xref: /aosp_15_r20/external/coreboot/payloads/libpayload/include/fpmath.h (revision b9411a12aaaa7e1e6a6fb7c5e057f44ee179a49c)
1 /*
2  *
3  * Copyright (C) 2020 Google, Inc.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <stdint.h>
30 
31 /*
32  * This file implements operations for a simple 32.32 fixed-point math type.
33  * This is intended for speed-critical stuff (e.g. graphics) so there are
34  * intentionally no overflow checks or assertions, and operations are written
35  * to prefer speed over precision (e.g. multiplying by 1 may lose precision).
36  * For best results, only use for applications where 16.16 would fit.
37  */
38 
39 typedef struct {		/* wrap in struct to prevent direct access */
40 	int64_t v;
41 } fpmath_t;
42 
43 #define FPMATH_SHIFT 32		/* define where to place the decimal point */
44 
45 /* Turn an integer into an fpmath_t. */
fp(int32_t a)46 static inline fpmath_t fp(int32_t a)
47 {
48 	return (fpmath_t){ .v = (int64_t)a << FPMATH_SHIFT };
49 }
50 
51 /* Create an fpmath_t from a fraction. (numerator / denominator)  */
fpfrac(int32_t numerator,int32_t denominator)52 static inline fpmath_t fpfrac(int32_t numerator, int32_t denominator)
53 {
54 	return (fpmath_t){ .v = ((int64_t)numerator << FPMATH_SHIFT) / denominator };
55 }
56 
57 /* Turn an fpmath_t back into an integer, rounding towards -INF. */
fpfloor(fpmath_t a)58 static inline int32_t fpfloor(fpmath_t a)
59 {
60 	return a.v >> FPMATH_SHIFT;
61 }
62 
63 /* Turn an fpmath_t back into an integer, rounding towards nearest. */
fpround(fpmath_t a)64 static inline int32_t fpround(fpmath_t a)
65 {
66 	return (a.v + ((int64_t)1 << (FPMATH_SHIFT - 1))) >> FPMATH_SHIFT;
67 }
68 
69 /* Turn an fpmath_t back into an integer, rounding towards +INF. */
fpceil(fpmath_t a)70 static inline int32_t fpceil(fpmath_t a)
71 {
72 	return (a.v + ((int64_t)1 << FPMATH_SHIFT) - 1) >> FPMATH_SHIFT;
73 }
74 
75 /* Add two fpmath_t. (a + b) */
fpadd(fpmath_t a,fpmath_t b)76 static inline fpmath_t fpadd(fpmath_t a, fpmath_t b)
77 {
78 	return (fpmath_t){ .v = a.v + b.v };
79 }
80 
81 /* Add an fpmath_t and an integer. (a + b) */
fpaddi(fpmath_t a,int32_t b)82 static inline fpmath_t fpaddi(fpmath_t a, int32_t b)
83 {
84 	return (fpmath_t){ .v = a.v + ((int64_t)b << FPMATH_SHIFT) };
85 }
86 
87 /* Subtract one fpmath_t from another. (a + b) */
fpsub(fpmath_t a,fpmath_t b)88 static inline fpmath_t fpsub(fpmath_t a, fpmath_t b)
89 {
90 	return (fpmath_t){ .v = a.v - b.v };
91 }
92 
93 /* Subtract an integer from an fpmath_t. (a - b) */
fpsubi(fpmath_t a,int32_t b)94 static inline fpmath_t fpsubi(fpmath_t a, int32_t b)
95 {
96 	return (fpmath_t){ .v = a.v - ((int64_t)b << FPMATH_SHIFT) };
97 }
98 
99 /* Subtract an fpmath_t from an integer. (a - b) */
fpisub(int32_t a,fpmath_t b)100 static inline fpmath_t fpisub(int32_t a, fpmath_t b)
101 {
102 	return (fpmath_t){ .v = ((int64_t)a << FPMATH_SHIFT) - b.v };
103 }
104 
105 /* Multiply two fpmath_t. (a * b)
106    Looses 16 bits fractional precision on each. */
fpmul(fpmath_t a,fpmath_t b)107 static inline fpmath_t fpmul(fpmath_t a, fpmath_t b)
108 {
109 	return (fpmath_t){ .v = (a.v >> (FPMATH_SHIFT/2)) * (b.v >> (FPMATH_SHIFT/2)) };
110 }
111 
112 /* Multiply an fpmath_t and an integer. (a * b) */
fpmuli(fpmath_t a,int32_t b)113 static inline fpmath_t fpmuli(fpmath_t a, int32_t b)
114 {
115 	return (fpmath_t){ .v = a.v * b };
116 }
117 
118 /* Divide an fpmath_t by another. (a / b)
119    Truncates integral part of a to 16 bits! Careful with this one! */
fpdiv(fpmath_t a,fpmath_t b)120 static inline fpmath_t fpdiv(fpmath_t a, fpmath_t b)
121 {
122 	return (fpmath_t){ .v = (a.v << (FPMATH_SHIFT/2)) / (b.v >> (FPMATH_SHIFT/2)) };
123 }
124 
125 /* Divide an fpmath_t by an integer. (a / b) */
fpdivi(fpmath_t a,int32_t b)126 static inline fpmath_t fpdivi(fpmath_t a, int32_t b)
127 {
