1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fs_mgr.h"
18
19 #include <dirent.h>
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <libgen.h>
24 #include <selinux/selinux.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/ioctl.h>
29 #include <sys/mount.h>
30 #include <sys/stat.h>
31 #include <sys/statvfs.h>
32 #include <sys/swap.h>
33 #include <sys/types.h>
34 #include <sys/utsname.h>
35 #include <sys/wait.h>
36 #include <time.h>
37 #include <unistd.h>
38
39 #include <array>
40 #include <chrono>
41 #include <map>
42 #include <memory>
43 #include <string>
44 #include <string_view>
45 #include <thread>
46 #include <utility>
47 #include <vector>
48
49 #include <android-base/chrono_utils.h>
50 #include <android-base/file.h>
51 #include <android-base/properties.h>
52 #include <android-base/stringprintf.h>
53 #include <android-base/strings.h>
54 #include <android-base/unique_fd.h>
55 #include <cutils/android_filesystem_config.h>
56 #include <cutils/android_reboot.h>
57 #include <cutils/partition_utils.h>
58 #include <cutils/properties.h>
59 #include <ext4_utils/ext4.h>
60 #include <ext4_utils/ext4_sb.h>
61 #include <ext4_utils/ext4_utils.h>
62 #include <ext4_utils/wipe.h>
63 #include <fs_avb/fs_avb.h>
64 #include <fs_mgr/file_wait.h>
65 #include <fs_mgr_overlayfs.h>
66 #include <fscrypt/fscrypt.h>
67 #include <fstab/fstab.h>
68 #include <libdm/dm.h>
69 #include <libdm/loop_control.h>
70 #include <liblp/metadata_format.h>
71 #include <linux/fs.h>
72 #include <linux/loop.h>
73 #include <linux/magic.h>
74 #include <log/log_properties.h>
75 #include <logwrap/logwrap.h>
76
77 #include "blockdev.h"
78 #include "fs_mgr_priv.h"
79
80 #define E2FSCK_BIN "/system/bin/e2fsck"
81 #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs"
82 #define MKSWAP_BIN "/system/bin/mkswap"
83 #define TUNE2FS_BIN "/system/bin/tune2fs"
84 #define RESIZE2FS_BIN "/system/bin/resize2fs"
85
86 #define FSCK_LOG_FILE "/dev/fscklogs/log"
87
88 #define ZRAM_CONF_DEV "/sys/block/zram0/disksize"
89 #define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams"
90 #define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev"
91
92 #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
93 #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold"
94
95 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
96
97 using android::base::Basename;
98 using android::base::GetBoolProperty;
99 using android::base::GetUintProperty;
100 using android::base::Realpath;
101 using android::base::SetProperty;
102 using android::base::StartsWith;
103 using android::base::StringPrintf;
104 using android::base::Timer;
105 using android::base::unique_fd;
106 using android::dm::DeviceMapper;
107 using android::dm::DmDeviceState;
108 using android::dm::DmTargetLinear;
109 using android::dm::LoopControl;
110
111 // Realistically, this file should be part of the android::fs_mgr namespace;
112 using namespace android::fs_mgr;
113
114 using namespace std::literals;
115
116 // record fs stat
117 enum FsStatFlags {
118 FS_STAT_IS_EXT4 = 0x0001,
119 FS_STAT_NEW_IMAGE_VERSION = 0x0002,
120 FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
121 FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
122 FS_STAT_QUOTA_ENABLED = 0x0010,
123 FS_STAT_RO_MOUNT_FAILED = 0x0040,
124 FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
125 FS_STAT_FULL_MOUNT_FAILED = 0x0100,
126 FS_STAT_FSCK_FAILED = 0x0200,
127 FS_STAT_FSCK_FS_FIXED = 0x0400,
128 FS_STAT_INVALID_MAGIC = 0x0800,
129 FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
130 FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
131 FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
132 FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
133 FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000,
134 FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000,
135 };
136
log_fs_stat(const std::string & blk_device,int fs_stat)137 static void log_fs_stat(const std::string& blk_device, int fs_stat) {
138 std::string msg =
139 android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
140 android::base::unique_fd fd(TEMP_FAILURE_RETRY(
141 open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | O_APPEND | O_CREAT, 0664)));
142 if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
143 LWARNING << __FUNCTION__ << "() cannot log " << msg;
144 }
145 }
146
is_extfs(const std::string & fs_type)147 static bool is_extfs(const std::string& fs_type) {
148 return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
149 }
150
is_f2fs(const std::string & fs_type)151 static bool is_f2fs(const std::string& fs_type) {
152 return fs_type == "f2fs";
153 }
154
realpath(const std::string & blk_device)155 static std::string realpath(const std::string& blk_device) {
156 std::string real_path;
157 if (!Realpath(blk_device, &real_path)) {
158 real_path = blk_device;
159 }
160 return real_path;
161 }
162
should_force_check(int fs_stat)163 static bool should_force_check(int fs_stat) {
164 return fs_stat &
165 (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
166 FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
167 FS_STAT_FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
168 FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
169 }
170
umount_retry(const std::string & mount_point)171 static bool umount_retry(const std::string& mount_point) {
172 int retry_count = 5;
173 bool umounted = false;
174
175 while (retry_count-- > 0) {
176 umounted = umount(mount_point.c_str()) == 0;
177 if (umounted) {
178 LINFO << __FUNCTION__ << "(): unmount(" << mount_point << ") succeeded";
179 break;
180 }
181 PERROR << __FUNCTION__ << "(): umount(" << mount_point << ") failed";
182 if (retry_count) sleep(1);
183 }
184 return umounted;
185 }
186
check_fs(const std::string & blk_device,const std::string & fs_type,const std::string & target,int * fs_stat)187 static void check_fs(const std::string& blk_device, const std::string& fs_type,
188 const std::string& target, int* fs_stat) {
189 int status;
190 int ret;
191 long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
192 auto tmpmnt_opts = "errors=remount-ro"s;
193 const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
194 const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
195
196 if (*fs_stat & FS_STAT_INVALID_MAGIC) { // will fail, so do not try
197 return;
198 }
199
200 Timer t;
201 /* Check for the types of filesystems we know how to check */
202 if (is_extfs(fs_type)) {
203 /*
204 * First try to mount and unmount the filesystem. We do this because
205 * the kernel is more efficient than e2fsck in running the journal and
206 * processing orphaned inodes, and on at least one device with a
207 * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
208 * to do what the kernel does in about a second.
209 *
210 * After mounting and unmounting the filesystem, run e2fsck, and if an
211 * error is recorded in the filesystem superblock, e2fsck will do a full
212 * check. Otherwise, it does nothing. If the kernel cannot mount the
213 * filesytsem due to an error, e2fsck is still run to do a full check
214 * fix the filesystem.
215 */
216 if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed
217 errno = 0;
218 ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
219 tmpmnt_opts.c_str());
220 PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
221 << ")=" << ret;
222 if (ret) {
223 *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
224 } else if (!umount_retry(target)) {
225 // boot may fail but continue and leave it to later stage for now.
226 PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
227 *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
228 }
229 }
230
231 /*
232 * Some system images do not have e2fsck for licensing reasons
233 * (e.g. recent SDK system images). Detect these and skip the check.
234 */
235 if (access(E2FSCK_BIN, X_OK)) {
236 LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
237 << " (executable not in system image)";
238 } else {
239 LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
240 if (should_force_check(*fs_stat)) {
241 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv,
242 &status, false, LOG_KLOG | LOG_FILE, false,
243 FSCK_LOG_FILE);
244 } else {
245 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false,
246 LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
247 }
248
249 if (ret < 0) {
250 /* No need to check for error in fork, we can't really handle it now */
251 LERROR << "Failed trying to run " << E2FSCK_BIN;
252 *fs_stat |= FS_STAT_FSCK_FAILED;
253 } else if (status != 0) {
254 LINFO << "e2fsck returned status 0x" << std::hex << status;
255 *fs_stat |= FS_STAT_FSCK_FS_FIXED;
256 }
257 }
258 } else if (is_f2fs(fs_type)) {
259 const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", "-c", "10000", "--debug-cache",
260 blk_device.c_str()};
261 const char* f2fs_fsck_forced_argv[] = {
262 F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()};
263
264 if (access(F2FS_FSCK_BIN, X_OK)) {
265 LINFO << "Not running " << F2FS_FSCK_BIN << " on " << realpath(blk_device)
266 << " (executable not in system image)";
267 } else {
268 if (should_force_check(*fs_stat)) {
269 LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache "
270 << realpath(blk_device);
271 ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv,
272 &status, false, LOG_KLOG | LOG_FILE, false,
273 FSCK_LOG_FILE);
274 } else {
275 LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache "
276 << realpath(blk_device);
277 ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status,
278 false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
279 }
280 if (ret < 0) {
281 /* No need to check for error in fork, we can't really handle it now */
282 LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
283 *fs_stat |= FS_STAT_FSCK_FAILED;
284 } else if (status != 0) {
285 LINFO << F2FS_FSCK_BIN << " returned status 0x" << std::hex << status;
286 *fs_stat |= FS_STAT_FSCK_FS_FIXED;
287 }
288 }
289 }
290 android::base::SetProperty("ro.boottime.init.fsck." + Basename(target),
291 std::to_string(t.duration().count()));
292 return;
293 }
294
ext4_blocks_count(const struct ext4_super_block * es)295 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
296 return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
297 le32_to_cpu(es->s_blocks_count_lo);
298 }
299
ext4_r_blocks_count(const struct ext4_super_block * es)300 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
301 return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
302 le32_to_cpu(es->s_r_blocks_count_lo);
303 }
304
is_ext4_superblock_valid(const struct ext4_super_block * es)305 static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
306 if (es->s_magic != EXT4_SUPER_MAGIC) return false;
307 if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
308 if (EXT4_INODES_PER_GROUP(es) == 0) return false;
309 return true;
310 }
311
312 // Read the primary superblock from an ext4 filesystem. On failure return
313 // false. If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
read_ext4_superblock(const std::string & blk_device,struct ext4_super_block * sb,int * fs_stat)314 static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
315 int* fs_stat) {
316 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
317
318 if (fd < 0) {
319 PERROR << "Failed to open '" << blk_device << "'";
320 return false;
321 }
322
323 if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
324 PERROR << "Can't read '" << blk_device << "' superblock";
325 return false;
326 }
327
328 if (!is_ext4_superblock_valid(sb)) {
329 LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
330 // not a valid fs, tune2fs, fsck, and mount will all fail.
