction survives through the transform.
1003 unsigned ShrAmtC = C1->getZExtValue();
1004 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1005 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
1006 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
1007
1008 // If C1 > C:
1009 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
1010 // If C > C1:
1011 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
1012 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
1013 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
1014 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1015 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1016 }
1017
1018 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1019 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1020 // Oversized shifts are simplified to zero in InstSimplify.
1021 if (AmtSum < BitWidth)
1022 // (X << C1) << C2 --> X << (C1 + C2)
1023 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
1024 }
1025
1026 // If we have an opposite shift by the same amount, we may be able to
1027 // reorder binops and shifts to eliminate math/logic.
1028 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
1029 switch (BinOpcode) {
1030 default:
1031 return false;
1032 case Instruction::Add:
1033 case Instruction::And:
1034 case Instruction::Or:
1035 case Instruction::Xor:
1036 case Instruction::Sub:
1037 // NOTE: Sub is not commutable and the tranforms below may not be valid
1038 // when the shift-right is operand 1 (RHS) of the sub.
1039 return true;
1040 }
1041 };
1042 BinaryOperator *Op0BO;
1043 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
1044 isSuitableBinOpcode(Op0BO->getOpcode())) {
1045 // Commute so shift-right is on LHS of the binop.
1046 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
1047 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
1048 Value *Shr = Op0BO->getOperand(0);
1049 Value *Y = Op0BO->getOperand(1);
1050 Value *X;
1051 const APInt *CC;
1052 if (Op0BO->isCommutative() && Y->hasOneUse() &&
1053 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
1054 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
1055 m_APInt(CC)))))
1056 std::swap(Shr, Y);
1057
1058 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
1059 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1060 // Y << C
1061 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1062 // (X bop (Y << C))
1063 Value *B =
1064 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
1065 unsigned Op1Val = C->getLimitedValue(BitWidth);
1066 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
1067 Constant *Mask = ConstantInt::get(Ty, Bits);
1068 return BinaryOperator::CreateAnd(B, Mask);
1069 }
1070
1071 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
1072 if (match(Shr,
1073 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
1074 m_APInt(CC))))) {
1075 // Y << C
1076 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1077 // X & (CC << C)
1078 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
1079 X->getName() + ".mask");
1080 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
1081 }
1082 }
1083
1084 // (C1 - X) << C --> (C1 << C) - (X << C)
1085 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
1086 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
1087 Value *NewShift = Builder.CreateShl(X, Op1);
1088 return BinaryOperator::CreateSub(NewLHS, NewShift);
1089 }
1090
1091 // If the shifted-out value is known-zero, then this is a NUW shift.
1092 if (!I.hasNoUnsignedWrap() &&
1093 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
1094 &I)) {
1095 I.setHasNoUnsignedWrap();
1096 return &I;
1097 }
1098
1099 // If the shifted-out value is all signbits, then this is a NSW shift.
1100 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
1101 I.setHasNoSignedWrap();
1102 return &I;
1103 }
1104 }
1105
1106 // Transform (x >> y) << y to x & (-1 << y)
1107 // Valid for any type of right-shift.
1108 Value *X;
1109 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1110 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1111 Value *Mask = Builder.CreateShl(AllOnes, Op1);
1112 return BinaryOperator::CreateAnd(Mask, X);
1113 }
1114
1115 Constant *C1;
1116 if (match(Op1, m_Constant(C1))) {
1117 Constant *C2;
1118 Value *X;
1119 // (X * C2) << C1 --> X * (C2 << C1)
1120 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1121 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1122
1123 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1124 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1125 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1126 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1127 }
1128 }
1129
1130 if (match(Op0, m_One())) {
1131 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1132 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1133 return BinaryOperator::CreateLShr(
1134 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1135
1136 // The only way to shift out the 1 is with an over-shift, so that would
1137 // be poison with or without "nuw". Undef is excluded because (undef << X)
1138 // is not undef (it is zero).
