xref: /aosp_15_r20/external/libbpf/src/libbpf.c (revision f7c14bbac8cf49633f2740db462ea43457973ec4)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <[email protected]>
7  * Copyright (C) 2015 Wang Nan <[email protected]>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64 
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66 
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68  * compilation if user enables corresponding warning. Disable it explicitly.
69  */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71 
72 #define __printf(a, b)	__attribute__((format(printf, a, b)))
73 
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77 
78 static const char * const attach_type_name[] = {
79 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
80 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
81 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
82 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
83 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
84 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
85 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
86 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
87 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
88 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
89 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
91 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
92 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
93 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
94 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
95 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
96 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
97 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
98 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
99 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
100 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
101 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
102 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
103 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
104 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
105 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
106 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
107 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
108 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
109 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
110 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
111 	[BPF_LIRC_MODE2]		= "lirc_mode2",
112 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
113 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
114 	[BPF_TRACE_FENTRY]		= "trace_fentry",
115 	[BPF_TRACE_FEXIT]		= "trace_fexit",
116 	[BPF_MODIFY_RETURN]		= "modify_return",
117 	[BPF_LSM_MAC]			= "lsm_mac",
118 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
119 	[BPF_SK_LOOKUP]			= "sk_lookup",
120 	[BPF_TRACE_ITER]		= "trace_iter",
121 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
122 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
123 	[BPF_XDP]			= "xdp",
124 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
125 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
126 	[BPF_PERF_EVENT]		= "perf_event",
127 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
128 	[BPF_STRUCT_OPS]		= "struct_ops",
129 	[BPF_NETFILTER]			= "netfilter",
130 	[BPF_TCX_INGRESS]		= "tcx_ingress",
131 	[BPF_TCX_EGRESS]		= "tcx_egress",
132 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
133 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
134 	[BPF_NETKIT_PEER]		= "netkit_peer",
135 };
136 
137 static const char * const link_type_name[] = {
138 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
139 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
140 	[BPF_LINK_TYPE_TRACING]			= "tracing",
141 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
142 	[BPF_LINK_TYPE_ITER]			= "iter",
143 	[BPF_LINK_TYPE_NETNS]			= "netns",
144 	[BPF_LINK_TYPE_XDP]			= "xdp",
145 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
146 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
147 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
148 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
149 	[BPF_LINK_TYPE_TCX]			= "tcx",
150 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
151 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
152 };
153 
154 static const char * const map_type_name[] = {
155 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
156 	[BPF_MAP_TYPE_HASH]			= "hash",
157 	[BPF_MAP_TYPE_ARRAY]			= "array",
158 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
159 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
160 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
161 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
162 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
163 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
164 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
165 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
166 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
167 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
168 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
169 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
170 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
171 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
172 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
173 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
174 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
175 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
176 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
177 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
178 	[BPF_MAP_TYPE_QUEUE]			= "queue",
179 	[BPF_MAP_TYPE_STACK]			= "stack",
180 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
181 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
182 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
183 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
184 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
185 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
186 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
187 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
188 	[BPF_MAP_TYPE_ARENA]			= "arena",
189 };
190 
191 static const char * const prog_type_name[] = {
192 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
193 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
194 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
195 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
196 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
197 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
198 	[BPF_PROG_TYPE_XDP]			= "xdp",
199 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
200 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
201 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
202 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
203 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
204 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
205 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
206 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
207 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
208 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
209 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
210 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
211 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
212 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
213 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
214 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
215 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
216 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
217 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
218 	[BPF_PROG_TYPE_TRACING]			= "tracing",
219 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
220 	[BPF_PROG_TYPE_EXT]			= "ext",
221 	[BPF_PROG_TYPE_LSM]			= "lsm",
222 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
223 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
224 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
225 };
226 
__base_pr(enum libbpf_print_level level,const char * format,va_list args)227 static int __base_pr(enum libbpf_print_level level, const char *format,
228 		     va_list args)
229 {
230 	if (level == LIBBPF_DEBUG)
231 		return 0;
232 
233 	return vfprintf(stderr, format, args);
234 }
235 
236 static libbpf_print_fn_t __libbpf_pr = __base_pr;
237 
libbpf_set_print(libbpf_print_fn_t fn)238 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
239 {
240 	libbpf_print_fn_t old_print_fn;
241 
242 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
243 
244 	return old_print_fn;
245 }
246 
247 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)248 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
249 {
250 	va_list args;
251 	int old_errno;
252 	libbpf_print_fn_t print_fn;
253 
254 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
255 	if (!print_fn)
256 		return;
257 
258 	old_errno = errno;
259 
260 	va_start(args, format);
261 	__libbpf_pr(level, format, args);
262 	va_end(args);
263 
264 	errno = old_errno;
265 }
266 
pr_perm_msg(int err)267 static void pr_perm_msg(int err)
268 {
269 	struct rlimit limit;
270 	char buf[100];
271 
272 	if (err != -EPERM || geteuid() != 0)
273 		return;
274 
275 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
276 	if (err)
277 		return;
278 
279 	if (limit.rlim_cur == RLIM_INFINITY)
280 		return;
281 
282 	if (limit.rlim_cur < 1024)
283 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
284 	else if (limit.rlim_cur < 1024*1024)
285 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
286 	else
287 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
288 
289 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
290 		buf);
291 }
292 
293 #define STRERR_BUFSIZE  128
294 
295 /* Copied from tools/perf/util/util.h */
296 #ifndef zfree
297 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
298 #endif
299 
300 #ifndef zclose
301 # define zclose(fd) ({			\
302 	int ___err = 0;			\
303 	if ((fd) >= 0)			\
304 		___err = close((fd));	\
305 	fd = -1;			\
306 	___err; })
307 #endif
308 
ptr_to_u64(const void * ptr)309 static inline __u64 ptr_to_u64(const void *ptr)
310 {
311 	return (__u64) (unsigned long) ptr;
312 }
313 
libbpf_set_strict_mode(enum libbpf_strict_mode mode)314 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
315 {
316 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
317 	return 0;
318 }
319 
libbpf_major_version(void)320 __u32 libbpf_major_version(void)
321 {
322 	return LIBBPF_MAJOR_VERSION;
323 }
324 
libbpf_minor_version(void)325 __u32 libbpf_minor_version(void)
326 {
327 	return LIBBPF_MINOR_VERSION;
328 }
329 
libbpf_version_string(void)330 const char *libbpf_version_string(void)
331 {
332 #define __S(X) #X
333 #define _S(X) __S(X)
334 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
335 #undef _S
336 #undef __S
337 }
338 
339 enum reloc_type {
340 	RELO_LD64,
341 	RELO_CALL,
342 	RELO_DATA,
343 	RELO_EXTERN_LD64,
344 	RELO_EXTERN_CALL,
345 	RELO_SUBPROG_ADDR,
346 	RELO_CORE,
347 };
348 
349 struct reloc_desc {
350 	enum reloc_type type;
351 	int insn_idx;
352 	union {
353 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
354 		struct {
355 			int map_idx;
356 			int sym_off;
357 			int ext_idx;
358 		};
359 	};
360 };
361 
362 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
363 enum sec_def_flags {
364 	SEC_NONE = 0,
365 	/* expected_attach_type is optional, if kernel doesn't support that */
366 	SEC_EXP_ATTACH_OPT = 1,
367 	/* legacy, only used by libbpf_get_type_names() and
368 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
369 	 * This used to be associated with cgroup (and few other) BPF programs
370 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
371 	 * meaningless nowadays, though.
372 	 */
373 	SEC_ATTACHABLE = 2,
374 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
375 	/* attachment target is specified through BTF ID in either kernel or
376 	 * other BPF program's BTF object
377 	 */
378 	SEC_ATTACH_BTF = 4,
379 	/* BPF program type allows sleeping/blocking in kernel */
380 	SEC_SLEEPABLE = 8,
381 	/* BPF program support non-linear XDP buffer */
382 	SEC_XDP_FRAGS = 16,
383 	/* Setup proper attach type for usdt probes. */
384 	SEC_USDT = 32,
385 };
386 
387 struct bpf_sec_def {
388 	char *sec;
389 	enum bpf_prog_type prog_type;
390 	enum bpf_attach_type expected_attach_type;
391 	long cookie;
392 	int handler_id;
393 
394 	libbpf_prog_setup_fn_t prog_setup_fn;
395 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
396 	libbpf_prog_attach_fn_t prog_attach_fn;
397 };
398 
399 /*
400  * bpf_prog should be a better name but it has been used in
401  * linux/filter.h.
402  */
403 struct bpf_program {
404 	char *name;
405 	char *sec_name;
406 	size_t sec_idx;
407 	const struct bpf_sec_def *sec_def;
408 	/* this program's instruction offset (in number of instructions)
409 	 * within its containing ELF section
410 	 */
411 	size_t sec_insn_off;
412 	/* number of original instructions in ELF section belonging to this
413 	 * program, not taking into account subprogram instructions possible
414 	 * appended later during relocation
415 	 */
416 	size_t sec_insn_cnt;
417 	/* Offset (in number of instructions) of the start of instruction
418 	 * belonging to this BPF program  within its containing main BPF
419 	 * program. For the entry-point (main) BPF program, this is always
420 	 * zero. For a sub-program, this gets reset before each of main BPF
421 	 * programs are processed and relocated and is used to determined
422 	 * whether sub-program was already appended to the main program, and
423 	 * if yes, at which instruction offset.
424 	 */
425 	size_t sub_insn_off;
426 
427 	/* instructions that belong to BPF program; insns[0] is located at
428 	 * sec_insn_off instruction within its ELF section in ELF file, so
429 	 * when mapping ELF file instruction index to the local instruction,
430 	 * one needs to subtract sec_insn_off; and vice versa.
431 	 */
432 	struct bpf_insn *insns;
433 	/* actual number of instruction in this BPF program's image; for
434 	 * entry-point BPF programs this includes the size of main program
435 	 * itself plus all the used sub-programs, appended at the end
436 	 */
437 	size_t insns_cnt;
438 
439 	struct reloc_desc *reloc_desc;
440 	int nr_reloc;
441 
442 	/* BPF verifier log settings */
443 	char *log_buf;
444 	size_t log_size;
445 	__u32 log_level;
446 
447 	struct bpf_object *obj;
448 
449 	int fd;
450 	bool autoload;
451 	bool autoattach;
452 	bool sym_global;
453 	bool mark_btf_static;
454 	enum bpf_prog_type type;
455 	enum bpf_attach_type expected_attach_type;
456 	int exception_cb_idx;
457 
458 	int prog_ifindex;
459 	__u32 attach_btf_obj_fd;
460 	__u32 attach_btf_id;
461 	__u32 attach_prog_fd;
462 
463 	void *func_info;
464 	__u32 func_info_rec_size;
465 	__u32 func_info_cnt;
466 
467 	void *line_info;
468 	__u32 line_info_rec_size;
469 	__u32 line_info_cnt;
470 	__u32 prog_flags;
471 };
472 
473 struct bpf_struct_ops {
474 	const char *tname;
475 	const struct btf_type *type;
476 	struct bpf_program **progs;
477 	__u32 *kern_func_off;
478 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
479 	void *data;
480 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
481 	 *      btf_vmlinux's format.
482 	 * struct bpf_struct_ops_tcp_congestion_ops {
483 	 *	[... some other kernel fields ...]
484 	 *	struct tcp_congestion_ops data;
485 	 * }
486 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
487 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
488 	 * from "data".
489 	 */
490 	void *kern_vdata;
491 	__u32 type_id;
492 };
493 
494 #define DATA_SEC ".data"
495 #define BSS_SEC ".bss"
496 #define RODATA_SEC ".rodata"
497 #define KCONFIG_SEC ".kconfig"
498 #define KSYMS_SEC ".ksyms"
499 #define STRUCT_OPS_SEC ".struct_ops"
500 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
501 #define ARENA_SEC ".addr_space.1"
502 
503 enum libbpf_map_type {
504 	LIBBPF_MAP_UNSPEC,
505 	LIBBPF_MAP_DATA,
506 	LIBBPF_MAP_BSS,
507 	LIBBPF_MAP_RODATA,
508 	LIBBPF_MAP_KCONFIG,
509 };
510 
511 struct bpf_map_def {
512 	unsigned int type;
513 	unsigned int key_size;
514 	unsigned int value_size;
515 	unsigned int max_entries;
516 	unsigned int map_flags;
517 };
518 
519 struct bpf_map {
520 	struct bpf_object *obj;
521 	char *name;
522 	/* real_name is defined for special internal maps (.rodata*,
523 	 * .data*, .bss, .kconfig) and preserves their original ELF section
524 	 * name. This is important to be able to find corresponding BTF
525 	 * DATASEC information.
526 	 */
527 	char *real_name;
528 	int fd;
529 	int sec_idx;
530 	size_t sec_offset;
531 	int map_ifindex;
532 	int inner_map_fd;
533 	struct bpf_map_def def;
534 	__u32 numa_node;
535 	__u32 btf_var_idx;
536 	int mod_btf_fd;
537 	__u32 btf_key_type_id;
538 	__u32 btf_value_type_id;
539 	__u32 btf_vmlinux_value_type_id;
540 	enum libbpf_map_type libbpf_type;
541 	void *mmaped;
542 	struct bpf_struct_ops *st_ops;
543 	struct bpf_map *inner_map;
544 	void **init_slots;
545 	int init_slots_sz;
546 	char *pin_path;
547 	bool pinned;
548 	bool reused;
549 	bool autocreate;
550 	__u64 map_extra;
551 };
552 
553 enum extern_type {
554 	EXT_UNKNOWN,
555 	EXT_KCFG,
556 	EXT_KSYM,
557 };
558 
559 enum kcfg_type {
560 	KCFG_UNKNOWN,
561 	KCFG_CHAR,
562 	KCFG_BOOL,
563 	KCFG_INT,
564 	KCFG_TRISTATE,
565 	KCFG_CHAR_ARR,
566 };
567 
568 struct extern_desc {
569 	enum extern_type type;
570 	int sym_idx;
571 	int btf_id;
572 	int sec_btf_id;
573 	const char *name;
574 	char *essent_name;
575 	bool is_set;
576 	bool is_weak;
577 	union {
578 		struct {
579 			enum kcfg_type type;
580 			int sz;
581 			int align;
582 			int data_off;
583 			bool is_signed;
584 		} kcfg;
585 		struct {
586 			unsigned long long addr;
587 
588 			/* target btf_id of the corresponding kernel var. */
589 			int kernel_btf_obj_fd;
590 			int kernel_btf_id;
591 
592 			/* local btf_id of the ksym extern's type. */
593 			__u32 type_id;
594 			/* BTF fd index to be patched in for insn->off, this is
595 			 * 0 for vmlinux BTF, index in obj->fd_array for module
596 			 * BTF
597 			 */
598 			__s16 btf_fd_idx;
599 		} ksym;
600 	};
601 };
602 
603 struct module_btf {
604 	struct btf *btf;
605 	char *name;
606 	__u32 id;
607 	int fd;
608 	int fd_array_idx;
609 };
610 
611 enum sec_type {
612 	SEC_UNUSED = 0,
613 	SEC_RELO,
614 	SEC_BSS,
615 	SEC_DATA,
616 	SEC_RODATA,
617 	SEC_ST_OPS,
618 };
619 
620 struct elf_sec_desc {
621 	enum sec_type sec_type;
622 	Elf64_Shdr *shdr;
623 	Elf_Data *data;
624 };
625 
626 struct elf_state {
627 	int fd;
628 	const void *obj_buf;
629 	size_t obj_buf_sz;
630 	Elf *elf;
631 	Elf64_Ehdr *ehdr;
632 	Elf_Data *symbols;
633 	Elf_Data *arena_data;
634 	size_t shstrndx; /* section index for section name strings */
635 	size_t strtabidx;
636 	struct elf_sec_desc *secs;
637 	size_t sec_cnt;
638 	int btf_maps_shndx;
639 	__u32 btf_maps_sec_btf_id;
640 	int text_shndx;
641 	int symbols_shndx;
642 	bool has_st_ops;
643 	int arena_data_shndx;
644 };
645 
646 struct usdt_manager;
647 
648 struct bpf_object {
649 	char name[BPF_OBJ_NAME_LEN];
650 	char license[64];
651 	__u32 kern_version;
652 
653 	struct bpf_program *programs;
654 	size_t nr_programs;
655 	struct bpf_map *maps;
656 	size_t nr_maps;
657 	size_t maps_cap;
658 
659 	char *kconfig;
660 	struct extern_desc *externs;
661 	int nr_extern;
662 	int kconfig_map_idx;
663 
664 	bool loaded;
665 	bool has_subcalls;
666 	bool has_rodata;
667 
668 	struct bpf_gen *gen_loader;
669 
670 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
671 	struct elf_state efile;
672 
673 	struct btf *btf;
674 	struct btf_ext *btf_ext;
675 
676 	/* Parse and load BTF vmlinux if any of the programs in the object need
677 	 * it at load time.
678 	 */
679 	struct btf *btf_vmlinux;
680 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
681 	 * override for vmlinux BTF.
682 	 */
683 	char *btf_custom_path;
684 	/* vmlinux BTF override for CO-RE relocations */
685 	struct btf *btf_vmlinux_override;
686 	/* Lazily initialized kernel module BTFs */
687 	struct module_btf *btf_modules;
688 	bool btf_modules_loaded;
689 	size_t btf_module_cnt;
690 	size_t btf_module_cap;
691 
692 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
693 	char *log_buf;
694 	size_t log_size;
695 	__u32 log_level;
696 
697 	int *fd_array;
698 	size_t fd_array_cap;
699 	size_t fd_array_cnt;
700 
701 	struct usdt_manager *usdt_man;
702 
703 	struct bpf_map *arena_map;
704 	void *arena_data;
705 	size_t arena_data_sz;
706 
707 	struct kern_feature_cache *feat_cache;
708 	char *token_path;
709 	int token_fd;
710 
711 	char path[];
712 };
713 
714 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
715 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
716 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
717 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
718 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
719 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
721 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
722 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
723 
bpf_program__unload(struct bpf_program * prog)724 void bpf_program__unload(struct bpf_program *prog)
725 {
726 	if (!prog)
727 		return;
728 
729 	zclose(prog->fd);
730 
731 	zfree(&prog->func_info);
732 	zfree(&prog->line_info);
733 }
734 
bpf_program__exit(struct bpf_program * prog)735 static void bpf_program__exit(struct bpf_program *prog)
736 {
737 	if (!prog)
738 		return;
739 
740 	bpf_program__unload(prog);
741 	zfree(&prog->name);
742 	zfree(&prog->sec_name);
743 	zfree(&prog->insns);
744 	zfree(&prog->reloc_desc);
745 
746 	prog->nr_reloc = 0;
747 	prog->insns_cnt = 0;
748 	prog->sec_idx = -1;
749 }
750 
insn_is_subprog_call(const struct bpf_insn * insn)751 static bool insn_is_subprog_call(const struct bpf_insn *insn)
752 {
753 	return BPF_CLASS(insn->code) == BPF_JMP &&
754 	       BPF_OP(insn->code) == BPF_CALL &&
755 	       BPF_SRC(insn->code) == BPF_K &&
756 	       insn->src_reg == BPF_PSEUDO_CALL &&
757 	       insn->dst_reg == 0 &&
758 	       insn->off == 0;
759 }
760 
is_call_insn(const struct bpf_insn * insn)761 static bool is_call_insn(const struct bpf_insn *insn)
762 {
763 	return insn->code == (BPF_JMP | BPF_CALL);
764 }
765 
insn_is_pseudo_func(struct bpf_insn * insn)766 static bool insn_is_pseudo_func(struct bpf_insn *insn)
767 {
768 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
769 }
770 
771 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)772 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
773 		      const char *name, size_t sec_idx, const char *sec_name,
774 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
775 {
776 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
777 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
778 			sec_name, name, sec_off, insn_data_sz);
779 		return -EINVAL;
780 	}
781 
782 	memset(prog, 0, sizeof(*prog));
783 	prog->obj = obj;
784 
785 	prog->sec_idx = sec_idx;
786 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
787 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
788 	/* insns_cnt can later be increased by appending used subprograms */
789 	prog->insns_cnt = prog->sec_insn_cnt;
790 
791 	prog->type = BPF_PROG_TYPE_UNSPEC;
792 	prog->fd = -1;
793 	prog->exception_cb_idx = -1;
794 
795 	/* libbpf's convention for SEC("?abc...") is that it's just like
796 	 * SEC("abc...") but the corresponding bpf_program starts out with
797 	 * autoload set to false.
798 	 */
799 	if (sec_name[0] == '?') {
800 		prog->autoload = false;
801 		/* from now on forget there was ? in section name */
802 		sec_name++;
803 	} else {
804 		prog->autoload = true;
805 	}
806 
807 	prog->autoattach = true;
808 
809 	/* inherit object's log_level */
810 	prog->log_level = obj->log_level;
811 
812 	prog->sec_name = strdup(sec_name);
813 	if (!prog->sec_name)
814 		goto errout;
815 
816 	prog->name = strdup(name);
817 	if (!prog->name)
818 		goto errout;
819 
820 	prog->insns = malloc(insn_data_sz);
821 	if (!prog->insns)
822 		goto errout;
823 	memcpy(prog->insns, insn_data, insn_data_sz);
824 
825 	return 0;
826 errout:
827 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
828 	bpf_program__exit(prog);
829 	return -ENOMEM;
830 }
831 
832 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)833 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
834 			 const char *sec_name, int sec_idx)
835 {
836 	Elf_Data *symbols = obj->efile.symbols;
837 	struct bpf_program *prog, *progs;
838 	void *data = sec_data->d_buf;
839 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
840 	int nr_progs, err, i;
841 	const char *name;
842 	Elf64_Sym *sym;
843 
844 	progs = obj->programs;
845 	nr_progs = obj->nr_programs;
846 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
847 
848 	for (i = 0; i < nr_syms; i++) {
849 		sym = elf_sym_by_idx(obj, i);
850 
851 		if (sym->st_shndx != sec_idx)
852 			continue;
853 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
854 			continue;
855 
856 		prog_sz = sym->st_size;
857 		sec_off = sym->st_value;
858 
859 		name = elf_sym_str(obj, sym->st_name);
860 		if (!name) {
861 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
862 				sec_name, sec_off);
863 			return -LIBBPF_ERRNO__FORMAT;
864 		}
865 
866 		if (sec_off + prog_sz > sec_sz) {
867 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
868 				sec_name, sec_off);
869 			return -LIBBPF_ERRNO__FORMAT;
870 		}
871 
872 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
873 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
874 			return -ENOTSUP;
875 		}
876 
877 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
878 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
879 
880 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
881 		if (!progs) {
882 			/*
883 			 * In this case the original obj->programs
884 			 * is still valid, so don't need special treat for
885 			 * bpf_close_object().
886 			 */
887 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
888 				sec_name, name);
889 			return -ENOMEM;
890 		}
891 		obj->programs = progs;
892 
893 		prog = &progs[nr_progs];
894 
895 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
896 					    sec_off, data + sec_off, prog_sz);
897 		if (err)
898 			return err;
899 
900 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
901 			prog->sym_global = true;
902 
903 		/* if function is a global/weak symbol, but has restricted
904 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
905 		 * as static to enable more permissive BPF verification mode
906 		 * with more outside context available to BPF verifier
907 		 */
908 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
909 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
910 			prog->mark_btf_static = true;
911 
912 		nr_progs++;
913 		obj->nr_programs = nr_progs;
914 	}
915 
916 	return 0;
917 }
918 
919 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)920 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
921 {
922 	struct btf_member *m;
923 	int i;
924 
925 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 		if (btf_member_bit_offset(t, i) == bit_offset)
927 			return m;
928 	}
929 
930 	return NULL;
931 }
932 
933 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)934 find_member_by_name(const struct btf *btf, const struct btf_type *t,
935 		    const char *name)
936 {
937 	struct btf_member *m;
938 	int i;
939 
940 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
941 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
942 			return m;
943 	}
944 
945 	return NULL;
946 }
947 
948 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
949 			    __u16 kind, struct btf **res_btf,
950 			    struct module_btf **res_mod_btf);
951 
952 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
953 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
954 				   const char *name, __u32 kind);
955 
956 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)957 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
958 			   struct module_btf **mod_btf,
959 			   const struct btf_type **type, __u32 *type_id,
960 			   const struct btf_type **vtype, __u32 *vtype_id,
961 			   const struct btf_member **data_member)
962 {
963 	const struct btf_type *kern_type, *kern_vtype;
964 	const struct btf_member *kern_data_member;
965 	struct btf *btf;
966 	__s32 kern_vtype_id, kern_type_id;
967 	char tname[256];
968 	__u32 i;
969 
970 	snprintf(tname, sizeof(tname), "%.*s",
971 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
972 
973 	kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
974 					&btf, mod_btf);
975 	if (kern_type_id < 0) {
976 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
977 			tname);
978 		return kern_type_id;
979 	}
980 	kern_type = btf__type_by_id(btf, kern_type_id);
981 
982 	/* Find the corresponding "map_value" type that will be used
983 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
984 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
985 	 * btf_vmlinux.
986 	 */
987 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
988 						tname, BTF_KIND_STRUCT);
989 	if (kern_vtype_id < 0) {
990 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
991 			STRUCT_OPS_VALUE_PREFIX, tname);
992 		return kern_vtype_id;
993 	}
994 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
995 
996 	/* Find "struct tcp_congestion_ops" from
997 	 * struct bpf_struct_ops_tcp_congestion_ops {
998 	 *	[ ... ]
999 	 *	struct tcp_congestion_ops data;
1000 	 * }
1001 	 */
1002 	kern_data_member = btf_members(kern_vtype);
1003 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1004 		if (kern_data_member->type == kern_type_id)
1005 			break;
1006 	}
1007 	if (i == btf_vlen(kern_vtype)) {
1008 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1009 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1010 		return -EINVAL;
1011 	}
1012 
1013 	*type = kern_type;
1014 	*type_id = kern_type_id;
1015 	*vtype = kern_vtype;
1016 	*vtype_id = kern_vtype_id;
1017 	*data_member = kern_data_member;
1018 
1019 	return 0;
1020 }
1021 
bpf_map__is_struct_ops(const struct bpf_map * map)1022 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1023 {
1024 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1025 }
1026 
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1027 static bool is_valid_st_ops_program(struct bpf_object *obj,
1028 				    const struct bpf_program *prog)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < obj->nr_programs; i++) {
1033 		if (&obj->programs[i] == prog)
1034 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 /* For each struct_ops program P, referenced from some struct_ops map M,
1041  * enable P.autoload if there are Ms for which M.autocreate is true,
1042  * disable P.autoload if for all Ms M.autocreate is false.
1043  * Don't change P.autoload for programs that are not referenced from any maps.
1044  */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1045 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1046 {
1047 	struct bpf_program *prog, *slot_prog;
1048 	struct bpf_map *map;
1049 	int i, j, k, vlen;
1050 
1051 	for (i = 0; i < obj->nr_programs; ++i) {
1052 		int should_load = false;
1053 		int use_cnt = 0;
1054 
1055 		prog = &obj->programs[i];
1056 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1057 			continue;
1058 
1059 		for (j = 0; j < obj->nr_maps; ++j) {
1060 			map = &obj->maps[j];
1061 			if (!bpf_map__is_struct_ops(map))
1062 				continue;
1063 
1064 			vlen = btf_vlen(map->st_ops->type);
1065 			for (k = 0; k < vlen; ++k) {
1066 				slot_prog = map->st_ops->progs[k];
1067 				if (prog != slot_prog)
1068 					continue;
1069 
1070 				use_cnt++;
1071 				if (map->autocreate)
1072 					should_load = true;
1073 			}
1074 		}
1075 		if (use_cnt)
1076 			prog->autoload = should_load;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1083 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1084 {
1085 	const struct btf_member *member, *kern_member, *kern_data_member;
1086 	const struct btf_type *type, *kern_type, *kern_vtype;
1087 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1088 	struct bpf_object *obj = map->obj;
1089 	const struct btf *btf = obj->btf;
1090 	struct bpf_struct_ops *st_ops;
1091 	const struct btf *kern_btf;
1092 	struct module_btf *mod_btf;
1093 	void *data, *kern_data;
1094 	const char *tname;
1095 	int err;
1096 
1097 	st_ops = map->st_ops;
1098 	type = st_ops->type;
1099 	tname = st_ops->tname;
1100 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1101 					 &kern_type, &kern_type_id,
1102 					 &kern_vtype, &kern_vtype_id,
1103 					 &kern_data_member);
1104 	if (err)
1105 		return err;
1106 
1107 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1108 
1109 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1110 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1111 
1112 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1113 	map->def.value_size = kern_vtype->size;
1114 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1115 
1116 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1117 	if (!st_ops->kern_vdata)
1118 		return -ENOMEM;
1119 
1120 	data = st_ops->data;
1121 	kern_data_off = kern_data_member->offset / 8;
1122 	kern_data = st_ops->kern_vdata + kern_data_off;
1123 
1124 	member = btf_members(type);
1125 	for (i = 0; i < btf_vlen(type); i++, member++) {
1126 		const struct btf_type *mtype, *kern_mtype;
1127 		__u32 mtype_id, kern_mtype_id;
1128 		void *mdata, *kern_mdata;
1129 		struct bpf_program *prog;
1130 		__s64 msize, kern_msize;
1131 		__u32 moff, kern_moff;
1132 		__u32 kern_member_idx;
1133 		const char *mname;
1134 
1135 		mname = btf__name_by_offset(btf, member->name_off);
1136 		moff = member->offset / 8;
1137 		mdata = data + moff;
1138 		msize = btf__resolve_size(btf, member->type);
1139 		if (msize < 0) {
1140 			pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1141 				map->name, mname);
1142 			return msize;
1143 		}
1144 
1145 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1146 		if (!kern_member) {
1147 			if (!libbpf_is_mem_zeroed(mdata, msize)) {
1148 				pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1149 					map->name, mname);
1150 				return -ENOTSUP;
1151 			}
1152 
1153 			if (st_ops->progs[i]) {
1154 				/* If we had declaratively set struct_ops callback, we need to
1155 				 * force its autoload to false, because it doesn't have
1156 				 * a chance of succeeding from POV of the current struct_ops map.
1157 				 * If this program is still referenced somewhere else, though,
1158 				 * then bpf_object_adjust_struct_ops_autoload() will update its
1159 				 * autoload accordingly.
1160 				 */
1161 				st_ops->progs[i]->autoload = false;
1162 				st_ops->progs[i] = NULL;
1163 			}
1164 
1165 			/* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1166 			pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1167 				map->name, mname);
1168 			continue;
1169 		}
1170 
1171 		kern_member_idx = kern_member - btf_members(kern_type);
1172 		if (btf_member_bitfield_size(type, i) ||
1173 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1174 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1175 				map->name, mname);
1176 			return -ENOTSUP;
1177 		}
1178 
1179 		kern_moff = kern_member->offset / 8;
1180 		kern_mdata = kern_data + kern_moff;
1181 
1182 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1183 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1184 						    &kern_mtype_id);
1185 		if (BTF_INFO_KIND(mtype->info) !=
1186 		    BTF_INFO_KIND(kern_mtype->info)) {
1187 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1188 				map->name, mname, BTF_INFO_KIND(mtype->info),
1189 				BTF_INFO_KIND(kern_mtype->info));
1190 			return -ENOTSUP;
1191 		}
1192 
1193 		if (btf_is_ptr(mtype)) {
1194 			prog = *(void **)mdata;
1195 			/* just like for !kern_member case above, reset declaratively
1196 			 * set (at compile time) program's autload to false,
1197 			 * if user replaced it with another program or NULL
1198 			 */
1199 			if (st_ops->progs[i] && st_ops->progs[i] != prog)
1200 				st_ops->progs[i]->autoload = false;
1201 
1202 			/* Update the value from the shadow type */
1203 			st_ops->progs[i] = prog;
1204 			if (!prog)
1205 				continue;
1206 
1207 			if (!is_valid_st_ops_program(obj, prog)) {
1208 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1209 					map->name, mname);
1210 				return -ENOTSUP;
1211 			}
1212 
1213 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1214 							    kern_mtype->type,
1215 							    &kern_mtype_id);
1216 
1217 			/* mtype->type must be a func_proto which was
1218 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1219 			 * so only check kern_mtype for func_proto here.
1220 			 */
1221 			if (!btf_is_func_proto(kern_mtype)) {
1222 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1223 					map->name, mname);
1224 				return -ENOTSUP;
1225 			}
1226 
1227 			if (mod_btf)
1228 				prog->attach_btf_obj_fd = mod_btf->fd;
1229 
1230 			/* if we haven't yet processed this BPF program, record proper
1231 			 * attach_btf_id and member_idx
1232 			 */
1233 			if (!prog->attach_btf_id) {
1234 				prog->attach_btf_id = kern_type_id;
1235 				prog->expected_attach_type = kern_member_idx;
1236 			}
1237 
1238 			/* struct_ops BPF prog can be re-used between multiple
1239 			 * .struct_ops & .struct_ops.link as long as it's the
1240 			 * same struct_ops struct definition and the same
1241 			 * function pointer field
1242 			 */
1243 			if (prog->attach_btf_id != kern_type_id) {
1244 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1245 					map->name, mname, prog->name, prog->sec_name, prog->type,
1246 					prog->attach_btf_id, kern_type_id);
1247 				return -EINVAL;
1248 			}
1249 			if (prog->expected_attach_type != kern_member_idx) {
1250 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1251 					map->name, mname, prog->name, prog->sec_name, prog->type,
1252 					prog->expected_attach_type, kern_member_idx);
1253 				return -EINVAL;
1254 			}
1255 
1256 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1257 
1258 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1259 				 map->name, mname, prog->name, moff,
1260 				 kern_moff);
1261 
1262 			continue;
1263 		}
1264 
1265 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1266 		if (kern_msize < 0 || msize != kern_msize) {
1267 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1268 				map->name, mname, (ssize_t)msize,
1269 				(ssize_t)kern_msize);
1270 			return -ENOTSUP;
1271 		}
1272 
1273 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1274 			 map->name, mname, (unsigned int)msize,
1275 			 moff, kern_moff);
1276 		memcpy(kern_mdata, mdata, msize);
1277 	}
1278 
1279 	return 0;
1280 }
1281 
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1282 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1283 {
1284 	struct bpf_map *map;
1285 	size_t i;
1286 	int err;
1287 
1288 	for (i = 0; i < obj->nr_maps; i++) {
1289 		map = &obj->maps[i];
1290 
1291 		if (!bpf_map__is_struct_ops(map))
1292 			continue;
1293 
1294 		if (!map->autocreate)
1295 			continue;
1296 
1297 		err = bpf_map__init_kern_struct_ops(map);
1298 		if (err)
1299 			return err;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1305 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1306 				int shndx, Elf_Data *data)
1307 {
1308 	const struct btf_type *type, *datasec;
1309 	const struct btf_var_secinfo *vsi;
1310 	struct bpf_struct_ops *st_ops;
1311 	const char *tname, *var_name;
1312 	__s32 type_id, datasec_id;
1313 	const struct btf *btf;
1314 	struct bpf_map *map;
1315 	__u32 i;
1316 
1317 	if (shndx == -1)
1318 		return 0;
1319 
1320 	btf = obj->btf;
1321 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1322 					    BTF_KIND_DATASEC);
1323 	if (datasec_id < 0) {
1324 		pr_warn("struct_ops init: DATASEC %s not found\n",
1325 			sec_name);
1326 		return -EINVAL;
1327 	}
1328 
1329 	datasec = btf__type_by_id(btf, datasec_id);
1330 	vsi = btf_var_secinfos(datasec);
1331 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1332 		type = btf__type_by_id(obj->btf, vsi->type);
1333 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1334 
1335 		type_id = btf__resolve_type(obj->btf, vsi->type);
1336 		if (type_id < 0) {
1337 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1338 				vsi->type, sec_name);
1339 			return -EINVAL;
1340 		}
1341 
1342 		type = btf__type_by_id(obj->btf, type_id);
1343 		tname = btf__name_by_offset(obj->btf, type->name_off);
1344 		if (!tname[0]) {
1345 			pr_warn("struct_ops init: anonymous type is not supported\n");
1346 			return -ENOTSUP;
1347 		}
1348 		if (!btf_is_struct(type)) {
1349 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1350 			return -EINVAL;
1351 		}
1352 
1353 		map = bpf_object__add_map(obj);
1354 		if (IS_ERR(map))
1355 			return PTR_ERR(map);
1356 
1357 		map->sec_idx = shndx;
1358 		map->sec_offset = vsi->offset;
1359 		map->name = strdup(var_name);
1360 		if (!map->name)
1361 			return -ENOMEM;
1362 		map->btf_value_type_id = type_id;
1363 
1364 		/* Follow same convention as for programs autoload:
1365 		 * SEC("?.struct_ops") means map is not created by default.