331 *fs_stat |= FS_STAT_INVALID_MAGIC;
332 return false;
333 }
334 *fs_stat |= FS_STAT_IS_EXT4;
335 LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
336 if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4
337 *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
338 }
339 return true;
340 }
341
342 // exported silent version of the above that just answer the question is_ext4
fs_mgr_is_ext4(const std::string & blk_device)343 bool fs_mgr_is_ext4(const std::string& blk_device) {
344 android::base::ErrnoRestorer restore;
345 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
346 if (fd < 0) return false;
347 ext4_super_block sb;
348 if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
349 if (!is_ext4_superblock_valid(&sb)) return false;
350 return true;
351 }
352
353 // Some system images do not have tune2fs for licensing reasons.
354 // Detect these and skip running it.
tune2fs_available(void)355 static bool tune2fs_available(void) {
356 return access(TUNE2FS_BIN, X_OK) == 0;
357 }
358
run_command(const char * argv[],int argc)359 static bool run_command(const char* argv[], int argc) {
360 int ret;
361
362 ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr);
363 return ret == 0;
364 }
365
366 // Enable/disable quota support on the filesystem if needed.
tune_quota(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)367 static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
368 const struct ext4_super_block* sb, int* fs_stat) {
369 bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
370 bool want_quota = entry.fs_mgr_flags.quota;
371 // Enable projid support by default
372 bool want_projid = true;
373 if (has_quota == want_quota) {
374 return;
375 }
376
377 if (!tune2fs_available()) {
378 LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
379 << " because " TUNE2FS_BIN " is missing";
380 return;
381 }
382
383 const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
384
385 if (want_quota) {
386 LINFO << "Enabling quotas on " << blk_device;
387 argv[1] = "-Oquota";
388 // Once usr/grp unneeded, make just prjquota to save overhead
389 if (want_projid)
390 argv[2] = "-Qusrquota,grpquota,prjquota";
391 else
392 argv[2] = "-Qusrquota,grpquota";
393 *fs_stat |= FS_STAT_QUOTA_ENABLED;
394 } else {
395 LINFO << "Disabling quotas on " << blk_device;
396 argv[1] = "-O^quota";
397 argv[2] = "-Q^usrquota,^grpquota,^prjquota";
398 }
399
400 if (!run_command(argv, ARRAY_SIZE(argv))) {
401 LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
402 << " quotas on " << blk_device;
403 *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
404 }
405 }
406
407 // Set the number of reserved filesystem blocks if needed.
tune_reserved_size(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)408 static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
409 const struct ext4_super_block* sb, int* fs_stat) {
410 if (entry.reserved_size == 0) {
411 return;
412 }
413
414 // The size to reserve is given in the fstab, but we won't reserve more
415 // than 2% of the filesystem.
416 const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
417 uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
418
419 if (reserved_blocks > max_reserved_blocks) {
420 LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
421 << "capping to " << max_reserved_blocks;
422 reserved_blocks = max_reserved_blocks;
423 }
424
425 if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
426 return;
427 }
428
429 if (!tune2fs_available()) {
430 LERROR << "Unable to set the number of reserved blocks on " << blk_device
431 << " because " TUNE2FS_BIN " is missing";
432 return;
433 }
434
435 LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
436
437 auto reserved_blocks_str = std::to_string(reserved_blocks);
438 auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
439 const char* argv[] = {
440 TUNE2FS_BIN, "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
441 blk_device.c_str()};
442 if (!run_command(argv, ARRAY_SIZE(argv))) {
443 LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
444 << blk_device;
445 *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
446 }
447 }
448
449 // Enable file-based encryption if needed.
tune_encrypt(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)450 static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
451 const struct ext4_super_block* sb, int* fs_stat) {
452 if (!entry.fs_mgr_flags.file_encryption) {
453 return; // Nothing needs done.
454 }
455 std::vector<std::string> features_needed;
456 if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) {
457 features_needed.emplace_back("encrypt");
458 }
459 android::fscrypt::EncryptionOptions options;
460 if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) {
461 LERROR << "Unable to parse encryption options on " << blk_device << ": "
462 << entry.encryption_options;
463 return;
464 }
465 if ((options.flags &
466 (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) {
467 // We can only use this policy on ext4 if the "stable_inodes" feature
468 // is set on the filesystem, otherwise shrinking will break encrypted files.
469 if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) {
470 features_needed.emplace_back("stable_inodes");
471 }
472 }
473 if (features_needed.size() == 0) {
474 return;
475 }
476 if (!tune2fs_available()) {
477 LERROR << "Unable to enable ext4 encryption on " << blk_device
478 << " because " TUNE2FS_BIN " is missing";
479 return;
480 }
481
482 auto flags = android::base::Join(features_needed, ',');
483 auto flag_arg = "-O"s + flags;
484 const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()};
485
486 LINFO << "Enabling ext4 flags " << flags << " on " << blk_device;
487 if (!run_command(argv, ARRAY_SIZE(argv))) {
488 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
489 << "ext4 flags " << flags << " on " << blk_device;
490 *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
491 }
492 }
493
494 // Enable fs-verity if needed.
tune_verity(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)495 static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
496 const struct ext4_super_block* sb, int* fs_stat) {
497 bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
498 bool want_verity = entry.fs_mgr_flags.fs_verity;
499
500 if (has_verity || !want_verity) {
501 return;
502 }
503
504 std::string verity_support;
505 if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
506 LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
507 return;
508 }
509
510 if (!(android::base::Trim(verity_support) == "supported")) {
511 LERROR << "Current ext4 verity not supported by kernel";
512 return;
513 }
514
515 if (!tune2fs_available()) {
516 LERROR << "Unable to enable ext4 verity on " << blk_device
517 << " because " TUNE2FS_BIN " is missing";
518 return;
519 }
520
521 LINFO << "Enabling ext4 verity on " << blk_device;
522
523 const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
524 if (!run_command(argv, ARRAY_SIZE(argv))) {
525 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
526 << "ext4 verity on " << blk_device;
527 *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
528 }
529 }
530
531 // Enable casefold if needed.
tune_casefold(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)532 static void tune_casefold(const std::string& blk_device, const FstabEntry& entry,
533 const struct ext4_super_block* sb, int* fs_stat) {
534 bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0;
535 bool wants_casefold =
536 android::base::GetBoolProperty("external_storage.casefold.enabled", false);
537
538 if (entry.mount_point != "/data" || !wants_casefold || has_casefold) return;
539
540 std::string casefold_support;
541 if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) {
542 LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD;
543 return;
544 }
545
546 if (!(android::base::Trim(casefold_support) == "supported")) {
547 LERROR << "Current ext4 casefolding not supported by kernel";
548 return;
549 }
550
551 if (!tune2fs_available()) {
552 LERROR << "Unable to enable ext4 casefold on " << blk_device
553 << " because " TUNE2FS_BIN " is missing";
554 return;
555 }
556
557 LINFO << "Enabling ext4 casefold on " << blk_device;
558
559 const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()};
560 if (!run_command(argv, ARRAY_SIZE(argv))) {
561 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
562 << "ext4 casefold on " << blk_device;
563 *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED;
564 }
565 }
566
resize2fs_available(void)567 static bool resize2fs_available(void) {
568 return access(RESIZE2FS_BIN, X_OK) == 0;
569 }
570
571 // Enable metadata_csum
tune_metadata_csum(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)572 static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry,
573 const struct ext4_super_block* sb, int* fs_stat) {
574 bool has_meta_csum =
575 (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0;
576 bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum;
577
578 if (has_meta_csum || !want_meta_csum) return;
579
580 if (!tune2fs_available()) {
581 LERROR << "Unable to enable metadata_csum on " << blk_device
582 << " because " TUNE2FS_BIN " is missing";
583 return;
584 }
585 if (!resize2fs_available()) {
586 LERROR << "Unable to enable metadata_csum on " << blk_device
587 << " because " RESIZE2FS_BIN " is missing";
588 return;
589 }
590
591 LINFO << "Enabling ext4 metadata_csum on " << blk_device;
592
593 // Must give `-T now` to prevent last_fsck_time from growing too large,
594 // otherwise, tune2fs won't enable metadata_csum.
595 const char* tune2fs_args[] = {TUNE2FS_BIN, "-O", "metadata_csum,64bit,extent",
596 "-T", "now", blk_device.c_str()};
597 const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()};
598
599 if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) {
600 LERROR << "Failed to run " TUNE2FS_BIN " to enable "
601 << "ext4 metadata_csum on " << blk_device;
602 *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
603 } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) {
604 LERROR << "Failed to run " RESIZE2FS_BIN " to enable "
605 << "ext4 metadata_csum on " << blk_device;
606 *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
607 }
608 }
609
610 // Read the primary superblock from an f2fs filesystem. On failure return
611 // false. If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
612 #define F2FS_SUPER_OFFSET 1024
read_f2fs_superblock(const std::string & blk_device,int * fs_stat)613 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
614 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
615 __le32 sb1, sb2;
616
617 if (fd < 0) {
618 PERROR << "Failed to open '" << blk_device << "'";
619 return false;
620 }
621
622 if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
623 PERROR << "Can't read '" << blk_device << "' superblock1";
624 return false;
625 }
626 // F2FS only supports block_size=page_size case. So, it is safe to call
627 // `getpagesize()` and use that as size of super block.
628 if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), getpagesize() + F2FS_SUPER_OFFSET)) !=
629 sizeof(sb2)) {
630 PERROR << "Can't read '" << blk_device << "' superblock2";
631 return false;
632 }
633
634 if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
635 LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
636 *fs_stat |= FS_STAT_INVALID_MAGIC;
637 return false;
638 }
639 return true;
640 }
641
642 // exported silent version of the above that just answer the question is_f2fs
fs_mgr_is_f2fs(const std::string & blk_device)643 bool fs_mgr_is_f2fs(const std::string& blk_device) {
644 android::base::ErrnoRestorer restore;
645 android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
646 if (fd < 0) return false;
647 __le32 sb;
648 if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
649 return false;
650 }
651 if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
652 if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), getpagesize() + F2FS_SUPER_OFFSET)) !=
653 sizeof(sb)) {
654 return false;
655 }
656 return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
657 }
658
SetReadAheadSize(const std::string & entry_block_device,off64_t size_kb)659 static void SetReadAheadSize(const std::string& entry_block_device, off64_t size_kb) {
660 std::string block_device;
661 if (!Realpath(entry_block_device, &block_device)) {
662 PERROR << "Failed to realpath " << entry_block_device;
663 return;
664 }
665
666 static constexpr std::string_view kDevBlockPrefix("/dev/block/");
667 if (!android::base::StartsWith(block_device, kDevBlockPrefix)) {
668 LWARNING << block_device << " is not a block device";
669 return;
670 }
671
672 DeviceMapper& dm = DeviceMapper::Instance();
673 while (true) {
674 std::string block_name = block_device;
675 if (android::base::StartsWith(block_device, kDevBlockPrefix)) {
676 block_name = block_device.substr(kDevBlockPrefix.length());
677 }
678 std::string sys_partition =
679 android::base::StringPrintf("/sys/class/block/%s/partition", block_name.c_str());
680 struct stat info;
681 if (lstat(sys_partition.c_str(), &info) == 0) {
682 // it has a partition like "sda12".