1139 Constant *ConstantOne = cast<Constant>(Op0);
1140 if (!I.hasNoUnsignedWrap() && !ConstantOne->containsUndefElement()) {
1141 I.setHasNoUnsignedWrap();
1142 return &I;
1143 }
1144 }
1145
1146 return nullptr;
1147 }
1148
visitLShr(BinaryOperator & I)1149 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
1150 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1151 SQ.getWithInstruction(&I)))
1152 return replaceInstUsesWith(I, V);
1153
1154 if (Instruction *X = foldVectorBinop(I))
1155 return X;
1156
1157 if (Instruction *R = commonShiftTransforms(I))
1158 return R;
1159
1160 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1161 Type *Ty = I.getType();
1162 Value *X;
1163 const APInt *C;
1164 unsigned BitWidth = Ty->getScalarSizeInBits();
1165
1166 // (iN (~X) u>> (N - 1)) --> zext (X > -1)
1167 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) &&
1168 match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)))
1169 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
1170
1171 if (match(Op1, m_APInt(C))) {
1172 unsigned ShAmtC = C->getZExtValue();
1173 auto *II = dyn_cast<IntrinsicInst>(Op0);
1174 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1175 (II->getIntrinsicID() == Intrinsic::ctlz ||
1176 II->getIntrinsicID() == Intrinsic::cttz ||
1177 II->getIntrinsicID() == Intrinsic::ctpop)) {
1178 // ctlz.i32(x)>>5 --> zext(x == 0)
1179 // cttz.i32(x)>>5 --> zext(x == 0)
1180 // ctpop.i32(x)>>5 --> zext(x == -1)
1181 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1182 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1183 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1184 return new ZExtInst(Cmp, Ty);
1185 }
1186
1187 Value *X;
1188 const APInt *C1;
1189 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1190 if (C1->ult(ShAmtC)) {
1191 unsigned ShlAmtC = C1->getZExtValue();
1192 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1193 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1194 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1195 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1196 NewLShr->setIsExact(I.isExact());
1197 return NewLShr;
1198 }
1199 if (Op0->hasOneUse()) {
1200 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1201 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1202 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1203 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1204 }
1205 } else if (C1->ugt(ShAmtC)) {
1206 unsigned ShlAmtC = C1->getZExtValue();
1207 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1208 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1209 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1210 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1211 NewShl->setHasNoUnsignedWrap(true);
1212 return NewShl;
1213 }
1214 if (Op0->hasOneUse()) {
1215 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1216 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1217 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1218 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1219 }
1220 } else {
1221 assert(*C1 == ShAmtC);
1222 // (X << C) >>u C --> X & (-1 >>u C)
1223 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1224 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1225 }
1226 }
1227
1228 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1229 // TODO: Consolidate with the more general transform that starts from shl
1230 // (the shifts are in the opposite order).
1231 Value *Y;
1232 if (match(Op0,
1233 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1234 m_Value(Y))))) {
1235 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1236 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1237 unsigned Op1Val = C->getLimitedValue(BitWidth);
1238 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1239 Constant *Mask = ConstantInt::get(Ty, Bits);
1240 return BinaryOperator::CreateAnd(NewAdd, Mask);
1241 }
1242
1243 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1244 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1245 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1246 "Big shift not simplified to zero?");
1247 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1248 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1249 return new ZExtInst(NewLShr, Ty);
1250 }
1251
1252 if (match(Op0, m_SExt(m_Value(X)))) {
1253 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1254 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1255 if (SrcTyBitWidth == 1) {
1256 auto *NewC = ConstantInt::get(
1257 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1258 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1259 }
1260
1261 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1262 Op0->hasOneUse()) {
1263 // Are we moving the sign bit to the low bit and widening with high
1264 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1265 if (ShAmtC == BitWidth - 1) {
1266 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1267 return new ZExtInst(NewLShr, Ty);
1268 }
1269
1270 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1271 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1272 // The new shift amount can't be more than the narrow source type.
1273 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1274 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1275 return new ZExtInst(AShr, Ty);
1276 }
1277 }
1278 }
1279
1280 if (ShAmtC == BitWidth - 1) {
1281 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1282 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1283 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1284
1285 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1286 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1287 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1288
1289 // Check if a number is negative and odd:
1290 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1291 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1292 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1293 return BinaryOperator::CreateAnd(Signbit, X);
1294 }
1295 }
1296
1297 // (X >>u C1) >>u C --> X >>u (C1 + C)
1298 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1299 // Oversized shifts are simplified to zero in InstSimplify.