1366 		 */
1367 		if (sec_name[0] == '?') {
1368 			map->autocreate = false;
1369 			/* from now on forget there was ? in section name */
1370 			sec_name++;
1371 		}
1372 
1373 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1374 		map->def.key_size = sizeof(int);
1375 		map->def.value_size = type->size;
1376 		map->def.max_entries = 1;
1377 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1378 
1379 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1380 		if (!map->st_ops)
1381 			return -ENOMEM;
1382 		st_ops = map->st_ops;
1383 		st_ops->data = malloc(type->size);
1384 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1385 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1386 					       sizeof(*st_ops->kern_func_off));
1387 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1388 			return -ENOMEM;
1389 
1390 		if (vsi->offset + type->size > data->d_size) {
1391 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1392 				var_name, sec_name);
1393 			return -EINVAL;
1394 		}
1395 
1396 		memcpy(st_ops->data,
1397 		       data->d_buf + vsi->offset,
1398 		       type->size);
1399 		st_ops->tname = tname;
1400 		st_ops->type = type;
1401 		st_ops->type_id = type_id;
1402 
1403 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1404 			 tname, type_id, var_name, vsi->offset);
1405 	}
1406 
1407 	return 0;
1408 }
1409 
bpf_object_init_struct_ops(struct bpf_object * obj)1410 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1411 {
1412 	const char *sec_name;
1413 	int sec_idx, err;
1414 
1415 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1416 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1417 
1418 		if (desc->sec_type != SEC_ST_OPS)
1419 			continue;
1420 
1421 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1422 		if (!sec_name)
1423 			return -LIBBPF_ERRNO__FORMAT;
1424 
1425 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1426 		if (err)
1427 			return err;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1433 static struct bpf_object *bpf_object__new(const char *path,
1434 					  const void *obj_buf,
1435 					  size_t obj_buf_sz,
1436 					  const char *obj_name)
1437 {
1438 	struct bpf_object *obj;
1439 	char *end;
1440 
1441 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1442 	if (!obj) {
1443 		pr_warn("alloc memory failed for %s\n", path);
1444 		return ERR_PTR(-ENOMEM);
1445 	}
1446 
1447 	strcpy(obj->path, path);
1448 	if (obj_name) {
1449 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1450 	} else {
1451 		/* Using basename() GNU version which doesn't modify arg. */
1452 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1453 		end = strchr(obj->name, '.');
1454 		if (end)
1455 			*end = 0;
1456 	}
1457 
1458 	obj->efile.fd = -1;
1459 	/*
1460 	 * Caller of this function should also call
1461 	 * bpf_object__elf_finish() after data collection to return
1462 	 * obj_buf to user. If not, we should duplicate the buffer to
1463 	 * avoid user freeing them before elf finish.
1464 	 */
1465 	obj->efile.obj_buf = obj_buf;
1466 	obj->efile.obj_buf_sz = obj_buf_sz;
1467 	obj->efile.btf_maps_shndx = -1;
1468 	obj->kconfig_map_idx = -1;
1469 
1470 	obj->kern_version = get_kernel_version();
1471 	obj->loaded = false;
1472 
1473 	return obj;
1474 }
1475 
bpf_object__elf_finish(struct bpf_object * obj)1476 static void bpf_object__elf_finish(struct bpf_object *obj)
1477 {
1478 	if (!obj->efile.elf)
1479 		return;
1480 
1481 	elf_end(obj->efile.elf);
1482 	obj->efile.elf = NULL;
1483 	obj->efile.symbols = NULL;
1484 	obj->efile.arena_data = NULL;
1485 
1486 	zfree(&obj->efile.secs);
1487 	obj->efile.sec_cnt = 0;
1488 	zclose(obj->efile.fd);
1489 	obj->efile.obj_buf = NULL;
1490 	obj->efile.obj_buf_sz = 0;
1491 }
1492 
bpf_object__elf_init(struct bpf_object * obj)1493 static int bpf_object__elf_init(struct bpf_object *obj)
1494 {
1495 	Elf64_Ehdr *ehdr;
1496 	int err = 0;
1497 	Elf *elf;
1498 
1499 	if (obj->efile.elf) {
1500 		pr_warn("elf: init internal error\n");
1501 		return -LIBBPF_ERRNO__LIBELF;
1502 	}
1503 
1504 	if (obj->efile.obj_buf_sz > 0) {
1505 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1506 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1507 	} else {
1508 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1509 		if (obj->efile.fd < 0) {
1510 			char errmsg[STRERR_BUFSIZE], *cp;
1511 
1512 			err = -errno;
1513 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1514 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1515 			return err;
1516 		}
1517 
1518 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1519 	}
1520 
1521 	if (!elf) {
1522 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1523 		err = -LIBBPF_ERRNO__LIBELF;
1524 		goto errout;
1525 	}
1526 
1527 	obj->efile.elf = elf;
1528 
1529 	if (elf_kind(elf) != ELF_K_ELF) {
1530 		err = -LIBBPF_ERRNO__FORMAT;
1531 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1532 		goto errout;
1533 	}
1534 
1535 	if (gelf_getclass(elf) != ELFCLASS64) {
1536 		err = -LIBBPF_ERRNO__FORMAT;
1537 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1538 		goto errout;
1539 	}
1540 
1541 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1542 	if (!obj->efile.ehdr) {
1543 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1544 		err = -LIBBPF_ERRNO__FORMAT;
1545 		goto errout;
1546 	}
1547 
1548 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1549 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1550 			obj->path, elf_errmsg(-1));
1551 		err = -LIBBPF_ERRNO__FORMAT;
1552 		goto errout;
1553 	}
1554 
1555 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1556 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1557 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1558 			obj->path, elf_errmsg(-1));
1559 		err = -LIBBPF_ERRNO__FORMAT;
1560 		goto errout;
1561 	}
1562 
1563 	/* Old LLVM set e_machine to EM_NONE */
1564 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1565 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1566 		err = -LIBBPF_ERRNO__FORMAT;
1567 		goto errout;
1568 	}
1569 
1570 	return 0;
1571 errout:
1572 	bpf_object__elf_finish(obj);
1573 	return err;
1574 }
1575 
bpf_object__check_endianness(struct bpf_object * obj)1576 static int bpf_object__check_endianness(struct bpf_object *obj)
1577 {
1578 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1579 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1580 		return 0;
1581 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1582 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1583 		return 0;
1584 #else
1585 # error "Unrecognized __BYTE_ORDER__"
1586 #endif
1587 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1588 	return -LIBBPF_ERRNO__ENDIAN;
1589 }
1590 
1591 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1592 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1593 {
1594 	if (!data) {
1595 		pr_warn("invalid license section in %s\n", obj->path);
1596 		return -LIBBPF_ERRNO__FORMAT;
1597 	}
1598 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1599 	 * go over allowed ELF data section buffer
1600 	 */
1601 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1602 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1603 	return 0;
1604 }
1605 
1606 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1607 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1608 {
1609 	__u32 kver;
1610 
1611 	if (!data || size != sizeof(kver)) {
1612 		pr_warn("invalid kver section in %s\n", obj->path);
1613 		return -LIBBPF_ERRNO__FORMAT;
1614 	}
1615 	memcpy(&kver, data, sizeof(kver));
1616 	obj->kern_version = kver;
1617 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1618 	return 0;
1619 }
1620 
bpf_map_type__is_map_in_map(enum bpf_map_type type)1621 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1622 {
1623 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1624 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1625 		return true;
1626 	return false;
1627 }
1628 
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1629 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1630 {
1631 	Elf_Data *data;
1632 	Elf_Scn *scn;
1633 
1634 	if (!name)
1635 		return -EINVAL;
1636 
1637 	scn = elf_sec_by_name(obj, name);
1638 	data = elf_sec_data(obj, scn);
1639 	if (data) {
1640 		*size = data->d_size;
1641 		return 0; /* found it */
1642 	}
1643 
1644 	return -ENOENT;
1645 }
1646 
find_elf_var_sym(const struct bpf_object * obj,const char * name)1647 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1648 {
1649 	Elf_Data *symbols = obj->efile.symbols;
1650 	const char *sname;
1651 	size_t si;
1652 
1653 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1654 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1655 
1656 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1657 			continue;
1658 
1659 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1660 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1661 			continue;
1662 
1663 		sname = elf_sym_str(obj, sym->st_name);
1664 		if (!sname) {
1665 			pr_warn("failed to get sym name string for var %s\n", name);
1666 			return ERR_PTR(-EIO);
1667 		}
1668 		if (strcmp(name, sname) == 0)
1669 			return sym;
1670 	}
1671 
1672 	return ERR_PTR(-ENOENT);
1673 }
1674 
1675 /* Some versions of Android don't provide memfd_create() in their libc
1676  * implementation, so avoid complications and just go straight to Linux
1677  * syscall.
1678  */
sys_memfd_create(const char * name,unsigned flags)1679 static int sys_memfd_create(const char *name, unsigned flags)
1680 {
1681 	return syscall(__NR_memfd_create, name, flags);
1682 }
1683 
1684 #ifndef MFD_CLOEXEC
1685 #define MFD_CLOEXEC 0x0001U
1686 #endif
1687 
create_placeholder_fd(void)1688 static int create_placeholder_fd(void)
1689 {
1690 	int fd;
1691 
1692 	fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1693 	if (fd < 0)
1694 		return -errno;
1695 	return fd;
1696 }
1697 
bpf_object__add_map(struct bpf_object * obj)1698 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1699 {
1700 	struct bpf_map *map;
1701 	int err;
1702 
1703 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1704 				sizeof(*obj->maps), obj->nr_maps + 1);
1705 	if (err)
1706 		return ERR_PTR(err);
1707 
1708 	map = &obj->maps[obj->nr_maps++];
1709 	map->obj = obj;
1710 	/* Preallocate map FD without actually creating BPF map just yet.
1711 	 * These map FD "placeholders" will be reused later without changing
1712 	 * FD value when map is actually created in the kernel.
1713 	 *
1714 	 * This is useful to be able to perform BPF program relocations
1715 	 * without having to create BPF maps before that step. This allows us
1716 	 * to finalize and load BTF very late in BPF object's loading phase,
1717 	 * right before BPF maps have to be created and BPF programs have to
1718 	 * be loaded. By having these map FD placeholders we can perform all
1719 	 * the sanitizations, relocations, and any other adjustments before we
1720 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1721 	 */
1722 	map->fd = create_placeholder_fd();
1723 	if (map->fd < 0)
1724 		return ERR_PTR(map->fd);
1725 	map->inner_map_fd = -1;
1726 	map->autocreate = true;
1727 
1728 	return map;
1729 }
1730 
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1731 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1732 {
1733 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1734 	size_t map_sz;
1735 
1736 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1737 	map_sz = roundup(map_sz, page_sz);
1738 	return map_sz;
1739 }
1740 
bpf_map_mmap_sz(const struct bpf_map * map)1741 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1742 {
1743 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1744 
1745 	switch (map->def.type) {
1746 	case BPF_MAP_TYPE_ARRAY:
1747 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1748 	case BPF_MAP_TYPE_ARENA:
1749 		return page_sz * map->def.max_entries;
1750 	default:
1751 		return 0; /* not supported */
1752 	}
1753 }
1754 
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1755 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1756 {
1757 	void *mmaped;
1758 
1759 	if (!map->mmaped)
1760 		return -EINVAL;
1761 
1762 	if (old_sz == new_sz)
1763 		return 0;
1764 
1765 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1766 	if (mmaped == MAP_FAILED)
1767 		return -errno;
1768 
1769 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1770 	munmap(map->mmaped, old_sz);
1771 	map->mmaped = mmaped;
1772 	return 0;
1773 }
1774 
internal_map_name(struct bpf_object * obj,const char * real_name)1775 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1776 {
1777 	char map_name[BPF_OBJ_NAME_LEN], *p;
1778 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1779 
1780 	/* This is one of the more confusing parts of libbpf for various
1781 	 * reasons, some of which are historical. The original idea for naming
1782 	 * internal names was to include as much of BPF object name prefix as
1783 	 * possible, so that it can be distinguished from similar internal
1784 	 * maps of a different BPF object.
1785 	 * As an example, let's say we have bpf_object named 'my_object_name'
1786 	 * and internal map corresponding to '.rodata' ELF section. The final
1787 	 * map name advertised to user and to the kernel will be
1788 	 * 'my_objec.rodata', taking first 8 characters of object name and
1789 	 * entire 7 characters of '.rodata'.
1790 	 * Somewhat confusingly, if internal map ELF section name is shorter
1791 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1792 	 * for the suffix, even though we only have 4 actual characters, and
1793 	 * resulting map will be called 'my_objec.bss', not even using all 15
1794 	 * characters allowed by the kernel. Oh well, at least the truncated
1795 	 * object name is somewhat consistent in this case. But if the map
1796 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1797 	 * (8 chars) and thus will be left with only first 7 characters of the
1798 	 * object name ('my_obje'). Happy guessing, user, that the final map
1799 	 * name will be "my_obje.kconfig".
1800 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1801 	 * and .data.* data sections, it's possible that ELF section name is
1802 	 * longer than allowed 15 chars, so we now need to be careful to take
1803 	 * only up to 15 first characters of ELF name, taking no BPF object
1804 	 * name characters at all. So '.rodata.abracadabra' will result in
1805 	 * '.rodata.abracad' kernel and user-visible name.
1806 	 * We need to keep this convoluted logic intact for .data, .bss and
1807 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1808 	 * maps we use their ELF names as is, not prepending bpf_object name
1809 	 * in front. We still need to truncate them to 15 characters for the
1810 	 * kernel. Full name can be recovered for such maps by using DATASEC
1811 	 * BTF type associated with such map's value type, though.
1812 	 */
1813 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1814 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1815 
1816 	/* if there are two or more dots in map name, it's a custom dot map */
1817 	if (strchr(real_name + 1, '.') != NULL)
1818 		pfx_len = 0;
1819 	else
1820 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1821 
1822 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1823 		 sfx_len, real_name);
1824 
1825 	/* sanitise map name to characters allowed by kernel */
1826 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1827 		if (!isalnum(*p) && *p != '_' && *p != '.')
1828 			*p = '_';
1829 
1830 	return strdup(map_name);
1831 }
1832 
1833 static int
1834 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1835 
1836 /* Internal BPF map is mmap()'able only if at least one of corresponding
1837  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1838  * variable and it's not marked as __hidden (which turns it into, effectively,
1839  * a STATIC variable).
1840  */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1841 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1842 {
1843 	const struct btf_type *t, *vt;
1844 	struct btf_var_secinfo *vsi;
1845 	int i, n;
1846 
1847 	if (!map->btf_value_type_id)
1848 		return false;
1849 
1850 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1851 	if (!btf_is_datasec(t))
1852 		return false;
1853 
1854 	vsi = btf_var_secinfos(t);
1855 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1856 		vt = btf__type_by_id(obj->btf, vsi->type);
1857 		if (!btf_is_var(vt))
1858 			continue;
1859 
1860 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1861 			return true;
1862 	}
1863 
1864 	return false;
1865 }
1866 
1867 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1868 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1869 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1870 {
1871 	struct bpf_map_def *def;
1872 	struct bpf_map *map;
1873 	size_t mmap_sz;
1874 	int err;
1875 
1876 	map = bpf_object__add_map(obj);
1877 	if (IS_ERR(map))
1878 		return PTR_ERR(map);
1879 
1880 	map->libbpf_type = type;
1881 	map->sec_idx = sec_idx;
1882 	map->sec_offset = 0;
1883 	map->real_name = strdup(real_name);
1884 	map->name = internal_map_name(obj, real_name);
1885 	if (!map->real_name || !map->name) {
1886 		zfree(&map->real_name);
1887 		zfree(&map->name);
1888 		return -ENOMEM;
1889 	}
1890 
1891 	def = &map->def;
1892 	def->type = BPF_MAP_TYPE_ARRAY;
1893 	def->key_size = sizeof(int);
1894 	def->value_size = data_sz;
1895 	def->max_entries = 1;
1896 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1897 		? BPF_F_RDONLY_PROG : 0;
1898 
1899 	/* failures are fine because of maps like .rodata.str1.1 */
1900 	(void) map_fill_btf_type_info(obj, map);
1901 
1902 	if (map_is_mmapable(obj, map))
1903 		def->map_flags |= BPF_F_MMAPABLE;
1904 
1905 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1906 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1907 
1908 	mmap_sz = bpf_map_mmap_sz(map);
1909 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1910 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1911 	if (map->mmaped == MAP_FAILED) {
1912 		err = -errno;
1913 		map->mmaped = NULL;
1914 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1915 			map->name, err);
1916 		zfree(&map->real_name);
1917 		zfree(&map->name);
1918 		return err;
1919 	}
1920 
1921 	if (data)
1922 		memcpy(map->mmaped, data, data_sz);
1923 
1924 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1925 	return 0;
1926 }
1927 
bpf_object__init_global_data_maps(struct bpf_object * obj)1928 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1929 {
1930 	struct elf_sec_desc *sec_desc;
1931 	const char *sec_name;
1932 	int err = 0, sec_idx;
1933 
1934 	/*
1935 	 * Populate obj->maps with libbpf internal maps.
1936 	 */
1937 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1938 		sec_desc = &obj->efile.secs[sec_idx];
1939 
1940 		/* Skip recognized sections with size 0. */
1941 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1942 			continue;
1943 
1944 		switch (sec_desc->sec_type) {
1945 		case SEC_DATA:
1946 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1947 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1948 							    sec_name, sec_idx,
1949 							    sec_desc->data->d_buf,
1950 							    sec_desc->data->d_size);
1951 			break;
1952 		case SEC_RODATA:
1953 			obj->has_rodata = true;
1954 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1955 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1956 							    sec_name, sec_idx,
1957 							    sec_desc->data->d_buf,
1958 							    sec_desc->data->d_size);
1959 			break;
1960 		case SEC_BSS:
1961 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1962 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1963 							    sec_name, sec_idx,
1964 							    NULL,
1965 							    sec_desc->data->d_size);
1966 			break;
1967 		default:
1968 			/* skip */
1969 			break;
1970 		}
1971 		if (err)
1972 			return err;
1973 	}
1974 	return 0;
1975 }
1976 
1977 
find_extern_by_name(const struct bpf_object * obj,const void * name)1978 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1979 					       const void *name)
1980 {
1981 	int i;
1982 
1983 	for (i = 0; i < obj->nr_extern; i++) {
1984 		if (strcmp(obj->externs[i].name, name) == 0)
1985 			return &obj->externs[i];
1986 	}
1987 	return NULL;
1988 }
1989 
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1990 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1991 			      char value)
1992 {
1993 	switch (ext->kcfg.type) {
1994 	case KCFG_BOOL:
1995 		if (value == 'm') {
1996 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1997 				ext->name, value);
1998 			return -EINVAL;
1999 		}
2000 		*(bool *)ext_val = value == 'y' ? true : false;
2001 		break;
2002 	case KCFG_TRISTATE:
2003 		if (value == 'y')
2004 			*(enum libbpf_tristate *)ext_val = TRI_YES;
2005 		else if (value == 'm')
2006 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
2007 		else /* value == 'n' */
2008 			*(enum libbpf_tristate *)ext_val = TRI_NO;
2009 		break;
2010 	case KCFG_CHAR:
2011 		*(char *)ext_val = value;
2012 		break;
2013 	case KCFG_UNKNOWN:
2014 	case KCFG_INT:
2015 	case KCFG_CHAR_ARR:
2016 	default:
2017 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2018 			ext->name, value);
2019 		return -EINVAL;
2020 	}
2021 	ext->is_set = true;
2022 	return 0;
2023 }
2024 
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2025 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2026 			      const char *value)
2027 {
2028 	size_t len;
2029 
2030 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
2031 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2032 			ext->name, value);
2033 		return -EINVAL;
2034 	}
2035 
2036 	len = strlen(value);
2037 	if (value[len - 1] != '"') {
2038 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2039 			ext->name, value);
2040 		return -EINVAL;
2041 	}
2042 
2043 	/* strip quotes */
2044 	len -= 2;
2045 	if (len >= ext->kcfg.sz) {
2046 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2047 			ext->name, value, len, ext->kcfg.sz - 1);
2048 		len = ext->kcfg.sz - 1;
2049 	}
2050 	memcpy(ext_val, value + 1, len);
2051 	ext_val[len] = '\0';
2052 	ext->is_set = true;
2053 	return 0;
2054 }
2055 
parse_u64(const char * value,__u64 * res)2056 static int parse_u64(const char *value, __u64 *res)
2057 {
2058 	char *value_end;
2059 	int err;
2060 
2061 	errno = 0;
2062 	*res = strtoull(value, &value_end, 0);
2063 	if (errno) {
2064 		err = -errno;
2065 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2066 		return err;
2067 	}
2068 	if (*value_end) {
2069 		pr_warn("failed to parse '%s' as integer completely\n", value);
2070 		return -EINVAL;
2071 	}
2072 	return 0;
2073 }
2074 
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2075 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2076 {
2077 	int bit_sz = ext->kcfg.sz * 8;
2078 
2079 	if (ext->kcfg.sz == 8)
2080 		return true;
2081 
2082 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2083 	 * bytes size without any loss of information. If the target integer
2084 	 * is signed, we rely on the following limits of integer type of
2085 	 * Y bits and subsequent transformation:
2086 	 *
2087 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2088 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2089 	 *            0 <= X + 2^(Y-1) <  2^Y
2090 	 *
2091 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2092 	 *  zero.
2093 	 */
2094 	if (ext->kcfg.is_signed)
2095 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2096 	else
2097 		return (v >> bit_sz) == 0;
2098 }
2099 
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2100 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2101 			      __u64 value)
2102 {
2103 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2104 	    ext->kcfg.type != KCFG_BOOL) {
2105 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2106 			ext->name, (unsigned long long)value);
2107 		return -EINVAL;
2108 	}
2109 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2110 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2111 			ext->name, (unsigned long long)value);
2112 		return -EINVAL;
2113 
2114 	}
2115 	if (!is_kcfg_value_in_range(ext, value)) {
2116 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2117 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2118 		return -ERANGE;
2119 	}
2120 	switch (ext->kcfg.sz) {
2121 	case 1:
2122 		*(__u8 *)ext_val = value;
2123 		break;
2124 	case 2:
2125 		*(__u16 *)ext_val = value;
2126 		break;
2127 	case 4:
2128 		*(__u32 *)ext_val = value;
2129 		break;
2130 	case 8:
2131 		*(__u64 *)ext_val = value;
2132 		break;
2133 	default:
2134 		return -EINVAL;
2135 	}
2136 	ext->is_set = true;
2137 	return 0;
2138 }
2139 
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2140 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2141 					    char *buf, void *data)
2142 {
2143 	struct extern_desc *ext;
2144 	char *sep, *value;
2145 	int len, err = 0;
2146 	void *ext_val;
2147 	__u64 num;
2148 
2149 	if (!str_has_pfx(buf, "CONFIG_"))
2150 		return 0;
2151 
2152 	sep = strchr(buf, '=');
2153 	if (!sep) {
2154 		pr_warn("failed to parse '%s': no separator\n", buf);
2155 		return -EINVAL;
2156 	}
2157 
2158 	/* Trim ending '\n' */
2159 	len = strlen(buf);
2160 	if (buf[len - 1] == '\n')
2161 		buf[len - 1] = '\0';
2162 	/* Split on '=' and ensure that a value is present. */
2163 	*sep = '\0';
2164 	if (!sep[1]) {
2165 		*sep = '=';
2166 		pr_warn("failed to parse '%s': no value\n", buf);
2167 		return -EINVAL;
2168 	}
2169 
2170 	ext = find_extern_by_name(obj, buf);
2171 	if (!ext || ext->is_set)
2172 		return 0;
2173 
2174 	ext_val = data + ext->kcfg.data_off;
2175 	value = sep + 1;
2176 
2177 	switch (*value) {
2178 	case 'y': case 'n': case 'm':
2179 		err = set_kcfg_value_tri(ext, ext_val, *value);
2180 		break;
2181 	case '"':
2182 		err = set_kcfg_value_str(ext, ext_val, value);
2183 		break;
2184 	default:
2185 		/* assume integer */
2186 		err = parse_u64(value, &num);
2187 		if (err) {
2188 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2189 			return err;
2190 		}
2191 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2192 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2193 			return -EINVAL;
2194 		}
2195 		err = set_kcfg_value_num(ext, ext_val, num);
2196 		break;
2197 	}
2198 	if (err)
2199 		return err;
2200 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2201 	return 0;
2202 }
2203 
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2204 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2205 {
2206 	char buf[PATH_MAX];
2207 	struct utsname uts;
2208 	int len, err = 0;
2209 	gzFile file;
2210 
2211 	uname(&uts);
2212 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2213 	if (len < 0)
2214 		return -EINVAL;
2215 	else if (len >= PATH_MAX)
2216 		return -ENAMETOOLONG;
2217 
2218 	/* gzopen also accepts uncompressed files. */
2219 	file = gzopen(buf, "re");
2220 	if (!file)
2221 		file = gzopen("/proc/config.gz", "re");
2222 
2223 	if (!file) {
2224 		pr_warn("failed to open system Kconfig\n");
2225 		return -ENOENT;
2226 	}
2227 
2228 	while (gzgets(file, buf, sizeof(buf))) {
2229 		err = bpf_object__process_kconfig_line(obj, buf, data);
2230 		if (err) {
2231 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2232 				buf, err);
2233 			goto out;
2234 		}
2235 	}
2236 
2237 out:
2238 	gzclose(file);
2239 	return err;
2240 }
2241 
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2242 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2243 					const char *config, void *data)
2244 {
2245 	char buf[PATH_MAX];
2246 	int err = 0;
2247 	FILE *file;
2248 
2249 	file = fmemopen((void *)config, strlen(config), "r");
2250 	if (!file) {
2251 		err = -errno;
2252 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2253 		return err;
2254 	}
2255 
2256 	while (fgets(buf, sizeof(buf), file)) {
2257 		err = bpf_object__process_kconfig_line(obj, buf, data);
2258 		if (err) {
2259 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2260 				buf, err);
2261 			break;
2262 		}
2263 	}
2264 
2265 	fclose(file);
2266 	return err;
2267 }
2268 
bpf_object__init_kconfig_map(struct bpf_object * obj)2269 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2270 {
2271 	struct extern_desc *last_ext = NULL, *ext;
2272 	size_t map_sz;
2273 	int i, err;
2274 
2275 	for (i = 0; i < obj->nr_extern; i++) {
2276 		ext = &obj->externs[i];
2277 		if (ext->type == EXT_KCFG)
2278 			last_ext = ext;
2279 	}
2280 
2281 	if (!last_ext)
2282 		return 0;
2283 
2284 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2285 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2286 					    ".kconfig", obj->efile.symbols_shndx,
2287 					    NULL, map_sz);
2288 	if (err)
2289 		return err;
2290 
2291 	obj->kconfig_map_idx = obj->nr_maps - 1;
2292 
2293 	return 0;
2294 }
2295 
2296 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2297 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2298 {
2299 	const struct btf_type *t = btf__type_by_id(btf, id);
2300 
2301 	if (res_id)
2302 		*res_id = id;
2303 
2304 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2305 		if (res_id)
2306 			*res_id = t->type;
2307 		t = btf__type_by_id(btf, t->type);
2308 	}
2309 
2310 	return t;
2311 }
2312 
2313 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2314 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2315 {
2316 	const struct btf_type *t;
2317 
2318 	t = skip_mods_and_typedefs(btf, id, NULL);
2319 	if (!btf_is_ptr(t))
2320 		return NULL;
2321 
2322 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2323 
2324 	return btf_is_func_proto(t) ? t : NULL;
2325 }
2326 
__btf_kind_str(__u16 kind)2327 static const char *__btf_kind_str(__u16 kind)
2328 {
2329 	switch (kind) {
2330 	case BTF_KIND_UNKN: return "void";
2331 	case BTF_KIND_INT: return "int";
2332 	case BTF_KIND_PTR: return "ptr";
2333 	case BTF_KIND_ARRAY: return "array";
2334 	case BTF_KIND_STRUCT: return "struct";
2335 	case BTF_KIND_UNION: return "union";
2336 	case BTF_KIND_ENUM: return "enum";
2337 	case BTF_KIND_FWD: return "fwd";
2338 	case BTF_KIND_TYPEDEF: return "typedef";
2339 	case BTF_KIND_VOLATILE: return "volatile";
2340 	case BTF_KIND_CONST: return "const";
2341 	case BTF_KIND_RESTRICT: return "restrict";
2342 	case BTF_KIND_FUNC: return "func";
2343 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2344 	case BTF_KIND_VAR: return "var";
2345 	case BTF_KIND_DATASEC: return "datasec";
2346 	case BTF_KIND_FLOAT: return "float";
2347 	case BTF_KIND_DECL_TAG: return "decl_tag";
2348 	case BTF_KIND_TYPE_TAG: return "type_tag";
2349 	case BTF_KIND_ENUM64: return "enum64";
2350 	default: return "unknown";
2351 	}
2352 }
2353 
btf_kind_str(const struct btf_type * t)2354 const char *btf_kind_str(const struct btf_type *t)
2355 {
2356 	return __btf_kind_str(btf_kind(t));
2357 }
2358 
2359 /*
2360  * Fetch integer attribute of BTF map definition. Such attributes are
2361  * represented using a pointer to an array, in which dimensionality of array
2362  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2363  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2364  * type definition, while using only sizeof(void *) space in ELF data section.