683 block_name += "/..";
684 }
685 std::string sys_ra = android::base::StringPrintf("/sys/class/block/%s/queue/read_ahead_kb",
686 block_name.c_str());
687 std::string size = android::base::StringPrintf("%llu", (long long)size_kb);
688 android::base::WriteStringToFile(size, sys_ra.c_str());
689 LINFO << "Set readahead_kb: " << size << " on " << sys_ra;
690
691 auto parent = dm.GetParentBlockDeviceByPath(block_device);
692 if (!parent) {
693 return;
694 }
695 block_device = *parent;
696 }
697 }
698
699 //
700 // Mechanism to allow fsck to be triggered by setting ro.preventative_fsck
701 // Introduced to address b/305658663
702 // If the property value is not equal to the flag file contents, trigger
703 // fsck and store the property value in the flag file
704 // If we want to trigger again, simply change the property value
705 //
check_if_preventative_fsck_needed(const FstabEntry & entry)706 static bool check_if_preventative_fsck_needed(const FstabEntry& entry) {
707 const char* flag_file = "/metadata/vold/preventative_fsck";
708 if (entry.mount_point != "/data") return false;
709
710 // Don't error check - both default to empty string, which is OK
711 std::string prop = android::base::GetProperty("ro.preventative_fsck", "");
712 std::string flag;
713 android::base::ReadFileToString(flag_file, &flag);
714 if (prop == flag) return false;
715 // fsck is run immediately, so assume it runs or there is some deeper problem
716 if (!android::base::WriteStringToFile(prop, flag_file))
717 PERROR << "Failed to write file " << flag_file;
718 LINFO << "Run preventative fsck on /data";
719 return true;
720 }
721
722 //
723 // Prepare the filesystem on the given block device to be mounted.
724 //
725 // If the "check" option was given in the fstab record, or it seems that the
726 // filesystem was uncleanly shut down, we'll run fsck on the filesystem.
727 //
728 // If needed, we'll also enable (or disable) filesystem features as specified by
729 // the fstab record.
730 //
prepare_fs_for_mount(const std::string & blk_device,const FstabEntry & entry,const std::string & alt_mount_point="")731 static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry,
732 const std::string& alt_mount_point = "") {
733 auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
734 // We need this because sometimes we have legacy symlinks that are
735 // lingering around and need cleaning up.
736 struct stat info;
737 if (lstat(mount_point.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
738 unlink(mount_point.c_str());
739 }
740 mkdir(mount_point.c_str(), 0755);
741
742 // Don't need to return error, since it's a salt
743 if (entry.readahead_size_kb != -1) {
744 SetReadAheadSize(blk_device, entry.readahead_size_kb);
745 }
746
747 int fs_stat = 0;
748
749 if (is_extfs(entry.fs_type)) {
750 struct ext4_super_block sb;
751
752 if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
753 if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
754 (sb.s_state & EXT4_VALID_FS) == 0) {
755 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
756 << "state flags: 0x" << std::hex << sb.s_state << ", "
757 << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
758 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
759 }
760
761 // Note: quotas should be enabled before running fsck.
762 tune_quota(blk_device, entry, &sb, &fs_stat);
763 } else {
764 return fs_stat;
765 }
766 } else if (is_f2fs(entry.fs_type)) {
767 if (!read_f2fs_superblock(blk_device, &fs_stat)) {
768 return fs_stat;
769 }
770 }
771
772 if (check_if_preventative_fsck_needed(entry) || entry.fs_mgr_flags.check ||
773 (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
774 check_fs(blk_device, entry.fs_type, mount_point, &fs_stat);
775 }
776
777 if (is_extfs(entry.fs_type) &&
778 (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
779 entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) {
780 struct ext4_super_block sb;
781
782 if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
783 tune_reserved_size(blk_device, entry, &sb, &fs_stat);
784 tune_encrypt(blk_device, entry, &sb, &fs_stat);
785 tune_verity(blk_device, entry, &sb, &fs_stat);
786 tune_casefold(blk_device, entry, &sb, &fs_stat);
787 tune_metadata_csum(blk_device, entry, &sb, &fs_stat);
788 }
789 }
790
791 return fs_stat;
792 }
793
794 // Mark the given block device as read-only, using the BLKROSET ioctl.
fs_mgr_set_blk_ro(const std::string & blockdev,bool readonly)795 bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
796 unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
797 if (fd < 0) {
798 return false;
799 }
800
801 int ON = readonly;
802 return ioctl(fd, BLKROSET, &ON) == 0;
803 }
804
805 // Orange state means the device is unlocked, see the following link for details.
806 // https://source.android.com/security/verifiedboot/verified-boot#device_state
fs_mgr_is_device_unlocked()807 bool fs_mgr_is_device_unlocked() {
808 std::string verified_boot_state;
809 if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
810 return verified_boot_state == "orange";
811 }
812 return false;
813 }
814
815 // __mount(): wrapper around the mount() system call which also
816 // sets the underlying block device to read-only if the mount is read-only.
817 // See "man 2 mount" for return values.
__mount(const std::string & source,const std::string & target,const FstabEntry & entry,bool read_only=false)818 static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry,
819 bool read_only = false) {
820 errno = 0;
821 unsigned long mountflags = entry.flags;
822 if (read_only) {
823 mountflags |= MS_RDONLY;
824 }
825 int ret = 0;
826 int save_errno = 0;
827 int gc_allowance = 0;
828 std::string opts;
829 std::string checkpoint_opts;
830 bool try_f2fs_gc_allowance = is_f2fs(entry.fs_type) && entry.fs_checkpoint_opts.length() > 0;
831 bool try_f2fs_fallback = false;
832 Timer t;
833
834 do {
835 if (save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)) {
836 PINFO << "Kernel does not support " << checkpoint_opts << ", trying without.";
837 try_f2fs_gc_allowance = false;
838 // Attempt without gc allowance before dropping.
839 try_f2fs_fallback = !try_f2fs_fallback;
840 }
841 if (try_f2fs_gc_allowance) {
842 checkpoint_opts = entry.fs_checkpoint_opts + ":" + std::to_string(gc_allowance) + "%";
843 } else if (try_f2fs_fallback) {
844 checkpoint_opts = entry.fs_checkpoint_opts;
845 } else {
846 checkpoint_opts = "";
847 }
848 opts = entry.fs_options + checkpoint_opts;
849 if (save_errno == EAGAIN) {
850 PINFO << "Retrying mount (source=" << source << ",target=" << target
851 << ",type=" << entry.fs_type << ", gc_allowance=" << gc_allowance << "%)=" << ret
852 << "(" << save_errno << ")";
853 }
854
855 // Let's get the raw dm target, if it's a symlink, since some existing applications
856 // rely on /proc/mounts to find the userdata's dm target path. Don't break that assumption.
857 std::string real_source;
858 if (!android::base::Realpath(source, &real_source)) {
859 real_source = source;
860 }
861 ret = mount(real_source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
862 opts.c_str());
863 save_errno = errno;
864 if (try_f2fs_gc_allowance) gc_allowance += 10;
865 } while ((ret && save_errno == EAGAIN && gc_allowance <= 100) ||
866 (ret && save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)));
867 const char* target_missing = "";
868 const char* source_missing = "";
869 if (save_errno == ENOENT) {
870 if (access(target.c_str(), F_OK)) {
871 target_missing = "(missing)";
872 } else if (access(source.c_str(), F_OK)) {
873 source_missing = "(missing)";
874 }
875 errno = save_errno;
876 }
877 PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
878 << target_missing << ",type=" << entry.fs_type << ")=" << ret;
879 if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
880 fs_mgr_set_blk_ro(source);
881 }
882 if (ret == 0) {
883 android::base::SetProperty("ro.boottime.init.mount." + Basename(target),
884 std::to_string(t.duration().count()));
885 }
886 errno = save_errno;
887 return ret;
888 }
889
fs_match(const std::string & in1,const std::string & in2)890 static bool fs_match(const std::string& in1, const std::string& in2) {
891 if (in1.empty() || in2.empty()) {
892 return false;
893 }
894
895 auto in1_end = in1.size() - 1;
896 while (in1_end > 0 && in1[in1_end] == '/') {
897 in1_end--;
898 }
899
900 auto in2_end = in2.size() - 1;
901 while (in2_end > 0 && in2[in2_end] == '/') {
902 in2_end--;
903 }
904
905 if (in1_end != in2_end) {
906 return false;
907 }
908
909 for (size_t i = 0; i <= in1_end; ++i) {
910 if (in1[i] != in2[i]) {
911 return false;
912 }
913 }
914
915 return true;
916 }
917
should_use_metadata_encryption(const FstabEntry & entry)918 static bool should_use_metadata_encryption(const FstabEntry& entry) {
919 return !entry.metadata_key_dir.empty() && entry.fs_mgr_flags.file_encryption;
920 }
921
922 // Tries to mount any of the consecutive fstab entries that match
923 // the mountpoint of the one given by fstab[start_idx].
924 //
925 // end_idx: On return, will be the last entry that was looked at.
926 // attempted_idx: On return, will indicate which fstab entry
927 // succeeded. In case of failure, it will be the start_idx.
928 // Sets errno to match the 1st mount failure on failure.
mount_with_alternatives(Fstab & fstab,int start_idx,bool interrupted,int * end_idx,int * attempted_idx)929 static bool mount_with_alternatives(Fstab& fstab, int start_idx, bool interrupted, int* end_idx,
930 int* attempted_idx) {
931 unsigned long i;
932 int mount_errno = 0;
933 bool mounted = false;
934
935 // Hunt down an fstab entry for the same mount point that might succeed.
936 for (i = start_idx;
937 // We required that fstab entries for the same mountpoint be consecutive.
938 i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
939 // Don't try to mount/encrypt the same mount point again.
