xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/batchnormalization/impl/NEON/fp32.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2020-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Helpers.h"
25 #include "arm_compute/core/ITensorPack.h"
26 #include "arm_compute/core/Window.h"
27 #include "src/core/NEON/NEMath.h"
28 #include "src/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
29 #include "src/core/NEON/wrapper/wrapper.h"
30 
31 #include <arm_neon.h>
32 #include <cmath>
33 #include <cstddef>
34 
35 namespace arm_compute
36 {
37 namespace
38 {
39 using BatchNomalizationPtr = void (*)(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
40                                       float epsilon, ActivationLayerInfo &act_info, const Window &window);
41 
42 template <typename T>
batch_normalization(ITensor * src,ITensor * dst,const ITensor * mean,const ITensor * var,const ITensor * beta,const ITensor * gamma,float epsilon,ActivationLayerInfo & act_info,const Window & window)43 void batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
44                          float epsilon, ActivationLayerInfo &act_info, const Window &window)
45 {
46     /** SIMD vector tag type. */
47     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<float, wrapper::traits::BitWidth::W128>;
48 
49     const int  window_step_x  = 4;
50     const auto window_start_x = static_cast<int>(window.x().start());
51     const auto window_end_x   = static_cast<int>(window.x().end());
52 
53     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
54     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
55 
56     Iterator input(src, win_collapsed);
57     Iterator output(dst, win_collapsed);
58 
59     const auto input_mean  = reinterpret_cast<const float *>(mean->ptr_to_element(Coordinates(0, 0)));
60     const auto input_var   = reinterpret_cast<const float *>(var->ptr_to_element(Coordinates(0, 0)));
61     const auto input_gamma = (gamma != nullptr) ? reinterpret_cast<const float *>(gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
62     const auto input_beta  = (beta != nullptr) ? reinterpret_cast<const float *>(beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
63 
64     T activation_functor(act_info);
65 
66     const auto epsilon_vec = wrapper::vdup_n(static_cast<float>(epsilon), ExactTagType{});
67     execute_window_loop(win_collapsed, [&](const Coordinates &)
68     {
69         const auto input_ptr  = reinterpret_cast<const float *>(input.ptr());
70         const auto output_ptr = reinterpret_cast<float *>(output.ptr());
71 
72         // Perform core calculations using vector operations
73         int x = window_start_x;
74         for(; x <= (window_end_x - window_step_x); x += window_step_x)
75         {
76             // Conctruct vectors
77             const auto mean_vec  = wrapper::vloadq(input_mean + x);
78             const auto var_vec   = wrapper::vloadq(input_var + x);
79             const auto gamma_vec = (input_gamma != nullptr) ? wrapper::vloadq(input_gamma + x) : wrapper::vdup_n(static_cast<float>(1.f), ExactTagType{});
80             const auto beta_vec  = (input_beta != nullptr) ? wrapper::vloadq(input_beta + x) : wrapper::vdup_n(static_cast<float>(0.f), ExactTagType{});
81 
82             // Calculate denominator
83             const auto denominator = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
84 
85             // Calculate x bar
86             const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec);
87             const auto x_bar     = wrapper::vmul(numerator, denominator);
88             auto       res       = wrapper::vmla(beta_vec, x_bar, gamma_vec);
89 
90             // Perform fused activation
91             if(act_info.enabled())
92             {
93                 activation_functor(res);
94             }
95 
96             // Store results
97             wrapper::vstore(output_ptr + x, res);
98         }
99 
100         // Compute left-over elements
101         for(; x < window_end_x; ++x)
102         {
103             // Conctruct vectors
104             const float gamma = (input_gamma != nullptr) ? input_gamma[x] : 1.f;
105             const float beta  = (input_beta != nullptr) ? input_beta[x] : 0.f;
106 
107             const float denominator = sqrt(input_var[x] + epsilon);
108             const float numerator   = input_ptr[x] - input_mean[x];
109             const float x_bar       = numerator / denominator;
110             float       res         = beta + x_bar * gamma;
111 
112             // Perform fused activation
113             if(act_info.enabled())
114             {
115                 activation_functor(res);
116             }
117 
118             // Store results
119             *reinterpret_cast<float *>(output_ptr + x) = res;
120         }
121     },
122     input, output);
123 }
124 
125 // Fused Batched Normalization with activation functions
126 static std::map<ActivationLayerInfo::ActivationFunction, BatchNomalizationPtr> fused_map =
127 {
128     { ActivationLayerInfo::ActivationFunction::RELU, &batch_normalization<detail::relu<float, 4>> },
129     { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &batch_normalization<detail::brelu<float, 4>> },
130     { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &batch_normalization<detail::lubrelu<float, 4>> }
131 };
132 }
133 namespace cpu
134 {
fp32_neon_batch_normalization(ITensor * src,ITensor * dst,const ITensor * mean,const ITensor * var,const ITensor * beta,const ITensor * gamma,float epsilon,ActivationLayerInfo & act_info,const Window & window)135 void fp32_neon_batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
136                                    float epsilon, ActivationLayerInfo &act_info, const Window &window)
137 {
138     if(act_info.enabled())
139     {
140         fused_map[act_info.activation()](src, dst, mean, var, beta, gamma, epsilon, act_info, window);
141     }
142     else
143     {
144         batch_normalization<detail::dummy<float, 4>>(src, dst, mean, var, beta, gamma, epsilon, act_info, window);
145     }
146 }
147 } // namespace cpu
148 } // namespace arm_compute
149