2365  */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2366 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2367 			      const struct btf_member *m, __u32 *res)
2368 {
2369 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2370 	const char *name = btf__name_by_offset(btf, m->name_off);
2371 	const struct btf_array *arr_info;
2372 	const struct btf_type *arr_t;
2373 
2374 	if (!btf_is_ptr(t)) {
2375 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2376 			map_name, name, btf_kind_str(t));
2377 		return false;
2378 	}
2379 
2380 	arr_t = btf__type_by_id(btf, t->type);
2381 	if (!arr_t) {
2382 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2383 			map_name, name, t->type);
2384 		return false;
2385 	}
2386 	if (!btf_is_array(arr_t)) {
2387 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2388 			map_name, name, btf_kind_str(arr_t));
2389 		return false;
2390 	}
2391 	arr_info = btf_array(arr_t);
2392 	*res = arr_info->nelems;
2393 	return true;
2394 }
2395 
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2396 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2397 			       const struct btf_member *m, __u64 *res)
2398 {
2399 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2400 	const char *name = btf__name_by_offset(btf, m->name_off);
2401 
2402 	if (btf_is_ptr(t)) {
2403 		__u32 res32;
2404 		bool ret;
2405 
2406 		ret = get_map_field_int(map_name, btf, m, &res32);
2407 		if (ret)
2408 			*res = (__u64)res32;
2409 		return ret;
2410 	}
2411 
2412 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2413 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2414 			map_name, name, btf_kind_str(t));
2415 		return false;
2416 	}
2417 
2418 	if (btf_vlen(t) != 1) {
2419 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2420 			map_name, name);
2421 		return false;
2422 	}
2423 
2424 	if (btf_is_enum(t)) {
2425 		const struct btf_enum *e = btf_enum(t);
2426 
2427 		*res = e->val;
2428 	} else {
2429 		const struct btf_enum64 *e = btf_enum64(t);
2430 
2431 		*res = btf_enum64_value(e);
2432 	}
2433 	return true;
2434 }
2435 
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2436 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2437 {
2438 	int len;
2439 
2440 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2441 	if (len < 0)
2442 		return -EINVAL;
2443 	if (len >= buf_sz)
2444 		return -ENAMETOOLONG;
2445 
2446 	return 0;
2447 }
2448 
build_map_pin_path(struct bpf_map * map,const char * path)2449 static int build_map_pin_path(struct bpf_map *map, const char *path)
2450 {
2451 	char buf[PATH_MAX];
2452 	int err;
2453 
2454 	if (!path)
2455 		path = BPF_FS_DEFAULT_PATH;
2456 
2457 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2458 	if (err)
2459 		return err;
2460 
2461 	return bpf_map__set_pin_path(map, buf);
2462 }
2463 
2464 /* should match definition in bpf_helpers.h */
2465 enum libbpf_pin_type {
2466 	LIBBPF_PIN_NONE,
2467 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2468 	LIBBPF_PIN_BY_NAME,
2469 };
2470 
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2471 int parse_btf_map_def(const char *map_name, struct btf *btf,
2472 		      const struct btf_type *def_t, bool strict,
2473 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2474 {
2475 	const struct btf_type *t;
2476 	const struct btf_member *m;
2477 	bool is_inner = inner_def == NULL;
2478 	int vlen, i;
2479 
2480 	vlen = btf_vlen(def_t);
2481 	m = btf_members(def_t);
2482 	for (i = 0; i < vlen; i++, m++) {
2483 		const char *name = btf__name_by_offset(btf, m->name_off);
2484 
2485 		if (!name) {
2486 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2487 			return -EINVAL;
2488 		}
2489 		if (strcmp(name, "type") == 0) {
2490 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2491 				return -EINVAL;
2492 			map_def->parts |= MAP_DEF_MAP_TYPE;
2493 		} else if (strcmp(name, "max_entries") == 0) {
2494 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2495 				return -EINVAL;
2496 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2497 		} else if (strcmp(name, "map_flags") == 0) {
2498 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2499 				return -EINVAL;
2500 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2501 		} else if (strcmp(name, "numa_node") == 0) {
2502 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2503 				return -EINVAL;
2504 			map_def->parts |= MAP_DEF_NUMA_NODE;
2505 		} else if (strcmp(name, "key_size") == 0) {
2506 			__u32 sz;
2507 
2508 			if (!get_map_field_int(map_name, btf, m, &sz))
2509 				return -EINVAL;
2510 			if (map_def->key_size && map_def->key_size != sz) {
2511 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2512 					map_name, map_def->key_size, sz);
2513 				return -EINVAL;
2514 			}
2515 			map_def->key_size = sz;
2516 			map_def->parts |= MAP_DEF_KEY_SIZE;
2517 		} else if (strcmp(name, "key") == 0) {
2518 			__s64 sz;
2519 
2520 			t = btf__type_by_id(btf, m->type);
2521 			if (!t) {
2522 				pr_warn("map '%s': key type [%d] not found.\n",
2523 					map_name, m->type);
2524 				return -EINVAL;
2525 			}
2526 			if (!btf_is_ptr(t)) {
2527 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2528 					map_name, btf_kind_str(t));
2529 				return -EINVAL;
2530 			}
2531 			sz = btf__resolve_size(btf, t->type);
2532 			if (sz < 0) {
2533 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2534 					map_name, t->type, (ssize_t)sz);
2535 				return sz;
2536 			}
2537 			if (map_def->key_size && map_def->key_size != sz) {
2538 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2539 					map_name, map_def->key_size, (ssize_t)sz);
2540 				return -EINVAL;
2541 			}
2542 			map_def->key_size = sz;
2543 			map_def->key_type_id = t->type;
2544 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2545 		} else if (strcmp(name, "value_size") == 0) {
2546 			__u32 sz;
2547 
2548 			if (!get_map_field_int(map_name, btf, m, &sz))
2549 				return -EINVAL;
2550 			if (map_def->value_size && map_def->value_size != sz) {
2551 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2552 					map_name, map_def->value_size, sz);
2553 				return -EINVAL;
2554 			}
2555 			map_def->value_size = sz;
2556 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2557 		} else if (strcmp(name, "value") == 0) {
2558 			__s64 sz;
2559 
2560 			t = btf__type_by_id(btf, m->type);
2561 			if (!t) {
2562 				pr_warn("map '%s': value type [%d] not found.\n",
2563 					map_name, m->type);
2564 				return -EINVAL;
2565 			}
2566 			if (!btf_is_ptr(t)) {
2567 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2568 					map_name, btf_kind_str(t));
2569 				return -EINVAL;
2570 			}
2571 			sz = btf__resolve_size(btf, t->type);
2572 			if (sz < 0) {
2573 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2574 					map_name, t->type, (ssize_t)sz);
2575 				return sz;
2576 			}
2577 			if (map_def->value_size && map_def->value_size != sz) {
2578 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2579 					map_name, map_def->value_size, (ssize_t)sz);
2580 				return -EINVAL;
2581 			}
2582 			map_def->value_size = sz;
2583 			map_def->value_type_id = t->type;
2584 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2585 		}
2586 		else if (strcmp(name, "values") == 0) {
2587 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2588 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2589 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2590 			char inner_map_name[128];
2591 			int err;
2592 
2593 			if (is_inner) {
2594 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2595 					map_name);
2596 				return -ENOTSUP;
2597 			}
2598 			if (i != vlen - 1) {
2599 				pr_warn("map '%s': '%s' member should be last.\n",
2600 					map_name, name);
2601 				return -EINVAL;
2602 			}
2603 			if (!is_map_in_map && !is_prog_array) {
2604 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2605 					map_name);
2606 				return -ENOTSUP;
2607 			}
2608 			if (map_def->value_size && map_def->value_size != 4) {
2609 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2610 					map_name, map_def->value_size);
2611 				return -EINVAL;
2612 			}
2613 			map_def->value_size = 4;
2614 			t = btf__type_by_id(btf, m->type);
2615 			if (!t) {
2616 				pr_warn("map '%s': %s type [%d] not found.\n",
2617 					map_name, desc, m->type);
2618 				return -EINVAL;
2619 			}
2620 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2621 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2622 					map_name, desc);
2623 				return -EINVAL;
2624 			}
2625 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2626 			if (!btf_is_ptr(t)) {
2627 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2628 					map_name, desc, btf_kind_str(t));
2629 				return -EINVAL;
2630 			}
2631 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2632 			if (is_prog_array) {
2633 				if (!btf_is_func_proto(t)) {
2634 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2635 						map_name, btf_kind_str(t));
2636 					return -EINVAL;
2637 				}
2638 				continue;
2639 			}
2640 			if (!btf_is_struct(t)) {
2641 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2642 					map_name, btf_kind_str(t));
2643 				return -EINVAL;
2644 			}
2645 
2646 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2647 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2648 			if (err)
2649 				return err;
2650 
2651 			map_def->parts |= MAP_DEF_INNER_MAP;
2652 		} else if (strcmp(name, "pinning") == 0) {
2653 			__u32 val;
2654 
2655 			if (is_inner) {
2656 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2657 				return -EINVAL;
2658 			}
2659 			if (!get_map_field_int(map_name, btf, m, &val))
2660 				return -EINVAL;
2661 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2662 				pr_warn("map '%s': invalid pinning value %u.\n",
2663 					map_name, val);
2664 				return -EINVAL;
2665 			}
2666 			map_def->pinning = val;
2667 			map_def->parts |= MAP_DEF_PINNING;
2668 		} else if (strcmp(name, "map_extra") == 0) {
2669 			__u64 map_extra;
2670 
2671 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2672 				return -EINVAL;
2673 			map_def->map_extra = map_extra;
2674 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2675 		} else {
2676 			if (strict) {
2677 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2678 				return -ENOTSUP;
2679 			}
2680 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2681 		}
2682 	}
2683 
2684 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2685 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2686 		return -EINVAL;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
adjust_ringbuf_sz(size_t sz)2692 static size_t adjust_ringbuf_sz(size_t sz)
2693 {
2694 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2695 	__u32 mul;
2696 
2697 	/* if user forgot to set any size, make sure they see error */
2698 	if (sz == 0)
2699 		return 0;
2700 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2701 	 * a power-of-2 multiple of kernel's page size. If user diligently
2702 	 * satisified these conditions, pass the size through.
2703 	 */
2704 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2705 		return sz;
2706 
2707 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2708 	 * user-set size to satisfy both user size request and kernel
2709 	 * requirements and substitute correct max_entries for map creation.
2710 	 */
2711 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2712 		if (mul * page_sz > sz)
2713 			return mul * page_sz;
2714 	}
2715 
2716 	/* if it's impossible to satisfy the conditions (i.e., user size is
2717 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2718 	 * page_size) then just return original size and let kernel reject it
2719 	 */
2720 	return sz;
2721 }
2722 
map_is_ringbuf(const struct bpf_map * map)2723 static bool map_is_ringbuf(const struct bpf_map *map)
2724 {
2725 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2726 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2727 }
2728 
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2729 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2730 {
2731 	map->def.type = def->map_type;
2732 	map->def.key_size = def->key_size;
2733 	map->def.value_size = def->value_size;
2734 	map->def.max_entries = def->max_entries;
2735 	map->def.map_flags = def->map_flags;
2736 	map->map_extra = def->map_extra;
2737 
2738 	map->numa_node = def->numa_node;
2739 	map->btf_key_type_id = def->key_type_id;
2740 	map->btf_value_type_id = def->value_type_id;
2741 
2742 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2743 	if (map_is_ringbuf(map))
2744 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2745 
2746 	if (def->parts & MAP_DEF_MAP_TYPE)
2747 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2748 
2749 	if (def->parts & MAP_DEF_KEY_TYPE)
2750 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2751 			 map->name, def->key_type_id, def->key_size);
2752 	else if (def->parts & MAP_DEF_KEY_SIZE)
2753 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2754 
2755 	if (def->parts & MAP_DEF_VALUE_TYPE)
2756 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2757 			 map->name, def->value_type_id, def->value_size);
2758 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2759 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2760 
2761 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2762 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2763 	if (def->parts & MAP_DEF_MAP_FLAGS)
2764 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2765 	if (def->parts & MAP_DEF_MAP_EXTRA)
2766 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2767 			 (unsigned long long)def->map_extra);
2768 	if (def->parts & MAP_DEF_PINNING)
2769 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2770 	if (def->parts & MAP_DEF_NUMA_NODE)
2771 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2772 
2773 	if (def->parts & MAP_DEF_INNER_MAP)
2774 		pr_debug("map '%s': found inner map definition.\n", map->name);
2775 }
2776 
btf_var_linkage_str(__u32 linkage)2777 static const char *btf_var_linkage_str(__u32 linkage)
2778 {
2779 	switch (linkage) {
2780 	case BTF_VAR_STATIC: return "static";
2781 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2782 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2783 	default: return "unknown";
2784 	}
2785 }
2786 
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2787 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2788 					 const struct btf_type *sec,
2789 					 int var_idx, int sec_idx,
2790 					 const Elf_Data *data, bool strict,
2791 					 const char *pin_root_path)
2792 {
2793 	struct btf_map_def map_def = {}, inner_def = {};
2794 	const struct btf_type *var, *def;
2795 	const struct btf_var_secinfo *vi;
2796 	const struct btf_var *var_extra;
2797 	const char *map_name;
2798 	struct bpf_map *map;
2799 	int err;
2800 
2801 	vi = btf_var_secinfos(sec) + var_idx;
2802 	var = btf__type_by_id(obj->btf, vi->type);
2803 	var_extra = btf_var(var);
2804 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2805 
2806 	if (map_name == NULL || map_name[0] == '\0') {
2807 		pr_warn("map #%d: empty name.\n", var_idx);
2808 		return -EINVAL;
2809 	}
2810 	if ((__u64)vi->offset + vi->size > data->d_size) {
2811 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2812 		return -EINVAL;
2813 	}
2814 	if (!btf_is_var(var)) {
2815 		pr_warn("map '%s': unexpected var kind %s.\n",
2816 			map_name, btf_kind_str(var));
2817 		return -EINVAL;
2818 	}
2819 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2820 		pr_warn("map '%s': unsupported map linkage %s.\n",
2821 			map_name, btf_var_linkage_str(var_extra->linkage));
2822 		return -EOPNOTSUPP;
2823 	}
2824 
2825 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2826 	if (!btf_is_struct(def)) {
2827 		pr_warn("map '%s': unexpected def kind %s.\n",
2828 			map_name, btf_kind_str(var));
2829 		return -EINVAL;
2830 	}
2831 	if (def->size > vi->size) {
2832 		pr_warn("map '%s': invalid def size.\n", map_name);
2833 		return -EINVAL;
2834 	}
2835 
2836 	map = bpf_object__add_map(obj);
2837 	if (IS_ERR(map))
2838 		return PTR_ERR(map);
2839 	map->name = strdup(map_name);
2840 	if (!map->name) {
2841 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2842 		return -ENOMEM;
2843 	}
2844 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2845 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2846 	map->sec_idx = sec_idx;
2847 	map->sec_offset = vi->offset;
2848 	map->btf_var_idx = var_idx;
2849 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2850 		 map_name, map->sec_idx, map->sec_offset);
2851 
2852 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2853 	if (err)
2854 		return err;
2855 
2856 	fill_map_from_def(map, &map_def);
2857 
2858 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2859 		err = build_map_pin_path(map, pin_root_path);
2860 		if (err) {
2861 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2862 			return err;
2863 		}
2864 	}
2865 
2866 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2867 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2868 		if (!map->inner_map)
2869 			return -ENOMEM;
2870 		map->inner_map->fd = create_placeholder_fd();
2871 		if (map->inner_map->fd < 0)
2872 			return map->inner_map->fd;
2873 		map->inner_map->sec_idx = sec_idx;
2874 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2875 		if (!map->inner_map->name)
2876 			return -ENOMEM;
2877 		sprintf(map->inner_map->name, "%s.inner", map_name);
2878 
2879 		fill_map_from_def(map->inner_map, &inner_def);
2880 	}
2881 
2882 	err = map_fill_btf_type_info(obj, map);
2883 	if (err)
2884 		return err;
2885 
2886 	return 0;
2887 }
2888 
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2889 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2890 			       const char *sec_name, int sec_idx,
2891 			       void *data, size_t data_sz)
2892 {
2893 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2894 	size_t mmap_sz;
2895 
2896 	mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2897 	if (roundup(data_sz, page_sz) > mmap_sz) {
2898 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2899 			sec_name, mmap_sz, data_sz);
2900 		return -E2BIG;
2901 	}
2902 
2903 	obj->arena_data = malloc(data_sz);
2904 	if (!obj->arena_data)
2905 		return -ENOMEM;
2906 	memcpy(obj->arena_data, data, data_sz);
2907 	obj->arena_data_sz = data_sz;
2908 
2909 	/* make bpf_map__init_value() work for ARENA maps */
2910 	map->mmaped = obj->arena_data;
2911 
2912 	return 0;
2913 }
2914 
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2915 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2916 					  const char *pin_root_path)
2917 {
2918 	const struct btf_type *sec = NULL;
2919 	int nr_types, i, vlen, err;
2920 	const struct btf_type *t;
2921 	const char *name;
2922 	Elf_Data *data;
2923 	Elf_Scn *scn;
2924 
2925 	if (obj->efile.btf_maps_shndx < 0)
2926 		return 0;
2927 
2928 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2929 	data = elf_sec_data(obj, scn);
2930 	if (!scn || !data) {
2931 		pr_warn("elf: failed to get %s map definitions for %s\n",
2932 			MAPS_ELF_SEC, obj->path);
2933 		return -EINVAL;
2934 	}
2935 
2936 	nr_types = btf__type_cnt(obj->btf);
2937 	for (i = 1; i < nr_types; i++) {
2938 		t = btf__type_by_id(obj->btf, i);
2939 		if (!btf_is_datasec(t))
2940 			continue;
2941 		name = btf__name_by_offset(obj->btf, t->name_off);
2942 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2943 			sec = t;
2944 			obj->efile.btf_maps_sec_btf_id = i;
2945 			break;
2946 		}
2947 	}
2948 
2949 	if (!sec) {
2950 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2951 		return -ENOENT;
2952 	}
2953 
2954 	vlen = btf_vlen(sec);
2955 	for (i = 0; i < vlen; i++) {
2956 		err = bpf_object__init_user_btf_map(obj, sec, i,
2957 						    obj->efile.btf_maps_shndx,
2958 						    data, strict,
2959 						    pin_root_path);
2960 		if (err)
2961 			return err;
2962 	}
2963 
2964 	for (i = 0; i < obj->nr_maps; i++) {
2965 		struct bpf_map *map = &obj->maps[i];
2966 
2967 		if (map->def.type != BPF_MAP_TYPE_ARENA)
2968 			continue;
2969 
2970 		if (obj->arena_map) {
2971 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
2972 				map->name, obj->arena_map->name);
2973 			return -EINVAL;
2974 		}
2975 		obj->arena_map = map;
2976 
2977 		if (obj->efile.arena_data) {
2978 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
2979 						  obj->efile.arena_data->d_buf,
2980 						  obj->efile.arena_data->d_size);
2981 			if (err)
2982 				return err;
2983 		}
2984 	}
2985 	if (obj->efile.arena_data && !obj->arena_map) {
2986 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
2987 			ARENA_SEC);
2988 		return -ENOENT;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2994 static int bpf_object__init_maps(struct bpf_object *obj,
2995 				 const struct bpf_object_open_opts *opts)
2996 {
2997 	const char *pin_root_path;
2998 	bool strict;
2999 	int err = 0;
3000 
3001 	strict = !OPTS_GET(opts, relaxed_maps, false);
3002 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3003 
3004 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3005 	err = err ?: bpf_object__init_global_data_maps(obj);
3006 	err = err ?: bpf_object__init_kconfig_map(obj);
3007 	err = err ?: bpf_object_init_struct_ops(obj);
3008 
3009 	return err;
3010 }
3011 
section_have_execinstr(struct bpf_object * obj,int idx)3012 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3013 {
3014 	Elf64_Shdr *sh;
3015 
3016 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3017 	if (!sh)
3018 		return false;
3019 
3020 	return sh->sh_flags & SHF_EXECINSTR;
3021 }
3022 
starts_with_qmark(const char * s)3023 static bool starts_with_qmark(const char *s)
3024 {
3025 	return s && s[0] == '?';
3026 }
3027 
btf_needs_sanitization(struct bpf_object * obj)3028 static bool btf_needs_sanitization(struct bpf_object *obj)
3029 {
3030 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3031 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3032 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3033 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3034 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3035 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3036 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3037 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3038 
3039 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3040 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3041 }
3042 
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3043 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3044 {
3045 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3046 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3047 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3048 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3049 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3050 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3051 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3052 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3053 	int enum64_placeholder_id = 0;
3054 	struct btf_type *t;
3055 	int i, j, vlen;
3056 
3057 	for (i = 1; i < btf__type_cnt(btf); i++) {
3058 		t = (struct btf_type *)btf__type_by_id(btf, i);
3059 
3060 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3061 			/* replace VAR/DECL_TAG with INT */
3062 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3063 			/*
3064 			 * using size = 1 is the safest choice, 4 will be too
3065 			 * big and cause kernel BTF validation failure if
3066 			 * original variable took less than 4 bytes
3067 			 */
3068 			t->size = 1;
3069 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3070 		} else if (!has_datasec && btf_is_datasec(t)) {
3071 			/* replace DATASEC with STRUCT */
3072 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3073 			struct btf_member *m = btf_members(t);
3074 			struct btf_type *vt;
3075 			char *name;
3076 
3077 			name = (char *)btf__name_by_offset(btf, t->name_off);
3078 			while (*name) {
3079 				if (*name == '.' || *name == '?')
3080 					*name = '_';
3081 				name++;
3082 			}
3083 
3084 			vlen = btf_vlen(t);
3085 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3086 			for (j = 0; j < vlen; j++, v++, m++) {
3087 				/* order of field assignments is important */
3088 				m->offset = v->offset * 8;
3089 				m->type = v->type;
3090 				/* preserve variable name as member name */
3091 				vt = (void *)btf__type_by_id(btf, v->type);
3092 				m->name_off = vt->name_off;
3093 			}
3094 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3095 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3096 			/* replace '?' prefix with '_' for DATASEC names */
3097 			char *name;
3098 
3099 			name = (char *)btf__name_by_offset(btf, t->name_off);
3100 			if (name[0] == '?')
3101 				name[0] = '_';
3102 		} else if (!has_func && btf_is_func_proto(t)) {
3103 			/* replace FUNC_PROTO with ENUM */
3104 			vlen = btf_vlen(t);
3105 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3106 			t->size = sizeof(__u32); /* kernel enforced */
3107 		} else if (!has_func && btf_is_func(t)) {
3108 			/* replace FUNC with TYPEDEF */
3109 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3110 		} else if (!has_func_global && btf_is_func(t)) {
3111 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3112 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3113 		} else if (!has_float && btf_is_float(t)) {
3114 			/* replace FLOAT with an equally-sized empty STRUCT;
3115 			 * since C compilers do not accept e.g. "float" as a
3116 			 * valid struct name, make it anonymous
3117 			 */
3118 			t->name_off = 0;
3119 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3120 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3121 			/* replace TYPE_TAG with a CONST */
3122 			t->name_off = 0;
3123 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3124 		} else if (!has_enum64 && btf_is_enum(t)) {
3125 			/* clear the kflag */
3126 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3127 		} else if (!has_enum64 && btf_is_enum64(t)) {
3128 			/* replace ENUM64 with a union */
3129 			struct btf_member *m;
3130 
3131 			if (enum64_placeholder_id == 0) {
3132 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3133 				if (enum64_placeholder_id < 0)
3134 					return enum64_placeholder_id;
3135 
3136 				t = (struct btf_type *)btf__type_by_id(btf, i);
3137 			}
3138 
3139 			m = btf_members(t);
3140 			vlen = btf_vlen(t);
3141 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3142 			for (j = 0; j < vlen; j++, m++) {
3143 				m->type = enum64_placeholder_id;
3144 				m->offset = 0;
3145 			}
3146 		}
3147 	}
3148 
3149 	return 0;
3150 }
3151 
libbpf_needs_btf(const struct bpf_object * obj)3152 static bool libbpf_needs_btf(const struct bpf_object *obj)
3153 {
3154 	return obj->efile.btf_maps_shndx >= 0 ||
3155 	       obj->efile.has_st_ops ||
3156 	       obj->nr_extern > 0;
3157 }
3158 
kernel_needs_btf(const struct bpf_object * obj)3159 static bool kernel_needs_btf(const struct bpf_object *obj)
3160 {
3161 	return obj->efile.has_st_ops;
3162 }
3163 
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3164 static int bpf_object__init_btf(struct bpf_object *obj,
3165 				Elf_Data *btf_data,
3166 				Elf_Data *btf_ext_data)
3167 {
3168 	int err = -ENOENT;
3169 
3170 	if (btf_data) {
3171 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3172 		err = libbpf_get_error(obj->btf);
3173 		if (err) {
3174 			obj->btf = NULL;
3175 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3176 			goto out;
3177 		}
3178 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3179 		btf__set_pointer_size(obj->btf, 8);
3180 	}
3181 	if (btf_ext_data) {
3182 		struct btf_ext_info *ext_segs[3];
3183 		int seg_num, sec_num;
3184 
3185 		if (!obj->btf) {
3186 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3187 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3188 			goto out;
3189 		}
3190 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3191 		err = libbpf_get_error(obj->btf_ext);
3192 		if (err) {
3193 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3194 				BTF_EXT_ELF_SEC, err);
3195 			obj->btf_ext = NULL;
3196 			goto out;
3197 		}
3198 
3199 		/* setup .BTF.ext to ELF section mapping */
3200 		ext_segs[0] = &obj->btf_ext->func_info;
3201 		ext_segs[1] = &obj->btf_ext->line_info;
3202 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3203 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3204 			struct btf_ext_info *seg = ext_segs[seg_num];
3205 			const struct btf_ext_info_sec *sec;
3206 			const char *sec_name;
3207 			Elf_Scn *scn;
3208 
3209 			if (seg->sec_cnt == 0)
3210 				continue;
3211 
3212 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3213 			if (!seg->sec_idxs) {
3214 				err = -ENOMEM;
3215 				goto out;
3216 			}
3217 
3218 			sec_num = 0;
3219 			for_each_btf_ext_sec(seg, sec) {
3220 				/* preventively increment index to avoid doing
3221 				 * this before every continue below
3222 				 */
3223 				sec_num++;
3224 
3225 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3226 				if (str_is_empty(sec_name))
3227 					continue;
3228 				scn = elf_sec_by_name(obj, sec_name);
3229 				if (!scn)
3230 					continue;
3231 
3232 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3233 			}
3234 		}
3235 	}
3236 out:
3237 	if (err && libbpf_needs_btf(obj)) {
3238 		pr_warn("BTF is required, but is missing or corrupted.\n");
3239 		return err;
3240 	}
3241 	return 0;
3242 }
3243 
compare_vsi_off(const void * _a,const void * _b)3244 static int compare_vsi_off(const void *_a, const void *_b)
3245 {
3246 	const struct btf_var_secinfo *a = _a;
3247 	const struct btf_var_secinfo *b = _b;
3248 
3249 	return a->offset - b->offset;
3250 }
3251 
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3252 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3253 			     struct btf_type *t)
3254 {
3255 	__u32 size = 0, i, vars = btf_vlen(t);
3256 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3257 	struct btf_var_secinfo *vsi;
3258 	bool fixup_offsets = false;
3259 	int err;
3260 
3261 	if (!sec_name) {
3262 		pr_debug("No name found in string section for DATASEC kind.\n");
3263 		return -ENOENT;
3264 	}
3265 
3266 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3267 	 * variable offsets set at the previous step. Further, not every
3268 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3269 	 * all fixups altogether for such sections and go straight to sorting
3270 	 * VARs within their DATASEC.
3271 	 */
3272 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3273 		goto sort_vars;
3274 
3275 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3276 	 * fix this up. But BPF static linker already fixes this up and fills
3277 	 * all the sizes and offsets during static linking. So this step has
3278 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3279 	 * non-extern DATASEC, so the variable fixup loop below handles both
3280 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3281 	 * symbol matching just once.
3282 	 */
3283 	if (t->size == 0) {
3284 		err = find_elf_sec_sz(obj, sec_name, &size);
3285 		if (err || !size) {
3286 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3287 				 sec_name, size, err);
3288 			return -ENOENT;
3289 		}
3290 
3291 		t->size = size;
3292 		fixup_offsets = true;
3293 	}
3294 
3295 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3296 		const struct btf_type *t_var;
3297 		struct btf_var *var;
3298 		const char *var_name;
3299 		Elf64_Sym *sym;
3300 
3301 		t_var = btf__type_by_id(btf, vsi->type);
3302 		if (!t_var || !btf_is_var(t_var)) {
3303 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3304 			return -EINVAL;
3305 		}
3306 
3307 		var = btf_var(t_var);
3308 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3309 			continue;
3310 
3311 		var_name = btf__name_by_offset(btf, t_var->name_off);
3312 		if (!var_name) {
3313 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3314 				 sec_name, i);
3315 			return -ENOENT;
3316 		}
3317 
3318 		sym = find_elf_var_sym(obj, var_name);
3319 		if (IS_ERR(sym)) {
3320 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3321 				 sec_name, var_name);
3322 			return -ENOENT;
3323 		}
3324 
3325 		if (fixup_offsets)
3326 			vsi->offset = sym->st_value;
3327 
3328 		/* if variable is a global/weak symbol, but has restricted
3329 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3330 		 * as static. This follows similar logic for functions (BPF
3331 		 * subprogs) and influences libbpf's further decisions about
3332 		 * whether to make global data BPF array maps as
3333 		 * BPF_F_MMAPABLE.
3334 		 */
3335 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3336 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3337 			var->linkage = BTF_VAR_STATIC;
3338 	}
3339 
3340 sort_vars:
3341 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3342 	return 0;
3343 }
3344 
bpf_object_fixup_btf(struct bpf_object * obj)3345 static int bpf_object_fixup_btf(struct bpf_object *obj)
3346 {
3347 	int i, n, err = 0;
3348 
3349 	if (!obj->btf)
3350 		return 0;
3351 
3352 	n = btf__type_cnt(obj->btf);
3353 	for (i = 1; i < n; i++) {
3354 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3355 
3356 		/* Loader needs to fix up some of the things compiler
3357 		 * couldn't get its hands on while emitting BTF. This
3358 		 * is section size and global variable offset. We use
3359 		 * the info from the ELF itself for this purpose.
3360 		 */
3361 		if (btf_is_datasec(t)) {
3362 			err = btf_fixup_datasec(obj, obj->btf, t);
3363 			if (err)
3364 				return err;
3365 		}
3366 	}
3367 
3368 	return 0;
3369 }
3370 
prog_needs_vmlinux_btf(struct bpf_program * prog)3371 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3372 {
3373 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3374 	    prog->type == BPF_PROG_TYPE_LSM)
3375 		return true;
3376 
3377 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3378 	 * also need vmlinux BTF
3379 	 */
3380 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3381 		return true;
3382 
3383 	return false;
3384 }
3385 
map_needs_vmlinux_btf(struct bpf_map * map)3386 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3387 {
3388 	return bpf_map__is_struct_ops(map);
3389 }
3390 
obj_needs_vmlinux_btf(const struct bpf_object * obj)3391 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3392 {
3393 	struct bpf_program *prog;
3394 	struct bpf_map *map;
3395 	int i;
3396 
3397 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3398 	 * is not specified
3399 	 */
3400 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3401 		return true;
3402 
3403 	/* Support for typed ksyms needs kernel BTF */
3404 	for (i = 0; i < obj->nr_extern; i++) {
3405 		const struct extern_desc *ext;
3406 
3407 		ext = &obj->externs[i];
3408 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3409 			return true;
3410 	}
3411 
3412 	bpf_object__for_each_program(prog, obj) {
3413 		if (!prog->autoload)
3414 			continue;
3415 		if (prog_needs_vmlinux_btf(prog))
3416 			return true;
3417 	}
3418 
3419 	bpf_object__for_each_map(map, obj) {
3420 		if (map_needs_vmlinux_btf(map))
3421 			return true;
3422 	}
3423 
3424 	return false;
3425 }
3426 
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3427 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3428 {
3429 	int err;
3430 
3431 	/* btf_vmlinux could be loaded earlier */
3432 	if (obj->btf_vmlinux || obj->gen_loader)
3433 		return 0;
3434 
3435 	if (!force && !obj_needs_vmlinux_btf(obj))
3436 		return 0;
3437 
3438 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3439 	err = libbpf_get_error(obj->btf_vmlinux);
3440 	if (err) {
3441 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3442 		obj->btf_vmlinux = NULL;
3443 		return err;
3444 	}
3445 	return 0;
3446 }
3447 
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3448 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3449 {
3450 	struct btf *kern_btf = obj->btf;
3451 	bool btf_mandatory, sanitize;
3452 	int i, err = 0;
3453 
3454 	if (!obj->btf)
3455 		return 0;
3456 
3457 	if (!kernel_supports(obj, FEAT_BTF)) {
3458 		if (kernel_needs_btf(obj)) {
3459 			err = -EOPNOTSUPP;
3460 			goto report;
3461 		}
3462 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3463 		return 0;
3464 	}
3465 
3466 	/* Even though some subprogs are global/weak, user might prefer more
3467 	 * permissive BPF verification process that BPF verifier performs for
3468 	 * static functions, taking into account more context from the caller
3469 	 * functions. In such case, they need to mark such subprogs with
3470 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3471 	 * corresponding FUNC BTF type to be marked as static and trigger more
3472 	 * involved BPF verification process.
3473 	 */
3474 	for (i = 0; i < obj->nr_programs; i++) {
3475 		struct bpf_program *prog = &obj->programs[i];
3476 		struct btf_type *t;
3477 		const char *name;
3478 		int j, n;
3479 
3480 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3481 			continue;
3482 
3483 		n = btf__type_cnt(obj->btf);
3484 		for (j = 1; j < n; j++) {
3485 			t = btf_type_by_id(obj->btf, j);
3486 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3487 				continue;
3488 
3489 			name = btf__str_by_offset(obj->btf, t->name_off);
3490 			if (strcmp(name, prog->name) != 0)
3491 				continue;
3492 
3493 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3494 			break;
3495 		}
3496 	}
3497 
3498 	sanitize = btf_needs_sanitization(obj);
3499 	if (sanitize) {
3500 		const void *raw_data;
3501 		__u32 sz;
3502 
3503 		/* clone BTF to sanitize a copy and leave the original intact */
3504 		raw_data = btf__raw_data(obj->btf, &sz);
3505 		kern_btf = btf__new(raw_data, sz);
3506 		err = libbpf_get_error(kern_btf);
3507 		if (err)
3508 			return err;
3509 
3510 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3511 		btf__set_pointer_size(obj->btf, 8);
3512 		err = bpf_object__sanitize_btf(obj, kern_btf);
3513 		if (err)
3514 			return err;
3515 	}
3516 
3517 	if (obj->gen_loader) {
3518 		__u32 raw_size = 0;
3519 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3520 
3521 		if (!raw_data)
3522 			return -ENOMEM;
3523 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3524 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3525 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3526 		 */
3527 		btf__set_fd(kern_btf, 0);
3528 	} else {
3529 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3530 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3531 					   obj->log_level ? 1 : 0, obj->token_fd);
3532 	}
3533 	if (sanitize) {
3534 		if (!err) {
3535 			/* move fd to libbpf's BTF */
3536 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3537 			btf__set_fd(kern_btf, -1);
3538 		}
3539 		btf__free(kern_btf);
3540 	}
3541 report:
3542 	if (err) {
3543 		btf_mandatory = kernel_needs_btf(obj);
3544 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3545 			btf_mandatory ? "BTF is mandatory, can't proceed."
3546 				      : "BTF is optional, ignoring.");
3547 		if (!btf_mandatory)
3548 			err = 0;
3549 	}
3550 	return err;
3551 }
3552 
elf_sym_str(const struct bpf_object * obj,size_t off)3553 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3554 {
3555 	const char *name;
3556 
3557 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3558 	if (!name) {
3559 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3560 			off, obj->path, elf_errmsg(-1));
3561 		return NULL;
3562 	}
3563 
3564 	return name;
3565 }
3566 
elf_sec_str(const struct bpf_object * obj,size_t off)3567 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3568 {
3569 	const char *name;
3570 
3571 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3572 	if (!name) {
3573 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3574 			off, obj->path, elf_errmsg(-1));
3575 		return NULL;
3576 	}
3577 
3578 	return name;
3579 }
3580 
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3581 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3582 {
3583 	Elf_Scn *scn;
3584 
3585 	scn = elf_getscn(obj->efile.elf, idx);
3586 	if (!scn) {
3587 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3588 			idx, obj->path, elf_errmsg(-1));
3589 		return NULL;
3590 	}
3591 	return scn;
3592 }
3593 
elf_sec_by_name(const struct bpf_object * obj,const char * name)3594 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3595 {
3596 	Elf_Scn *scn = NULL;
3597 	Elf *elf = obj->efile.elf;
3598 	const char *sec_name;
3599 
3600 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3601 		sec_name = elf_sec_name(obj, scn);
3602 		if (!sec_name)
3603 			return NULL;
3604 
3605 		if (strcmp(sec_name, name) != 0)
3606 			continue;
3607 
3608 		return scn;
3609 	}
3610 	return NULL;
3611 }
3612 
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3613 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3614 {
3615 	Elf64_Shdr *shdr;
3616 
3617 	if (!scn)
3618 		return NULL;
3619 
3620 	shdr = elf64_getshdr(scn);
3621 	if (!shdr) {
3622 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3623 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3624 		return NULL;
3625 	}
3626 
3627 	return shdr;
3628 }
3629 
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3630 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3631 {
3632 	const char *name;
3633 	Elf64_Shdr *sh;
3634 
3635 	if (!scn)
3636 		return NULL;
3637 
3638 	sh = elf_sec_hdr(obj, scn);
3639 	if (!sh)
3640 		return NULL;
3641 
3642 	name = elf_sec_str(obj, sh->sh_name);
3643 	if (!name) {
3644 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3645 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3646 		return NULL;
3647 	}
3648 
3649 	return name;
3650 }
3651 
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3652 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3653 {
3654 	Elf_Data *data;
3655 
3656 	if (!scn)
3657 		return NULL;
3658 
3659 	data = elf_getdata(scn, 0);
3660 	if (!data) {
3661 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3662 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3663 			obj->path, elf_errmsg(-1));
3664 		return NULL;
3665 	}
3666 
3667 	return data;
3668 }
3669 
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3670 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3671 {
3672 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3673 		return NULL;
3674 
3675 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3676 }
3677 
elf_rel_by_idx(Elf_Data * data,size_t idx)3678 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3679 {
3680 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3681 		return NULL;
3682 
3683 	return (Elf64_Rel *)data->d_buf + idx;
3684 }
3685 
is_sec_name_dwarf(const char * name)3686 static bool is_sec_name_dwarf(const char *name)
3687 {
3688 	/* approximation, but the actual list is too long */
3689 	return str_has_pfx(name, ".debug_");
3690 }
3691 
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3692 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3693 {
3694 	/* no special handling of .strtab */
3695 	if (hdr->sh_type == SHT_STRTAB)
3696 		return true;
3697 
3698 	/* ignore .llvm_addrsig section as well */
3699 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3700 		return true;
3701 
3702 	/* no subprograms will lead to an empty .text section, ignore it */
3703 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3704 	    strcmp(name, ".text") == 0)
3705 		return true;
3706 
3707 	/* DWARF sections */
3708 	if (is_sec_name_dwarf(name))
3709 		return true;
3710 
3711 	if (str_has_pfx(name, ".rel")) {
3712 		name += sizeof(".rel") - 1;
3713 		/* DWARF section relocations */
3714 		if (is_sec_name_dwarf(name))
3715 			return true;
3716 
3717 		/* .BTF and .BTF.ext don't need relocations */
3718 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3719 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3720 			return true;
3721 	}
3722 
3723 	return false;
3724 }
3725 
cmp_progs(const void * _a,const void * _b)3726 static int cmp_progs(const void *_a, const void *_b)
3727 {
3728 	const struct bpf_program *a = _a;
3729 	const struct bpf_program *b = _b;
3730 
3731 	if (a->sec_idx != b->sec_idx)
3732 		return a->sec_idx < b->sec_idx ? -1 : 1;
3733 
3734 	/* sec_insn_off can't be the same within the section */
3735 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3736 }
3737 
bpf_object__elf_collect(struct bpf_object * obj)3738 static int bpf_object__elf_collect(struct bpf_object *obj)
3739 {
3740 	struct elf_sec_desc *sec_desc;
3741 	Elf *elf = obj->efile.elf;
3742 	Elf_Data *btf_ext_data = NULL;
3743 	Elf_Data *btf_data = NULL;
3744 	int idx = 0, err = 0;
3745 	const char *name;
3746 	Elf_Data *data;
3747 	Elf_Scn *scn;
3748 	Elf64_Shdr *sh;
3749 
3750 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3751 	 * section. Since section count retrieved by elf_getshdrnum() does
3752 	 * include sec #0, it is already the necessary size of an array to keep
3753 	 * all the sections.