940 // Deal with alternate entries for the same point which are required to be all following
941 // each other.
942 if (mounted) {
943 LINFO << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
944 << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
945 << fstab[*attempted_idx].fs_type;
946 continue;
947 }
948
949 if (interrupted) {
950 LINFO << __FUNCTION__ << "(): skipping fstab mountpoint=" << fstab[i].mount_point
951 << " rec[" << i << "].fs_type=" << fstab[i].fs_type
952 << " (previously interrupted during encryption step)";
953 continue;
954 }
955
956 // fstab[start_idx].blk_device is already updated to /dev/dm-<N> by
957 // AVB related functions. Copy it from start_idx to the current index i.
958 if ((i != start_idx) && fstab[i].fs_mgr_flags.logical &&
959 fstab[start_idx].fs_mgr_flags.logical &&
960 (fstab[i].logical_partition_name == fstab[start_idx].logical_partition_name)) {
961 fstab[i].blk_device = fstab[start_idx].blk_device;
962 }
963
964 int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
965 if (fs_stat & FS_STAT_INVALID_MAGIC) {
966 LERROR << __FUNCTION__
967 << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
968 << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
969 << "].fs_type=" << fstab[i].fs_type;
970 mount_errno = EINVAL; // continue bootup for metadata encryption
971 continue;
972 }
973
974 int retry_count = 2;
975 const auto read_only = should_use_metadata_encryption(fstab[i]);
976 if (read_only) {
977 LOG(INFO) << "Mount point " << fstab[i].blk_device << " @ " << fstab[i].mount_point
978 << " uses metadata encryption, which means we need to unmount it later and "
979 "call encryptFstab/encrypt_inplace. To avoid file operations before "
980 "encryption, we will mount it as read-only first";
981 }
982 while (retry_count-- > 0) {
983 if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i], read_only)) {
984 *attempted_idx = i;
985 mounted = true;
986 if (i != start_idx) {
987 LINFO << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
988 << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
989 << " instead of " << fstab[start_idx].fs_type;
990 }
991 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
992 mount_errno = 0;
993 break;
994 } else {
995 if (retry_count <= 0) break; // run check_fs only once
996 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
997 // back up the first errno for crypto decisions.
998 if (mount_errno == 0) {
999 mount_errno = errno;
1000 }
1001 // retry after fsck
1002 check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
1003 }
1004 }
1005 log_fs_stat(fstab[i].blk_device, fs_stat);
1006 }
1007
1008 /* Adjust i for the case where it was still withing the recs[] */
1009 if (i < fstab.size()) --i;
1010
1011 *end_idx = i;
1012 if (!mounted) {
1013 *attempted_idx = start_idx;
1014 errno = mount_errno;
1015 return false;
1016 }
1017 return true;
1018 }
1019
TranslateExtLabels(FstabEntry * entry)1020 static bool TranslateExtLabels(FstabEntry* entry) {
1021 if (!StartsWith(entry->blk_device, "LABEL=")) {
1022 return true;
1023 }
1024
1025 std::string label = entry->blk_device.substr(6);
1026 if (label.size() > 16) {
1027 LERROR << "FS label is longer than allowed by filesystem";
1028 return false;
1029 }
1030
1031 auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
1032 if (!blockdir) {
1033 LERROR << "couldn't open /dev/block";
1034 return false;
1035 }
1036
1037 struct dirent* ent;
1038 while ((ent = readdir(blockdir.get()))) {
1039 if (ent->d_type != DT_BLK)
1040 continue;
1041
1042 unique_fd fd(TEMP_FAILURE_RETRY(
1043 openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
1044 if (fd < 0) {
1045 LERROR << "Cannot open block device /dev/block/" << ent->d_name;
1046 return false;
1047 }
1048
1049 ext4_super_block super_block;
1050 if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
1051 TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
1052 sizeof(super_block)) {
1053 // Probably a loopback device or something else without a readable superblock.
1054 continue;
1055 }
1056
1057 if (super_block.s_magic != EXT4_SUPER_MAGIC) {
1058 LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
1059 continue;
1060 }
1061
1062 if (label == super_block.s_volume_name) {
1063 std::string new_blk_device = "/dev/block/"s + ent->d_name;
1064
1065 LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
1066
1067 entry->blk_device = new_blk_device;
1068 return true;
1069 }
1070 }
1071
1072 return false;
1073 }
1074
1075 // Check to see if a mountable volume has encryption requirements
handle_encryptable(const FstabEntry & entry)1076 static int handle_encryptable(const FstabEntry& entry) {
1077 if (should_use_metadata_encryption(entry)) {
1078 if (umount_retry(entry.mount_point)) {
1079 return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
1080 }
1081 PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
1082 return FS_MGR_MNTALL_FAIL;
1083 } else if (entry.fs_mgr_flags.file_encryption) {
1084 LINFO << entry.mount_point << " is file encrypted";
1085 return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
1086 } else {
1087 return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1088 }
1089 }
1090
set_type_property(int status)1091 static void set_type_property(int status) {
1092 switch (status) {
1093 case FS_MGR_MNTALL_DEV_FILE_ENCRYPTED:
1094 case FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED:
1095 case FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION:
1096 SetProperty("ro.crypto.type", "file");
1097 break;
1098 }
1099 }
1100
call_vdc(const std::vector<std::string> & args,int * ret)1101 static bool call_vdc(const std::vector<std::string>& args, int* ret) {
1102 std::vector<char const*> argv;
1103 argv.emplace_back("/system/bin/vdc");
1104 for (auto& arg : args) {
1105 argv.emplace_back(arg.c_str());
1106 }
1107 LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
1108 int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr);
1109 if (err != 0) {
1110 LOG(ERROR) << "vdc call failed with error code: " << err;
1111 return false;
1112 }
1113 LOG(DEBUG) << "vdc finished successfully";
1114 if (ret != nullptr) {
1115 *ret = WEXITSTATUS(*ret);
1116 }
1117 return true;
1118 }
1119
fs_mgr_update_logical_partition(FstabEntry * entry)1120 bool fs_mgr_update_logical_partition(FstabEntry* entry) {
1121 // Logical partitions are specified with a named partition rather than a
1122 // block device, so if the block device is a path, then it has already
1123 // been updated.
1124 if (entry->blk_device[0] == '/') {
1125 return true;
1126 }
1127
1128 DeviceMapper& dm = DeviceMapper::Instance();
1129 std::string device_name;
1130 if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
1131 return false;
1132 }
1133
1134 entry->blk_device = device_name;
1135 return true;
1136 }
1137
SupportsCheckpoint(FstabEntry * entry)1138 static bool SupportsCheckpoint(FstabEntry* entry) {
1139 return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs;
1140 }
1141
1142 class CheckpointManager {
1143 public:
CheckpointManager(int needs_checkpoint=-1,bool metadata_encrypted=false,bool needs_encrypt=false)1144 CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false,
1145 bool needs_encrypt = false)
1146 : needs_checkpoint_(needs_checkpoint),
1147 metadata_encrypted_(metadata_encrypted),
1148 needs_encrypt_(needs_encrypt) {}
1149
NeedsCheckpoint()1150 bool NeedsCheckpoint() {
1151 if (needs_checkpoint_ != UNKNOWN) {
1152 return needs_checkpoint_ == YES;
1153 }
1154 if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
1155 LERROR << "Failed to find if checkpointing is needed. Assuming no.";
1156 needs_checkpoint_ = NO;
1157 }
1158 return needs_checkpoint_ == YES;
1159 }
1160
Update(FstabEntry * entry,const std::string & block_device=std::string ())1161 bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
1162 if (!SupportsCheckpoint(entry)) {
1163 return true;
1164 }
1165
1166 if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) {
1167 call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr);
1168 }
1169
1170 if (!NeedsCheckpoint()) {
1171 return true;
1172 }
1173
1174 if (!UpdateCheckpointPartition(entry, block_device)) {
1175 LERROR << "Could not set up checkpoint partition, skipping!";
1176 return false;
1177 }
1178
1179 return true;
1180 }
1181
Revert(FstabEntry * entry)1182 bool Revert(FstabEntry* entry) {
1183 if (!SupportsCheckpoint(entry)) {
1184 return true;
1185 }
1186
1187 if (device_map_.find(entry->blk_device) == device_map_.end()) {
1188 return true;
1189 }
1190
1191 std::string bow_device = entry->blk_device;
1192 entry->blk_device = device_map_[bow_device];
1193 device_map_.erase(bow_device);
1194
1195 DeviceMapper& dm = DeviceMapper::Instance();
1196 if (!dm.DeleteDevice("bow")) {
1197 PERROR << "Failed to remove bow device";
1198 }
1199
1200 return true;
1201 }
1202
1203 private:
UpdateCheckpointPartition(FstabEntry * entry,const std::string & block_device)1204 bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
1205 if (entry->fs_mgr_flags.checkpoint_fs) {
1206 if (is_f2fs(entry->fs_type)) {
1207 entry->fs_checkpoint_opts = ",checkpoint=disable";
1208 } else {
1209 LERROR << entry->fs_type << " does not implement checkpoints.";
1210 }
1211 } else if (entry->fs_mgr_flags.checkpoint_blk && !needs_encrypt_) {
1212 auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
1213 if (fs_mgr_find_bow_device(actual_block_device).empty()) {
1214 unique_fd fd(
1215 TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
1216 if (fd < 0) {
1217 PERROR << "Cannot open device " << entry->blk_device;
1218 return false;
1219 }
1220
1221 uint64_t size = get_block_device_size(fd) / 512;
1222 if (!size) {
1223 PERROR << "Cannot get device size";
1224 return false;
1225 }
1226
1227 // dm-bow will not load if size is not a multiple of 4096
1228 // rounding down does not hurt, since ext4 will only use full blocks
1229 size &= ~7;
1230
1231 android::dm::DmTable table;
1232 auto bowTarget =
1233 std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device);
1234
1235 // dm-bow uses the first block as a log record, and relocates the real first block
1236 // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and
1237 // for post Android Q devices dm-default-key uses a block size of 4096 always.
1238 // So if dm-bow's block size, which by default is the block size of the underlying
1239 // hardware, is less than dm-default-key's, blocks will get broken up and I/O will
1240 // fail as it won't be data_unit_size aligned.