128 	return (fpmath_t){ .v = a.v / b };
129 }
130 
131 /* Calculate absolute value of an fpmath_t. (ABS(a)) */
fpabs(fpmath_t a)132 static inline fpmath_t fpabs(fpmath_t a)
133 {
134 	return (fpmath_t){ .v = (a.v < 0 ? -a.v : a.v) };
135 }
136 
137 /* Return true iff two fpmath_t are exactly equal. (a == b)
138    Like with floats, you probably don't want to use this most of the time. */
fpequals(fpmath_t a,fpmath_t b)139 static inline int fpequals(fpmath_t a, fpmath_t b)
140 {
141 	return a.v == b.v;
142 }
143 
144 /* Return true iff one fpmath_t is less than another. (a < b) */
fpless(fpmath_t a,fpmath_t b)145 static inline int fpless(fpmath_t a, fpmath_t b)
146 {
147 	return a.v < b.v;
148 }
149 
150 /* Return true iff one fpmath_t is more than another. (a > b) */
fpmore(fpmath_t a,fpmath_t b)151 static inline int fpmore(fpmath_t a, fpmath_t b)
152 {
153 	return a.v > b.v;
154 }
155 
156 /* Return the smaller of two fpmath_t. (MIN(a, b)) */
fpmin(fpmath_t a,fpmath_t b)157 static inline fpmath_t fpmin(fpmath_t a, fpmath_t b)
158 {
159 	if (a.v < b.v)
160 		return a;
161 	else
162 		return b;
163 }
164 
165 /* Return the larger of two fpmath_t. (MAX(a, b)) */
fpmax(fpmath_t a,fpmath_t b)166 static inline fpmath_t fpmax(fpmath_t a, fpmath_t b)
167 {
168 	if (a.v > b.v)
169 		return a;
170 	else
171 		return b;
172 }
173 
174 /* Return the constant PI as an fpmath_t. */
fppi(void)175 static inline fpmath_t fppi(void)
176 {
177 	/* Rounded (uint64_t)(M_PI * (1UL << 60)) to nine hex digits. */
178 	return (fpmath_t){ .v = 0x3243f6a89 };
179 }
180 
181 /*
182  * Returns the "one-based" sine of an fpmath_t, meaning the input is interpreted as if the range
183  * 0.0-1.0 corresponded to 0.0-PI/2 for radians. This is mostly here as the base primitives for
184  * the other trig stuff, but it may be useful to use directly if your input value already needs
185  * to be multiplied by some factor of PI and you want to save the instructions (and precision)
186  * for multiplying it in just so that the trig functions can divide it right out again.
187  */
188 fpmath_t fpsin1(fpmath_t x);
189 
190 /* Returns the "one-based" cosine of an fpmath_t (analogous definition to fpsin1()). */
fpcos1(fpmath_t x)191 static inline fpmath_t fpcos1(fpmath_t x)
192 {
193 	return fpsin1(fpaddi(x, 1));
194 }
195 
196 /* Returns the sine of an fpmath_t interpreted as radians. */
fpsinr(fpmath_t radians)197 static inline fpmath_t fpsinr(fpmath_t radians)
198 {
199 	return fpsin1(fpdiv(radians, fpdivi(fppi(), 2)));
200 }
201 
202 /* Returns the sine of an fpmath_t interpreted as degrees. */
fpsind(fpmath_t degrees)203 static inline fpmath_t fpsind(fpmath_t degrees)
204 {
205 	return fpsin1(fpdivi(degrees, 90));
206 }
207 
208 /* Returns the cosine of an fpmath_t interpreted as radians. */
fpcosr(fpmath_t radians)209 static inline fpmath_t fpcosr(fpmath_t radians)
210 {
211 	return fpcos1(fpdiv(radians, fpdivi(fppi(), 2)));
212 }
213 
214 /* Returns the cosine of an fpmath_t interpreted as degrees. */
fpcosd(fpmath_t degrees)215 static inline fpmath_t fpcosd(fpmath_t degrees)
216 {
217 	return fpcos1(fpdivi(degrees, 90));
218 }
219 
220 /* Returns the tangent of an fpmath_t interpreted as radians.
221    No guard rails, don't call this at the poles or you'll divide by 0! */
fptanr(fpmath_t radians)222 static inline fpmath_t fptanr(fpmath_t radians)
223 {
224 	fpmath_t one_based = fpdiv(radians, fpdivi(fppi(), 2));
225 	return fpdiv(fpsin1(one_based), fpcos1(one_based));
226 }
227 
228 /* Returns the tangent of an fpmath_t interpreted as degrees.
229    No guard rails, don't call this at the poles or you'll divide by 0! */
fptand(fpmath_t degrees)230 static inline fpmath_t fptand(fpmath_t degrees)
231 {
232 	fpmath_t one_based = fpdivi(degrees, 90);
233 	return fpdiv(fpsin1(one_based), fpcos1(one_based));
234 }
235