3754 	 */
3755 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3756 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3757 			obj->path, elf_errmsg(-1));
3758 		return -LIBBPF_ERRNO__FORMAT;
3759 	}
3760 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3761 	if (!obj->efile.secs)
3762 		return -ENOMEM;
3763 
3764 	/* a bunch of ELF parsing functionality depends on processing symbols,
3765 	 * so do the first pass and find the symbol table
3766 	 */
3767 	scn = NULL;
3768 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3769 		sh = elf_sec_hdr(obj, scn);
3770 		if (!sh)
3771 			return -LIBBPF_ERRNO__FORMAT;
3772 
3773 		if (sh->sh_type == SHT_SYMTAB) {
3774 			if (obj->efile.symbols) {
3775 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3776 				return -LIBBPF_ERRNO__FORMAT;
3777 			}
3778 
3779 			data = elf_sec_data(obj, scn);
3780 			if (!data)
3781 				return -LIBBPF_ERRNO__FORMAT;
3782 
3783 			idx = elf_ndxscn(scn);
3784 
3785 			obj->efile.symbols = data;
3786 			obj->efile.symbols_shndx = idx;
3787 			obj->efile.strtabidx = sh->sh_link;
3788 		}
3789 	}
3790 
3791 	if (!obj->efile.symbols) {
3792 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3793 			obj->path);
3794 		return -ENOENT;
3795 	}
3796 
3797 	scn = NULL;
3798 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3799 		idx = elf_ndxscn(scn);
3800 		sec_desc = &obj->efile.secs[idx];
3801 
3802 		sh = elf_sec_hdr(obj, scn);
3803 		if (!sh)
3804 			return -LIBBPF_ERRNO__FORMAT;
3805 
3806 		name = elf_sec_str(obj, sh->sh_name);
3807 		if (!name)
3808 			return -LIBBPF_ERRNO__FORMAT;
3809 
3810 		if (ignore_elf_section(sh, name))
3811 			continue;
3812 
3813 		data = elf_sec_data(obj, scn);
3814 		if (!data)
3815 			return -LIBBPF_ERRNO__FORMAT;
3816 
3817 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3818 			 idx, name, (unsigned long)data->d_size,
3819 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3820 			 (int)sh->sh_type);
3821 
3822 		if (strcmp(name, "license") == 0) {
3823 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3824 			if (err)
3825 				return err;
3826 		} else if (strcmp(name, "version") == 0) {
3827 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3828 			if (err)
3829 				return err;
3830 		} else if (strcmp(name, "maps") == 0) {
3831 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3832 			return -ENOTSUP;
3833 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3834 			obj->efile.btf_maps_shndx = idx;
3835 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3836 			if (sh->sh_type != SHT_PROGBITS)
3837 				return -LIBBPF_ERRNO__FORMAT;
3838 			btf_data = data;
3839 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3840 			if (sh->sh_type != SHT_PROGBITS)
3841 				return -LIBBPF_ERRNO__FORMAT;
3842 			btf_ext_data = data;
3843 		} else if (sh->sh_type == SHT_SYMTAB) {
3844 			/* already processed during the first pass above */
3845 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3846 			if (sh->sh_flags & SHF_EXECINSTR) {
3847 				if (strcmp(name, ".text") == 0)
3848 					obj->efile.text_shndx = idx;
3849 				err = bpf_object__add_programs(obj, data, name, idx);
3850 				if (err)
3851 					return err;
3852 			} else if (strcmp(name, DATA_SEC) == 0 ||
3853 				   str_has_pfx(name, DATA_SEC ".")) {
3854 				sec_desc->sec_type = SEC_DATA;
3855 				sec_desc->shdr = sh;
3856 				sec_desc->data = data;
3857 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3858 				   str_has_pfx(name, RODATA_SEC ".")) {
3859 				sec_desc->sec_type = SEC_RODATA;
3860 				sec_desc->shdr = sh;
3861 				sec_desc->data = data;
3862 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3863 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3864 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3865 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3866 				sec_desc->sec_type = SEC_ST_OPS;
3867 				sec_desc->shdr = sh;
3868 				sec_desc->data = data;
3869 				obj->efile.has_st_ops = true;
3870 			} else if (strcmp(name, ARENA_SEC) == 0) {
3871 				obj->efile.arena_data = data;
3872 				obj->efile.arena_data_shndx = idx;
3873 			} else {
3874 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3875 					idx, name);
3876 			}
3877 		} else if (sh->sh_type == SHT_REL) {
3878 			int targ_sec_idx = sh->sh_info; /* points to other section */
3879 
3880 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3881 			    targ_sec_idx >= obj->efile.sec_cnt)
3882 				return -LIBBPF_ERRNO__FORMAT;
3883 
3884 			/* Only do relo for section with exec instructions */
3885 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3886 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3887 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3888 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3889 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3890 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3891 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3892 					idx, name, targ_sec_idx,
3893 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3894 				continue;
3895 			}
3896 
3897 			sec_desc->sec_type = SEC_RELO;
3898 			sec_desc->shdr = sh;
3899 			sec_desc->data = data;
3900 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3901 							 str_has_pfx(name, BSS_SEC "."))) {
3902 			sec_desc->sec_type = SEC_BSS;
3903 			sec_desc->shdr = sh;
3904 			sec_desc->data = data;
3905 		} else {
3906 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3907 				(size_t)sh->sh_size);
3908 		}
3909 	}
3910 
3911 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3912 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3913 		return -LIBBPF_ERRNO__FORMAT;
3914 	}
3915 
3916 	/* sort BPF programs by section name and in-section instruction offset
3917 	 * for faster search
3918 	 */
3919 	if (obj->nr_programs)
3920 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3921 
3922 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3923 }
3924 
sym_is_extern(const Elf64_Sym * sym)3925 static bool sym_is_extern(const Elf64_Sym *sym)
3926 {
3927 	int bind = ELF64_ST_BIND(sym->st_info);
3928 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3929 	return sym->st_shndx == SHN_UNDEF &&
3930 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3931 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3932 }
3933 
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3934 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3935 {
3936 	int bind = ELF64_ST_BIND(sym->st_info);
3937 	int type = ELF64_ST_TYPE(sym->st_info);
3938 
3939 	/* in .text section */
3940 	if (sym->st_shndx != text_shndx)
3941 		return false;
3942 
3943 	/* local function */
3944 	if (bind == STB_LOCAL && type == STT_SECTION)
3945 		return true;
3946 
3947 	/* global function */
3948 	return bind == STB_GLOBAL && type == STT_FUNC;
3949 }
3950 
find_extern_btf_id(const struct btf * btf,const char * ext_name)3951 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3952 {
3953 	const struct btf_type *t;
3954 	const char *tname;
3955 	int i, n;
3956 
3957 	if (!btf)
3958 		return -ESRCH;
3959 
3960 	n = btf__type_cnt(btf);
3961 	for (i = 1; i < n; i++) {
3962 		t = btf__type_by_id(btf, i);
3963 
3964 		if (!btf_is_var(t) && !btf_is_func(t))
3965 			continue;
3966 
3967 		tname = btf__name_by_offset(btf, t->name_off);
3968 		if (strcmp(tname, ext_name))
3969 			continue;
3970 
3971 		if (btf_is_var(t) &&
3972 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3973 			return -EINVAL;
3974 
3975 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3976 			return -EINVAL;
3977 
3978 		return i;
3979 	}
3980 
3981 	return -ENOENT;
3982 }
3983 
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3984 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3985 	const struct btf_var_secinfo *vs;
3986 	const struct btf_type *t;
3987 	int i, j, n;
3988 
3989 	if (!btf)
3990 		return -ESRCH;
3991 
3992 	n = btf__type_cnt(btf);
3993 	for (i = 1; i < n; i++) {
3994 		t = btf__type_by_id(btf, i);
3995 
3996 		if (!btf_is_datasec(t))
3997 			continue;
3998 
3999 		vs = btf_var_secinfos(t);
4000 		for (j = 0; j < btf_vlen(t); j++, vs++) {
4001 			if (vs->type == ext_btf_id)
4002 				return i;
4003 		}
4004 	}
4005 
4006 	return -ENOENT;
4007 }
4008 
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4009 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4010 				     bool *is_signed)
4011 {
4012 	const struct btf_type *t;
4013 	const char *name;
4014 
4015 	t = skip_mods_and_typedefs(btf, id, NULL);
4016 	name = btf__name_by_offset(btf, t->name_off);
4017 
4018 	if (is_signed)
4019 		*is_signed = false;
4020 	switch (btf_kind(t)) {
4021 	case BTF_KIND_INT: {
4022 		int enc = btf_int_encoding(t);
4023 
4024 		if (enc & BTF_INT_BOOL)
4025 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4026 		if (is_signed)
4027 			*is_signed = enc & BTF_INT_SIGNED;
4028 		if (t->size == 1)
4029 			return KCFG_CHAR;
4030 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4031 			return KCFG_UNKNOWN;
4032 		return KCFG_INT;
4033 	}
4034 	case BTF_KIND_ENUM:
4035 		if (t->size != 4)
4036 			return KCFG_UNKNOWN;
4037 		if (strcmp(name, "libbpf_tristate"))
4038 			return KCFG_UNKNOWN;
4039 		return KCFG_TRISTATE;
4040 	case BTF_KIND_ENUM64:
4041 		if (strcmp(name, "libbpf_tristate"))
4042 			return KCFG_UNKNOWN;
4043 		return KCFG_TRISTATE;
4044 	case BTF_KIND_ARRAY:
4045 		if (btf_array(t)->nelems == 0)
4046 			return KCFG_UNKNOWN;
4047 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4048 			return KCFG_UNKNOWN;
4049 		return KCFG_CHAR_ARR;
4050 	default:
4051 		return KCFG_UNKNOWN;
4052 	}
4053 }
4054 
cmp_externs(const void * _a,const void * _b)4055 static int cmp_externs(const void *_a, const void *_b)
4056 {
4057 	const struct extern_desc *a = _a;
4058 	const struct extern_desc *b = _b;
4059 
4060 	if (a->type != b->type)
4061 		return a->type < b->type ? -1 : 1;
4062 
4063 	if (a->type == EXT_KCFG) {
4064 		/* descending order by alignment requirements */
4065 		if (a->kcfg.align != b->kcfg.align)
4066 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4067 		/* ascending order by size, within same alignment class */
4068 		if (a->kcfg.sz != b->kcfg.sz)
4069 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4070 	}
4071 
4072 	/* resolve ties by name */
4073 	return strcmp(a->name, b->name);
4074 }
4075 
find_int_btf_id(const struct btf * btf)4076 static int find_int_btf_id(const struct btf *btf)
4077 {
4078 	const struct btf_type *t;
4079 	int i, n;
4080 
4081 	n = btf__type_cnt(btf);
4082 	for (i = 1; i < n; i++) {
4083 		t = btf__type_by_id(btf, i);
4084 
4085 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4086 			return i;
4087 	}
4088 
4089 	return 0;
4090 }
4091 
add_dummy_ksym_var(struct btf * btf)4092 static int add_dummy_ksym_var(struct btf *btf)
4093 {
4094 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4095 	const struct btf_var_secinfo *vs;
4096 	const struct btf_type *sec;
4097 
4098 	if (!btf)
4099 		return 0;
4100 
4101 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4102 					    BTF_KIND_DATASEC);
4103 	if (sec_btf_id < 0)
4104 		return 0;
4105 
4106 	sec = btf__type_by_id(btf, sec_btf_id);
4107 	vs = btf_var_secinfos(sec);
4108 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4109 		const struct btf_type *vt;
4110 
4111 		vt = btf__type_by_id(btf, vs->type);
4112 		if (btf_is_func(vt))
4113 			break;
4114 	}
4115 
4116 	/* No func in ksyms sec.  No need to add dummy var. */
4117 	if (i == btf_vlen(sec))
4118 		return 0;
4119 
4120 	int_btf_id = find_int_btf_id(btf);
4121 	dummy_var_btf_id = btf__add_var(btf,
4122 					"dummy_ksym",
4123 					BTF_VAR_GLOBAL_ALLOCATED,
4124 					int_btf_id);
4125 	if (dummy_var_btf_id < 0)
4126 		pr_warn("cannot create a dummy_ksym var\n");
4127 
4128 	return dummy_var_btf_id;
4129 }
4130 
bpf_object__collect_externs(struct bpf_object * obj)4131 static int bpf_object__collect_externs(struct bpf_object *obj)
4132 {
4133 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4134 	const struct btf_type *t;
4135 	struct extern_desc *ext;
4136 	int i, n, off, dummy_var_btf_id;
4137 	const char *ext_name, *sec_name;
4138 	size_t ext_essent_len;
4139 	Elf_Scn *scn;
4140 	Elf64_Shdr *sh;
4141 
4142 	if (!obj->efile.symbols)
4143 		return 0;
4144 
4145 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4146 	sh = elf_sec_hdr(obj, scn);
4147 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4148 		return -LIBBPF_ERRNO__FORMAT;
4149 
4150 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4151 	if (dummy_var_btf_id < 0)
4152 		return dummy_var_btf_id;
4153 
4154 	n = sh->sh_size / sh->sh_entsize;
4155 	pr_debug("looking for externs among %d symbols...\n", n);
4156 
4157 	for (i = 0; i < n; i++) {
4158 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4159 
4160 		if (!sym)
4161 			return -LIBBPF_ERRNO__FORMAT;
4162 		if (!sym_is_extern(sym))
4163 			continue;
4164 		ext_name = elf_sym_str(obj, sym->st_name);
4165 		if (!ext_name || !ext_name[0])
4166 			continue;
4167 
4168 		ext = obj->externs;
4169 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4170 		if (!ext)
4171 			return -ENOMEM;
4172 		obj->externs = ext;
4173 		ext = &ext[obj->nr_extern];
4174 		memset(ext, 0, sizeof(*ext));
4175 		obj->nr_extern++;
4176 
4177 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4178 		if (ext->btf_id <= 0) {
4179 			pr_warn("failed to find BTF for extern '%s': %d\n",
4180 				ext_name, ext->btf_id);
4181 			return ext->btf_id;
4182 		}
4183 		t = btf__type_by_id(obj->btf, ext->btf_id);
4184 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
4185 		ext->sym_idx = i;
4186 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4187 
4188 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4189 		ext->essent_name = NULL;
4190 		if (ext_essent_len != strlen(ext->name)) {
4191 			ext->essent_name = strndup(ext->name, ext_essent_len);
4192 			if (!ext->essent_name)
4193 				return -ENOMEM;
4194 		}
4195 
4196 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4197 		if (ext->sec_btf_id <= 0) {
4198 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4199 				ext_name, ext->btf_id, ext->sec_btf_id);
4200 			return ext->sec_btf_id;
4201 		}
4202 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4203 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4204 
4205 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4206 			if (btf_is_func(t)) {
4207 				pr_warn("extern function %s is unsupported under %s section\n",
4208 					ext->name, KCONFIG_SEC);
4209 				return -ENOTSUP;
4210 			}
4211 			kcfg_sec = sec;
4212 			ext->type = EXT_KCFG;
4213 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4214 			if (ext->kcfg.sz <= 0) {
4215 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4216 					ext_name, ext->kcfg.sz);
4217 				return ext->kcfg.sz;
4218 			}
4219 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4220 			if (ext->kcfg.align <= 0) {
4221 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4222 					ext_name, ext->kcfg.align);
4223 				return -EINVAL;
4224 			}
4225 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4226 							&ext->kcfg.is_signed);
4227 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4228 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4229 				return -ENOTSUP;
4230 			}
4231 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4232 			ksym_sec = sec;
4233 			ext->type = EXT_KSYM;
4234 			skip_mods_and_typedefs(obj->btf, t->type,
4235 					       &ext->ksym.type_id);
4236 		} else {
4237 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4238 			return -ENOTSUP;
4239 		}
4240 	}
4241 	pr_debug("collected %d externs total\n", obj->nr_extern);
4242 
4243 	if (!obj->nr_extern)
4244 		return 0;
4245 
4246 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4247 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4248 
4249 	/* for .ksyms section, we need to turn all externs into allocated
4250 	 * variables in BTF to pass kernel verification; we do this by
4251 	 * pretending that each extern is a 8-byte variable
4252 	 */
4253 	if (ksym_sec) {
4254 		/* find existing 4-byte integer type in BTF to use for fake
4255 		 * extern variables in DATASEC
4256 		 */
4257 		int int_btf_id = find_int_btf_id(obj->btf);
4258 		/* For extern function, a dummy_var added earlier
4259 		 * will be used to replace the vs->type and
4260 		 * its name string will be used to refill
4261 		 * the missing param's name.
4262 		 */
4263 		const struct btf_type *dummy_var;
4264 
4265 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4266 		for (i = 0; i < obj->nr_extern; i++) {
4267 			ext = &obj->externs[i];
4268 			if (ext->type != EXT_KSYM)
4269 				continue;
4270 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4271 				 i, ext->sym_idx, ext->name);
4272 		}
4273 
4274 		sec = ksym_sec;
4275 		n = btf_vlen(sec);
4276 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4277 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4278 			struct btf_type *vt;
4279 
4280 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4281 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4282 			ext = find_extern_by_name(obj, ext_name);
4283 			if (!ext) {
4284 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4285 					btf_kind_str(vt), ext_name);
4286 				return -ESRCH;
4287 			}
4288 			if (btf_is_func(vt)) {
4289 				const struct btf_type *func_proto;
4290 				struct btf_param *param;
4291 				int j;
4292 
4293 				func_proto = btf__type_by_id(obj->btf,
4294 							     vt->type);
4295 				param = btf_params(func_proto);
4296 				/* Reuse the dummy_var string if the
4297 				 * func proto does not have param name.
4298 				 */
4299 				for (j = 0; j < btf_vlen(func_proto); j++)
4300 					if (param[j].type && !param[j].name_off)
4301 						param[j].name_off =
4302 							dummy_var->name_off;
4303 				vs->type = dummy_var_btf_id;
4304 				vt->info &= ~0xffff;
4305 				vt->info |= BTF_FUNC_GLOBAL;
4306 			} else {
4307 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4308 				vt->type = int_btf_id;
4309 			}
4310 			vs->offset = off;
4311 			vs->size = sizeof(int);
4312 		}
4313 		sec->size = off;
4314 	}
4315 
4316 	if (kcfg_sec) {
4317 		sec = kcfg_sec;
4318 		/* for kcfg externs calculate their offsets within a .kconfig map */
4319 		off = 0;
4320 		for (i = 0; i < obj->nr_extern; i++) {
4321 			ext = &obj->externs[i];
4322 			if (ext->type != EXT_KCFG)
4323 				continue;
4324 
4325 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4326 			off = ext->kcfg.data_off + ext->kcfg.sz;
4327 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4328 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4329 		}
4330 		sec->size = off;
4331 		n = btf_vlen(sec);
4332 		for (i = 0; i < n; i++) {
4333 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4334 
4335 			t = btf__type_by_id(obj->btf, vs->type);
4336 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4337 			ext = find_extern_by_name(obj, ext_name);
4338 			if (!ext) {
4339 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4340 					ext_name);
4341 				return -ESRCH;
4342 			}
4343 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4344 			vs->offset = ext->kcfg.data_off;
4345 		}
4346 	}
4347 	return 0;
4348 }
4349 
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4350 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4351 {
4352 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4353 }
4354 
4355 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4356 bpf_object__find_program_by_name(const struct bpf_object *obj,
4357 				 const char *name)
4358 {
4359 	struct bpf_program *prog;
4360 
4361 	bpf_object__for_each_program(prog, obj) {
4362 		if (prog_is_subprog(obj, prog))
4363 			continue;
4364 		if (!strcmp(prog->name, name))
4365 			return prog;
4366 	}
4367 	return errno = ENOENT, NULL;
4368 }
4369 
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4370 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4371 				      int shndx)
4372 {
4373 	switch (obj->efile.secs[shndx].sec_type) {
4374 	case SEC_BSS:
4375 	case SEC_DATA:
4376 	case SEC_RODATA:
4377 		return true;
4378 	default:
4379 		return false;
4380 	}
4381 }
4382 
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4383 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4384 				      int shndx)
4385 {
4386 	return shndx == obj->efile.btf_maps_shndx;
4387 }
4388 
4389 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4390 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4391 {
4392 	if (shndx == obj->efile.symbols_shndx)
4393 		return LIBBPF_MAP_KCONFIG;
4394 
4395 	switch (obj->efile.secs[shndx].sec_type) {
4396 	case SEC_BSS:
4397 		return LIBBPF_MAP_BSS;
4398 	case SEC_DATA:
4399 		return LIBBPF_MAP_DATA;
4400 	case SEC_RODATA:
4401 		return LIBBPF_MAP_RODATA;
4402 	default:
4403 		return LIBBPF_MAP_UNSPEC;
4404 	}
4405 }
4406 
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4407 static int bpf_program__record_reloc(struct bpf_program *prog,
4408 				     struct reloc_desc *reloc_desc,
4409 				     __u32 insn_idx, const char *sym_name,
4410 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4411 {
4412 	struct bpf_insn *insn = &prog->insns[insn_idx];
4413 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4414 	struct bpf_object *obj = prog->obj;
4415 	__u32 shdr_idx = sym->st_shndx;
4416 	enum libbpf_map_type type;
4417 	const char *sym_sec_name;
4418 	struct bpf_map *map;
4419 
4420 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4421 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4422 			prog->name, sym_name, insn_idx, insn->code);
4423 		return -LIBBPF_ERRNO__RELOC;
4424 	}
4425 
4426 	if (sym_is_extern(sym)) {
4427 		int sym_idx = ELF64_R_SYM(rel->r_info);
4428 		int i, n = obj->nr_extern;
4429 		struct extern_desc *ext;
4430 
4431 		for (i = 0; i < n; i++) {
4432 			ext = &obj->externs[i];
4433 			if (ext->sym_idx == sym_idx)
4434 				break;
4435 		}
4436 		if (i >= n) {
4437 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4438 				prog->name, sym_name, sym_idx);
4439 			return -LIBBPF_ERRNO__RELOC;
4440 		}
4441 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4442 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4443 		if (insn->code == (BPF_JMP | BPF_CALL))
4444 			reloc_desc->type = RELO_EXTERN_CALL;
4445 		else
4446 			reloc_desc->type = RELO_EXTERN_LD64;
4447 		reloc_desc->insn_idx = insn_idx;
4448 		reloc_desc->ext_idx = i;
4449 		return 0;
4450 	}
4451 
4452 	/* sub-program call relocation */
4453 	if (is_call_insn(insn)) {
4454 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4455 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4456 			return -LIBBPF_ERRNO__RELOC;
4457 		}
4458 		/* text_shndx can be 0, if no default "main" program exists */
4459 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4460 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4461 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4462 				prog->name, sym_name, sym_sec_name);
4463 			return -LIBBPF_ERRNO__RELOC;
4464 		}
4465 		if (sym->st_value % BPF_INSN_SZ) {
4466 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4467 				prog->name, sym_name, (size_t)sym->st_value);
4468 			return -LIBBPF_ERRNO__RELOC;
4469 		}
4470 		reloc_desc->type = RELO_CALL;
4471 		reloc_desc->insn_idx = insn_idx;
4472 		reloc_desc->sym_off = sym->st_value;
4473 		return 0;
4474 	}
4475 
4476 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4477 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4478 			prog->name, sym_name, shdr_idx);
4479 		return -LIBBPF_ERRNO__RELOC;
4480 	}
4481 
4482 	/* loading subprog addresses */
4483 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4484 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4485 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4486 		 */
4487 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4488 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4489 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4490 			return -LIBBPF_ERRNO__RELOC;
4491 		}
4492 
4493 		reloc_desc->type = RELO_SUBPROG_ADDR;
4494 		reloc_desc->insn_idx = insn_idx;
4495 		reloc_desc->sym_off = sym->st_value;
4496 		return 0;
4497 	}
4498 
4499 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4500 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4501 
4502 	/* arena data relocation */
4503 	if (shdr_idx == obj->efile.arena_data_shndx) {
4504 		reloc_desc->type = RELO_DATA;
4505 		reloc_desc->insn_idx = insn_idx;
4506 		reloc_desc->map_idx = obj->arena_map - obj->maps;
4507 		reloc_desc->sym_off = sym->st_value;
4508 		return 0;
4509 	}
4510 
4511 	/* generic map reference relocation */
4512 	if (type == LIBBPF_MAP_UNSPEC) {
4513 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4514 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4515 				prog->name, sym_name, sym_sec_name);
4516 			return -LIBBPF_ERRNO__RELOC;
4517 		}
4518 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4519 			map = &obj->maps[map_idx];
4520 			if (map->libbpf_type != type ||
4521 			    map->sec_idx != sym->st_shndx ||
4522 			    map->sec_offset != sym->st_value)
4523 				continue;
4524 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4525 				 prog->name, map_idx, map->name, map->sec_idx,
4526 				 map->sec_offset, insn_idx);
4527 			break;
4528 		}
4529 		if (map_idx >= nr_maps) {
4530 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4531 				prog->name, sym_sec_name, (size_t)sym->st_value);
4532 			return -LIBBPF_ERRNO__RELOC;
4533 		}
4534 		reloc_desc->type = RELO_LD64;
4535 		reloc_desc->insn_idx = insn_idx;
4536 		reloc_desc->map_idx = map_idx;
4537 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4538 		return 0;
4539 	}
4540 
4541 	/* global data map relocation */
4542 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4543 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4544 			prog->name, sym_sec_name);
4545 		return -LIBBPF_ERRNO__RELOC;
4546 	}
4547 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4548 		map = &obj->maps[map_idx];
4549 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4550 			continue;
4551 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4552 			 prog->name, map_idx, map->name, map->sec_idx,
4553 			 map->sec_offset, insn_idx);
4554 		break;
4555 	}
4556 	if (map_idx >= nr_maps) {
4557 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4558 			prog->name, sym_sec_name);
4559 		return -LIBBPF_ERRNO__RELOC;
4560 	}
4561 
4562 	reloc_desc->type = RELO_DATA;
4563 	reloc_desc->insn_idx = insn_idx;
4564 	reloc_desc->map_idx = map_idx;
4565 	reloc_desc->sym_off = sym->st_value;
4566 	return 0;
4567 }
4568 
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4569 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4570 {
4571 	return insn_idx >= prog->sec_insn_off &&
4572 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4573 }
4574 
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4575 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4576 						 size_t sec_idx, size_t insn_idx)
4577 {
4578 	int l = 0, r = obj->nr_programs - 1, m;
4579 	struct bpf_program *prog;
4580 
4581 	if (!obj->nr_programs)
4582 		return NULL;
4583 
4584 	while (l < r) {
4585 		m = l + (r - l + 1) / 2;
4586 		prog = &obj->programs[m];
4587 
4588 		if (prog->sec_idx < sec_idx ||
4589 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4590 			l = m;
4591 		else
4592 			r = m - 1;
4593 	}
4594 	/* matching program could be at index l, but it still might be the
4595 	 * wrong one, so we need to double check conditions for the last time
4596 	 */
4597 	prog = &obj->programs[l];
4598 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4599 		return prog;
4600 	return NULL;
4601 }
4602 
4603 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4604 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4605 {
4606 	const char *relo_sec_name, *sec_name;
4607 	size_t sec_idx = shdr->sh_info, sym_idx;
4608 	struct bpf_program *prog;
4609 	struct reloc_desc *relos;
4610 	int err, i, nrels;
4611 	const char *sym_name;
4612 	__u32 insn_idx;
4613 	Elf_Scn *scn;
4614 	Elf_Data *scn_data;
4615 	Elf64_Sym *sym;
4616 	Elf64_Rel *rel;
4617 
4618 	if (sec_idx >= obj->efile.sec_cnt)
4619 		return -EINVAL;
4620 
4621 	scn = elf_sec_by_idx(obj, sec_idx);
4622 	scn_data = elf_sec_data(obj, scn);
4623 	if (!scn_data)
4624 		return -LIBBPF_ERRNO__FORMAT;
4625 
4626 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4627 	sec_name = elf_sec_name(obj, scn);
4628 	if (!relo_sec_name || !sec_name)
4629 		return -EINVAL;
4630 
4631 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4632 		 relo_sec_name, sec_idx, sec_name);
4633 	nrels = shdr->sh_size / shdr->sh_entsize;
4634 
4635 	for (i = 0; i < nrels; i++) {
4636 		rel = elf_rel_by_idx(data, i);
4637 		if (!rel) {
4638 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4639 			return -LIBBPF_ERRNO__FORMAT;
4640 		}
4641 
4642 		sym_idx = ELF64_R_SYM(rel->r_info);
4643 		sym = elf_sym_by_idx(obj, sym_idx);
4644 		if (!sym) {
4645 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4646 				relo_sec_name, sym_idx, i);
4647 			return -LIBBPF_ERRNO__FORMAT;
4648 		}
4649 
4650 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4651 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4652 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4653 			return -LIBBPF_ERRNO__FORMAT;
4654 		}
4655 
4656 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4657 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4658 				relo_sec_name, (size_t)rel->r_offset, i);
4659 			return -LIBBPF_ERRNO__FORMAT;
4660 		}
4661 
4662 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4663 		/* relocations against static functions are recorded as
4664 		 * relocations against the section that contains a function;
4665 		 * in such case, symbol will be STT_SECTION and sym.st_name
4666 		 * will point to empty string (0), so fetch section name
4667 		 * instead
4668 		 */
4669 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4670 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4671 		else
4672 			sym_name = elf_sym_str(obj, sym->st_name);
4673 		sym_name = sym_name ?: "<?";
4674 
4675 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4676 			 relo_sec_name, i, insn_idx, sym_name);
4677 
4678 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4679 		if (!prog) {
4680 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4681 				relo_sec_name, i, sec_name, insn_idx);
4682 			continue;
4683 		}
4684 
4685 		relos = libbpf_reallocarray(prog->reloc_desc,
4686 					    prog->nr_reloc + 1, sizeof(*relos));
4687 		if (!relos)
4688 			return -ENOMEM;
4689 		prog->reloc_desc = relos;
4690 
4691 		/* adjust insn_idx to local BPF program frame of reference */
4692 		insn_idx -= prog->sec_insn_off;
4693 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4694 						insn_idx, sym_name, sym, rel);
4695 		if (err)
4696 			return err;
4697 
4698 		prog->nr_reloc++;
4699 	}
4700 	return 0;
4701 }
4702 
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4703 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4704 {
4705 	int id;
4706 
4707 	if (!obj->btf)
4708 		return -ENOENT;
4709 
4710 	/* if it's BTF-defined map, we don't need to search for type IDs.
4711 	 * For struct_ops map, it does not need btf_key_type_id and
4712 	 * btf_value_type_id.
4713 	 */
4714 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4715 		return 0;
4716 
4717 	/*
4718 	 * LLVM annotates global data differently in BTF, that is,
4719 	 * only as '.data', '.bss' or '.rodata'.
4720 	 */
4721 	if (!bpf_map__is_internal(map))
4722 		return -ENOENT;
4723 
4724 	id = btf__find_by_name(obj->btf, map->real_name);
4725 	if (id < 0)
4726 		return id;
4727 
4728 	map->btf_key_type_id = 0;
4729 	map->btf_value_type_id = id;
4730 	return 0;
4731 }
4732 
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4733 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4734 {
4735 	char file[PATH_MAX], buff[4096];
4736 	FILE *fp;
4737 	__u32 val;
4738 	int err;
4739 
4740 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4741 	memset(info, 0, sizeof(*info));
4742 
4743 	fp = fopen(file, "re");
4744 	if (!fp) {
4745 		err = -errno;
4746 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4747 			err);
4748 		return err;
4749 	}
4750 
4751 	while (fgets(buff, sizeof(buff), fp)) {
4752 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4753 			info->type = val;
4754 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4755 			info->key_size = val;
4756 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4757 			info->value_size = val;
4758 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4759 			info->max_entries = val;
4760 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4761 			info->map_flags = val;
4762 	}
4763 
4764 	fclose(fp);
4765 
4766 	return 0;
4767 }
4768 
bpf_map__autocreate(const struct bpf_map * map)4769 bool bpf_map__autocreate(const struct bpf_map *map)
4770 {
4771 	return map->autocreate;
4772 }
4773 
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4774 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4775 {
4776 	if (map->obj->loaded)
4777 		return libbpf_err(-EBUSY);
4778 
4779 	map->autocreate = autocreate;
4780 	return 0;
4781 }
4782 
bpf_map__reuse_fd(struct bpf_map * map,int fd)4783 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4784 {
4785 	struct bpf_map_info info;
4786 	__u32 len = sizeof(info), name_len;
4787 	int new_fd, err;
4788 	char *new_name;
4789 
4790 	memset(&info, 0, len);
4791 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4792 	if (err && errno == EINVAL)
4793 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4794 	if (err)
4795 		return libbpf_err(err);
4796 
4797 	name_len = strlen(info.name);
4798 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4799 		new_name = strdup(map->name);
4800 	else
4801 		new_name = strdup(info.name);
4802 
4803 	if (!new_name)
4804 		return libbpf_err(-errno);
4805 
4806 	/*
4807 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4808 	 * This is similar to what we do in ensure_good_fd(), but without
4809 	 * closing original FD.