1241 // However, since it is possible there is an already shipping non
1242 // metadata-encrypted device with smaller blocks, we must not change this for
1243 // devices shipped with Q or earlier unless they explicitly selected dm-default-key
1244 // v2
1245 unsigned int options_format_version = android::base::GetUintProperty<unsigned int>(
1246 "ro.crypto.dm_default_key.options_format.version",
1247 (android::fscrypt::GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2));
1248 if (options_format_version > 1) {
1249 bowTarget->SetBlockSize(4096);
1250 }
1251
1252 if (!table.AddTarget(std::move(bowTarget))) {
1253 LERROR << "Failed to add bow target";
1254 return false;
1255 }
1256
1257 DeviceMapper& dm = DeviceMapper::Instance();
1258 if (!dm.CreateDevice("bow", table)) {
1259 PERROR << "Failed to create bow device";
1260 return false;
1261 }
1262
1263 std::string name;
1264 if (!dm.GetDmDevicePathByName("bow", &name)) {
1265 PERROR << "Failed to get bow device name";
1266 return false;
1267 }
1268
1269 device_map_[name] = entry->blk_device;
1270 entry->blk_device = name;
1271 }
1272 }
1273 return true;
1274 }
1275
1276 enum { UNKNOWN = -1, NO = 0, YES = 1 };
1277 int needs_checkpoint_;
1278 bool metadata_encrypted_;
1279 bool needs_encrypt_;
1280 std::map<std::string, std::string> device_map_;
1281 };
1282
fs_mgr_find_bow_device(const std::string & block_device)1283 std::string fs_mgr_find_bow_device(const std::string& block_device) {
1284 // handle symlink such as "/dev/block/mapper/userdata"
1285 std::string real_path;
1286 if (!android::base::Realpath(block_device, &real_path)) {
1287 real_path = block_device;
1288 }
1289
1290 struct stat st;
1291 if (stat(real_path.c_str(), &st) < 0) {
1292 PLOG(ERROR) << "stat failed: " << real_path;
1293 return std::string();
1294 }
1295 if (!S_ISBLK(st.st_mode)) {
1296 PLOG(ERROR) << real_path << " is not block device";
1297 return std::string();
1298 }
1299 std::string sys_dir = android::base::StringPrintf("/sys/dev/block/%u:%u", major(st.st_rdev),
1300 minor(st.st_rdev));
1301 for (;;) {
1302 std::string name;
1303 if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
1304 PLOG(ERROR) << real_path << " is not dm device";
1305 return std::string();
1306 }
1307
1308 if (name == "bow\n") return sys_dir;
1309
1310 std::string slaves = sys_dir + "/slaves";
1311 std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
1312 if (!directory) {
1313 PLOG(ERROR) << "Can't open slave directory " << slaves;
1314 return std::string();
1315 }
1316
1317 int count = 0;
1318 for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
1319 if (entry->d_type != DT_LNK) continue;
1320
1321 if (count == 1) {
1322 LOG(ERROR) << "Too many slaves in " << slaves;
1323 return std::string();
1324 }
1325
1326 ++count;
1327 sys_dir = std::string("/sys/block/") + entry->d_name;
1328 }
1329
1330 if (count != 1) {
1331 LOG(ERROR) << "No slave in " << slaves;
1332 return std::string();
1333 }
1334 }
1335 }
1336
1337 static constexpr const char* kUserdataWrapperName = "userdata-wrapper";
1338
WrapUserdata(FstabEntry * entry,dev_t dev,const std::string & block_device)1339 static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) {
1340 DeviceMapper& dm = DeviceMapper::Instance();
1341 if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) {
1342 // This will report failure for us. If we do fail to get the path,
1343 // we leave the device unwrapped.
1344 dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device);
1345 return;
1346 }
1347
1348 unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC));
1349 if (fd < 0) {
1350 PLOG(ERROR) << "open failed: " << entry->blk_device;
1351 return;
1352 }
1353
1354 auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev));
1355 uint64_t sectors = get_block_device_size(fd) / 512;
1356
1357 android::dm::DmTable table;
1358 table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0);
1359
1360 std::string dm_path;
1361 if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) {
1362 LOG(ERROR) << "Failed to create userdata wrapper device";
1363 return;
1364 }
1365 entry->blk_device = dm_path;
1366 }
1367
1368 // When using Virtual A/B, partitions can be backed by /data and mapped with
1369 // device-mapper in first-stage init. This can happen when merging an OTA or
1370 // when using adb remount to house "scratch". In this case, /data cannot be
1371 // mounted directly off the userdata block device, and e2fsck will refuse to
1372 // scan it, because the kernel reports the block device as in-use.
1373 //
1374 // As a workaround, when mounting /data, we create a trivial dm-linear wrapper
1375 // if the underlying block device already has dependencies. Note that we make
1376 // an exception for metadata-encrypted devices, since dm-default-key is already
1377 // a wrapper.
WrapUserdataIfNeeded(FstabEntry * entry,const std::string & actual_block_device={})1378 static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) {
1379 const auto& block_device =
1380 actual_block_device.empty() ? entry->blk_device : actual_block_device;
1381 if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() ||
1382 android::base::StartsWith(block_device, "/dev/block/dm-")) {
1383 return;
1384 }
1385
1386 struct stat st;
1387 if (stat(block_device.c_str(), &st) < 0) {
1388 PLOG(ERROR) << "stat failed: " << block_device;
1389 return;
1390 }
1391
1392 std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders",
1393 major(st.st_rdev), minor(st.st_rdev));
1394 std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir);
1395 if (!dir) {
1396 PLOG(ERROR) << "opendir failed: " << path;
1397 return;
1398 }
1399
1400 struct dirent* d;
1401 bool has_holders = false;
1402 while ((d = readdir(dir.get())) != nullptr) {
1403 if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) {
1404 has_holders = true;
1405 break;
1406 }
1407 }
1408
1409 if (has_holders) {
1410 WrapUserdata(entry, st.st_rdev, block_device);
1411 }
1412 }
1413
IsMountPointMounted(const std::string & mount_point)1414 static bool IsMountPointMounted(const std::string& mount_point) {
1415 // Check if this is already mounted.
1416 Fstab fstab;
1417 if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
1418 return false;
1419 }
1420 return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
1421 }
1422
fs_mgr_metadata_encryption_in_progress_file_name(const FstabEntry & entry)1423 std::string fs_mgr_metadata_encryption_in_progress_file_name(const FstabEntry& entry) {
1424 return entry.metadata_key_dir + "/in_progress";
1425 }
1426
WasMetadataEncryptionInterrupted(const FstabEntry & entry)1427 bool WasMetadataEncryptionInterrupted(const FstabEntry& entry) {
1428 if (!should_use_metadata_encryption(entry)) return false;
1429 return access(fs_mgr_metadata_encryption_in_progress_file_name(entry).c_str(), R_OK) == 0;
1430 }
1431
LocateFormattableEntry(FstabEntry * const begin,FstabEntry * const end)1432 static FstabEntry* LocateFormattableEntry(FstabEntry* const begin, FstabEntry* const end) {
1433 if (begin == end) {
1434 return nullptr;
1435 }
1436 const bool dev_option_enabled =
1437 android::base::GetBoolProperty("ro.product.build.16k_page.enabled", false);
1438 FstabEntry* f2fs_entry = nullptr;
1439 for (auto iter = begin; iter != end && iter->blk_device == begin->blk_device; iter++) {
1440 if (iter->fs_mgr_flags.formattable) {
1441 if (getpagesize() != 4096 && is_f2fs(iter->fs_type) && dev_option_enabled) {
1442 f2fs_entry = iter;
1443 continue;
1444 }
1445 if (f2fs_entry) {
1446 LOG(INFO) << "Skipping F2FS format for block device " << iter->blk_device << " @ "
1447 << iter->mount_point
1448 << " in non-4K mode for dev option enabled devices, "
1449 "as these devices need to toggle between 4K/16K mode, and F2FS does "
1450 "not support page_size != block_size configuration.";
1451 }
1452 return iter;
1453 }
1454 }
1455 if (f2fs_entry) {
1456 LOG(INFO) << "Using F2FS for " << f2fs_entry->blk_device << " @ " << f2fs_entry->mount_point
1457 << " even though we are in non-4K mode. Device might require a data wipe after "
1458 "going back to 4K mode, as F2FS does not support page_size != block_size";
1459 }
1460 return f2fs_entry;
1461 }
1462
1463 // When multiple fstab records share the same mount_point, it will try to mount each
1464 // one in turn, and ignore any duplicates after a first successful mount.
1465 // Returns -1 on error, and FS_MGR_MNTALL_* otherwise.
fs_mgr_mount_all(Fstab * fstab,int mount_mode)1466 int fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
1467 int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1468 int error_count = 0;
1469 CheckpointManager checkpoint_manager;
1470 AvbUniquePtr avb_handle(nullptr);
1471 bool wiped = false;
1472 bool userdata_mounted = false;
1473
1474 if (fstab->empty()) {
1475 return FS_MGR_MNTALL_FAIL;
1476 }
1477
1478 bool scratch_can_be_mounted = true;
1479
1480 // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1),
1481 // where top_idx is 0. It will give SIGABRT
1482 for (int i = 0; i < static_cast<int>(fstab->size()); i++) {
1483 auto& current_entry = (*fstab)[i];
1484
1485 // If a filesystem should have been mounted in the first stage, we
1486 // ignore it here. With one exception, if the filesystem is
1487 // formattable, then it can only be formatted in the second stage,
1488 // so we allow it to mount here.
1489 if (current_entry.fs_mgr_flags.first_stage_mount &&
1490 (!current_entry.fs_mgr_flags.formattable ||
1491 IsMountPointMounted(current_entry.mount_point))) {
1492 continue;
1493 }
1494
1495 // Don't mount entries that are managed by vold or not for the mount mode.
1496 if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
1497 ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
1498 ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
1499 continue;
1500 }
1501
1502 // Skip swap and raw partition entries such as boot, recovery, etc.
1503 if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
1504 current_entry.fs_type == "mtd") {
1505 continue;
1506 }
1507
1508 // Skip mounting the root partition, as it will already have been mounted.
1509 if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
1510 if ((current_entry.flags & MS_RDONLY) != 0) {
1511 fs_mgr_set_blk_ro(current_entry.blk_device);
1512 }
1513 continue;
1514 }
1515
1516 // Terrible hack to make it possible to remount /data.
1517 // TODO: refactor fs_mgr_mount_all and get rid of this.
1518 if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") {
1519 continue;
1520 }
1521
1522 // Translate LABEL= file system labels into block devices.