1300 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1301 if (AmtSum < BitWidth)
1302 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1303 }
1304
1305 Instruction *TruncSrc;
1306 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1307 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1308 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1309 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1310
1311 // If the combined shift fits in the source width:
1312 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1313 //
1314 // If the first shift covers the number of bits truncated, then the
1315 // mask instruction is eliminated (and so the use check is relaxed).
1316 if (AmtSum < SrcWidth &&
1317 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1318 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1319 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1320
1321 // If the first shift does not cover the number of bits truncated, then
1322 // we require a mask to get rid of high bits in the result.
1323 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1324 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1325 }
1326 }
1327
1328 const APInt *MulC;
1329 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
1330 // Look for a "splat" mul pattern - it replicates bits across each half of
1331 // a value, so a right shift is just a mask of the low bits:
1332 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
1333 // TODO: Generalize to allow more than just half-width shifts?
1334 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1335 MulC->logBase2() == ShAmtC)
1336 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1337
1338 // The one-use check is not strictly necessary, but codegen may not be
1339 // able to invert the transform and perf may suffer with an extra mul
1340 // instruction.
1341 if (Op0->hasOneUse()) {
1342 APInt NewMulC = MulC->lshr(ShAmtC);
1343 // if c is divisible by (1 << ShAmtC):
1344 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC)
1345 if (MulC->eq(NewMulC.shl(ShAmtC))) {
1346 auto *NewMul =
1347 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
1348 BinaryOperator *OrigMul = cast<BinaryOperator>(Op0);
1349 NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap());
1350 return NewMul;
1351 }
1352 }
1353 }
1354
1355 // Try to narrow bswap.
1356 // In the case where the shift amount equals the bitwidth difference, the
1357 // shift is eliminated.
1358 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1359 m_OneUse(m_ZExt(m_Value(X))))))) {
1360 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1361 unsigned WidthDiff = BitWidth - SrcWidth;
1362 if (SrcWidth % 16 == 0) {
1363 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1364 if (ShAmtC >= WidthDiff) {
1365 // (bswap (zext X)) >> C --> zext (bswap X >> C')
1366 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1367 return new ZExtInst(NewShift, Ty);
1368 } else {
1369 // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
1370 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
1371 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1372 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1373 }
1374 }
1375 }
1376
1377 // Reduce add-carry of bools to logic:
1378 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY)
1379 Value *BoolX, *BoolY;
1380 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) &&
1381 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) &&
1382 BoolX->getType()->isIntOrIntVectorTy(1) &&
1383 BoolY->getType()->isIntOrIntVectorTy(1) &&
1384 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) {
1385 Value *And = Builder.CreateAnd(BoolX, BoolY);
1386 return new ZExtInst(And, Ty);
1387 }
1388
1389 // If the shifted-out value is known-zero, then this is an exact shift.
1390 if (!I.isExact() &&
1391 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1392 I.setIsExact();
1393 return &I;
1394 }
1395 }
1396
1397 // Transform (x << y) >> y to x & (-1 >> y)
1398 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1399 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1400 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1401 return BinaryOperator::CreateAnd(Mask, X);
1402 }
1403
1404 if (Instruction *Overflow = foldLShrOverflowBit(I))
1405 return Overflow;
1406
1407 return nullptr;
1408 }
1409
1410 Instruction *
foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator & OldAShr)1411 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1412 BinaryOperator &OldAShr) {
1413 assert(OldAShr.getOpcode() == Instruction::AShr &&
1414 "Must be called with arithmetic right-shift instruction only.");
1415
1416 // Check that constant C is a splat of the element-wise bitwidth of V.
1417 auto BitWidthSplat = [](Constant *C, Value *V) {
1418 return match(
1419 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1420 APInt(C->getType()->getScalarSizeInBits(),
1421 V->getType()->getScalarSizeInBits())));
1422 };
1423
1424 // It should look like variable-length sign-extension on the outside:
1425 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1426 Value *NBits;
1427 Instruction *MaybeTrunc;
1428 Constant *C1, *C2;
1429 if (!match(&OldAShr,
1430 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1431 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1432 m_ZExtOrSelf(m_Value(NBits))))),
1433 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1434 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1435 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1436 return nullptr;
1437
1438 // There may or may not be a truncation after outer two shifts.
1439 Instruction *HighBitExtract;
1440 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1441 bool HadTrunc = MaybeTrunc != HighBitExtract;
1442
1443 // And finally, the innermost part of the pattern must be a right-shift.