4810 	 */
4811 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4812 	if (new_fd < 0) {
4813 		err = -errno;
4814 		goto err_free_new_name;
4815 	}
4816 
4817 	err = reuse_fd(map->fd, new_fd);
4818 	if (err)
4819 		goto err_free_new_name;
4820 
4821 	free(map->name);
4822 
4823 	map->name = new_name;
4824 	map->def.type = info.type;
4825 	map->def.key_size = info.key_size;
4826 	map->def.value_size = info.value_size;
4827 	map->def.max_entries = info.max_entries;
4828 	map->def.map_flags = info.map_flags;
4829 	map->btf_key_type_id = info.btf_key_type_id;
4830 	map->btf_value_type_id = info.btf_value_type_id;
4831 	map->reused = true;
4832 	map->map_extra = info.map_extra;
4833 
4834 	return 0;
4835 
4836 err_free_new_name:
4837 	free(new_name);
4838 	return libbpf_err(err);
4839 }
4840 
bpf_map__max_entries(const struct bpf_map * map)4841 __u32 bpf_map__max_entries(const struct bpf_map *map)
4842 {
4843 	return map->def.max_entries;
4844 }
4845 
bpf_map__inner_map(struct bpf_map * map)4846 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4847 {
4848 	if (!bpf_map_type__is_map_in_map(map->def.type))
4849 		return errno = EINVAL, NULL;
4850 
4851 	return map->inner_map;
4852 }
4853 
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4854 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4855 {
4856 	if (map->obj->loaded)
4857 		return libbpf_err(-EBUSY);
4858 
4859 	map->def.max_entries = max_entries;
4860 
4861 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4862 	if (map_is_ringbuf(map))
4863 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4864 
4865 	return 0;
4866 }
4867 
bpf_object_prepare_token(struct bpf_object * obj)4868 static int bpf_object_prepare_token(struct bpf_object *obj)
4869 {
4870 	const char *bpffs_path;
4871 	int bpffs_fd = -1, token_fd, err;
4872 	bool mandatory;
4873 	enum libbpf_print_level level;
4874 
4875 	/* token is explicitly prevented */
4876 	if (obj->token_path && obj->token_path[0] == '\0') {
4877 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4878 		return 0;
4879 	}
4880 
4881 	mandatory = obj->token_path != NULL;
4882 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4883 
4884 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4885 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4886 	if (bpffs_fd < 0) {
4887 		err = -errno;
4888 		__pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4889 		     obj->name, err, bpffs_path,
4890 		     mandatory ? "" : ", skipping optional step...");
4891 		return mandatory ? err : 0;
4892 	}
4893 
4894 	token_fd = bpf_token_create(bpffs_fd, 0);
4895 	close(bpffs_fd);
4896 	if (token_fd < 0) {
4897 		if (!mandatory && token_fd == -ENOENT) {
4898 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4899 				 obj->name, bpffs_path);
4900 			return 0;
4901 		}
4902 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4903 		     obj->name, token_fd, bpffs_path,
4904 		     mandatory ? "" : ", skipping optional step...");
4905 		return mandatory ? token_fd : 0;
4906 	}
4907 
4908 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4909 	if (!obj->feat_cache) {
4910 		close(token_fd);
4911 		return -ENOMEM;
4912 	}
4913 
4914 	obj->token_fd = token_fd;
4915 	obj->feat_cache->token_fd = token_fd;
4916 
4917 	return 0;
4918 }
4919 
4920 static int
bpf_object__probe_loading(struct bpf_object * obj)4921 bpf_object__probe_loading(struct bpf_object *obj)
4922 {
4923 	char *cp, errmsg[STRERR_BUFSIZE];
4924 	struct bpf_insn insns[] = {
4925 		BPF_MOV64_IMM(BPF_REG_0, 0),
4926 		BPF_EXIT_INSN(),
4927 	};
4928 	int ret, insn_cnt = ARRAY_SIZE(insns);
4929 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
4930 		.token_fd = obj->token_fd,
4931 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
4932 	);
4933 
4934 	if (obj->gen_loader)
4935 		return 0;
4936 
4937 	ret = bump_rlimit_memlock();
4938 	if (ret)
4939 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4940 
4941 	/* make sure basic loading works */
4942 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
4943 	if (ret < 0)
4944 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
4945 	if (ret < 0) {
4946 		ret = errno;
4947 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4948 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4949 			"program. Make sure your kernel supports BPF "
4950 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4951 			"set to big enough value.\n", __func__, cp, ret);
4952 		return -ret;
4953 	}
4954 	close(ret);
4955 
4956 	return 0;
4957 }
4958 
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4959 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4960 {
4961 	if (obj->gen_loader)
4962 		/* To generate loader program assume the latest kernel
4963 		 * to avoid doing extra prog_load, map_create syscalls.
4964 		 */
4965 		return true;
4966 
4967 	if (obj->token_fd)
4968 		return feat_supported(obj->feat_cache, feat_id);
4969 
4970 	return feat_supported(NULL, feat_id);
4971 }
4972 
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4973 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4974 {
4975 	struct bpf_map_info map_info;
4976 	char msg[STRERR_BUFSIZE];
4977 	__u32 map_info_len = sizeof(map_info);
4978 	int err;
4979 
4980 	memset(&map_info, 0, map_info_len);
4981 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4982 	if (err && errno == EINVAL)
4983 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4984 	if (err) {
4985 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4986 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4987 		return false;
4988 	}
4989 
4990 	return (map_info.type == map->def.type &&
4991 		map_info.key_size == map->def.key_size &&
4992 		map_info.value_size == map->def.value_size &&
4993 		map_info.max_entries == map->def.max_entries &&
4994 		map_info.map_flags == map->def.map_flags &&
4995 		map_info.map_extra == map->map_extra);
4996 }
4997 
4998 static int
bpf_object__reuse_map(struct bpf_map * map)4999 bpf_object__reuse_map(struct bpf_map *map)
5000 {
5001 	char *cp, errmsg[STRERR_BUFSIZE];
5002 	int err, pin_fd;
5003 
5004 	pin_fd = bpf_obj_get(map->pin_path);
5005 	if (pin_fd < 0) {
5006 		err = -errno;
5007 		if (err == -ENOENT) {
5008 			pr_debug("found no pinned map to reuse at '%s'\n",
5009 				 map->pin_path);
5010 			return 0;
5011 		}
5012 
5013 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5014 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5015 			map->pin_path, cp);
5016 		return err;
5017 	}
5018 
5019 	if (!map_is_reuse_compat(map, pin_fd)) {
5020 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5021 			map->pin_path);
5022 		close(pin_fd);
5023 		return -EINVAL;
5024 	}
5025 
5026 	err = bpf_map__reuse_fd(map, pin_fd);
5027 	close(pin_fd);
5028 	if (err)
5029 		return err;
5030 
5031 	map->pinned = true;
5032 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5033 
5034 	return 0;
5035 }
5036 
5037 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5038 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5039 {
5040 	enum libbpf_map_type map_type = map->libbpf_type;
5041 	char *cp, errmsg[STRERR_BUFSIZE];
5042 	int err, zero = 0;
5043 
5044 	if (obj->gen_loader) {
5045 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5046 					 map->mmaped, map->def.value_size);
5047 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5048 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5049 		return 0;
5050 	}
5051 
5052 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5053 	if (err) {
5054 		err = -errno;
5055 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5056 		pr_warn("Error setting initial map(%s) contents: %s\n",
5057 			map->name, cp);
5058 		return err;
5059 	}
5060 
5061 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5062 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5063 		err = bpf_map_freeze(map->fd);
5064 		if (err) {
5065 			err = -errno;
5066 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5067 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5068 				map->name, cp);
5069 			return err;
5070 		}
5071 	}
5072 	return 0;
5073 }
5074 
5075 static void bpf_map__destroy(struct bpf_map *map);
5076 
map_is_created(const struct bpf_map * map)5077 static bool map_is_created(const struct bpf_map *map)
5078 {
5079 	return map->obj->loaded || map->reused;
5080 }
5081 
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5082 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5083 {
5084 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5085 	struct bpf_map_def *def = &map->def;
5086 	const char *map_name = NULL;
5087 	int err = 0, map_fd;
5088 
5089 	if (kernel_supports(obj, FEAT_PROG_NAME))
5090 		map_name = map->name;
5091 	create_attr.map_ifindex = map->map_ifindex;
5092 	create_attr.map_flags = def->map_flags;
5093 	create_attr.numa_node = map->numa_node;
5094 	create_attr.map_extra = map->map_extra;
5095 	create_attr.token_fd = obj->token_fd;
5096 	if (obj->token_fd)
5097 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5098 
5099 	if (bpf_map__is_struct_ops(map)) {
5100 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5101 		if (map->mod_btf_fd >= 0) {
5102 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5103 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5104 		}
5105 	}
5106 
5107 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5108 		create_attr.btf_fd = btf__fd(obj->btf);
5109 		create_attr.btf_key_type_id = map->btf_key_type_id;
5110 		create_attr.btf_value_type_id = map->btf_value_type_id;
5111 	}
5112 
5113 	if (bpf_map_type__is_map_in_map(def->type)) {
5114 		if (map->inner_map) {
5115 			err = map_set_def_max_entries(map->inner_map);
5116 			if (err)
5117 				return err;
5118 			err = bpf_object__create_map(obj, map->inner_map, true);
5119 			if (err) {
5120 				pr_warn("map '%s': failed to create inner map: %d\n",
5121 					map->name, err);
5122 				return err;
5123 			}
5124 			map->inner_map_fd = map->inner_map->fd;
5125 		}
5126 		if (map->inner_map_fd >= 0)
5127 			create_attr.inner_map_fd = map->inner_map_fd;
5128 	}
5129 
5130 	switch (def->type) {
5131 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5132 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5133 	case BPF_MAP_TYPE_STACK_TRACE:
5134 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5135 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5136 	case BPF_MAP_TYPE_DEVMAP:
5137 	case BPF_MAP_TYPE_DEVMAP_HASH:
5138 	case BPF_MAP_TYPE_CPUMAP:
5139 	case BPF_MAP_TYPE_XSKMAP:
5140 	case BPF_MAP_TYPE_SOCKMAP:
5141 	case BPF_MAP_TYPE_SOCKHASH:
5142 	case BPF_MAP_TYPE_QUEUE:
5143 	case BPF_MAP_TYPE_STACK:
5144 	case BPF_MAP_TYPE_ARENA:
5145 		create_attr.btf_fd = 0;
5146 		create_attr.btf_key_type_id = 0;
5147 		create_attr.btf_value_type_id = 0;
5148 		map->btf_key_type_id = 0;
5149 		map->btf_value_type_id = 0;
5150 		break;
5151 	case BPF_MAP_TYPE_STRUCT_OPS:
5152 		create_attr.btf_value_type_id = 0;
5153 		break;
5154 	default:
5155 		break;
5156 	}
5157 
5158 	if (obj->gen_loader) {
5159 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5160 				    def->key_size, def->value_size, def->max_entries,
5161 				    &create_attr, is_inner ? -1 : map - obj->maps);
5162 		/* We keep pretenting we have valid FD to pass various fd >= 0
5163 		 * checks by just keeping original placeholder FDs in place.
5164 		 * See bpf_object__add_map() comment.
5165 		 * This placeholder fd will not be used with any syscall and
5166 		 * will be reset to -1 eventually.
5167 		 */
5168 		map_fd = map->fd;
5169 	} else {
5170 		map_fd = bpf_map_create(def->type, map_name,
5171 					def->key_size, def->value_size,
5172 					def->max_entries, &create_attr);
5173 	}
5174 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5175 		char *cp, errmsg[STRERR_BUFSIZE];
5176 
5177 		err = -errno;
5178 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5179 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5180 			map->name, cp, err);
5181 		create_attr.btf_fd = 0;
5182 		create_attr.btf_key_type_id = 0;
5183 		create_attr.btf_value_type_id = 0;
5184 		map->btf_key_type_id = 0;
5185 		map->btf_value_type_id = 0;
5186 		map_fd = bpf_map_create(def->type, map_name,
5187 					def->key_size, def->value_size,
5188 					def->max_entries, &create_attr);
5189 	}
5190 
5191 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5192 		if (obj->gen_loader)
5193 			map->inner_map->fd = -1;
5194 		bpf_map__destroy(map->inner_map);
5195 		zfree(&map->inner_map);
5196 	}
5197 
5198 	if (map_fd < 0)
5199 		return map_fd;
5200 
5201 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5202 	if (map->fd == map_fd)
5203 		return 0;
5204 
5205 	/* Keep placeholder FD value but now point it to the BPF map object.
5206 	 * This way everything that relied on this map's FD (e.g., relocated
5207 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5208 	 * map->fd stays valid but now point to what map_fd points to.
5209 	 */
5210 	return reuse_fd(map->fd, map_fd);
5211 }
5212 
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5213 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5214 {
5215 	const struct bpf_map *targ_map;
5216 	unsigned int i;
5217 	int fd, err = 0;
5218 
5219 	for (i = 0; i < map->init_slots_sz; i++) {
5220 		if (!map->init_slots[i])
5221 			continue;
5222 
5223 		targ_map = map->init_slots[i];
5224 		fd = targ_map->fd;
5225 
5226 		if (obj->gen_loader) {
5227 			bpf_gen__populate_outer_map(obj->gen_loader,
5228 						    map - obj->maps, i,
5229 						    targ_map - obj->maps);
5230 		} else {
5231 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5232 		}
5233 		if (err) {
5234 			err = -errno;
5235 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5236 				map->name, i, targ_map->name, fd, err);
5237 			return err;
5238 		}
5239 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5240 			 map->name, i, targ_map->name, fd);
5241 	}
5242 
5243 	zfree(&map->init_slots);
5244 	map->init_slots_sz = 0;
5245 
5246 	return 0;
5247 }
5248 
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5249 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5250 {
5251 	const struct bpf_program *targ_prog;
5252 	unsigned int i;
5253 	int fd, err;
5254 
5255 	if (obj->gen_loader)
5256 		return -ENOTSUP;
5257 
5258 	for (i = 0; i < map->init_slots_sz; i++) {
5259 		if (!map->init_slots[i])
5260 			continue;
5261 
5262 		targ_prog = map->init_slots[i];
5263 		fd = bpf_program__fd(targ_prog);
5264 
5265 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5266 		if (err) {
5267 			err = -errno;
5268 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5269 				map->name, i, targ_prog->name, fd, err);
5270 			return err;
5271 		}
5272 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5273 			 map->name, i, targ_prog->name, fd);
5274 	}
5275 
5276 	zfree(&map->init_slots);
5277 	map->init_slots_sz = 0;
5278 
5279 	return 0;
5280 }
5281 
bpf_object_init_prog_arrays(struct bpf_object * obj)5282 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5283 {
5284 	struct bpf_map *map;
5285 	int i, err;
5286 
5287 	for (i = 0; i < obj->nr_maps; i++) {
5288 		map = &obj->maps[i];
5289 
5290 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5291 			continue;
5292 
5293 		err = init_prog_array_slots(obj, map);
5294 		if (err < 0)
5295 			return err;
5296 	}
5297 	return 0;
5298 }
5299 
map_set_def_max_entries(struct bpf_map * map)5300 static int map_set_def_max_entries(struct bpf_map *map)
5301 {
5302 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5303 		int nr_cpus;
5304 
5305 		nr_cpus = libbpf_num_possible_cpus();
5306 		if (nr_cpus < 0) {
5307 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5308 				map->name, nr_cpus);
5309 			return nr_cpus;
5310 		}
5311 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5312 		map->def.max_entries = nr_cpus;
5313 	}
5314 
5315 	return 0;
5316 }
5317 
5318 static int
bpf_object__create_maps(struct bpf_object * obj)5319 bpf_object__create_maps(struct bpf_object *obj)
5320 {
5321 	struct bpf_map *map;
5322 	char *cp, errmsg[STRERR_BUFSIZE];
5323 	unsigned int i, j;
5324 	int err;
5325 	bool retried;
5326 
5327 	for (i = 0; i < obj->nr_maps; i++) {
5328 		map = &obj->maps[i];
5329 
5330 		/* To support old kernels, we skip creating global data maps
5331 		 * (.rodata, .data, .kconfig, etc); later on, during program
5332 		 * loading, if we detect that at least one of the to-be-loaded
5333 		 * programs is referencing any global data map, we'll error
5334 		 * out with program name and relocation index logged.
5335 		 * This approach allows to accommodate Clang emitting
5336 		 * unnecessary .rodata.str1.1 sections for string literals,
5337 		 * but also it allows to have CO-RE applications that use
5338 		 * global variables in some of BPF programs, but not others.
5339 		 * If those global variable-using programs are not loaded at
5340 		 * runtime due to bpf_program__set_autoload(prog, false),
5341 		 * bpf_object loading will succeed just fine even on old
5342 		 * kernels.
5343 		 */
5344 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5345 			map->autocreate = false;
5346 
5347 		if (!map->autocreate) {
5348 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5349 			continue;
5350 		}
5351 
5352 		err = map_set_def_max_entries(map);
5353 		if (err)
5354 			goto err_out;
5355 
5356 		retried = false;
5357 retry:
5358 		if (map->pin_path) {
5359 			err = bpf_object__reuse_map(map);
5360 			if (err) {
5361 				pr_warn("map '%s': error reusing pinned map\n",
5362 					map->name);
5363 				goto err_out;
5364 			}
5365 			if (retried && map->fd < 0) {
5366 				pr_warn("map '%s': cannot find pinned map\n",
5367 					map->name);
5368 				err = -ENOENT;
5369 				goto err_out;
5370 			}
5371 		}
5372 
5373 		if (map->reused) {
5374 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5375 				 map->name, map->fd);
5376 		} else {
5377 			err = bpf_object__create_map(obj, map, false);
5378 			if (err)
5379 				goto err_out;
5380 
5381 			pr_debug("map '%s': created successfully, fd=%d\n",
5382 				 map->name, map->fd);
5383 
5384 			if (bpf_map__is_internal(map)) {
5385 				err = bpf_object__populate_internal_map(obj, map);
5386 				if (err < 0)
5387 					goto err_out;
5388 			}
5389 			if (map->def.type == BPF_MAP_TYPE_ARENA) {
5390 				map->mmaped = mmap((void *)(long)map->map_extra,
5391 						   bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5392 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5393 						   map->fd, 0);
5394 				if (map->mmaped == MAP_FAILED) {
5395 					err = -errno;
5396 					map->mmaped = NULL;
5397 					pr_warn("map '%s': failed to mmap arena: %d\n",
5398 						map->name, err);
5399 					return err;
5400 				}
5401 				if (obj->arena_data) {
5402 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5403 					zfree(&obj->arena_data);
5404 				}
5405 			}
5406 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5407 				err = init_map_in_map_slots(obj, map);
5408 				if (err < 0)
5409 					goto err_out;
5410 			}
5411 		}
5412 
5413 		if (map->pin_path && !map->pinned) {
5414 			err = bpf_map__pin(map, NULL);
5415 			if (err) {
5416 				if (!retried && err == -EEXIST) {
5417 					retried = true;
5418 					goto retry;
5419 				}
5420 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5421 					map->name, map->pin_path, err);
5422 				goto err_out;
5423 			}
5424 		}
5425 	}
5426 
5427 	return 0;
5428 
5429 err_out:
5430 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5431 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5432 	pr_perm_msg(err);
5433 	for (j = 0; j < i; j++)
5434 		zclose(obj->maps[j].fd);
5435 	return err;
5436 }
5437 
bpf_core_is_flavor_sep(const char * s)5438 static bool bpf_core_is_flavor_sep(const char *s)
5439 {
5440 	/* check X___Y name pattern, where X and Y are not underscores */
5441 	return s[0] != '_' &&				      /* X */
5442 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5443 	       s[4] != '_';				      /* Y */
5444 }
5445 
5446 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5447  * before last triple underscore. Struct name part after last triple
5448  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5449  */
bpf_core_essential_name_len(const char * name)5450 size_t bpf_core_essential_name_len(const char *name)
5451 {
5452 	size_t n = strlen(name);
5453 	int i;
5454 
5455 	for (i = n - 5; i >= 0; i--) {
5456 		if (bpf_core_is_flavor_sep(name + i))
5457 			return i + 1;
5458 	}
5459 	return n;
5460 }
5461 
bpf_core_free_cands(struct bpf_core_cand_list * cands)5462 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5463 {
5464 	if (!cands)
5465 		return;
5466 
5467 	free(cands->cands);
5468 	free(cands);
5469 }
5470 
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5471 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5472 		       size_t local_essent_len,
5473 		       const struct btf *targ_btf,
5474 		       const char *targ_btf_name,
5475 		       int targ_start_id,
5476 		       struct bpf_core_cand_list *cands)
5477 {
5478 	struct bpf_core_cand *new_cands, *cand;
5479 	const struct btf_type *t, *local_t;
5480 	const char *targ_name, *local_name;
5481 	size_t targ_essent_len;
5482 	int n, i;
5483 
5484 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5485 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5486 
5487 	n = btf__type_cnt(targ_btf);
5488 	for (i = targ_start_id; i < n; i++) {
5489 		t = btf__type_by_id(targ_btf, i);
5490 		if (!btf_kind_core_compat(t, local_t))
5491 			continue;
5492 
5493 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5494 		if (str_is_empty(targ_name))
5495 			continue;
5496 
5497 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5498 		if (targ_essent_len != local_essent_len)
5499 			continue;
5500 
5501 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5502 			continue;
5503 
5504 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5505 			 local_cand->id, btf_kind_str(local_t),
5506 			 local_name, i, btf_kind_str(t), targ_name,
5507 			 targ_btf_name);
5508 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5509 					      sizeof(*cands->cands));
5510 		if (!new_cands)
5511 			return -ENOMEM;
5512 
5513 		cand = &new_cands[cands->len];
5514 		cand->btf = targ_btf;
5515 		cand->id = i;
5516 
5517 		cands->cands = new_cands;
5518 		cands->len++;
5519 	}
5520 	return 0;
5521 }
5522 
load_module_btfs(struct bpf_object * obj)5523 static int load_module_btfs(struct bpf_object *obj)
5524 {
5525 	struct bpf_btf_info info;
5526 	struct module_btf *mod_btf;
5527 	struct btf *btf;
5528 	char name[64];
5529 	__u32 id = 0, len;
5530 	int err, fd;
5531 
5532 	if (obj->btf_modules_loaded)
5533 		return 0;
5534 
5535 	if (obj->gen_loader)
5536 		return 0;
5537 
5538 	/* don't do this again, even if we find no module BTFs */
5539 	obj->btf_modules_loaded = true;
5540 
5541 	/* kernel too old to support module BTFs */
5542 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5543 		return 0;
5544 
5545 	while (true) {
5546 		err = bpf_btf_get_next_id(id, &id);
5547 		if (err && errno == ENOENT)
5548 			return 0;
5549 		if (err && errno == EPERM) {
5550 			pr_debug("skipping module BTFs loading, missing privileges\n");
5551 			return 0;
5552 		}
5553 		if (err) {
5554 			err = -errno;
5555 			pr_warn("failed to iterate BTF objects: %d\n", err);
5556 			return err;
5557 		}
5558 
5559 		fd = bpf_btf_get_fd_by_id(id);
5560 		if (fd < 0) {
5561 			if (errno == ENOENT)
5562 				continue; /* expected race: BTF was unloaded */
5563 			err = -errno;
5564 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5565 			return err;
5566 		}
5567 
5568 		len = sizeof(info);
5569 		memset(&info, 0, sizeof(info));
5570 		info.name = ptr_to_u64(name);
5571 		info.name_len = sizeof(name);
5572 
5573 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5574 		if (err) {
5575 			err = -errno;
5576 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5577 			goto err_out;
5578 		}
5579 
5580 		/* ignore non-module BTFs */
5581 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5582 			close(fd);
5583 			continue;
5584 		}
5585 
5586 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5587 		err = libbpf_get_error(btf);
5588 		if (err) {
5589 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5590 				name, id, err);
5591 			goto err_out;
5592 		}
5593 
5594 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5595 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5596 		if (err)
5597 			goto err_out;
5598 
5599 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5600 
5601 		mod_btf->btf = btf;
5602 		mod_btf->id = id;
5603 		mod_btf->fd = fd;
5604 		mod_btf->name = strdup(name);
5605 		if (!mod_btf->name) {
5606 			err = -ENOMEM;
5607 			goto err_out;
5608 		}
5609 		continue;
5610 
5611 err_out:
5612 		close(fd);
5613 		return err;
5614 	}
5615 
5616 	return 0;
5617 }
5618 
5619 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5620 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5621 {
5622 	struct bpf_core_cand local_cand = {};
5623 	struct bpf_core_cand_list *cands;
5624 	const struct btf *main_btf;
5625 	const struct btf_type *local_t;
5626 	const char *local_name;
5627 	size_t local_essent_len;
5628 	int err, i;
5629 
5630 	local_cand.btf = local_btf;
5631 	local_cand.id = local_type_id;
5632 	local_t = btf__type_by_id(local_btf, local_type_id);
5633 	if (!local_t)
5634 		return ERR_PTR(-EINVAL);
5635 
5636 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5637 	if (str_is_empty(local_name))
5638 		return ERR_PTR(-EINVAL);
5639 	local_essent_len = bpf_core_essential_name_len(local_name);
5640 
5641 	cands = calloc(1, sizeof(*cands));
5642 	if (!cands)
5643 		return ERR_PTR(-ENOMEM);
5644 
5645 	/* Attempt to find target candidates in vmlinux BTF first */
5646 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5647 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5648 	if (err)
5649 		goto err_out;
5650 
5651 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5652 	if (cands->len)
5653 		return cands;
5654 
5655 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5656 	if (obj->btf_vmlinux_override)
5657 		return cands;
5658 
5659 	/* now look through module BTFs, trying to still find candidates */
5660 	err = load_module_btfs(obj);
5661 	if (err)
5662 		goto err_out;
5663 
5664 	for (i = 0; i < obj->btf_module_cnt; i++) {
5665 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5666 					 obj->btf_modules[i].btf,
5667 					 obj->btf_modules[i].name,
5668 					 btf__type_cnt(obj->btf_vmlinux),
5669 					 cands);
5670 		if (err)
5671 			goto err_out;
5672 	}
5673 
5674 	return cands;
5675 err_out:
5676 	bpf_core_free_cands(cands);
5677 	return ERR_PTR(err);
5678 }
5679 
5680 /* Check local and target types for compatibility. This check is used for
5681  * type-based CO-RE relocations and follow slightly different rules than
5682  * field-based relocations. This function assumes that root types were already
5683  * checked for name match. Beyond that initial root-level name check, names
5684  * are completely ignored. Compatibility rules are as follows:
5685  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5686  *     kind should match for local and target types (i.e., STRUCT is not
5687  *     compatible with UNION);
5688  *   - for ENUMs, the size is ignored;
5689  *   - for INT, size and signedness are ignored;
5690  *   - for ARRAY, dimensionality is ignored, element types are checked for
5691  *     compatibility recursively;
5692  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5693  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5694  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5695  *     number of input args and compatible return and argument types.
5696  * These rules are not set in stone and probably will be adjusted as we get
5697  * more experience with using BPF CO-RE relocations.
5698  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5699 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5700 			      const struct btf *targ_btf, __u32 targ_id)
5701 {
5702 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5703 }
5704 
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5705 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5706 			 const struct btf *targ_btf, __u32 targ_id)
5707 {
5708 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5709 }
5710 
bpf_core_hash_fn(const long key,void * ctx)5711 static size_t bpf_core_hash_fn(const long key, void *ctx)
5712 {
5713 	return key;
5714 }
5715 
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5716 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5717 {
5718 	return k1 == k2;
5719 }
5720 
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5721 static int record_relo_core(struct bpf_program *prog,
5722 			    const struct bpf_core_relo *core_relo, int insn_idx)
5723 {
5724 	struct reloc_desc *relos, *relo;
5725 
5726 	relos = libbpf_reallocarray(prog->reloc_desc,
5727 				    prog->nr_reloc + 1, sizeof(*relos));
5728 	if (!relos)
5729 		return -ENOMEM;
5730 	relo = &relos[prog->nr_reloc];
5731 	relo->type = RELO_CORE;
5732 	relo->insn_idx = insn_idx;
5733 	relo->core_relo = core_relo;
5734 	prog->reloc_desc = relos;
5735 	prog->nr_reloc++;
5736 	return 0;
5737 }
5738 
find_relo_core(struct bpf_program * prog,int insn_idx)5739 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5740 {
5741 	struct reloc_desc *relo;
5742 	int i;
5743 
5744 	for (i = 0; i < prog->nr_reloc; i++) {
5745 		relo = &prog->reloc_desc[i];
5746 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5747 			continue;
5748 
5749 		return relo->core_relo;
5750 	}
5751 
5752 	return NULL;
5753 }
5754 
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5755 static int bpf_core_resolve_relo(struct bpf_program *prog,
5756 				 const struct bpf_core_relo *relo,
5757 				 int relo_idx,
5758 				 const struct btf *local_btf,
5759 				 struct hashmap *cand_cache,
5760 				 struct bpf_core_relo_res *targ_res)
5761 {
5762 	struct bpf_core_spec specs_scratch[3] = {};
5763 	struct bpf_core_cand_list *cands = NULL;
5764 	const char *prog_name = prog->name;
5765 	const struct btf_type *local_type;
5766 	const char *local_name;
5767 	__u32 local_id = relo->type_id;
5768 	int err;
5769 
5770 	local_type = btf__type_by_id(local_btf, local_id);
5771 	if (!local_type)
5772 		return -EINVAL;
5773 
5774 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5775 	if (!local_name)
5776 		return -EINVAL;
5777 
5778 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5779 	    !hashmap__find(cand_cache, local_id, &cands)) {
5780 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5781 		if (IS_ERR(cands)) {
5782 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5783 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5784 				local_name, PTR_ERR(cands));
5785 			return PTR_ERR(cands);
5786 		}
5787 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5788 		if (err) {
5789 			bpf_core_free_cands(cands);
5790 			return err;
5791 		}
5792 	}
5793 
5794 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5795 				       targ_res);
5796 }
5797 
5798 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5799 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5800 {
5801 	const struct btf_ext_info_sec *sec;
5802 	struct bpf_core_relo_res targ_res;
5803 	const struct bpf_core_relo *rec;
5804 	const struct btf_ext_info *seg;
5805 	struct hashmap_entry *entry;
5806 	struct hashmap *cand_cache = NULL;
5807 	struct bpf_program *prog;
5808 	struct bpf_insn *insn;
5809 	const char *sec_name;
5810 	int i, err = 0, insn_idx, sec_idx, sec_num;
5811 
5812 	if (obj->btf_ext->core_relo_info.len == 0)
5813 		return 0;
5814 
5815 	if (targ_btf_path) {
5816 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5817 		err = libbpf_get_error(obj->btf_vmlinux_override);
5818 		if (err) {
5819 			pr_warn("failed to parse target BTF: %d\n", err);
5820 			return err;
5821 		}
5822 	}
5823 
5824 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5825 	if (IS_ERR(cand_cache)) {
5826 		err = PTR_ERR(cand_cache);
5827 		goto out;
5828 	}
5829 
5830 	seg = &obj->btf_ext->core_relo_info;
5831 	sec_num = 0;
5832 	for_each_btf_ext_sec(seg, sec) {
5833 		sec_idx = seg->sec_idxs[sec_num];
5834 		sec_num++;
5835 
5836 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5837 		if (str_is_empty(sec_name)) {
5838 			err = -EINVAL;
5839 			goto out;
5840 		}
5841 
5842 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5843 
5844 		for_each_btf_ext_rec(seg, sec, i, rec) {
5845 			if (rec->insn_off % BPF_INSN_SZ)
5846 				return -EINVAL;
5847 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5848 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5849 			if (!prog) {
5850 				/* When __weak subprog is "overridden" by another instance
5851 				 * of the subprog from a different object file, linker still
5852 				 * appends all the .BTF.ext info that used to belong to that
5853 				 * eliminated subprogram.
5854 				 * This is similar to what x86-64 linker does for relocations.
5855 				 * So just ignore such relocations just like we ignore
5856 				 * subprog instructions when discovering subprograms.
5857 				 */
5858 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5859 					 sec_name, i, insn_idx);
5860 				continue;
5861 			}
5862 			/* no need to apply CO-RE relocation if the program is
5863 			 * not going to be loaded
5864 			 */
5865 			if (!prog->autoload)
5866 				continue;
5867 
5868 			/* adjust insn_idx from section frame of reference to the local
5869 			 * program's frame of reference; (sub-)program code is not yet
5870 			 * relocated, so it's enough to just subtract in-section offset
5871 			 */
5872 			insn_idx = insn_idx - prog->sec_insn_off;
5873 			if (insn_idx >= prog->insns_cnt)
5874 				return -EINVAL;
5875 			insn = &prog->insns[insn_idx];
5876 
5877 			err = record_relo_core(prog, rec, insn_idx);
5878 			if (err) {
5879 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5880 					prog->name, i, err);
5881 				goto out;
5882 			}
5883 
5884 			if (prog->obj->gen_loader)
5885 				continue;
5886 
5887 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5888 			if (err) {
5889 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5890 					prog->name, i, err);
5891 				goto out;
5892 			}
5893 
5894 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5895 			if (err) {
5896 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5897 					prog->name, i, insn_idx, err);
5898 				goto out;
5899 			}
5900 		}
5901 	}
5902 
5903 out:
5904 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5905 	btf__free(obj->btf_vmlinux_override);
5906 	obj->btf_vmlinux_override = NULL;
5907 
5908 	if (!IS_ERR_OR_NULL(cand_cache)) {
5909 		hashmap__for_each_entry(cand_cache, entry, i) {
5910 			bpf_core_free_cands(entry->pvalue);
5911 		}
5912 		hashmap__free(cand_cache);
5913 	}
5914 	return err;
5915 }
5916 
5917 /* base map load ldimm64 special constant, used also for log fixup logic */
5918 #define POISON_LDIMM64_MAP_BASE 2001000000
5919 #define POISON_LDIMM64_MAP_PFX "200100"
5920 
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5921 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5922 			       int insn_idx, struct bpf_insn *insn,
5923 			       int map_idx, const struct bpf_map *map)
5924 {
5925 	int i;
5926 
5927 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5928 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5929 
5930 	/* we turn single ldimm64 into two identical invalid calls */
5931 	for (i = 0; i < 2; i++) {
5932 		insn->code = BPF_JMP | BPF_CALL;
5933 		insn->dst_reg = 0;
5934 		insn->src_reg = 0;
5935 		insn->off = 0;
5936 		/* if this instruction is reachable (not a dead code),
5937 		 * verifier will complain with something like:
5938 		 * invalid func unknown#2001000123
5939 		 * where lower 123 is map index into obj->maps[] array
5940 		 */
5941 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5942 
5943 		insn++;
5944 	}
5945 }
5946 
5947 /* unresolved kfunc call special constant, used also for log fixup logic */
5948 #define POISON_CALL_KFUNC_BASE 2002000000
5949 #define POISON_CALL_KFUNC_PFX "2002"
5950 
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)5951 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5952 			      int insn_idx, struct bpf_insn *insn,
5953 			      int ext_idx, const struct extern_desc *ext)
5954 {
5955 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5956 		 prog->name, relo_idx, insn_idx, ext->name);
5957 
5958 	/* we turn kfunc call into invalid helper call with identifiable constant */
5959 	insn->code = BPF_JMP | BPF_CALL;
5960 	insn->dst_reg = 0;
5961 	insn->src_reg = 0;
5962 	insn->off = 0;
5963 	/* if this instruction is reachable (not a dead code),
5964 	 * verifier will complain with something like:
5965 	 * invalid func unknown#2001000123
5966 	 * where lower 123 is extern index into obj->externs[] array
5967 	 */
5968 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5969 }
5970 
5971 /* Relocate data references within program code:
5972  *  - map references;
5973  *  - global variable references;
5974  *  - extern references.