1523 if (is_extfs(current_entry.fs_type)) {
1524 if (!TranslateExtLabels(¤t_entry)) {
1525 LERROR << "Could not translate label to block device";
1526 continue;
1527 }
1528 }
1529
1530 if (current_entry.fs_mgr_flags.logical) {
1531 if (!fs_mgr_update_logical_partition(¤t_entry)) {
1532 LERROR << "Could not set up logical partition, skipping!";
1533 continue;
1534 }
1535 }
1536
1537 WrapUserdataIfNeeded(¤t_entry);
1538
1539 if (!checkpoint_manager.Update(¤t_entry)) {
1540 continue;
1541 }
1542
1543 if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) {
1544 LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
1545 continue;
1546 }
1547
1548 if (current_entry.fs_mgr_flags.avb) {
1549 if (!avb_handle) {
1550 avb_handle = AvbHandle::Open();
1551 if (!avb_handle) {
1552 LERROR << "Failed to open AvbHandle";
1553 set_type_property(encryptable);
1554 return FS_MGR_MNTALL_FAIL;
1555 }
1556 }
1557 if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) ==
1558 AvbHashtreeResult::kFail) {
1559 LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
1560 << ", skipping!";
1561 // Skips mounting the device.
1562 continue;
1563 }
1564 } else if (!current_entry.avb_keys.empty()) {
1565 if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) {
1566 LERROR << "Failed to set up AVB on standalone partition: "
1567 << current_entry.mount_point << ", skipping!";
1568 // Skips mounting the device.
1569 continue;
1570 }
1571 }
1572
1573 int last_idx_inspected = -1;
1574 const int top_idx = i;
1575 int attempted_idx = -1;
1576
1577 bool encryption_interrupted = WasMetadataEncryptionInterrupted(current_entry);
1578 bool mret = mount_with_alternatives(*fstab, i, encryption_interrupted, &last_idx_inspected,
1579 &attempted_idx);
1580 auto& attempted_entry = (*fstab)[attempted_idx];
1581 i = last_idx_inspected;
1582 int mount_errno = errno;
1583
1584 // Handle success and deal with encryptability.
1585 if (mret) {
1586 int status = handle_encryptable(attempted_entry);
1587
1588 if (status == FS_MGR_MNTALL_FAIL) {
1589 // Fatal error - no point continuing.
1590 return status;
1591 }
1592
1593 if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1594 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1595 // Log and continue
1596 LERROR << "Only one encryptable/encrypted partition supported";
1597 }
1598 encryptable = status;
1599 if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
1600 fs_mgr_set_blk_ro(attempted_entry.blk_device, false);
1601 if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
1602 attempted_entry.mount_point, wiped ? "true" : "false",
1603 attempted_entry.fs_type,
1604 attempted_entry.fs_mgr_flags.is_zoned ? "true" : "false",
1605 std::to_string(attempted_entry.length),
1606 android::base::Join(attempted_entry.user_devices, ' '),
1607 android::base::Join(attempted_entry.device_aliased, ' ')},
1608 nullptr)) {
1609 LERROR << "Encryption failed";
1610 set_type_property(encryptable);
1611 return FS_MGR_MNTALL_FAIL;
1612 }
1613 }
1614 }
1615
1616 if (current_entry.mount_point == "/data") {
1617 userdata_mounted = true;
1618 }
1619
1620 MountOverlayfs(attempted_entry, &scratch_can_be_mounted);
1621
1622 // Success! Go get the next one.
1623 continue;
1624 }
1625 auto formattable_entry =
1626 LocateFormattableEntry(fstab->data() + top_idx, fstab->data() + fstab->size());
1627 // Mounting failed, understand why and retry.
1628 wiped = partition_wiped(current_entry.blk_device.c_str());
1629 if (mount_errno != EBUSY && mount_errno != EACCES &&
1630 current_entry.fs_mgr_flags.formattable && (wiped || encryption_interrupted)) {
1631 // current_entry and attempted_entry point at the same partition, but sometimes
1632 // at two different lines in the fstab. Use current_entry for formatting
1633 // as that is the preferred one.
1634 if (wiped)
1635 LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1636 << " is wiped and " << current_entry.mount_point << " "
1637 << current_entry.fs_type << " is formattable. Format it.";
1638 if (encryption_interrupted)
1639 LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1640 << " was interrupted during encryption and " << current_entry.mount_point
1641 << " " << current_entry.fs_type << " is formattable. Format it.";
1642
1643 checkpoint_manager.Revert(¤t_entry);
1644
1645 // EncryptInplace will be used when vdc gives an error or needs to format partitions
1646 // other than /data
1647 if (should_use_metadata_encryption(current_entry) &&
1648 current_entry.mount_point == "/data") {
1649
1650 // vdc->Format requires "ro.crypto.type" to set an encryption flag
1651 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1652 set_type_property(encryptable);
1653
1654 if (!call_vdc({"cryptfs", "encryptFstab", formattable_entry->blk_device,
1655 formattable_entry->mount_point, "true" /* shouldFormat */,
1656 formattable_entry->fs_type,
1657 formattable_entry->fs_mgr_flags.is_zoned ? "true" : "false",
1658 std::to_string(formattable_entry->length),
1659 android::base::Join(formattable_entry->user_devices, ' '),
1660 android::base::Join(formattable_entry->device_aliased, ' ')},
1661 nullptr)) {
1662 LERROR << "Encryption failed";
1663 } else {
1664 userdata_mounted = true;
1665 continue;
1666 }
1667 }
1668
1669 if (fs_mgr_do_format(*formattable_entry) == 0) {
1670 // Let's replay the mount actions.
1671 i = top_idx - 1;
1672 continue;
1673 } else {
1674 LERROR << __FUNCTION__ << "(): Format failed. "
1675 << "Suggest recovery...";
1676 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1677 continue;
1678 }
1679 }
1680
1681 // mount(2) returned an error, handle the encryptable/formattable case.
1682 if (mount_errno != EBUSY && mount_errno != EACCES && !encryption_interrupted &&
1683 should_use_metadata_encryption(attempted_entry)) {
1684 if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
1685 attempted_entry.mount_point,
1686 current_entry.fs_mgr_flags.is_zoned ? "true" : "false",
1687 android::base::Join(current_entry.user_devices, ' ')},
1688 nullptr)) {
1689 ++error_count;
1690 } else if (current_entry.mount_point == "/data") {
1691 userdata_mounted = true;
1692 }
1693 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1694 continue;
1695 } else {
1696 // fs_options might be null so we cannot use PERROR << directly.
1697 // Use StringPrintf to output "(null)" instead.
1698 if (attempted_entry.fs_mgr_flags.no_fail) {
1699 PERROR << android::base::StringPrintf(
1700 "Ignoring failure to mount an un-encryptable, interrupted, or wiped "
1701 "partition on %s at %s options: %s",
1702 attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1703 attempted_entry.fs_options.c_str());
1704 } else {
1705 PERROR << android::base::StringPrintf(
1706 "Failed to mount an un-encryptable, interrupted, or wiped partition "
1707 "on %s at %s options: %s",
1708 attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1709 attempted_entry.fs_options.c_str());
1710 ++error_count;
1711 }
1712 continue;
1713 }
1714 }
1715 if (userdata_mounted) {
1716 Fstab mounted_fstab;
1717 if (!ReadFstabFromFile("/proc/mounts", &mounted_fstab)) {
1718 LOG(ERROR) << "Could't load fstab from /proc/mounts , unable to set ro.fstype.data . "
1719 "init.rc actions depending on this prop would not run, boot might fail.";
1720 } else {
1721 for (const auto& entry : mounted_fstab) {
1722 if (entry.mount_point == "/data") {
1723 android::base::SetProperty("ro.fstype.data", entry.fs_type);
1724 }
1725 }
1726 }
1727 }
1728
1729 set_type_property(encryptable);
1730
1731 if (error_count) {
1732 return FS_MGR_MNTALL_FAIL;
1733 } else {
1734 return encryptable;
1735 }
1736 }
1737
fs_mgr_umount_all(android::fs_mgr::Fstab * fstab)1738 int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
1739 AvbUniquePtr avb_handle(nullptr);
1740 int ret = FsMgrUmountStatus::SUCCESS;
1741 for (auto& current_entry : *fstab) {
1742 if (!IsMountPointMounted(current_entry.mount_point)) {
1743 continue;
1744 }
1745
1746 if (umount(current_entry.mount_point.c_str()) == -1) {
1747 PERROR << "Failed to umount " << current_entry.mount_point;
1748 ret |= FsMgrUmountStatus::ERROR_UMOUNT;
1749 continue;
1750 }
1751
1752 if (current_entry.fs_mgr_flags.logical) {
1753 if (!fs_mgr_update_logical_partition(¤t_entry)) {
1754 LERROR << "Could not get logical partition blk_device, skipping!";
1755 ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
1756 continue;
1757 }
1758 }
1759
1760 if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
1761 if (!AvbHandle::TearDownAvbHashtree(¤t_entry, true /* wait */)) {
1762 LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
1763 ret |= FsMgrUmountStatus::ERROR_VERITY;
1764 continue;
1765 }
1766 }
1767 }
1768 return ret;
1769 }
1770
1771 // wrapper to __mount() and expects a fully prepared fstab_rec,
1772 // unlike fs_mgr_do_mount which does more things with avb / verity etc.
fs_mgr_do_mount_one(const FstabEntry & entry,const std::string & alt_mount_point)1773 int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) {
1774 // First check the filesystem if requested.
1775 if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
1776 LERROR << "Skipping mounting '" << entry.blk_device << "'";
1777 }
1778
1779 auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
1780
1781 // Run fsck if needed
1782 int ret = prepare_fs_for_mount(entry.blk_device, entry, mount_point);
1783 // Wiped case doesn't require to try __mount below.
1784 if (ret & FS_STAT_INVALID_MAGIC) {
1785 return FS_MGR_DOMNT_FAILED;
1786 }
1787
1788 ret = __mount(entry.blk_device, mount_point, entry);
1789 if (ret) {
1790 ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
1791 }
1792
1793 return ret;
1794 }
1795
1796 // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
1797 // in turn, and stop on 1st success, or no more match.
fs_mgr_do_mount(Fstab * fstab,const std::string & n_name,const std::string & n_blk_device,int needs_checkpoint,bool needs_encrypt)1798 int fs_mgr_do_mount(Fstab* fstab, const std::string& n_name, const std::string& n_blk_device,
1799 int needs_checkpoint, bool needs_encrypt) {
1800 int mount_errors = 0;
1801 int first_mount_errno = 0;
1802 std::string mount_point;
1803 CheckpointManager checkpoint_manager(needs_checkpoint, true, needs_encrypt);
1804 AvbUniquePtr avb_handle(nullptr);
1805
1806 if (!fstab) {
1807 return FS_MGR_DOMNT_FAILED;
1808 }
1809
1810 for (auto& fstab_entry : *fstab) {
1811 if (!fs_match(fstab_entry.mount_point, n_name)) {
1812 continue;
1813 }
1814
1815 // We found our match.