1444 Value *X, *NumLowBitsToSkip;
1445 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1446 return nullptr;
1447
1448 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1449 Constant *C0;
1450 if (!match(NumLowBitsToSkip,
1451 m_ZExtOrSelf(
1452 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1453 !BitWidthSplat(C0, HighBitExtract))
1454 return nullptr;
1455
1456 // Since the NBits is identical for all shifts, if the outermost and
1457 // innermost shifts are identical, then outermost shifts are redundant.
1458 // If we had truncation, do keep it though.
1459 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1460 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1461
1462 // Else, if there was a truncation, then we need to ensure that one
1463 // instruction will go away.
1464 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1465 return nullptr;
1466
1467 // Finally, bypass two innermost shifts, and perform the outermost shift on
1468 // the operands of the innermost shift.
1469 Instruction *NewAShr =
1470 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1471 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1472 if (!HadTrunc)
1473 return NewAShr;
1474
1475 Builder.Insert(NewAShr);
1476 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1477 }
1478
visitAShr(BinaryOperator & I)1479 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1480 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1481 SQ.getWithInstruction(&I)))
1482 return replaceInstUsesWith(I, V);
1483
1484 if (Instruction *X = foldVectorBinop(I))
1485 return X;
1486
1487 if (Instruction *R = commonShiftTransforms(I))
1488 return R;
1489
1490 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1491 Type *Ty = I.getType();
1492 unsigned BitWidth = Ty->getScalarSizeInBits();
1493 const APInt *ShAmtAPInt;
1494 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1495 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1496
1497 // If the shift amount equals the difference in width of the destination
1498 // and source scalar types:
1499 // ashr (shl (zext X), C), C --> sext X
1500 Value *X;
1501 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1502 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1503 return new SExtInst(X, Ty);
1504
1505 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1506 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1507 const APInt *ShOp1;
1508 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1509 ShOp1->ult(BitWidth)) {
1510 unsigned ShlAmt = ShOp1->getZExtValue();
1511 if (ShlAmt < ShAmt) {
1512 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1513 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1514 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1515 NewAShr->setIsExact(I.isExact());
1516 return NewAShr;
1517 }
1518 if (ShlAmt > ShAmt) {
1519 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1520 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1521 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1522 NewShl->setHasNoSignedWrap(true);
1523 return NewShl;
1524 }
1525 }
1526
1527 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1528 ShOp1->ult(BitWidth)) {
1529 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1530 // Oversized arithmetic shifts replicate the sign bit.
1531 AmtSum = std::min(AmtSum, BitWidth - 1);
1532 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1533 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1534 }
1535
1536 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1537 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1538 // ashr (sext X), C --> sext (ashr X, C')
1539 Type *SrcTy = X->getType();
1540 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1541 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1542 return new SExtInst(NewSh, Ty);
1543 }
1544
1545 if (ShAmt == BitWidth - 1) {
1546 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1547 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1548 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1549
1550 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1551 Value *Y;
1552 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1553 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1554 }
1555
1556 // If the shifted-out value is known-zero, then this is an exact shift.
1557 if (!I.isExact() &&
1558 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1559 I.setIsExact();
1560 return &I;
1561 }
1562 }
1563
1564 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1565 // as the pattern to splat the lowest bit.
1566 // FIXME: iff X is already masked, we don't need the one-use check.
1567 Value *X;
1568 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1569 match(Op0, m_OneUse(m_Shl(m_Value(X),
1570 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1571 Constant *Mask = ConstantInt::get(Ty, 1);
1572 // Retain the knowledge about the ignored lanes.
1573 Mask = Constant::mergeUndefsWith(
1574 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1575 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1576 X = Builder.CreateAnd(X, Mask);
1577 return BinaryOperator::CreateNeg(X);
1578 }
1579
1580 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1581 return R;
1582
1583 // See if we can turn a signed shr into an unsigned shr.
1584 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) {
1585 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
1586 Lshr->setIsExact(I.isExact());
1587 return Lshr;
1588 }
1589
1590 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1591 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1592 // Note that we must drop 'exact'-ness of the shift!
1593 // Note that we can't keep undef's in -1 vector constant!
1594 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1595 return BinaryOperator::CreateNot(NewAShr);
1596 }
1597
1598 return nullptr;
1599 }
1600