5975  */
5976 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5977 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5978 {
5979 	int i;
5980 
5981 	for (i = 0; i < prog->nr_reloc; i++) {
5982 		struct reloc_desc *relo = &prog->reloc_desc[i];
5983 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5984 		const struct bpf_map *map;
5985 		struct extern_desc *ext;
5986 
5987 		switch (relo->type) {
5988 		case RELO_LD64:
5989 			map = &obj->maps[relo->map_idx];
5990 			if (obj->gen_loader) {
5991 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5992 				insn[0].imm = relo->map_idx;
5993 			} else if (map->autocreate) {
5994 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5995 				insn[0].imm = map->fd;
5996 			} else {
5997 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5998 						   relo->map_idx, map);
5999 			}
6000 			break;
6001 		case RELO_DATA:
6002 			map = &obj->maps[relo->map_idx];
6003 			insn[1].imm = insn[0].imm + relo->sym_off;
6004 			if (obj->gen_loader) {
6005 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6006 				insn[0].imm = relo->map_idx;
6007 			} else if (map->autocreate) {
6008 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6009 				insn[0].imm = map->fd;
6010 			} else {
6011 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6012 						   relo->map_idx, map);
6013 			}
6014 			break;
6015 		case RELO_EXTERN_LD64:
6016 			ext = &obj->externs[relo->ext_idx];
6017 			if (ext->type == EXT_KCFG) {
6018 				if (obj->gen_loader) {
6019 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6020 					insn[0].imm = obj->kconfig_map_idx;
6021 				} else {
6022 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6023 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6024 				}
6025 				insn[1].imm = ext->kcfg.data_off;
6026 			} else /* EXT_KSYM */ {
6027 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6028 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6029 					insn[0].imm = ext->ksym.kernel_btf_id;
6030 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6031 				} else { /* typeless ksyms or unresolved typed ksyms */
6032 					insn[0].imm = (__u32)ext->ksym.addr;
6033 					insn[1].imm = ext->ksym.addr >> 32;
6034 				}
6035 			}
6036 			break;
6037 		case RELO_EXTERN_CALL:
6038 			ext = &obj->externs[relo->ext_idx];
6039 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6040 			if (ext->is_set) {
6041 				insn[0].imm = ext->ksym.kernel_btf_id;
6042 				insn[0].off = ext->ksym.btf_fd_idx;
6043 			} else { /* unresolved weak kfunc call */
6044 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6045 						  relo->ext_idx, ext);
6046 			}
6047 			break;
6048 		case RELO_SUBPROG_ADDR:
6049 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6050 				pr_warn("prog '%s': relo #%d: bad insn\n",
6051 					prog->name, i);
6052 				return -EINVAL;
6053 			}
6054 			/* handled already */
6055 			break;
6056 		case RELO_CALL:
6057 			/* handled already */
6058 			break;
6059 		case RELO_CORE:
6060 			/* will be handled by bpf_program_record_relos() */
6061 			break;
6062 		default:
6063 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6064 				prog->name, i, relo->type);
6065 			return -EINVAL;
6066 		}
6067 	}
6068 
6069 	return 0;
6070 }
6071 
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6072 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6073 				    const struct bpf_program *prog,
6074 				    const struct btf_ext_info *ext_info,
6075 				    void **prog_info, __u32 *prog_rec_cnt,
6076 				    __u32 *prog_rec_sz)
6077 {
6078 	void *copy_start = NULL, *copy_end = NULL;
6079 	void *rec, *rec_end, *new_prog_info;
6080 	const struct btf_ext_info_sec *sec;
6081 	size_t old_sz, new_sz;
6082 	int i, sec_num, sec_idx, off_adj;
6083 
6084 	sec_num = 0;
6085 	for_each_btf_ext_sec(ext_info, sec) {
6086 		sec_idx = ext_info->sec_idxs[sec_num];
6087 		sec_num++;
6088 		if (prog->sec_idx != sec_idx)
6089 			continue;
6090 
6091 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6092 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6093 
6094 			if (insn_off < prog->sec_insn_off)
6095 				continue;
6096 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6097 				break;
6098 
6099 			if (!copy_start)
6100 				copy_start = rec;
6101 			copy_end = rec + ext_info->rec_size;
6102 		}
6103 
6104 		if (!copy_start)
6105 			return -ENOENT;
6106 
6107 		/* append func/line info of a given (sub-)program to the main
6108 		 * program func/line info
6109 		 */
6110 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6111 		new_sz = old_sz + (copy_end - copy_start);
6112 		new_prog_info = realloc(*prog_info, new_sz);
6113 		if (!new_prog_info)
6114 			return -ENOMEM;
6115 		*prog_info = new_prog_info;
6116 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6117 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6118 
6119 		/* Kernel instruction offsets are in units of 8-byte
6120 		 * instructions, while .BTF.ext instruction offsets generated
6121 		 * by Clang are in units of bytes. So convert Clang offsets
6122 		 * into kernel offsets and adjust offset according to program
6123 		 * relocated position.
6124 		 */
6125 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6126 		rec = new_prog_info + old_sz;
6127 		rec_end = new_prog_info + new_sz;
6128 		for (; rec < rec_end; rec += ext_info->rec_size) {
6129 			__u32 *insn_off = rec;
6130 
6131 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6132 		}
6133 		*prog_rec_sz = ext_info->rec_size;
6134 		return 0;
6135 	}
6136 
6137 	return -ENOENT;
6138 }
6139 
6140 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6141 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6142 			      struct bpf_program *main_prog,
6143 			      const struct bpf_program *prog)
6144 {
6145 	int err;
6146 
6147 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6148 	 * support func/line info
6149 	 */
6150 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6151 		return 0;
6152 
6153 	/* only attempt func info relocation if main program's func_info
6154 	 * relocation was successful
6155 	 */
6156 	if (main_prog != prog && !main_prog->func_info)
6157 		goto line_info;
6158 
6159 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6160 				       &main_prog->func_info,
6161 				       &main_prog->func_info_cnt,
6162 				       &main_prog->func_info_rec_size);
6163 	if (err) {
6164 		if (err != -ENOENT) {
6165 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6166 				prog->name, err);
6167 			return err;
6168 		}
6169 		if (main_prog->func_info) {
6170 			/*
6171 			 * Some info has already been found but has problem
6172 			 * in the last btf_ext reloc. Must have to error out.
6173 			 */
6174 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6175 			return err;
6176 		}
6177 		/* Have problem loading the very first info. Ignore the rest. */
6178 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6179 			prog->name);
6180 	}
6181 
6182 line_info:
6183 	/* don't relocate line info if main program's relocation failed */
6184 	if (main_prog != prog && !main_prog->line_info)
6185 		return 0;
6186 
6187 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6188 				       &main_prog->line_info,
6189 				       &main_prog->line_info_cnt,
6190 				       &main_prog->line_info_rec_size);
6191 	if (err) {
6192 		if (err != -ENOENT) {
6193 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6194 				prog->name, err);
6195 			return err;
6196 		}
6197 		if (main_prog->line_info) {
6198 			/*
6199 			 * Some info has already been found but has problem
6200 			 * in the last btf_ext reloc. Must have to error out.
6201 			 */
6202 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6203 			return err;
6204 		}
6205 		/* Have problem loading the very first info. Ignore the rest. */
6206 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6207 			prog->name);
6208 	}
6209 	return 0;
6210 }
6211 
cmp_relo_by_insn_idx(const void * key,const void * elem)6212 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6213 {
6214 	size_t insn_idx = *(const size_t *)key;
6215 	const struct reloc_desc *relo = elem;
6216 
6217 	if (insn_idx == relo->insn_idx)
6218 		return 0;
6219 	return insn_idx < relo->insn_idx ? -1 : 1;
6220 }
6221 
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6222 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6223 {
6224 	if (!prog->nr_reloc)
6225 		return NULL;
6226 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6227 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6228 }
6229 
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6230 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6231 {
6232 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6233 	struct reloc_desc *relos;
6234 	int i;
6235 
6236 	if (main_prog == subprog)
6237 		return 0;
6238 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6239 	/* if new count is zero, reallocarray can return a valid NULL result;
6240 	 * in this case the previous pointer will be freed, so we *have to*
6241 	 * reassign old pointer to the new value (even if it's NULL)
6242 	 */
6243 	if (!relos && new_cnt)
6244 		return -ENOMEM;
6245 	if (subprog->nr_reloc)
6246 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6247 		       sizeof(*relos) * subprog->nr_reloc);
6248 
6249 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6250 		relos[i].insn_idx += subprog->sub_insn_off;
6251 	/* After insn_idx adjustment the 'relos' array is still sorted
6252 	 * by insn_idx and doesn't break bsearch.
6253 	 */
6254 	main_prog->reloc_desc = relos;
6255 	main_prog->nr_reloc = new_cnt;
6256 	return 0;
6257 }
6258 
6259 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6260 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6261 				struct bpf_program *subprog)
6262 {
6263        struct bpf_insn *insns;
6264        size_t new_cnt;
6265        int err;
6266 
6267        subprog->sub_insn_off = main_prog->insns_cnt;
6268 
6269        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6270        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6271        if (!insns) {
6272                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6273                return -ENOMEM;
6274        }
6275        main_prog->insns = insns;
6276        main_prog->insns_cnt = new_cnt;
6277 
6278        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6279               subprog->insns_cnt * sizeof(*insns));
6280 
6281        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6282                 main_prog->name, subprog->insns_cnt, subprog->name);
6283 
6284        /* The subprog insns are now appended. Append its relos too. */
6285        err = append_subprog_relos(main_prog, subprog);
6286        if (err)
6287                return err;
6288        return 0;
6289 }
6290 
6291 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6292 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6293 		       struct bpf_program *prog)
6294 {
6295 	size_t sub_insn_idx, insn_idx;
6296 	struct bpf_program *subprog;
6297 	struct reloc_desc *relo;
6298 	struct bpf_insn *insn;
6299 	int err;
6300 
6301 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6302 	if (err)
6303 		return err;
6304 
6305 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6306 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6307 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6308 			continue;
6309 
6310 		relo = find_prog_insn_relo(prog, insn_idx);
6311 		if (relo && relo->type == RELO_EXTERN_CALL)
6312 			/* kfunc relocations will be handled later
6313 			 * in bpf_object__relocate_data()
6314 			 */
6315 			continue;
6316 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6317 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6318 				prog->name, insn_idx, relo->type);
6319 			return -LIBBPF_ERRNO__RELOC;
6320 		}
6321 		if (relo) {
6322 			/* sub-program instruction index is a combination of
6323 			 * an offset of a symbol pointed to by relocation and
6324 			 * call instruction's imm field; for global functions,
6325 			 * call always has imm = -1, but for static functions
6326 			 * relocation is against STT_SECTION and insn->imm
6327 			 * points to a start of a static function
6328 			 *
6329 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6330 			 * the byte offset in the corresponding section.
6331 			 */
6332 			if (relo->type == RELO_CALL)
6333 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6334 			else
6335 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6336 		} else if (insn_is_pseudo_func(insn)) {
6337 			/*
6338 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6339 			 * functions are in the same section, so it shouldn't reach here.
6340 			 */
6341 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6342 				prog->name, insn_idx);
6343 			return -LIBBPF_ERRNO__RELOC;
6344 		} else {
6345 			/* if subprogram call is to a static function within
6346 			 * the same ELF section, there won't be any relocation
6347 			 * emitted, but it also means there is no additional
6348 			 * offset necessary, insns->imm is relative to
6349 			 * instruction's original position within the section
6350 			 */
6351 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6352 		}
6353 
6354 		/* we enforce that sub-programs should be in .text section */
6355 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6356 		if (!subprog) {
6357 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6358 				prog->name);
6359 			return -LIBBPF_ERRNO__RELOC;
6360 		}
6361 
6362 		/* if it's the first call instruction calling into this
6363 		 * subprogram (meaning this subprog hasn't been processed
6364 		 * yet) within the context of current main program:
6365 		 *   - append it at the end of main program's instructions blog;
6366 		 *   - process is recursively, while current program is put on hold;
6367 		 *   - if that subprogram calls some other not yet processes
6368 		 *   subprogram, same thing will happen recursively until
6369 		 *   there are no more unprocesses subprograms left to append
6370 		 *   and relocate.
6371 		 */
6372 		if (subprog->sub_insn_off == 0) {
6373 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6374 			if (err)
6375 				return err;
6376 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6377 			if (err)
6378 				return err;
6379 		}
6380 
6381 		/* main_prog->insns memory could have been re-allocated, so
6382 		 * calculate pointer again
6383 		 */
6384 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6385 		/* calculate correct instruction position within current main
6386 		 * prog; each main prog can have a different set of
6387 		 * subprograms appended (potentially in different order as
6388 		 * well), so position of any subprog can be different for
6389 		 * different main programs
6390 		 */
6391 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6392 
6393 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6394 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6395 	}
6396 
6397 	return 0;
6398 }
6399 
6400 /*
6401  * Relocate sub-program calls.
6402  *
6403  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6404  * main prog) is processed separately. For each subprog (non-entry functions,
6405  * that can be called from either entry progs or other subprogs) gets their
6406  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6407  * hasn't been yet appended and relocated within current main prog. Once its
6408  * relocated, sub_insn_off will point at the position within current main prog
6409  * where given subprog was appended. This will further be used to relocate all
6410  * the call instructions jumping into this subprog.
6411  *
6412  * We start with main program and process all call instructions. If the call
6413  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6414  * is zero), subprog instructions are appended at the end of main program's
6415  * instruction array. Then main program is "put on hold" while we recursively
6416  * process newly appended subprogram. If that subprogram calls into another
6417  * subprogram that hasn't been appended, new subprogram is appended again to
6418  * the *main* prog's instructions (subprog's instructions are always left
6419  * untouched, as they need to be in unmodified state for subsequent main progs
6420  * and subprog instructions are always sent only as part of a main prog) and
6421  * the process continues recursively. Once all the subprogs called from a main
6422  * prog or any of its subprogs are appended (and relocated), all their
6423  * positions within finalized instructions array are known, so it's easy to
6424  * rewrite call instructions with correct relative offsets, corresponding to
6425  * desired target subprog.
6426  *
6427  * Its important to realize that some subprogs might not be called from some
6428  * main prog and any of its called/used subprogs. Those will keep their
6429  * subprog->sub_insn_off as zero at all times and won't be appended to current
6430  * main prog and won't be relocated within the context of current main prog.
6431  * They might still be used from other main progs later.
6432  *
6433  * Visually this process can be shown as below. Suppose we have two main
6434  * programs mainA and mainB and BPF object contains three subprogs: subA,
6435  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6436  * subC both call subB:
6437  *
6438  *        +--------+ +-------+
6439  *        |        v v       |
6440  *     +--+---+ +--+-+-+ +---+--+
6441  *     | subA | | subB | | subC |
6442  *     +--+---+ +------+ +---+--+
6443  *        ^                  ^
6444  *        |                  |
6445  *    +---+-------+   +------+----+
6446  *    |   mainA   |   |   mainB   |
6447  *    +-----------+   +-----------+
6448  *
6449  * We'll start relocating mainA, will find subA, append it and start
6450  * processing sub A recursively:
6451  *
6452  *    +-----------+------+
6453  *    |   mainA   | subA |
6454  *    +-----------+------+
6455  *
6456  * At this point we notice that subB is used from subA, so we append it and
6457  * relocate (there are no further subcalls from subB):
6458  *
6459  *    +-----------+------+------+
6460  *    |   mainA   | subA | subB |
6461  *    +-----------+------+------+
6462  *
6463  * At this point, we relocate subA calls, then go one level up and finish with
6464  * relocatin mainA calls. mainA is done.
6465  *
6466  * For mainB process is similar but results in different order. We start with
6467  * mainB and skip subA and subB, as mainB never calls them (at least
6468  * directly), but we see subC is needed, so we append and start processing it:
6469  *
6470  *    +-----------+------+
6471  *    |   mainB   | subC |
6472  *    +-----------+------+
6473  * Now we see subC needs subB, so we go back to it, append and relocate it:
6474  *
6475  *    +-----------+------+------+
6476  *    |   mainB   | subC | subB |
6477  *    +-----------+------+------+
6478  *
6479  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6480  */
6481 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6482 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6483 {
6484 	struct bpf_program *subprog;
6485 	int i, err;
6486 
6487 	/* mark all subprogs as not relocated (yet) within the context of
6488 	 * current main program
6489 	 */
6490 	for (i = 0; i < obj->nr_programs; i++) {
6491 		subprog = &obj->programs[i];
6492 		if (!prog_is_subprog(obj, subprog))
6493 			continue;
6494 
6495 		subprog->sub_insn_off = 0;
6496 	}
6497 
6498 	err = bpf_object__reloc_code(obj, prog, prog);
6499 	if (err)
6500 		return err;
6501 
6502 	return 0;
6503 }
6504 
6505 static void
bpf_object__free_relocs(struct bpf_object * obj)6506 bpf_object__free_relocs(struct bpf_object *obj)
6507 {
6508 	struct bpf_program *prog;
6509 	int i;
6510 
6511 	/* free up relocation descriptors */
6512 	for (i = 0; i < obj->nr_programs; i++) {
6513 		prog = &obj->programs[i];
6514 		zfree(&prog->reloc_desc);
6515 		prog->nr_reloc = 0;
6516 	}
6517 }
6518 
cmp_relocs(const void * _a,const void * _b)6519 static int cmp_relocs(const void *_a, const void *_b)
6520 {
6521 	const struct reloc_desc *a = _a;
6522 	const struct reloc_desc *b = _b;
6523 
6524 	if (a->insn_idx != b->insn_idx)
6525 		return a->insn_idx < b->insn_idx ? -1 : 1;
6526 
6527 	/* no two relocations should have the same insn_idx, but ... */
6528 	if (a->type != b->type)
6529 		return a->type < b->type ? -1 : 1;
6530 
6531 	return 0;
6532 }
6533 
bpf_object__sort_relos(struct bpf_object * obj)6534 static void bpf_object__sort_relos(struct bpf_object *obj)
6535 {
6536 	int i;
6537 
6538 	for (i = 0; i < obj->nr_programs; i++) {
6539 		struct bpf_program *p = &obj->programs[i];
6540 
6541 		if (!p->nr_reloc)
6542 			continue;
6543 
6544 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6545 	}
6546 }
6547 
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6548 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6549 {
6550 	const char *str = "exception_callback:";
6551 	size_t pfx_len = strlen(str);
6552 	int i, j, n;
6553 
6554 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6555 		return 0;
6556 
6557 	n = btf__type_cnt(obj->btf);
6558 	for (i = 1; i < n; i++) {
6559 		const char *name;
6560 		struct btf_type *t;
6561 
6562 		t = btf_type_by_id(obj->btf, i);
6563 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6564 			continue;
6565 
6566 		name = btf__str_by_offset(obj->btf, t->name_off);
6567 		if (strncmp(name, str, pfx_len) != 0)
6568 			continue;
6569 
6570 		t = btf_type_by_id(obj->btf, t->type);
6571 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6572 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6573 				prog->name);
6574 			return -EINVAL;
6575 		}
6576 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6577 			continue;
6578 		/* Multiple callbacks are specified for the same prog,
6579 		 * the verifier will eventually return an error for this
6580 		 * case, hence simply skip appending a subprog.
6581 		 */
6582 		if (prog->exception_cb_idx >= 0) {
6583 			prog->exception_cb_idx = -1;
6584 			break;
6585 		}
6586 
6587 		name += pfx_len;
6588 		if (str_is_empty(name)) {
6589 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6590 				prog->name);
6591 			return -EINVAL;
6592 		}
6593 
6594 		for (j = 0; j < obj->nr_programs; j++) {
6595 			struct bpf_program *subprog = &obj->programs[j];
6596 
6597 			if (!prog_is_subprog(obj, subprog))
6598 				continue;
6599 			if (strcmp(name, subprog->name) != 0)
6600 				continue;
6601 			/* Enforce non-hidden, as from verifier point of
6602 			 * view it expects global functions, whereas the
6603 			 * mark_btf_static fixes up linkage as static.
6604 			 */
6605 			if (!subprog->sym_global || subprog->mark_btf_static) {
6606 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6607 					prog->name, subprog->name);
6608 				return -EINVAL;
6609 			}
6610 			/* Let's see if we already saw a static exception callback with the same name */
6611 			if (prog->exception_cb_idx >= 0) {
6612 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6613 					prog->name, subprog->name);
6614 				return -EINVAL;
6615 			}
6616 			prog->exception_cb_idx = j;
6617 			break;
6618 		}
6619 
6620 		if (prog->exception_cb_idx >= 0)
6621 			continue;
6622 
6623 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6624 		return -ENOENT;
6625 	}
6626 
6627 	return 0;
6628 }
6629 
6630 static struct {
6631 	enum bpf_prog_type prog_type;
6632 	const char *ctx_name;
6633 } global_ctx_map[] = {
6634 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6635 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6636 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6637 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6638 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6639 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6640 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6641 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6642 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6643 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6644 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6645 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6646 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6647 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6648 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6649 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6650 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6651 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6652 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6653 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6654 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6655 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6656 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6657 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6658 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6659 	/* all other program types don't have "named" context structs */
6660 };
6661 
6662 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6663  * for below __builtin_types_compatible_p() checks;
6664  * with this approach we don't need any extra arch-specific #ifdef guards
6665  */
6666 struct pt_regs;
6667 struct user_pt_regs;
6668 struct user_regs_struct;
6669 
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6670 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6671 				     const char *subprog_name, int arg_idx,
6672 				     int arg_type_id, const char *ctx_name)
6673 {
6674 	const struct btf_type *t;
6675 	const char *tname;
6676 
6677 	/* check if existing parameter already matches verifier expectations */
6678 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6679 	if (!btf_is_ptr(t))
6680 		goto out_warn;
6681 
6682 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6683 	 * and perf_event programs, so check this case early on and forget
6684 	 * about it for subsequent checks
6685 	 */
6686 	while (btf_is_mod(t))
6687 		t = btf__type_by_id(btf, t->type);
6688 	if (btf_is_typedef(t) &&
6689 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6690 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6691 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6692 			return false; /* canonical type for kprobe/perf_event */
6693 	}
6694 
6695 	/* now we can ignore typedefs moving forward */
6696 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6697 
6698 	/* if it's `void *`, definitely fix up BTF info */
6699 	if (btf_is_void(t))
6700 		return true;
6701 
6702 	/* if it's already proper canonical type, no need to fix up */
6703 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6704 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6705 		return false;
6706 
6707 	/* special cases */
6708 	switch (prog->type) {
6709 	case BPF_PROG_TYPE_KPROBE:
6710 		/* `struct pt_regs *` is expected, but we need to fix up */
6711 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6712 			return true;
6713 		break;
6714 	case BPF_PROG_TYPE_PERF_EVENT:
6715 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6716 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6717 			return true;
6718 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6719 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6720 			return true;
6721 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6722 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6723 			return true;
6724 		break;
6725 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6726 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6727 		/* allow u64* as ctx */
6728 		if (btf_is_int(t) && t->size == 8)
6729 			return true;
6730 		break;
6731 	default:
6732 		break;
6733 	}
6734 
6735 out_warn:
6736 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6737 		prog->name, subprog_name, arg_idx, ctx_name);
6738 	return false;
6739 }
6740 
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6741 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6742 {
6743 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6744 	int i, err, arg_cnt, fn_name_off, linkage;
6745 	struct btf_type *fn_t, *fn_proto_t, *t;
6746 	struct btf_param *p;
6747 
6748 	/* caller already validated FUNC -> FUNC_PROTO validity */
6749 	fn_t = btf_type_by_id(btf, orig_fn_id);
6750 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6751 
6752 	/* Note that each btf__add_xxx() operation invalidates
6753 	 * all btf_type and string pointers, so we need to be
6754 	 * very careful when cloning BTF types. BTF type
6755 	 * pointers have to be always refetched. And to avoid
6756 	 * problems with invalidated string pointers, we
6757 	 * add empty strings initially, then just fix up
6758 	 * name_off offsets in place. Offsets are stable for
6759 	 * existing strings, so that works out.
6760 	 */
6761 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6762 	linkage = btf_func_linkage(fn_t);
6763 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6764 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6765 	arg_cnt = btf_vlen(fn_proto_t);
6766 
6767 	/* clone FUNC_PROTO and its params */
6768 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6769 	if (fn_proto_id < 0)
6770 		return -EINVAL;
6771 
6772 	for (i = 0; i < arg_cnt; i++) {
6773 		int name_off;
6774 
6775 		/* copy original parameter data */
6776 		t = btf_type_by_id(btf, orig_proto_id);
6777 		p = &btf_params(t)[i];
6778 		name_off = p->name_off;
6779 
6780 		err = btf__add_func_param(btf, "", p->type);
6781 		if (err)
6782 			return err;
6783 
6784 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6785 		p = &btf_params(fn_proto_t)[i];
6786 		p->name_off = name_off; /* use remembered str offset */
6787 	}
6788 
6789 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6790 	 * entry program's name as a placeholder, which we replace immediately
6791 	 * with original name_off
6792 	 */
6793 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6794 	if (fn_id < 0)
6795 		return -EINVAL;
6796 
6797 	fn_t = btf_type_by_id(btf, fn_id);
6798 	fn_t->name_off = fn_name_off; /* reuse original string */
6799 
6800 	return fn_id;
6801 }
6802 
6803 /* Check if main program or global subprog's function prototype has `arg:ctx`
6804  * argument tags, and, if necessary, substitute correct type to match what BPF
6805  * verifier would expect, taking into account specific program type. This
6806  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6807  * have a native support for it in the verifier, making user's life much
6808  * easier.
6809  */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6810 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6811 {
6812 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6813 	struct bpf_func_info_min *func_rec;
6814 	struct btf_type *fn_t, *fn_proto_t;
6815 	struct btf *btf = obj->btf;
6816 	const struct btf_type *t;
6817 	struct btf_param *p;
6818 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6819 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6820 	int *orig_ids;
6821 
6822 	/* no .BTF.ext, no problem */
6823 	if (!obj->btf_ext || !prog->func_info)
6824 		return 0;
6825 
6826 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6827 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6828 		return 0;
6829 
6830 	/* some BPF program types just don't have named context structs, so
6831 	 * this fallback mechanism doesn't work for them
6832 	 */
6833 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6834 		if (global_ctx_map[i].prog_type != prog->type)
6835 			continue;
6836 		ctx_name = global_ctx_map[i].ctx_name;
6837 		break;
6838 	}
6839 	if (!ctx_name)
6840 		return 0;
6841 
6842 	/* remember original func BTF IDs to detect if we already cloned them */
6843 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6844 	if (!orig_ids)
6845 		return -ENOMEM;
6846 	for (i = 0; i < prog->func_info_cnt; i++) {
6847 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6848 		orig_ids[i] = func_rec->type_id;
6849 	}
6850 
6851 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6852 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6853 	 * clone and adjust FUNC -> FUNC_PROTO combo
6854 	 */
6855 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6856 		/* only DECL_TAG with "arg:ctx" value are interesting */
6857 		t = btf__type_by_id(btf, i);
6858 		if (!btf_is_decl_tag(t))
6859 			continue;
6860 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6861 			continue;
6862 
6863 		/* only global funcs need adjustment, if at all */
6864 		orig_fn_id = t->type;
6865 		fn_t = btf_type_by_id(btf, orig_fn_id);
6866 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6867 			continue;
6868 
6869 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6870 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6871 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6872 			continue;
6873 
6874 		/* find corresponding func_info record */
6875 		func_rec = NULL;
6876 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6877 			if (orig_ids[rec_idx] == t->type) {
6878 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6879 				break;
6880 			}
6881 		}
6882 		/* current main program doesn't call into this subprog */
6883 		if (!func_rec)
6884 			continue;
6885 
6886 		/* some more sanity checking of DECL_TAG */
6887 		arg_cnt = btf_vlen(fn_proto_t);
6888 		arg_idx = btf_decl_tag(t)->component_idx;
6889 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6890 			continue;
6891 
6892 		/* check if we should fix up argument type */
6893 		p = &btf_params(fn_proto_t)[arg_idx];
6894 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6895 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6896 			continue;
6897 
6898 		/* clone fn/fn_proto, unless we already did it for another arg */
6899 		if (func_rec->type_id == orig_fn_id) {
6900 			int fn_id;
6901 
6902 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6903 			if (fn_id < 0) {
6904 				err = fn_id;
6905 				goto err_out;
6906 			}
6907 
6908 			/* point func_info record to a cloned FUNC type */
6909 			func_rec->type_id = fn_id;
6910 		}
6911 
6912 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6913 		 * we do it just once per main BPF program, as all global
6914 		 * funcs share the same program type, so need only PTR ->
6915 		 * STRUCT type chain
6916 		 */
6917 		if (ptr_id == 0) {
6918 			struct_id = btf__add_struct(btf, ctx_name, 0);
6919 			ptr_id = btf__add_ptr(btf, struct_id);
6920 			if (ptr_id < 0 || struct_id < 0) {
6921 				err = -EINVAL;
6922 				goto err_out;
6923 			}
6924 		}
6925 
6926 		/* for completeness, clone DECL_TAG and point it to cloned param */
6927 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
6928 		if (tag_id < 0) {
6929 			err = -EINVAL;
6930 			goto err_out;
6931 		}
6932 
6933 		/* all the BTF manipulations invalidated pointers, refetch them */
6934 		fn_t = btf_type_by_id(btf, func_rec->type_id);
6935 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6936 
6937 		/* fix up type ID pointed to by param */
6938 		p = &btf_params(fn_proto_t)[arg_idx];
6939 		p->type = ptr_id;
6940 	}
6941 
6942 	free(orig_ids);
6943 	return 0;
6944 err_out:
6945 	free(orig_ids);
6946 	return err;
6947 }
6948 
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6949 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6950 {
6951 	struct bpf_program *prog;
6952 	size_t i, j;
6953 	int err;
6954 
6955 	if (obj->btf_ext) {
6956 		err = bpf_object__relocate_core(obj, targ_btf_path);
6957 		if (err) {
6958 			pr_warn("failed to perform CO-RE relocations: %d\n",
6959 				err);
6960 			return err;
6961 		}
6962 		bpf_object__sort_relos(obj);
6963 	}
6964 
6965 	/* Before relocating calls pre-process relocations and mark
6966 	 * few ld_imm64 instructions that points to subprogs.
6967 	 * Otherwise bpf_object__reloc_code() later would have to consider
6968 	 * all ld_imm64 insns as relocation candidates. That would
6969 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6970 	 * would increase and most of them will fail to find a relo.
6971 	 */
6972 	for (i = 0; i < obj->nr_programs; i++) {
6973 		prog = &obj->programs[i];
6974 		for (j = 0; j < prog->nr_reloc; j++) {
6975 			struct reloc_desc *relo = &prog->reloc_desc[j];
6976 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6977 
6978 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6979 			if (relo->type == RELO_SUBPROG_ADDR)
6980 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6981 		}
6982 	}
6983 
6984 	/* relocate subprogram calls and append used subprograms to main
6985 	 * programs; each copy of subprogram code needs to be relocated
6986 	 * differently for each main program, because its code location might
6987 	 * have changed.
6988 	 * Append subprog relos to main programs to allow data relos to be
6989 	 * processed after text is completely relocated.
6990 	 */
6991 	for (i = 0; i < obj->nr_programs; i++) {
6992 		prog = &obj->programs[i];
6993 		/* sub-program's sub-calls are relocated within the context of
6994 		 * its main program only
6995 		 */
6996 		if (prog_is_subprog(obj, prog))
6997 			continue;
6998 		if (!prog->autoload)
6999 			continue;
7000 
7001 		err = bpf_object__relocate_calls(obj, prog);
7002 		if (err) {
7003 			pr_warn("prog '%s': failed to relocate calls: %d\n",
7004 				prog->name, err);
7005 			return err;
7006 		}
7007 
7008 		err = bpf_prog_assign_exc_cb(obj, prog);
7009 		if (err)
7010 			return err;
7011 		/* Now, also append exception callback if it has not been done already. */
7012 		if (prog->exception_cb_idx >= 0) {
7013 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7014 
7015 			/* Calling exception callback directly is disallowed, which the
7016 			 * verifier will reject later. In case it was processed already,
7017 			 * we can skip this step, otherwise for all other valid cases we
7018 			 * have to append exception callback now.