1816 // If this swap or a raw partition, report an error.
1817 if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
1818 fstab_entry.fs_type == "mtd") {
1819 LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
1820 << n_blk_device;
1821 return FS_MGR_DOMNT_FAILED;
1822 }
1823
1824 if (fstab_entry.fs_mgr_flags.logical) {
1825 if (!fs_mgr_update_logical_partition(&fstab_entry)) {
1826 LERROR << "Could not set up logical partition, skipping!";
1827 continue;
1828 }
1829 }
1830
1831 WrapUserdataIfNeeded(&fstab_entry, n_blk_device);
1832
1833 if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
1834 LERROR << "Could not set up checkpoint partition, skipping!";
1835 continue;
1836 }
1837
1838 // First check the filesystem if requested.
1839 if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) {
1840 LERROR << "Skipping mounting '" << n_blk_device << "'";
1841 continue;
1842 }
1843
1844 // Now mount it where requested */
1845 mount_point = fstab_entry.mount_point;
1846
1847 int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry, mount_point);
1848
1849 if (fstab_entry.fs_mgr_flags.avb) {
1850 if (!avb_handle) {
1851 avb_handle = AvbHandle::Open();
1852 if (!avb_handle) {
1853 LERROR << "Failed to open AvbHandle";
1854 return FS_MGR_DOMNT_FAILED;
1855 }
1856 }
1857 if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
1858 AvbHashtreeResult::kFail) {
1859 LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
1860 << ", skipping!";
1861 // Skips mounting the device.
1862 continue;
1863 }
1864 } else if (!fstab_entry.avb_keys.empty()) {
1865 if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
1866 LERROR << "Failed to set up AVB on standalone partition: "
1867 << fstab_entry.mount_point << ", skipping!";
1868 // Skips mounting the device.
1869 continue;
1870 }
1871 }
1872
1873 int retry_count = 2;
1874 while (retry_count-- > 0) {
1875 if (!__mount(n_blk_device, mount_point, fstab_entry)) {
1876 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
1877 log_fs_stat(fstab_entry.blk_device, fs_stat);
1878 return FS_MGR_DOMNT_SUCCESS;
1879 } else {
1880 if (retry_count <= 0) break; // run check_fs only once
1881 if (!first_mount_errno) first_mount_errno = errno;
1882 mount_errors++;
1883 PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point
1884 << " with fstype " << fstab_entry.fs_type;
1885 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1886 // try again after fsck
1887 check_fs(n_blk_device, fstab_entry.fs_type, mount_point, &fs_stat);
1888 }
1889 }
1890 log_fs_stat(fstab_entry.blk_device, fs_stat);
1891 }
1892
1893 // Reach here means the mount attempt fails.
1894 if (mount_errors) {
1895 PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
1896 if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
1897 } else {
1898 // We didn't find a match, say so and return an error.
1899 LERROR << "Cannot find mount point " << n_name << " in fstab";
1900 }
1901 return FS_MGR_DOMNT_FAILED;
1902 }
1903
ConfigureIoScheduler(const std::string & device_path)1904 static bool ConfigureIoScheduler(const std::string& device_path) {
1905 if (!StartsWith(device_path, "/dev/")) {
1906 LERROR << __func__ << ": invalid argument " << device_path;
1907 return false;
1908 }
1909
1910 const std::string iosched_path =
1911 StringPrintf("/sys/block/%s/queue/scheduler", Basename(device_path).c_str());
1912 unique_fd iosched_fd(open(iosched_path.c_str(), O_RDWR | O_CLOEXEC));
1913 if (iosched_fd.get() == -1) {
1914 PERROR << __func__ << ": failed to open " << iosched_path;
1915 return false;
1916 }
1917
1918 // Kernels before v4.1 only support 'noop'. Kernels [v4.1, v5.0) support
1919 // 'noop' and 'none'. Kernels v5.0 and later only support 'none'.
1920 static constexpr const std::array<std::string_view, 2> kNoScheduler = {"none", "noop"};
1921
1922 for (const std::string_view& scheduler : kNoScheduler) {
1923 int ret = write(iosched_fd.get(), scheduler.data(), scheduler.size());
1924 if (ret > 0) {
1925 return true;
1926 }
1927 }
1928
1929 PERROR << __func__ << ": failed to write to " << iosched_path;
1930 return false;
1931 }
1932
InstallZramDevice(const std::string & device)1933 static bool InstallZramDevice(const std::string& device) {
1934 if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
1935 PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
1936 return false;
1937 }
1938 LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
1939 return true;
1940 }
1941
1942 /*
1943 * Zram backing device can be created as long as /data has at least `size`
1944 * free space, though we may want to leave some extra space for the remaining
1945 * boot process and other system activities.
1946 */
ZramBackingDeviceSizeAvailable(off64_t size)1947 static bool ZramBackingDeviceSizeAvailable(off64_t size) {
1948 constexpr const char* data_path = "/data";
1949 uint64_t min_free_mb =
1950 android::base::GetUintProperty<uint64_t>("ro.zram_backing_device_min_free_mb", 0);
1951
1952 // No min_free property. Skip the available size check.
1953 if (min_free_mb == 0) return true;
1954
1955 struct statvfs vst;
1956 if (statvfs(data_path, &vst) < 0) {
1957 PERROR << "Cannot check available space: " << data_path;
1958 return false;
1959 }
1960
1961 uint64_t size_free = static_cast<uint64_t>(vst.f_bfree) * vst.f_frsize;
1962 uint64_t size_required = size + (min_free_mb * 1024 * 1024);
1963 if (size_required > size_free) {
1964 PERROR << "Free space is not enough for zram backing device: " << size_required << " > "
1965 << size_free;
1966 return false;
1967 }
1968 return true;
1969 }
1970
PrepareZramBackingDevice(off64_t size)1971 static bool PrepareZramBackingDevice(off64_t size) {
1972
1973 constexpr const char* file_path = "/data/per_boot/zram_swap";
1974 if (size == 0) return true;
1975
1976 // Check available space
1977 if (!ZramBackingDeviceSizeAvailable(size)) {
1978 PERROR << "No space for target path: " << file_path;
1979 return false;
1980 }
1981 // Prepare target path
1982 unique_fd target_fd(TEMP_FAILURE_RETRY(open(file_path, O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
1983 if (target_fd.get() == -1) {
1984 PERROR << "Cannot open target path: " << file_path;
1985 return false;
1986 }
1987 if (fallocate(target_fd.get(), 0, 0, size) < 0) {
1988 PERROR << "Cannot truncate target path: " << file_path;
1989 unlink(file_path);
1990 return false;
1991 }
1992
1993 // Allocate loop device and attach it to file_path.
1994 LoopControl loop_control;
1995 std::string loop_device;
1996 if (!loop_control.Attach(target_fd.get(), 5s, &loop_device)) {
1997 return false;
1998 }
1999
2000 ConfigureIoScheduler(loop_device);
2001
2002 if (auto ret = ConfigureQueueDepth(loop_device, "/"); !ret.ok()) {
2003 LOG(DEBUG) << "Failed to config queue depth: " << ret.error().message();
2004 }
2005
2006 // set block size & direct IO
2007 unique_fd loop_fd(TEMP_FAILURE_RETRY(open(loop_device.c_str(), O_RDWR | O_CLOEXEC)));
2008 if (loop_fd.get() == -1) {
2009 PERROR << "Cannot open " << loop_device;
2010 return false;
2011 }
2012 if (!LoopControl::SetAutoClearStatus(loop_fd.get())) {
2013 PERROR << "Failed set LO_FLAGS_AUTOCLEAR for " << loop_device;
2014 }
2015 if (!LoopControl::EnableDirectIo(loop_fd.get())) {
2016 return false;
2017 }
2018
2019 return InstallZramDevice(loop_device);
2020 }
2021
fs_mgr_swapon_all(const Fstab & fstab)2022 bool fs_mgr_swapon_all(const Fstab& fstab) {
2023 bool ret = true;
2024 for (const auto& entry : fstab) {
2025 // Skip non-swap entries.
2026 if (entry.fs_type != "swap") {
2027 continue;
2028 }
2029
2030 if (entry.zram_size > 0) {
2031 if (!PrepareZramBackingDevice(entry.zram_backingdev_size)) {
2032 LERROR << "Failure of zram backing device file for '" << entry.blk_device << "'";
2033 }
2034 // A zram_size was specified, so we need to configure the
2035 // device. There is no point in having multiple zram devices
2036 // on a system (all the memory comes from the same pool) so
2037 // we can assume the device number is 0.
2038 if (entry.max_comp_streams >= 0) {
2039 auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
2040 fopen(ZRAM_CONF_MCS, "re"), fclose};
2041 if (zram_mcs_fp == nullptr) {
2042 LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
2043 ret = false;
2044 continue;
2045 }
2046 fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
2047 }
2048
2049 auto zram_fp =
2050 std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
2051 if (zram_fp == nullptr) {
2052 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
2053 ret = false;
2054 continue;
2055 }
2056 fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
2057 }
2058
2059 if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
2060 LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
2061 ret = false;
2062 continue;
2063 }
2064
2065 // Initialize the swap area.