7019 			 */
7020 			if (subprog->sub_insn_off == 0) {
7021 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7022 				if (err)
7023 					return err;
7024 				err = bpf_object__reloc_code(obj, prog, subprog);
7025 				if (err)
7026 					return err;
7027 			}
7028 		}
7029 	}
7030 	for (i = 0; i < obj->nr_programs; i++) {
7031 		prog = &obj->programs[i];
7032 		if (prog_is_subprog(obj, prog))
7033 			continue;
7034 		if (!prog->autoload)
7035 			continue;
7036 
7037 		/* Process data relos for main programs */
7038 		err = bpf_object__relocate_data(obj, prog);
7039 		if (err) {
7040 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7041 				prog->name, err);
7042 			return err;
7043 		}
7044 
7045 		/* Fix up .BTF.ext information, if necessary */
7046 		err = bpf_program_fixup_func_info(obj, prog);
7047 		if (err) {
7048 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7049 				prog->name, err);
7050 			return err;
7051 		}
7052 	}
7053 
7054 	return 0;
7055 }
7056 
7057 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7058 					    Elf64_Shdr *shdr, Elf_Data *data);
7059 
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7060 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7061 					 Elf64_Shdr *shdr, Elf_Data *data)
7062 {
7063 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7064 	int i, j, nrels, new_sz;
7065 	const struct btf_var_secinfo *vi = NULL;
7066 	const struct btf_type *sec, *var, *def;
7067 	struct bpf_map *map = NULL, *targ_map = NULL;
7068 	struct bpf_program *targ_prog = NULL;
7069 	bool is_prog_array, is_map_in_map;
7070 	const struct btf_member *member;
7071 	const char *name, *mname, *type;
7072 	unsigned int moff;
7073 	Elf64_Sym *sym;
7074 	Elf64_Rel *rel;
7075 	void *tmp;
7076 
7077 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7078 		return -EINVAL;
7079 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7080 	if (!sec)
7081 		return -EINVAL;
7082 
7083 	nrels = shdr->sh_size / shdr->sh_entsize;
7084 	for (i = 0; i < nrels; i++) {
7085 		rel = elf_rel_by_idx(data, i);
7086 		if (!rel) {
7087 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7088 			return -LIBBPF_ERRNO__FORMAT;
7089 		}
7090 
7091 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7092 		if (!sym) {
7093 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7094 				i, (size_t)ELF64_R_SYM(rel->r_info));
7095 			return -LIBBPF_ERRNO__FORMAT;
7096 		}
7097 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7098 
7099 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7100 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7101 			 (size_t)rel->r_offset, sym->st_name, name);
7102 
7103 		for (j = 0; j < obj->nr_maps; j++) {
7104 			map = &obj->maps[j];
7105 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7106 				continue;
7107 
7108 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7109 			if (vi->offset <= rel->r_offset &&
7110 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7111 				break;
7112 		}
7113 		if (j == obj->nr_maps) {
7114 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7115 				i, name, (size_t)rel->r_offset);
7116 			return -EINVAL;
7117 		}
7118 
7119 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7120 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7121 		type = is_map_in_map ? "map" : "prog";
7122 		if (is_map_in_map) {
7123 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7124 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7125 					i, name);
7126 				return -LIBBPF_ERRNO__RELOC;
7127 			}
7128 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7129 			    map->def.key_size != sizeof(int)) {
7130 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7131 					i, map->name, sizeof(int));
7132 				return -EINVAL;
7133 			}
7134 			targ_map = bpf_object__find_map_by_name(obj, name);
7135 			if (!targ_map) {
7136 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7137 					i, name);
7138 				return -ESRCH;
7139 			}
7140 		} else if (is_prog_array) {
7141 			targ_prog = bpf_object__find_program_by_name(obj, name);
7142 			if (!targ_prog) {
7143 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7144 					i, name);
7145 				return -ESRCH;
7146 			}
7147 			if (targ_prog->sec_idx != sym->st_shndx ||
7148 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7149 			    prog_is_subprog(obj, targ_prog)) {
7150 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7151 					i, name);
7152 				return -LIBBPF_ERRNO__RELOC;
7153 			}
7154 		} else {
7155 			return -EINVAL;
7156 		}
7157 
7158 		var = btf__type_by_id(obj->btf, vi->type);
7159 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7160 		if (btf_vlen(def) == 0)
7161 			return -EINVAL;
7162 		member = btf_members(def) + btf_vlen(def) - 1;
7163 		mname = btf__name_by_offset(obj->btf, member->name_off);
7164 		if (strcmp(mname, "values"))
7165 			return -EINVAL;
7166 
7167 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7168 		if (rel->r_offset - vi->offset < moff)
7169 			return -EINVAL;
7170 
7171 		moff = rel->r_offset - vi->offset - moff;
7172 		/* here we use BPF pointer size, which is always 64 bit, as we
7173 		 * are parsing ELF that was built for BPF target
7174 		 */
7175 		if (moff % bpf_ptr_sz)
7176 			return -EINVAL;
7177 		moff /= bpf_ptr_sz;
7178 		if (moff >= map->init_slots_sz) {
7179 			new_sz = moff + 1;
7180 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7181 			if (!tmp)
7182 				return -ENOMEM;
7183 			map->init_slots = tmp;
7184 			memset(map->init_slots + map->init_slots_sz, 0,
7185 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7186 			map->init_slots_sz = new_sz;
7187 		}
7188 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7189 
7190 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7191 			 i, map->name, moff, type, name);
7192 	}
7193 
7194 	return 0;
7195 }
7196 
bpf_object__collect_relos(struct bpf_object * obj)7197 static int bpf_object__collect_relos(struct bpf_object *obj)
7198 {
7199 	int i, err;
7200 
7201 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7202 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7203 		Elf64_Shdr *shdr;
7204 		Elf_Data *data;
7205 		int idx;
7206 
7207 		if (sec_desc->sec_type != SEC_RELO)
7208 			continue;
7209 
7210 		shdr = sec_desc->shdr;
7211 		data = sec_desc->data;
7212 		idx = shdr->sh_info;
7213 
7214 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7215 			pr_warn("internal error at %d\n", __LINE__);
7216 			return -LIBBPF_ERRNO__INTERNAL;
7217 		}
7218 
7219 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7220 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7221 		else if (idx == obj->efile.btf_maps_shndx)
7222 			err = bpf_object__collect_map_relos(obj, shdr, data);
7223 		else
7224 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7225 		if (err)
7226 			return err;
7227 	}
7228 
7229 	bpf_object__sort_relos(obj);
7230 	return 0;
7231 }
7232 
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7233 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7234 {
7235 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7236 	    BPF_OP(insn->code) == BPF_CALL &&
7237 	    BPF_SRC(insn->code) == BPF_K &&
7238 	    insn->src_reg == 0 &&
7239 	    insn->dst_reg == 0) {
7240 		    *func_id = insn->imm;
7241 		    return true;
7242 	}
7243 	return false;
7244 }
7245 
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7246 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7247 {
7248 	struct bpf_insn *insn = prog->insns;
7249 	enum bpf_func_id func_id;
7250 	int i;
7251 
7252 	if (obj->gen_loader)
7253 		return 0;
7254 
7255 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7256 		if (!insn_is_helper_call(insn, &func_id))
7257 			continue;
7258 
7259 		/* on kernels that don't yet support
7260 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7261 		 * to bpf_probe_read() which works well for old kernels
7262 		 */
7263 		switch (func_id) {
7264 		case BPF_FUNC_probe_read_kernel:
7265 		case BPF_FUNC_probe_read_user:
7266 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7267 				insn->imm = BPF_FUNC_probe_read;
7268 			break;
7269 		case BPF_FUNC_probe_read_kernel_str:
7270 		case BPF_FUNC_probe_read_user_str:
7271 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7272 				insn->imm = BPF_FUNC_probe_read_str;
7273 			break;
7274 		default:
7275 			break;
7276 		}
7277 	}
7278 	return 0;
7279 }
7280 
7281 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7282 				     int *btf_obj_fd, int *btf_type_id);
7283 
7284 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7285 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7286 				    struct bpf_prog_load_opts *opts, long cookie)
7287 {
7288 	enum sec_def_flags def = cookie;
7289 
7290 	/* old kernels might not support specifying expected_attach_type */
7291 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7292 		opts->expected_attach_type = 0;
7293 
7294 	if (def & SEC_SLEEPABLE)
7295 		opts->prog_flags |= BPF_F_SLEEPABLE;
7296 
7297 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7298 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7299 
7300 	/* special check for usdt to use uprobe_multi link */
7301 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7302 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7303 
7304 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7305 		int btf_obj_fd = 0, btf_type_id = 0, err;
7306 		const char *attach_name;
7307 
7308 		attach_name = strchr(prog->sec_name, '/');
7309 		if (!attach_name) {
7310 			/* if BPF program is annotated with just SEC("fentry")
7311 			 * (or similar) without declaratively specifying
7312 			 * target, then it is expected that target will be
7313 			 * specified with bpf_program__set_attach_target() at
7314 			 * runtime before BPF object load step. If not, then
7315 			 * there is nothing to load into the kernel as BPF
7316 			 * verifier won't be able to validate BPF program
7317 			 * correctness anyways.
7318 			 */
7319 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7320 				prog->name);
7321 			return -EINVAL;
7322 		}
7323 		attach_name++; /* skip over / */
7324 
7325 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7326 		if (err)
7327 			return err;
7328 
7329 		/* cache resolved BTF FD and BTF type ID in the prog */
7330 		prog->attach_btf_obj_fd = btf_obj_fd;
7331 		prog->attach_btf_id = btf_type_id;
7332 
7333 		/* but by now libbpf common logic is not utilizing
7334 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7335 		 * this callback is called after opts were populated by
7336 		 * libbpf, so this callback has to update opts explicitly here
7337 		 */
7338 		opts->attach_btf_obj_fd = btf_obj_fd;
7339 		opts->attach_btf_id = btf_type_id;
7340 	}
7341 	return 0;
7342 }
7343 
7344 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7345 
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7346 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7347 				struct bpf_insn *insns, int insns_cnt,
7348 				const char *license, __u32 kern_version, int *prog_fd)
7349 {
7350 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7351 	const char *prog_name = NULL;
7352 	char *cp, errmsg[STRERR_BUFSIZE];
7353 	size_t log_buf_size = 0;
7354 	char *log_buf = NULL, *tmp;
7355 	bool own_log_buf = true;
7356 	__u32 log_level = prog->log_level;
7357 	int ret, err;
7358 
7359 	/* Be more helpful by rejecting programs that can't be validated early
7360 	 * with more meaningful and actionable error message.
7361 	 */
7362 	switch (prog->type) {
7363 	case BPF_PROG_TYPE_UNSPEC:
7364 		/*
7365 		 * The program type must be set.  Most likely we couldn't find a proper
7366 		 * section definition at load time, and thus we didn't infer the type.
7367 		 */
7368 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7369 			prog->name, prog->sec_name);
7370 		return -EINVAL;
7371 	case BPF_PROG_TYPE_STRUCT_OPS:
7372 		if (prog->attach_btf_id == 0) {
7373 			pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7374 				prog->name);
7375 			return -EINVAL;
7376 		}
7377 		break;
7378 	default:
7379 		break;
7380 	}
7381 
7382 	if (!insns || !insns_cnt)
7383 		return -EINVAL;
7384 
7385 	if (kernel_supports(obj, FEAT_PROG_NAME))
7386 		prog_name = prog->name;
7387 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7388 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7389 	load_attr.attach_btf_id = prog->attach_btf_id;
7390 	load_attr.kern_version = kern_version;
7391 	load_attr.prog_ifindex = prog->prog_ifindex;
7392 
7393 	/* specify func_info/line_info only if kernel supports them */
7394 	if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7395 		load_attr.prog_btf_fd = btf__fd(obj->btf);
7396 		load_attr.func_info = prog->func_info;
7397 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7398 		load_attr.func_info_cnt = prog->func_info_cnt;
7399 		load_attr.line_info = prog->line_info;
7400 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7401 		load_attr.line_info_cnt = prog->line_info_cnt;
7402 	}
7403 	load_attr.log_level = log_level;
7404 	load_attr.prog_flags = prog->prog_flags;
7405 	load_attr.fd_array = obj->fd_array;
7406 
7407 	load_attr.token_fd = obj->token_fd;
7408 	if (obj->token_fd)
7409 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7410 
7411 	/* adjust load_attr if sec_def provides custom preload callback */
7412 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7413 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7414 		if (err < 0) {
7415 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7416 				prog->name, err);
7417 			return err;
7418 		}
7419 		insns = prog->insns;
7420 		insns_cnt = prog->insns_cnt;
7421 	}
7422 
7423 	/* allow prog_prepare_load_fn to change expected_attach_type */
7424 	load_attr.expected_attach_type = prog->expected_attach_type;
7425 
7426 	if (obj->gen_loader) {
7427 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7428 				   license, insns, insns_cnt, &load_attr,
7429 				   prog - obj->programs);
7430 		*prog_fd = -1;
7431 		return 0;
7432 	}
7433 
7434 retry_load:
7435 	/* if log_level is zero, we don't request logs initially even if
7436 	 * custom log_buf is specified; if the program load fails, then we'll
7437 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7438 	 * our own and retry the load to get details on what failed
7439 	 */
7440 	if (log_level) {
7441 		if (prog->log_buf) {
7442 			log_buf = prog->log_buf;
7443 			log_buf_size = prog->log_size;
7444 			own_log_buf = false;
7445 		} else if (obj->log_buf) {
7446 			log_buf = obj->log_buf;
7447 			log_buf_size = obj->log_size;
7448 			own_log_buf = false;
7449 		} else {
7450 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7451 			tmp = realloc(log_buf, log_buf_size);
7452 			if (!tmp) {
7453 				ret = -ENOMEM;
7454 				goto out;
7455 			}
7456 			log_buf = tmp;
7457 			log_buf[0] = '\0';
7458 			own_log_buf = true;
7459 		}
7460 	}
7461 
7462 	load_attr.log_buf = log_buf;
7463 	load_attr.log_size = log_buf_size;
7464 	load_attr.log_level = log_level;
7465 
7466 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7467 	if (ret >= 0) {
7468 		if (log_level && own_log_buf) {
7469 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7470 				 prog->name, log_buf);
7471 		}
7472 
7473 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7474 			struct bpf_map *map;
7475 			int i;
7476 
7477 			for (i = 0; i < obj->nr_maps; i++) {
7478 				map = &prog->obj->maps[i];
7479 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7480 					continue;
7481 
7482 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7483 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7484 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7485 						prog->name, map->real_name, cp);
7486 					/* Don't fail hard if can't bind rodata. */
7487 				}
7488 			}
7489 		}
7490 
7491 		*prog_fd = ret;
7492 		ret = 0;
7493 		goto out;
7494 	}
7495 
7496 	if (log_level == 0) {
7497 		log_level = 1;
7498 		goto retry_load;
7499 	}
7500 	/* On ENOSPC, increase log buffer size and retry, unless custom
7501 	 * log_buf is specified.
7502 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7503 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7504 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7505 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7506 	 */
7507 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7508 		goto retry_load;
7509 
7510 	ret = -errno;
7511 
7512 	/* post-process verifier log to improve error descriptions */
7513 	fixup_verifier_log(prog, log_buf, log_buf_size);
7514 
7515 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7516 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7517 	pr_perm_msg(ret);
7518 
7519 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7520 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7521 			prog->name, log_buf);
7522 	}
7523 
7524 out:
7525 	if (own_log_buf)
7526 		free(log_buf);
7527 	return ret;
7528 }
7529 
find_prev_line(char * buf,char * cur)7530 static char *find_prev_line(char *buf, char *cur)
7531 {
7532 	char *p;
7533 
7534 	if (cur == buf) /* end of a log buf */
7535 		return NULL;
7536 
7537 	p = cur - 1;
7538 	while (p - 1 >= buf && *(p - 1) != '\n')
7539 		p--;
7540 
7541 	return p;
7542 }
7543 
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7544 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7545 		      char *orig, size_t orig_sz, const char *patch)
7546 {
7547 	/* size of the remaining log content to the right from the to-be-replaced part */
7548 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7549 	size_t patch_sz = strlen(patch);
7550 
7551 	if (patch_sz != orig_sz) {
7552 		/* If patch line(s) are longer than original piece of verifier log,
7553 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7554 		 * starting from after to-be-replaced part of the log.
7555 		 *
7556 		 * If patch line(s) are shorter than original piece of verifier log,
7557 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7558 		 * starting from after to-be-replaced part of the log
7559 		 *
7560 		 * We need to be careful about not overflowing available
7561 		 * buf_sz capacity. If that's the case, we'll truncate the end
7562 		 * of the original log, as necessary.
7563 		 */
7564 		if (patch_sz > orig_sz) {
7565 			if (orig + patch_sz >= buf + buf_sz) {
7566 				/* patch is big enough to cover remaining space completely */
7567 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7568 				rem_sz = 0;
7569 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7570 				/* patch causes part of remaining log to be truncated */
7571 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7572 			}
7573 		}
7574 		/* shift remaining log to the right by calculated amount */
7575 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7576 	}
7577 
7578 	memcpy(orig, patch, patch_sz);
7579 }
7580 
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7581 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7582 				       char *buf, size_t buf_sz, size_t log_sz,
7583 				       char *line1, char *line2, char *line3)
7584 {
7585 	/* Expected log for failed and not properly guarded CO-RE relocation:
7586 	 * line1 -> 123: (85) call unknown#195896080
7587 	 * line2 -> invalid func unknown#195896080
7588 	 * line3 -> <anything else or end of buffer>
7589 	 *
7590 	 * "123" is the index of the instruction that was poisoned. We extract
7591 	 * instruction index to find corresponding CO-RE relocation and
7592 	 * replace this part of the log with more relevant information about
7593 	 * failed CO-RE relocation.
7594 	 */
7595 	const struct bpf_core_relo *relo;
7596 	struct bpf_core_spec spec;
7597 	char patch[512], spec_buf[256];
7598 	int insn_idx, err, spec_len;
7599 
7600 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7601 		return;
7602 
7603 	relo = find_relo_core(prog, insn_idx);
7604 	if (!relo)
7605 		return;
7606 
7607 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7608 	if (err)
7609 		return;
7610 
7611 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7612 	snprintf(patch, sizeof(patch),
7613 		 "%d: <invalid CO-RE relocation>\n"
7614 		 "failed to resolve CO-RE relocation %s%s\n",
7615 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7616 
7617 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7618 }
7619 
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7620 static void fixup_log_missing_map_load(struct bpf_program *prog,
7621 				       char *buf, size_t buf_sz, size_t log_sz,
7622 				       char *line1, char *line2, char *line3)
7623 {
7624 	/* Expected log for failed and not properly guarded map reference:
7625 	 * line1 -> 123: (85) call unknown#2001000345
7626 	 * line2 -> invalid func unknown#2001000345
7627 	 * line3 -> <anything else or end of buffer>
7628 	 *
7629 	 * "123" is the index of the instruction that was poisoned.
7630 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7631 	 */
7632 	struct bpf_object *obj = prog->obj;
7633 	const struct bpf_map *map;
7634 	int insn_idx, map_idx;
7635 	char patch[128];
7636 
7637 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7638 		return;
7639 
7640 	map_idx -= POISON_LDIMM64_MAP_BASE;
7641 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7642 		return;
7643 	map = &obj->maps[map_idx];
7644 
7645 	snprintf(patch, sizeof(patch),
7646 		 "%d: <invalid BPF map reference>\n"
7647 		 "BPF map '%s' is referenced but wasn't created\n",
7648 		 insn_idx, map->name);
7649 
7650 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7651 }
7652 
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7653 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7654 					 char *buf, size_t buf_sz, size_t log_sz,
7655 					 char *line1, char *line2, char *line3)
7656 {
7657 	/* Expected log for failed and not properly guarded kfunc call:
7658 	 * line1 -> 123: (85) call unknown#2002000345
7659 	 * line2 -> invalid func unknown#2002000345
7660 	 * line3 -> <anything else or end of buffer>
7661 	 *
7662 	 * "123" is the index of the instruction that was poisoned.
7663 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7664 	 */
7665 	struct bpf_object *obj = prog->obj;
7666 	const struct extern_desc *ext;
7667 	int insn_idx, ext_idx;
7668 	char patch[128];
7669 
7670 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7671 		return;
7672 
7673 	ext_idx -= POISON_CALL_KFUNC_BASE;
7674 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7675 		return;
7676 	ext = &obj->externs[ext_idx];
7677 
7678 	snprintf(patch, sizeof(patch),
7679 		 "%d: <invalid kfunc call>\n"
7680 		 "kfunc '%s' is referenced but wasn't resolved\n",
7681 		 insn_idx, ext->name);
7682 
7683 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7684 }
7685 
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7686 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7687 {
7688 	/* look for familiar error patterns in last N lines of the log */
7689 	const size_t max_last_line_cnt = 10;
7690 	char *prev_line, *cur_line, *next_line;
7691 	size_t log_sz;
7692 	int i;
7693 
7694 	if (!buf)
7695 		return;
7696 
7697 	log_sz = strlen(buf) + 1;
7698 	next_line = buf + log_sz - 1;
7699 
7700 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7701 		cur_line = find_prev_line(buf, next_line);
7702 		if (!cur_line)
7703 			return;
7704 
7705 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7706 			prev_line = find_prev_line(buf, cur_line);
7707 			if (!prev_line)
7708 				continue;
7709 
7710 			/* failed CO-RE relocation case */
7711 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7712 						   prev_line, cur_line, next_line);
7713 			return;
7714 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7715 			prev_line = find_prev_line(buf, cur_line);
7716 			if (!prev_line)
7717 				continue;
7718 
7719 			/* reference to uncreated BPF map */
7720 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7721 						   prev_line, cur_line, next_line);
7722 			return;
7723 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7724 			prev_line = find_prev_line(buf, cur_line);
7725 			if (!prev_line)
7726 				continue;
7727 
7728 			/* reference to unresolved kfunc */
7729 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7730 						     prev_line, cur_line, next_line);
7731 			return;
7732 		}
7733 	}
7734 }
7735 
bpf_program_record_relos(struct bpf_program * prog)7736 static int bpf_program_record_relos(struct bpf_program *prog)
7737 {
7738 	struct bpf_object *obj = prog->obj;
7739 	int i;
7740 
7741 	for (i = 0; i < prog->nr_reloc; i++) {
7742 		struct reloc_desc *relo = &prog->reloc_desc[i];
7743 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7744 		int kind;
7745 
7746 		switch (relo->type) {
7747 		case RELO_EXTERN_LD64:
7748 			if (ext->type != EXT_KSYM)
7749 				continue;
7750 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7751 				BTF_KIND_VAR : BTF_KIND_FUNC;
7752 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7753 					       ext->is_weak, !ext->ksym.type_id,
7754 					       true, kind, relo->insn_idx);
7755 			break;
7756 		case RELO_EXTERN_CALL:
7757 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7758 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7759 					       relo->insn_idx);
7760 			break;
7761 		case RELO_CORE: {
7762 			struct bpf_core_relo cr = {
7763 				.insn_off = relo->insn_idx * 8,
7764 				.type_id = relo->core_relo->type_id,
7765 				.access_str_off = relo->core_relo->access_str_off,
7766 				.kind = relo->core_relo->kind,
7767 			};
7768 
7769 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7770 			break;
7771 		}
7772 		default:
7773 			continue;
7774 		}
7775 	}
7776 	return 0;
7777 }
7778 
7779 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7780 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7781 {
7782 	struct bpf_program *prog;
7783 	size_t i;
7784 	int err;
7785 
7786 	for (i = 0; i < obj->nr_programs; i++) {
7787 		prog = &obj->programs[i];
7788 		err = bpf_object__sanitize_prog(obj, prog);
7789 		if (err)
7790 			return err;
7791 	}
7792 
7793 	for (i = 0; i < obj->nr_programs; i++) {
7794 		prog = &obj->programs[i];
7795 		if (prog_is_subprog(obj, prog))
7796 			continue;
7797 		if (!prog->autoload) {
7798 			pr_debug("prog '%s': skipped loading\n", prog->name);
7799 			continue;
7800 		}
7801 		prog->log_level |= log_level;
7802 
7803 		if (obj->gen_loader)
7804 			bpf_program_record_relos(prog);
7805 
7806 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7807 					   obj->license, obj->kern_version, &prog->fd);
7808 		if (err) {
7809 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7810 			return err;
7811 		}
7812 	}
7813 
7814 	bpf_object__free_relocs(obj);
7815 	return 0;
7816 }
7817 
7818 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7819 
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7820 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7821 {
7822 	struct bpf_program *prog;
7823 	int err;
7824 
7825 	bpf_object__for_each_program(prog, obj) {
7826 		prog->sec_def = find_sec_def(prog->sec_name);
7827 		if (!prog->sec_def) {
7828 			/* couldn't guess, but user might manually specify */
7829 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7830 				prog->name, prog->sec_name);
7831 			continue;
7832 		}
7833 
7834 		prog->type = prog->sec_def->prog_type;
7835 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7836 
7837 		/* sec_def can have custom callback which should be called
7838 		 * after bpf_program is initialized to adjust its properties
7839 		 */
7840 		if (prog->sec_def->prog_setup_fn) {
7841 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7842 			if (err < 0) {
7843 				pr_warn("prog '%s': failed to initialize: %d\n",
7844 					prog->name, err);
7845 				return err;
7846 			}
7847 		}
7848 	}
7849 
7850 	return 0;
7851 }
7852 
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7853 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7854 					  const struct bpf_object_open_opts *opts)
7855 {
7856 	const char *obj_name, *kconfig, *btf_tmp_path, *token_path;
7857 	struct bpf_object *obj;
7858 	char tmp_name[64];
7859 	int err;
7860 	char *log_buf;
7861 	size_t log_size;
7862 	__u32 log_level;
7863 
7864 	if (elf_version(EV_CURRENT) == EV_NONE) {
7865 		pr_warn("failed to init libelf for %s\n",
7866 			path ? : "(mem buf)");
7867 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7868 	}
7869 
7870 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7871 		return ERR_PTR(-EINVAL);
7872 
7873 	obj_name = OPTS_GET(opts, object_name, NULL);
7874 	if (obj_buf) {
7875 		if (!obj_name) {
7876 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7877 				 (unsigned long)obj_buf,
7878 				 (unsigned long)obj_buf_sz);
7879 			obj_name = tmp_name;
7880 		}
7881 		path = obj_name;
7882 		pr_debug("loading object '%s' from buffer\n", obj_name);
7883 	}
7884 
7885 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7886 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7887 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7888 	if (log_size > UINT_MAX)
7889 		return ERR_PTR(-EINVAL);
7890 	if (log_size && !log_buf)
7891 		return ERR_PTR(-EINVAL);
7892 
7893 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
7894 	/* if user didn't specify bpf_token_path explicitly, check if
7895 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7896 	 * option
7897 	 */
7898 	if (!token_path)
7899 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7900 	if (token_path && strlen(token_path) >= PATH_MAX)
7901 		return ERR_PTR(-ENAMETOOLONG);
7902 
7903 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7904 	if (IS_ERR(obj))
7905 		return obj;
7906 
7907 	obj->log_buf = log_buf;
7908 	obj->log_size = log_size;
7909 	obj->log_level = log_level;
7910 
7911 	if (token_path) {
7912 		obj->token_path = strdup(token_path);
7913 		if (!obj->token_path) {
7914 			err = -ENOMEM;
7915 			goto out;
7916 		}
7917 	}
7918 
7919 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7920 	if (btf_tmp_path) {
7921 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7922 			err = -ENAMETOOLONG;
7923 			goto out;
7924 		}
7925 		obj->btf_custom_path = strdup(btf_tmp_path);
7926 		if (!obj->btf_custom_path) {
7927 			err = -ENOMEM;
7928 			goto out;
7929 		}
7930 	}
7931 
7932 	kconfig = OPTS_GET(opts, kconfig, NULL);
7933 	if (kconfig) {
7934 		obj->kconfig = strdup(kconfig);
7935 		if (!obj->kconfig) {
7936 			err = -ENOMEM;
7937 			goto out;
7938 		}
7939 	}
7940 
7941 	err = bpf_object__elf_init(obj);
7942 	err = err ? : bpf_object__check_endianness(obj);
7943 	err = err ? : bpf_object__elf_collect(obj);
7944 	err = err ? : bpf_object__collect_externs(obj);
7945 	err = err ? : bpf_object_fixup_btf(obj);
7946 	err = err ? : bpf_object__init_maps(obj, opts);
7947 	err = err ? : bpf_object_init_progs(obj, opts);
7948 	err = err ? : bpf_object__collect_relos(obj);
7949 	if (err)
7950 		goto out;
7951 
7952 	bpf_object__elf_finish(obj);
7953 
7954 	return obj;
7955 out:
7956 	bpf_object__close(obj);
7957 	return ERR_PTR(err);
7958 }
7959 
7960 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7961 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7962 {
7963 	if (!path)
7964 		return libbpf_err_ptr(-EINVAL);
7965 
7966 	pr_debug("loading %s\n", path);
7967 
7968 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7969 }
7970 
bpf_object__open(const char * path)7971 struct bpf_object *bpf_object__open(const char *path)
7972 {
7973 	return bpf_object__open_file(path, NULL);
7974 }
7975 
7976 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7977 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7978 		     const struct bpf_object_open_opts *opts)
7979 {
7980 	if (!obj_buf || obj_buf_sz == 0)
7981 		return libbpf_err_ptr(-EINVAL);
7982 
7983 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7984 }
7985 
bpf_object_unload(struct bpf_object * obj)7986 static int bpf_object_unload(struct bpf_object *obj)
7987 {
7988 	size_t i;
7989 
7990 	if (!obj)
7991 		return libbpf_err(-EINVAL);
7992 
7993 	for (i = 0; i < obj->nr_maps; i++) {
7994 		zclose(obj->maps[i].fd);
7995 		if (obj->maps[i].st_ops)
7996 			zfree(&obj->maps[i].st_ops->kern_vdata);
7997 	}
7998 
7999 	for (i = 0; i < obj->nr_programs; i++)
8000 		bpf_program__unload(&obj->programs[i]);
8001 
8002 	return 0;
8003 }
8004 
bpf_object__sanitize_maps(struct bpf_object * obj)8005 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8006 {
8007 	struct bpf_map *m;
8008 
8009 	bpf_object__for_each_map(m, obj) {
8010 		if (!bpf_map__is_internal(m))
8011 			continue;
8012 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8013 			m->def.map_flags &= ~BPF_F_MMAPABLE;
8014 	}
8015 
8016 	return 0;
8017 }
8018 
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8019 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8020 {
8021 	char sym_type, sym_name[500];
8022 	unsigned long long sym_addr;
8023 	int ret, err = 0;
8024 	FILE *f;
8025 
8026 	f = fopen("/proc/kallsyms", "re");
8027 	if (!f) {
8028 		err = -errno;
8029 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
8030 		return err;
8031 	}
8032 
8033 	while (true) {
8034 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8035 			     &sym_addr, &sym_type, sym_name);
8036 		if (ret == EOF && feof(f))
8037 			break;
8038 		if (ret != 3) {
8039 			pr_warn("failed to read kallsyms entry: %d\n", ret);
8040 			err = -EINVAL;
8041 			break;
8042 		}
8043 
8044 		err = cb(sym_addr, sym_type, sym_name, ctx);
8045 		if (err)
8046 			break;
8047 	}
8048 
8049 	fclose(f);
8050 	return err;
8051 }
8052 
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8053 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8054 		       const char *sym_name, void *ctx)
8055 {
8056 	struct bpf_object *obj = ctx;
8057 	const struct btf_type *t;
8058 	struct extern_desc *ext;
8059 
8060 	ext = find_extern_by_name(obj, sym_name);
8061 	if (!ext || ext->type != EXT_KSYM)
8062 		return 0;
8063 
8064 	t = btf__type_by_id(obj->btf, ext->btf_id);
8065 	if (!btf_is_var(t))
8066 		return 0;
8067 
8068 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8069 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8070 			sym_name, ext->ksym.addr, sym_addr);
8071 		return -EINVAL;
8072 	}
8073 	if (!ext->is_set) {
8074 		ext->is_set = true;
8075 		ext->ksym.addr = sym_addr;
8076 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8077 	}
8078 	return 0;
8079 }
8080 
bpf_object__read_kallsyms_file(struct bpf_object * obj)8081 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8082 {
8083 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8084 }
8085 
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8086 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8087 			    __u16 kind, struct btf **res_btf,
8088 			    struct module_btf **res_mod_btf)
8089 {
8090 	struct module_btf *mod_btf;
8091 	struct btf *btf;
8092 	int i, id, err;
8093 
8094 	btf = obj->btf_vmlinux;
8095 	mod_btf = NULL;
8096 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8097 
8098 	if (id == -ENOENT) {
8099 		err = load_module_btfs(obj);
8100 		if (err)
8101 			return err;
8102 
8103 		for (i = 0; i < obj->btf_module_cnt; i++) {
8104 			/* we assume module_btf's BTF FD is always >0 */
8105 			mod_btf = &obj->btf_modules[i];
8106 			btf = mod_btf->btf;
8107 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8108 			if (id != -ENOENT)
8109 				break;
8110 		}
8111 	}
8112 	if (id <= 0)
8113 		return -ESRCH;
8114 
8115 	*res_btf = btf;
8116 	*res_mod_btf = mod_btf;
8117 	return id;
8118 }
8119 
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8120 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8121 					       struct extern_desc *ext)
8122 {
8123 	const struct btf_type *targ_var, *targ_type;
8124 	__u32 targ_type_id, local_type_id;
8125 	struct module_btf *mod_btf = NULL;
8126 	const char *targ_var_name;
8127 	struct btf *btf = NULL;
8128 	int id, err;
8129 
8130 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8131 	if (id < 0) {
8132 		if (id == -ESRCH && ext->is_weak)
8133 			return 0;
8134 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8135 			ext->name);
8136 		return id;
8137 	}
8138 
8139 	/* find local type_id */
8140 	local_type_id = ext->ksym.type_id;
8141 
8142 	/* find target type_id */
8143 	targ_var = btf__type_by_id(btf, id);
8144 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8145 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8146 
8147 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8148 					btf, targ_type_id);
8149 	if (err <= 0) {
8150 		const struct btf_type *local_type;
8151 		const char *targ_name, *local_name;
8152 
8153 		local_type = btf__type_by_id(obj->btf, local_type_id);
8154 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8155 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8156 
8157 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8158 			ext->name, local_type_id,
8159 			btf_kind_str(local_type), local_name, targ_type_id,
8160 			btf_kind_str(targ_type), targ_name);
8161 		return -EINVAL;
8162 	}
8163 
8164 	ext->is_set = true;
8165 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8166 	ext->ksym.kernel_btf_id = id;
8167 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8168 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8169 
8170 	return 0;
8171 }
8172 
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8173 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8174 						struct extern_desc *ext)
8175 {
8176 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8177 	struct module_btf *mod_btf = NULL;
8178 	const struct btf_type *kern_func;
8179 	struct btf *kern_btf = NULL;
8180 	int ret;
8181 
8182 	local_func_proto_id = ext->ksym.type_id;
8183 
8184 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8185 				    &mod_btf);
8186 	if (kfunc_id < 0) {
8187 		if (kfunc_id == -ESRCH && ext->is_weak)
8188 			return 0;
8189 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8190 			ext->name);
8191 		return kfunc_id;
8192 	}
8193 
8194 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8195 	kfunc_proto_id = kern_func->type;
8196 
8197 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8198 					kern_btf, kfunc_proto_id);
8199 	if (ret <= 0) {
8200 		if (ext->is_weak)
8201 			return 0;
8202 
8203 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8204 			ext->name, local_func_proto_id,
8205 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8206 		return -EINVAL;
8207 	}
8208 
8209 	/* set index for module BTF fd in fd_array, if unset */
8210 	if (mod_btf && !mod_btf->fd_array_idx) {
8211 		/* insn->off is s16 */
8212 		if (obj->fd_array_cnt == INT16_MAX) {
8213 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8214 				ext->name, mod_btf->fd_array_idx);
8215 			return -E2BIG;
8216 		}
8217 		/* Cannot use index 0 for module BTF fd */
8218 		if (!obj->fd_array_cnt)
8219 			obj->fd_array_cnt = 1;
8220 
8221 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8222 					obj->fd_array_cnt + 1);
8223 		if (ret)
8224 			return ret;
8225 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8226 		/* we assume module BTF FD is always >0 */
8227 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8228 	}
8229 
8230 	ext->is_set = true;
8231 	ext->ksym.kernel_btf_id = kfunc_id;
8232 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8233 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8234 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8235 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8236 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8237 	 */
8238 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8239 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8240 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8241 
8242 	return 0;
8243 }
8244 
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8245 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8246 {
8247 	const struct btf_type *t;
8248 	struct extern_desc *ext;
8249 	int i, err;
8250 
8251 	for (i = 0; i < obj->nr_extern; i++) {
8252 		ext = &obj->externs[i];
8253 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8254 			continue;
8255 
8256 		if (obj->gen_loader) {
8257 			ext->is_set = true;
8258 			ext->ksym.kernel_btf_obj_fd = 0;
8259 			ext->ksym.kernel_btf_id = 0;
8260 			continue;
8261 		}
8262 		t = btf__type_by_id(obj->btf, ext->btf_id);
8263 		if (btf_is_var(t))
8264 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8265 		else
8266 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8267 		if (err)
8268 			return err;
8269 	}
8270 	return 0;
8271 }
8272 
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8273 static int bpf_object__resolve_externs(struct bpf_object *obj,
8274 				       const char *extra_kconfig)
8275 {
8276 	bool need_config = false, need_kallsyms = false;
8277 	bool need_vmlinux_btf = false;
8278 	struct extern_desc *ext;
8279 	void *kcfg_data = NULL;
8280 	int err, i;
8281 
8282 	if (obj->nr_extern == 0)
8283 		return 0;
8284 
8285 	if (obj->kconfig_map_idx >= 0)
8286 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8287 
8288 	for (i = 0; i < obj->nr_extern; i++) {
8289 		ext = &obj->externs[i];
8290 
8291 		if (ext->type == EXT_KSYM) {
8292 			if (ext->ksym.type_id)
8293 				need_vmlinux_btf = true;
8294 			else
8295 				need_kallsyms = true;
8296 			continue;
8297 		} else if (ext->type == EXT_KCFG) {
8298 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8299 			__u64 value = 0;
8300 
8301 			/* Kconfig externs need actual /proc/config.gz */
8302 			if (str_has_pfx(ext->name, "CONFIG_")) {
8303 				need_config = true;
8304 				continue;
8305 			}
8306 
8307 			/* Virtual kcfg externs are customly handled by libbpf */
8308 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8309 				value = get_kernel_version();
8310 				if (!value) {
8311 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8312 					return -EINVAL;
8313 				}
8314 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8315 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8316 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8317 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8318 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8319 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8320 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8321 				 * customly by libbpf (their values don't come from Kconfig).