2066 const char* mkswap_argv[2] = {
2067 MKSWAP_BIN,
2068 entry.blk_device.c_str(),
2069 };
2070 int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false,
2071 LOG_KLOG, false, nullptr);
2072 if (err) {
2073 LERROR << "mkswap failed for " << entry.blk_device;
2074 ret = false;
2075 continue;
2076 }
2077
2078 /* If -1, then no priority was specified in fstab, so don't set
2079 * SWAP_FLAG_PREFER or encode the priority */
2080 int flags = 0;
2081 if (entry.swap_prio >= 0) {
2082 flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
2083 flags |= SWAP_FLAG_PREFER;
2084 } else {
2085 flags = 0;
2086 }
2087 err = swapon(entry.blk_device.c_str(), flags);
2088 if (err) {
2089 LERROR << "swapon failed for " << entry.blk_device;
2090 ret = false;
2091 }
2092 }
2093
2094 return ret;
2095 }
2096
fs_mgr_is_verity_enabled(const FstabEntry & entry)2097 bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
2098 if (!entry.fs_mgr_flags.avb) {
2099 return false;
2100 }
2101
2102 DeviceMapper& dm = DeviceMapper::Instance();
2103
2104 std::string mount_point = GetVerityDeviceName(entry);
2105 if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
2106 return false;
2107 }
2108
2109 std::vector<DeviceMapper::TargetInfo> table;
2110 if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
2111 return false;
2112 }
2113
2114 auto status = table[0].data.c_str();
2115 if (*status == 'C' || *status == 'V') {
2116 return true;
2117 }
2118
2119 return false;
2120 }
2121
fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry & entry)2122 std::optional<HashtreeInfo> fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry& entry) {
2123 if (!entry.fs_mgr_flags.avb) {
2124 return {};
2125 }
2126 DeviceMapper& dm = DeviceMapper::Instance();
2127 std::string device = GetVerityDeviceName(entry);
2128
2129 std::vector<DeviceMapper::TargetInfo> table;
2130 if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2131 return {};
2132 }
2133 for (const auto& target : table) {
2134 if (strcmp(target.spec.target_type, "verity") != 0) {
2135 continue;
2136 }
2137
2138 // The format is stable for dm-verity version 0 & 1. And the data is expected to have
2139 // the fixed format:
2140 // <version> <dev> <hash_dev> <data_block_size> <hash_block_size> <num_data_blocks>
2141 // <hash_start_block> <algorithm> <digest> <salt>
2142 // Details in https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
2143
2144 std::vector<std::string> tokens = android::base::Split(target.data, " \t\r\n");
2145 if (tokens[0] != "0" && tokens[0] != "1") {
2146 LOG(WARNING) << "Unrecognized device mapper version in " << target.data;
2147 }
2148
2149 // Hashtree algorithm & root digest are the 8th & 9th token in the output.
2150 return HashtreeInfo{
2151 .algorithm = android::base::Trim(tokens[7]),
2152 .root_digest = android::base::Trim(tokens[8]),
2153 .check_at_most_once = target.data.find("check_at_most_once") != std::string::npos};
2154 }
2155
2156 return {};
2157 }
2158
fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry & entry)2159 bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
2160 auto hashtree_info = fs_mgr_get_hashtree_info(entry);
2161 if (!hashtree_info) return false;
2162 return hashtree_info->check_at_most_once;
2163 }
2164
fs_mgr_get_super_partition_name(int slot)2165 std::string fs_mgr_get_super_partition_name(int slot) {
2166 // Devices upgrading to dynamic partitions are allowed to specify a super
2167 // partition name. This includes cuttlefish, which is a non-A/B device.
2168 std::string super_partition;
2169 if (fs_mgr_get_boot_config("force_super_partition", &super_partition)) {
2170 return super_partition;
2171 }
2172 if (fs_mgr_get_boot_config("super_partition", &super_partition)) {
2173 if (fs_mgr_get_slot_suffix().empty()) {
2174 return super_partition;
2175 }
2176 std::string suffix;
2177 if (slot == 0) {
2178 suffix = "_a";
2179 } else if (slot == 1) {
2180 suffix = "_b";
2181 } else if (slot == -1) {
2182 suffix = fs_mgr_get_slot_suffix();
2183 }
2184 return super_partition + suffix;
2185 }
2186 return LP_METADATA_DEFAULT_PARTITION_NAME;
2187 }
2188
fs_mgr_create_canonical_mount_point(const std::string & mount_point)2189 bool fs_mgr_create_canonical_mount_point(const std::string& mount_point) {
2190 auto saved_errno = errno;
2191 auto ok = true;
2192 auto created_mount_point = !mkdir(mount_point.c_str(), 0755);
2193 std::string real_mount_point;
2194 if (!Realpath(mount_point, &real_mount_point)) {
2195 ok = false;
2196 PERROR << "failed to realpath(" << mount_point << ")";
2197 } else if (mount_point != real_mount_point) {
2198 ok = false;
2199 LERROR << "mount point is not canonical: realpath(" << mount_point << ") -> "
2200 << real_mount_point;
2201 }
2202 if (!ok && created_mount_point) {
2203 rmdir(mount_point.c_str());
2204 }
2205 errno = saved_errno;
2206 return ok;
2207 }
2208
fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry & entry)2209 bool fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry& entry) {
2210 const auto overlayfs_check_result = android::fs_mgr::CheckOverlayfs();
2211 if (!overlayfs_check_result.supported) {
2212 LERROR << __FUNCTION__ << "(): kernel does not support overlayfs";
2213 return false;
2214 }
2215
2216 #if ALLOW_ADBD_DISABLE_VERITY == 0
2217 // Allowlist the mount point if user build.
2218 static const std::vector<std::string> kAllowedPaths = {
2219 "/odm", "/odm_dlkm", "/oem", "/product",
2220 "/system_dlkm", "/system_ext", "/vendor", "/vendor_dlkm",
2221 };
2222 static const std::vector<std::string> kAllowedPrefixes = {
2223 "/mnt/product/",
2224 "/mnt/vendor/",
2225 };
2226 if (std::none_of(kAllowedPaths.begin(), kAllowedPaths.end(),
2227 [&entry](const auto& path) -> bool {
2228 return entry.mount_point == path ||
2229 StartsWith(entry.mount_point, path + "/");
2230 }) &&
2231 std::none_of(kAllowedPrefixes.begin(), kAllowedPrefixes.end(),
2232 [&entry](const auto& prefix) -> bool {
2233 return entry.mount_point != prefix &&
2234 StartsWith(entry.mount_point, prefix);
2235 })) {
2236 LERROR << __FUNCTION__
2237 << "(): mount point is forbidden on user build: " << entry.mount_point;
2238 return false;
2239 }
2240 #endif // ALLOW_ADBD_DISABLE_VERITY == 0
2241
2242 if (!fs_mgr_create_canonical_mount_point(entry.mount_point)) {
2243 return false;
2244 }
2245
2246 auto lowerdir = entry.lowerdir;
2247 if (entry.fs_mgr_flags.overlayfs_remove_missing_lowerdir) {
2248 bool removed_any = false;
2249 std::vector<std::string> lowerdirs;
2250 for (const auto& dir : android::base::Split(entry.lowerdir, ":")) {
2251 if (access(dir.c_str(), F_OK)) {
2252 PWARNING << __FUNCTION__ << "(): remove missing lowerdir '" << dir << "'";
2253 removed_any = true;
2254 } else {
2255 lowerdirs.push_back(dir);
2256 }
2257 }
2258 if (removed_any) {
2259 lowerdir = android::base::Join(lowerdirs, ":");
2260 }
2261 }
2262
2263 const auto options = "lowerdir=" + lowerdir + overlayfs_check_result.mount_flags;
2264
2265 // Use "overlay-" + entry.blk_device as the mount() source, so that adb-remout-test don't
2266 // confuse this with adb remount overlay, whose device name is "overlay".
2267 // Overlayfs is a pseudo filesystem, so the source device is a symbolic value and isn't used to
2268 // back the filesystem. However the device name would be shown in /proc/mounts.
2269 auto source = "overlay-" + entry.blk_device;
2270 auto report = "__mount(source=" + source + ",target=" + entry.mount_point + ",type=overlay," +
2271 options + ")=";
2272 auto ret = mount(source.c_str(), entry.mount_point.c_str(), "overlay", MS_RDONLY | MS_NOATIME,
2273 options.c_str());
2274 if (ret) {
2275 PERROR << report << ret;
2276 return false;
2277 }
2278 LINFO << report << ret;
2279 return true;
2280 }
2281
fs_mgr_load_verity_state(int * mode)2282 bool fs_mgr_load_verity_state(int* mode) {
2283 // unless otherwise specified, use EIO mode.
2284 *mode = VERITY_MODE_EIO;
2285
2286 // The bootloader communicates verity mode via the kernel commandline
2287 std::string verity_mode;
2288 if (!fs_mgr_get_boot_config("veritymode", &verity_mode)) {
2289 return false;
2290 }
2291
2292 if (verity_mode == "enforcing") {
2293 *mode = VERITY_MODE_DEFAULT;
2294 } else if (verity_mode == "logging") {
2295 *mode = VERITY_MODE_LOGGING;
2296 }
2297
2298 return true;
2299 }
2300
fs_mgr_filesystem_available(const std::string & filesystem)2301 bool fs_mgr_filesystem_available(const std::string& filesystem) {
2302 std::string filesystems;
2303 if (!android::base::ReadFileToString("/proc/filesystems", &filesystems)) return false;
2304 return filesystems.find("\t" + filesystem + "\n") != std::string::npos;
2305 }
2306
fs_mgr_get_context(const std::string & mount_point)2307 std::string fs_mgr_get_context(const std::string& mount_point) {
2308 char* ctx = nullptr;
2309 if (getfilecon(mount_point.c_str(), &ctx) == -1) {
2310 PERROR << "getfilecon " << mount_point;
2311 return "";
2312 }
2313
2314 std::string context(ctx);
2315 free(ctx);
2316 return context;
2317 }
2318
fs_mgr_f2fs_ideal_block_size()2319 int fs_mgr_f2fs_ideal_block_size() {
2320 #if defined(__i386__) || defined(__x86_64__)
2321 return 4096;
2322 #else
2323 return getpagesize();
2324 #endif
2325 }
2326
2327 namespace android {
2328 namespace fs_mgr {
2329
CheckOverlayfs()2330 OverlayfsCheckResult CheckOverlayfs() {
2331 if (!fs_mgr_filesystem_available("overlay")) {
2332 return {.supported = false};
2333 }
2334 struct utsname uts;
2335 if (uname(&uts) == -1) {
2336 return {.supported = false};
2337 }
2338 int major, minor;
2339 if (sscanf(uts.release, "%d.%d", &major, &minor) != 2) {
2340 return {.supported = false};
2341 }
2342 // Overlayfs available in the kernel, and patched for override_creds?
2343 if (access("/sys/module/overlay/parameters/override_creds", F_OK) == 0) {
2344 auto mount_flags = ",override_creds=off"s;
2345 if (major > 5 || (major == 5 && minor >= 15)) {
2346 mount_flags += ",userxattr"s;
2347 }
2348 return {.supported = true, .mount_flags = mount_flags};
2349 }
2350 if (major < 4 || (major == 4 && minor <= 3)) {
2351 return {.supported = true};
2352 }
2353 return {.supported = false};
2354 }
2355
2356 } // namespace fs_mgr
2357 } // namespace android
2358