8322 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8323 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8324 				 * externs.
8325 				 */
8326 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8327 				return -EINVAL;
8328 			}
8329 
8330 			err = set_kcfg_value_num(ext, ext_ptr, value);
8331 			if (err)
8332 				return err;
8333 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8334 				 ext->name, (long long)value);
8335 		} else {
8336 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8337 			return -EINVAL;
8338 		}
8339 	}
8340 	if (need_config && extra_kconfig) {
8341 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8342 		if (err)
8343 			return -EINVAL;
8344 		need_config = false;
8345 		for (i = 0; i < obj->nr_extern; i++) {
8346 			ext = &obj->externs[i];
8347 			if (ext->type == EXT_KCFG && !ext->is_set) {
8348 				need_config = true;
8349 				break;
8350 			}
8351 		}
8352 	}
8353 	if (need_config) {
8354 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8355 		if (err)
8356 			return -EINVAL;
8357 	}
8358 	if (need_kallsyms) {
8359 		err = bpf_object__read_kallsyms_file(obj);
8360 		if (err)
8361 			return -EINVAL;
8362 	}
8363 	if (need_vmlinux_btf) {
8364 		err = bpf_object__resolve_ksyms_btf_id(obj);
8365 		if (err)
8366 			return -EINVAL;
8367 	}
8368 	for (i = 0; i < obj->nr_extern; i++) {
8369 		ext = &obj->externs[i];
8370 
8371 		if (!ext->is_set && !ext->is_weak) {
8372 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8373 			return -ESRCH;
8374 		} else if (!ext->is_set) {
8375 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8376 				 ext->name);
8377 		}
8378 	}
8379 
8380 	return 0;
8381 }
8382 
bpf_map_prepare_vdata(const struct bpf_map * map)8383 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8384 {
8385 	struct bpf_struct_ops *st_ops;
8386 	__u32 i;
8387 
8388 	st_ops = map->st_ops;
8389 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8390 		struct bpf_program *prog = st_ops->progs[i];
8391 		void *kern_data;
8392 		int prog_fd;
8393 
8394 		if (!prog)
8395 			continue;
8396 
8397 		prog_fd = bpf_program__fd(prog);
8398 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8399 		*(unsigned long *)kern_data = prog_fd;
8400 	}
8401 }
8402 
bpf_object_prepare_struct_ops(struct bpf_object * obj)8403 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8404 {
8405 	struct bpf_map *map;
8406 	int i;
8407 
8408 	for (i = 0; i < obj->nr_maps; i++) {
8409 		map = &obj->maps[i];
8410 
8411 		if (!bpf_map__is_struct_ops(map))
8412 			continue;
8413 
8414 		if (!map->autocreate)
8415 			continue;
8416 
8417 		bpf_map_prepare_vdata(map);
8418 	}
8419 
8420 	return 0;
8421 }
8422 
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8423 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8424 {
8425 	int err, i;
8426 
8427 	if (!obj)
8428 		return libbpf_err(-EINVAL);
8429 
8430 	if (obj->loaded) {
8431 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8432 		return libbpf_err(-EINVAL);
8433 	}
8434 
8435 	if (obj->gen_loader)
8436 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8437 
8438 	err = bpf_object_prepare_token(obj);
8439 	err = err ? : bpf_object__probe_loading(obj);
8440 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8441 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8442 	err = err ? : bpf_object__sanitize_maps(obj);
8443 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8444 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8445 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8446 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8447 	err = err ? : bpf_object__create_maps(obj);
8448 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8449 	err = err ? : bpf_object_init_prog_arrays(obj);
8450 	err = err ? : bpf_object_prepare_struct_ops(obj);
8451 
8452 	if (obj->gen_loader) {
8453 		/* reset FDs */
8454 		if (obj->btf)
8455 			btf__set_fd(obj->btf, -1);
8456 		if (!err)
8457 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8458 	}
8459 
8460 	/* clean up fd_array */
8461 	zfree(&obj->fd_array);
8462 
8463 	/* clean up module BTFs */
8464 	for (i = 0; i < obj->btf_module_cnt; i++) {
8465 		close(obj->btf_modules[i].fd);
8466 		btf__free(obj->btf_modules[i].btf);
8467 		free(obj->btf_modules[i].name);
8468 	}
8469 	free(obj->btf_modules);
8470 
8471 	/* clean up vmlinux BTF */
8472 	btf__free(obj->btf_vmlinux);
8473 	obj->btf_vmlinux = NULL;
8474 
8475 	obj->loaded = true; /* doesn't matter if successfully or not */
8476 
8477 	if (err)
8478 		goto out;
8479 
8480 	return 0;
8481 out:
8482 	/* unpin any maps that were auto-pinned during load */
8483 	for (i = 0; i < obj->nr_maps; i++)
8484 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8485 			bpf_map__unpin(&obj->maps[i], NULL);
8486 
8487 	bpf_object_unload(obj);
8488 	pr_warn("failed to load object '%s'\n", obj->path);
8489 	return libbpf_err(err);
8490 }
8491 
bpf_object__load(struct bpf_object * obj)8492 int bpf_object__load(struct bpf_object *obj)
8493 {
8494 	return bpf_object_load(obj, 0, NULL);
8495 }
8496 
make_parent_dir(const char * path)8497 static int make_parent_dir(const char *path)
8498 {
8499 	char *cp, errmsg[STRERR_BUFSIZE];
8500 	char *dname, *dir;
8501 	int err = 0;
8502 
8503 	dname = strdup(path);
8504 	if (dname == NULL)
8505 		return -ENOMEM;
8506 
8507 	dir = dirname(dname);
8508 	if (mkdir(dir, 0700) && errno != EEXIST)
8509 		err = -errno;
8510 
8511 	free(dname);
8512 	if (err) {
8513 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8514 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8515 	}
8516 	return err;
8517 }
8518 
check_path(const char * path)8519 static int check_path(const char *path)
8520 {
8521 	char *cp, errmsg[STRERR_BUFSIZE];
8522 	struct statfs st_fs;
8523 	char *dname, *dir;
8524 	int err = 0;
8525 
8526 	if (path == NULL)
8527 		return -EINVAL;
8528 
8529 	dname = strdup(path);
8530 	if (dname == NULL)
8531 		return -ENOMEM;
8532 
8533 	dir = dirname(dname);
8534 	if (statfs(dir, &st_fs)) {
8535 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8536 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8537 		err = -errno;
8538 	}
8539 	free(dname);
8540 
8541 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8542 		pr_warn("specified path %s is not on BPF FS\n", path);
8543 		err = -EINVAL;
8544 	}
8545 
8546 	return err;
8547 }
8548 
bpf_program__pin(struct bpf_program * prog,const char * path)8549 int bpf_program__pin(struct bpf_program *prog, const char *path)
8550 {
8551 	char *cp, errmsg[STRERR_BUFSIZE];
8552 	int err;
8553 
8554 	if (prog->fd < 0) {
8555 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8556 		return libbpf_err(-EINVAL);
8557 	}
8558 
8559 	err = make_parent_dir(path);
8560 	if (err)
8561 		return libbpf_err(err);
8562 
8563 	err = check_path(path);
8564 	if (err)
8565 		return libbpf_err(err);
8566 
8567 	if (bpf_obj_pin(prog->fd, path)) {
8568 		err = -errno;
8569 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8570 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8571 		return libbpf_err(err);
8572 	}
8573 
8574 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8575 	return 0;
8576 }
8577 
bpf_program__unpin(struct bpf_program * prog,const char * path)8578 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8579 {
8580 	int err;
8581 
8582 	if (prog->fd < 0) {
8583 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8584 		return libbpf_err(-EINVAL);
8585 	}
8586 
8587 	err = check_path(path);
8588 	if (err)
8589 		return libbpf_err(err);
8590 
8591 	err = unlink(path);
8592 	if (err)
8593 		return libbpf_err(-errno);
8594 
8595 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8596 	return 0;
8597 }
8598 
bpf_map__pin(struct bpf_map * map,const char * path)8599 int bpf_map__pin(struct bpf_map *map, const char *path)
8600 {
8601 	char *cp, errmsg[STRERR_BUFSIZE];
8602 	int err;
8603 
8604 	if (map == NULL) {
8605 		pr_warn("invalid map pointer\n");
8606 		return libbpf_err(-EINVAL);
8607 	}
8608 
8609 	if (map->fd < 0) {
8610 		pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8611 		return libbpf_err(-EINVAL);
8612 	}
8613 
8614 	if (map->pin_path) {
8615 		if (path && strcmp(path, map->pin_path)) {
8616 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8617 				bpf_map__name(map), map->pin_path, path);
8618 			return libbpf_err(-EINVAL);
8619 		} else if (map->pinned) {
8620 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8621 				 bpf_map__name(map), map->pin_path);
8622 			return 0;
8623 		}
8624 	} else {
8625 		if (!path) {
8626 			pr_warn("missing a path to pin map '%s' at\n",
8627 				bpf_map__name(map));
8628 			return libbpf_err(-EINVAL);
8629 		} else if (map->pinned) {
8630 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8631 			return libbpf_err(-EEXIST);
8632 		}
8633 
8634 		map->pin_path = strdup(path);
8635 		if (!map->pin_path) {
8636 			err = -errno;
8637 			goto out_err;
8638 		}
8639 	}
8640 
8641 	err = make_parent_dir(map->pin_path);
8642 	if (err)
8643 		return libbpf_err(err);
8644 
8645 	err = check_path(map->pin_path);
8646 	if (err)
8647 		return libbpf_err(err);
8648 
8649 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8650 		err = -errno;
8651 		goto out_err;
8652 	}
8653 
8654 	map->pinned = true;
8655 	pr_debug("pinned map '%s'\n", map->pin_path);
8656 
8657 	return 0;
8658 
8659 out_err:
8660 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8661 	pr_warn("failed to pin map: %s\n", cp);
8662 	return libbpf_err(err);
8663 }
8664 
bpf_map__unpin(struct bpf_map * map,const char * path)8665 int bpf_map__unpin(struct bpf_map *map, const char *path)
8666 {
8667 	int err;
8668 
8669 	if (map == NULL) {
8670 		pr_warn("invalid map pointer\n");
8671 		return libbpf_err(-EINVAL);
8672 	}
8673 
8674 	if (map->pin_path) {
8675 		if (path && strcmp(path, map->pin_path)) {
8676 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8677 				bpf_map__name(map), map->pin_path, path);
8678 			return libbpf_err(-EINVAL);
8679 		}
8680 		path = map->pin_path;
8681 	} else if (!path) {
8682 		pr_warn("no path to unpin map '%s' from\n",
8683 			bpf_map__name(map));
8684 		return libbpf_err(-EINVAL);
8685 	}
8686 
8687 	err = check_path(path);
8688 	if (err)
8689 		return libbpf_err(err);
8690 
8691 	err = unlink(path);
8692 	if (err != 0)
8693 		return libbpf_err(-errno);
8694 
8695 	map->pinned = false;
8696 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8697 
8698 	return 0;
8699 }
8700 
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8701 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8702 {
8703 	char *new = NULL;
8704 
8705 	if (path) {
8706 		new = strdup(path);
8707 		if (!new)
8708 			return libbpf_err(-errno);
8709 	}
8710 
8711 	free(map->pin_path);
8712 	map->pin_path = new;
8713 	return 0;
8714 }
8715 
8716 __alias(bpf_map__pin_path)
8717 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8718 
bpf_map__pin_path(const struct bpf_map * map)8719 const char *bpf_map__pin_path(const struct bpf_map *map)
8720 {
8721 	return map->pin_path;
8722 }
8723 
bpf_map__is_pinned(const struct bpf_map * map)8724 bool bpf_map__is_pinned(const struct bpf_map *map)
8725 {
8726 	return map->pinned;
8727 }
8728 
sanitize_pin_path(char * s)8729 static void sanitize_pin_path(char *s)
8730 {
8731 	/* bpffs disallows periods in path names */
8732 	while (*s) {
8733 		if (*s == '.')
8734 			*s = '_';
8735 		s++;
8736 	}
8737 }
8738 
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8739 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8740 {
8741 	struct bpf_map *map;
8742 	int err;
8743 
8744 	if (!obj)
8745 		return libbpf_err(-ENOENT);
8746 
8747 	if (!obj->loaded) {
8748 		pr_warn("object not yet loaded; load it first\n");
8749 		return libbpf_err(-ENOENT);
8750 	}
8751 
8752 	bpf_object__for_each_map(map, obj) {
8753 		char *pin_path = NULL;
8754 		char buf[PATH_MAX];
8755 
8756 		if (!map->autocreate)
8757 			continue;
8758 
8759 		if (path) {
8760 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8761 			if (err)
8762 				goto err_unpin_maps;
8763 			sanitize_pin_path(buf);
8764 			pin_path = buf;
8765 		} else if (!map->pin_path) {
8766 			continue;
8767 		}
8768 
8769 		err = bpf_map__pin(map, pin_path);
8770 		if (err)
8771 			goto err_unpin_maps;
8772 	}
8773 
8774 	return 0;
8775 
8776 err_unpin_maps:
8777 	while ((map = bpf_object__prev_map(obj, map))) {
8778 		if (!map->pin_path)
8779 			continue;
8780 
8781 		bpf_map__unpin(map, NULL);
8782 	}
8783 
8784 	return libbpf_err(err);
8785 }
8786 
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8787 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8788 {
8789 	struct bpf_map *map;
8790 	int err;
8791 
8792 	if (!obj)
8793 		return libbpf_err(-ENOENT);
8794 
8795 	bpf_object__for_each_map(map, obj) {
8796 		char *pin_path = NULL;
8797 		char buf[PATH_MAX];
8798 
8799 		if (path) {
8800 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8801 			if (err)
8802 				return libbpf_err(err);
8803 			sanitize_pin_path(buf);
8804 			pin_path = buf;
8805 		} else if (!map->pin_path) {
8806 			continue;
8807 		}
8808 
8809 		err = bpf_map__unpin(map, pin_path);
8810 		if (err)
8811 			return libbpf_err(err);
8812 	}
8813 
8814 	return 0;
8815 }
8816 
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8817 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8818 {
8819 	struct bpf_program *prog;
8820 	char buf[PATH_MAX];
8821 	int err;
8822 
8823 	if (!obj)
8824 		return libbpf_err(-ENOENT);
8825 
8826 	if (!obj->loaded) {
8827 		pr_warn("object not yet loaded; load it first\n");
8828 		return libbpf_err(-ENOENT);
8829 	}
8830 
8831 	bpf_object__for_each_program(prog, obj) {
8832 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8833 		if (err)
8834 			goto err_unpin_programs;
8835 
8836 		err = bpf_program__pin(prog, buf);
8837 		if (err)
8838 			goto err_unpin_programs;
8839 	}
8840 
8841 	return 0;
8842 
8843 err_unpin_programs:
8844 	while ((prog = bpf_object__prev_program(obj, prog))) {
8845 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8846 			continue;
8847 
8848 		bpf_program__unpin(prog, buf);
8849 	}
8850 
8851 	return libbpf_err(err);
8852 }
8853 
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8854 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8855 {
8856 	struct bpf_program *prog;
8857 	int err;
8858 
8859 	if (!obj)
8860 		return libbpf_err(-ENOENT);
8861 
8862 	bpf_object__for_each_program(prog, obj) {
8863 		char buf[PATH_MAX];
8864 
8865 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8866 		if (err)
8867 			return libbpf_err(err);
8868 
8869 		err = bpf_program__unpin(prog, buf);
8870 		if (err)
8871 			return libbpf_err(err);
8872 	}
8873 
8874 	return 0;
8875 }
8876 
bpf_object__pin(struct bpf_object * obj,const char * path)8877 int bpf_object__pin(struct bpf_object *obj, const char *path)
8878 {
8879 	int err;
8880 
8881 	err = bpf_object__pin_maps(obj, path);
8882 	if (err)
8883 		return libbpf_err(err);
8884 
8885 	err = bpf_object__pin_programs(obj, path);
8886 	if (err) {
8887 		bpf_object__unpin_maps(obj, path);
8888 		return libbpf_err(err);
8889 	}
8890 
8891 	return 0;
8892 }
8893 
bpf_object__unpin(struct bpf_object * obj,const char * path)8894 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8895 {
8896 	int err;
8897 
8898 	err = bpf_object__unpin_programs(obj, path);
8899 	if (err)
8900 		return libbpf_err(err);
8901 
8902 	err = bpf_object__unpin_maps(obj, path);
8903 	if (err)
8904 		return libbpf_err(err);
8905 
8906 	return 0;
8907 }
8908 
bpf_map__destroy(struct bpf_map * map)8909 static void bpf_map__destroy(struct bpf_map *map)
8910 {
8911 	if (map->inner_map) {
8912 		bpf_map__destroy(map->inner_map);
8913 		zfree(&map->inner_map);
8914 	}
8915 
8916 	zfree(&map->init_slots);
8917 	map->init_slots_sz = 0;
8918 
8919 	if (map->mmaped && map->mmaped != map->obj->arena_data)
8920 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8921 	map->mmaped = NULL;
8922 
8923 	if (map->st_ops) {
8924 		zfree(&map->st_ops->data);
8925 		zfree(&map->st_ops->progs);
8926 		zfree(&map->st_ops->kern_func_off);
8927 		zfree(&map->st_ops);
8928 	}
8929 
8930 	zfree(&map->name);
8931 	zfree(&map->real_name);
8932 	zfree(&map->pin_path);
8933 
8934 	if (map->fd >= 0)
8935 		zclose(map->fd);
8936 }
8937 
bpf_object__close(struct bpf_object * obj)8938 void bpf_object__close(struct bpf_object *obj)
8939 {
8940 	size_t i;
8941 
8942 	if (IS_ERR_OR_NULL(obj))
8943 		return;
8944 
8945 	usdt_manager_free(obj->usdt_man);
8946 	obj->usdt_man = NULL;
8947 
8948 	bpf_gen__free(obj->gen_loader);
8949 	bpf_object__elf_finish(obj);
8950 	bpf_object_unload(obj);
8951 	btf__free(obj->btf);
8952 	btf__free(obj->btf_vmlinux);
8953 	btf_ext__free(obj->btf_ext);
8954 
8955 	for (i = 0; i < obj->nr_maps; i++)
8956 		bpf_map__destroy(&obj->maps[i]);
8957 
8958 	zfree(&obj->btf_custom_path);
8959 	zfree(&obj->kconfig);
8960 
8961 	for (i = 0; i < obj->nr_extern; i++)
8962 		zfree(&obj->externs[i].essent_name);
8963 
8964 	zfree(&obj->externs);
8965 	obj->nr_extern = 0;
8966 
8967 	zfree(&obj->maps);
8968 	obj->nr_maps = 0;
8969 
8970 	if (obj->programs && obj->nr_programs) {
8971 		for (i = 0; i < obj->nr_programs; i++)
8972 			bpf_program__exit(&obj->programs[i]);
8973 	}
8974 	zfree(&obj->programs);
8975 
8976 	zfree(&obj->feat_cache);
8977 	zfree(&obj->token_path);
8978 	if (obj->token_fd > 0)
8979 		close(obj->token_fd);
8980 
8981 	zfree(&obj->arena_data);
8982 
8983 	free(obj);
8984 }
8985 
bpf_object__name(const struct bpf_object * obj)8986 const char *bpf_object__name(const struct bpf_object *obj)
8987 {
8988 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8989 }
8990 
bpf_object__kversion(const struct bpf_object * obj)8991 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8992 {
8993 	return obj ? obj->kern_version : 0;
8994 }
8995 
bpf_object__btf(const struct bpf_object * obj)8996 struct btf *bpf_object__btf(const struct bpf_object *obj)
8997 {
8998 	return obj ? obj->btf : NULL;
8999 }
9000 
bpf_object__btf_fd(const struct bpf_object * obj)9001 int bpf_object__btf_fd(const struct bpf_object *obj)
9002 {
9003 	return obj->btf ? btf__fd(obj->btf) : -1;
9004 }
9005 
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9006 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9007 {
9008 	if (obj->loaded)
9009 		return libbpf_err(-EINVAL);
9010 
9011 	obj->kern_version = kern_version;
9012 
9013 	return 0;
9014 }
9015 
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9016 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9017 {
9018 	struct bpf_gen *gen;
9019 
9020 	if (!opts)
9021 		return -EFAULT;
9022 	if (!OPTS_VALID(opts, gen_loader_opts))
9023 		return -EINVAL;
9024 	gen = calloc(sizeof(*gen), 1);
9025 	if (!gen)
9026 		return -ENOMEM;
9027 	gen->opts = opts;
9028 	obj->gen_loader = gen;
9029 	return 0;
9030 }
9031 
9032 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9033 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9034 		    bool forward)
9035 {
9036 	size_t nr_programs = obj->nr_programs;
9037 	ssize_t idx;
9038 
9039 	if (!nr_programs)
9040 		return NULL;
9041 
9042 	if (!p)
9043 		/* Iter from the beginning */
9044 		return forward ? &obj->programs[0] :
9045 			&obj->programs[nr_programs - 1];
9046 
9047 	if (p->obj != obj) {
9048 		pr_warn("error: program handler doesn't match object\n");
9049 		return errno = EINVAL, NULL;
9050 	}
9051 
9052 	idx = (p - obj->programs) + (forward ? 1 : -1);
9053 	if (idx >= obj->nr_programs || idx < 0)
9054 		return NULL;
9055 	return &obj->programs[idx];
9056 }
9057 
9058 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9059 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9060 {
9061 	struct bpf_program *prog = prev;
9062 
9063 	do {
9064 		prog = __bpf_program__iter(prog, obj, true);
9065 	} while (prog && prog_is_subprog(obj, prog));
9066 
9067 	return prog;
9068 }
9069 
9070 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9071 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9072 {
9073 	struct bpf_program *prog = next;
9074 
9075 	do {
9076 		prog = __bpf_program__iter(prog, obj, false);
9077 	} while (prog && prog_is_subprog(obj, prog));
9078 
9079 	return prog;
9080 }
9081 
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9082 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9083 {
9084 	prog->prog_ifindex = ifindex;
9085 }
9086 
bpf_program__name(const struct bpf_program * prog)9087 const char *bpf_program__name(const struct bpf_program *prog)
9088 {
9089 	return prog->name;
9090 }
9091 
bpf_program__section_name(const struct bpf_program * prog)9092 const char *bpf_program__section_name(const struct bpf_program *prog)
9093 {
9094 	return prog->sec_name;
9095 }
9096 
bpf_program__autoload(const struct bpf_program * prog)9097 bool bpf_program__autoload(const struct bpf_program *prog)
9098 {
9099 	return prog->autoload;
9100 }
9101 
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9102 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9103 {
9104 	if (prog->obj->loaded)
9105 		return libbpf_err(-EINVAL);
9106 
9107 	prog->autoload = autoload;
9108 	return 0;
9109 }
9110 
bpf_program__autoattach(const struct bpf_program * prog)9111 bool bpf_program__autoattach(const struct bpf_program *prog)
9112 {
9113 	return prog->autoattach;
9114 }
9115 
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9116 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9117 {
9118 	prog->autoattach = autoattach;
9119 }
9120 
bpf_program__insns(const struct bpf_program * prog)9121 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9122 {
9123 	return prog->insns;
9124 }
9125 
bpf_program__insn_cnt(const struct bpf_program * prog)9126 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9127 {
9128 	return prog->insns_cnt;
9129 }
9130 
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9131 int bpf_program__set_insns(struct bpf_program *prog,
9132 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9133 {
9134 	struct bpf_insn *insns;
9135 
9136 	if (prog->obj->loaded)
9137 		return -EBUSY;
9138 
9139 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9140 	/* NULL is a valid return from reallocarray if the new count is zero */
9141 	if (!insns && new_insn_cnt) {
9142 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9143 		return -ENOMEM;
9144 	}
9145 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9146 
9147 	prog->insns = insns;
9148 	prog->insns_cnt = new_insn_cnt;
9149 	return 0;
9150 }
9151 
bpf_program__fd(const struct bpf_program * prog)9152 int bpf_program__fd(const struct bpf_program *prog)
9153 {
9154 	if (!prog)
9155 		return libbpf_err(-EINVAL);
9156 
9157 	if (prog->fd < 0)
9158 		return libbpf_err(-ENOENT);
9159 
9160 	return prog->fd;
9161 }
9162 
9163 __alias(bpf_program__type)
9164 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9165 
bpf_program__type(const struct bpf_program * prog)9166 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9167 {
9168 	return prog->type;
9169 }
9170 
9171 static size_t custom_sec_def_cnt;
9172 static struct bpf_sec_def *custom_sec_defs;
9173 static struct bpf_sec_def custom_fallback_def;
9174 static bool has_custom_fallback_def;
9175 static int last_custom_sec_def_handler_id;
9176 
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9177 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9178 {
9179 	if (prog->obj->loaded)
9180 		return libbpf_err(-EBUSY);
9181 
9182 	/* if type is not changed, do nothing */
9183 	if (prog->type == type)
9184 		return 0;
9185 
9186 	prog->type = type;
9187 
9188 	/* If a program type was changed, we need to reset associated SEC()
9189 	 * handler, as it will be invalid now. The only exception is a generic
9190 	 * fallback handler, which by definition is program type-agnostic and
9191 	 * is a catch-all custom handler, optionally set by the application,
9192 	 * so should be able to handle any type of BPF program.
9193 	 */
9194 	if (prog->sec_def != &custom_fallback_def)
9195 		prog->sec_def = NULL;
9196 	return 0;
9197 }
9198 
9199 __alias(bpf_program__expected_attach_type)
9200 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9201 
bpf_program__expected_attach_type(const struct bpf_program * prog)9202 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9203 {
9204 	return prog->expected_attach_type;
9205 }
9206 
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9207 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9208 					   enum bpf_attach_type type)
9209 {
9210 	if (prog->obj->loaded)
9211 		return libbpf_err(-EBUSY);
9212 
9213 	prog->expected_attach_type = type;
9214 	return 0;
9215 }
9216 
bpf_program__flags(const struct bpf_program * prog)9217 __u32 bpf_program__flags(const struct bpf_program *prog)
9218 {
9219 	return prog->prog_flags;
9220 }
9221 
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9222 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9223 {
9224 	if (prog->obj->loaded)
9225 		return libbpf_err(-EBUSY);
9226 
9227 	prog->prog_flags = flags;
9228 	return 0;
9229 }
9230 
bpf_program__log_level(const struct bpf_program * prog)9231 __u32 bpf_program__log_level(const struct bpf_program *prog)
9232 {
9233 	return prog->log_level;
9234 }
9235 
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9236 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9237 {
9238 	if (prog->obj->loaded)
9239 		return libbpf_err(-EBUSY);
9240 
9241 	prog->log_level = log_level;
9242 	return 0;
9243 }
9244 
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9245 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9246 {
9247 	*log_size = prog->log_size;
9248 	return prog->log_buf;
9249 }
9250 
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9251 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9252 {
9253 	if (log_size && !log_buf)
9254 		return -EINVAL;
9255 	if (prog->log_size > UINT_MAX)
9256 		return -EINVAL;
9257 	if (prog->obj->loaded)
9258 		return -EBUSY;
9259 
9260 	prog->log_buf = log_buf;
9261 	prog->log_size = log_size;
9262 	return 0;
9263 }
9264 
9265 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9266 	.sec = (char *)sec_pfx,						    \
9267 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9268 	.expected_attach_type = atype,					    \
9269 	.cookie = (long)(flags),					    \
9270 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9271 	__VA_ARGS__							    \
9272 }
9273 
9274 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9275 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9276 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9277 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9278 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9279 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9280 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9281 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9282 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9283 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9284 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9285 
9286 static const struct bpf_sec_def section_defs[] = {
9287 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9288 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9289 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9290 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9291 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9292 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9293 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9294 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9295 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9296 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9297 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9298 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9299 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9300 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9301 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9302 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9303 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9304 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9305 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9306 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9307 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9308 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9309 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9310 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9311 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9312 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9313 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9314 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9315 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9316 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9317 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9318 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9319 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9320 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9321 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9322 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9323 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9324 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9325 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9326 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9327 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9328 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9329 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9330 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9331 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9332 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9333 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9334 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9335 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9336 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9337 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9338 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9339 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9340 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9341 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9342 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9343 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9344 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9345 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9346 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9347 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9348 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9349 	SEC_DEF("sk_skb/verdict",	SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9350 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9351 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9352 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9353 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9354 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9355 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9356 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9357 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9358 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9359 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9360 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9361 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9362 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9363 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9364 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9365 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9366 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9367 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9368 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9369 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9370 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9371 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9372 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9373 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9374 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9375 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9376 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9377 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9378 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9379 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9380 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9381 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9382 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9383 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9384 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9385 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9386 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9387 };
9388 
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9389 int libbpf_register_prog_handler(const char *sec,
9390 				 enum bpf_prog_type prog_type,
9391 				 enum bpf_attach_type exp_attach_type,
9392 				 const struct libbpf_prog_handler_opts *opts)
9393 {
9394 	struct bpf_sec_def *sec_def;
9395 
9396 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9397 		return libbpf_err(-EINVAL);
9398 
9399 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9400 		return libbpf_err(-E2BIG);
9401 
9402 	if (sec) {
9403 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9404 					      sizeof(*sec_def));
9405 		if (!sec_def)
9406 			return libbpf_err(-ENOMEM);
9407 
9408 		custom_sec_defs = sec_def;
9409 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9410 	} else {
9411 		if (has_custom_fallback_def)
9412 			return libbpf_err(-EBUSY);
9413 
9414 		sec_def = &custom_fallback_def;
9415 	}
9416 
9417 	sec_def->sec = sec ? strdup(sec) : NULL;
9418 	if (sec && !sec_def->sec)
9419 		return libbpf_err(-ENOMEM);
9420 
9421 	sec_def->prog_type = prog_type;
9422 	sec_def->expected_attach_type = exp_attach_type;
9423 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9424 
9425 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9426 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9427 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9428 
9429 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9430 
9431 	if (sec)
9432 		custom_sec_def_cnt++;
9433 	else
9434 		has_custom_fallback_def = true;
9435 
9436 	return sec_def->handler_id;
9437 }
9438 
libbpf_unregister_prog_handler(int handler_id)9439 int libbpf_unregister_prog_handler(int handler_id)
9440 {
9441 	struct bpf_sec_def *sec_defs;
9442 	int i;
9443 
9444 	if (handler_id <= 0)
9445 		return libbpf_err(-EINVAL);
9446 
9447 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9448 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9449 		has_custom_fallback_def = false;
9450 		return 0;
9451 	}
9452 
9453 	for (i = 0; i < custom_sec_def_cnt; i++) {
9454 		if (custom_sec_defs[i].handler_id == handler_id)
9455 			break;
9456 	}
9457 
9458 	if (i == custom_sec_def_cnt)
9459 		return libbpf_err(-ENOENT);
9460 
9461 	free(custom_sec_defs[i].sec);
9462 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9463 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9464 	custom_sec_def_cnt--;
9465 
9466 	/* try to shrink the array, but it's ok if we couldn't */
9467 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9468 	/* if new count is zero, reallocarray can return a valid NULL result;
9469 	 * in this case the previous pointer will be freed, so we *have to*
9470 	 * reassign old pointer to the new value (even if it's NULL)
9471 	 */
9472 	if (sec_defs || custom_sec_def_cnt == 0)
9473 		custom_sec_defs = sec_defs;
9474 
9475 	return 0;
9476 }
9477 
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9478 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9479 {
9480 	size_t len = strlen(sec_def->sec);
9481 
9482 	/* "type/" always has to have proper SEC("type/extras") form */
9483 	if (sec_def->sec[len - 1] == '/') {
9484 		if (str_has_pfx(sec_name, sec_def->sec))
9485 			return true;
9486 		return false;
9487 	}
9488 
9489 	/* "type+" means it can be either exact SEC("type") or
9490 	 * well-formed SEC("type/extras") with proper '/' separator
9491 	 */
9492 	if (sec_def->sec[len - 1] == '+') {
9493 		len--;
9494 		/* not even a prefix */
9495 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9496 			return false;
9497 		/* exact match or has '/' separator */
9498 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9499 			return true;
9500 		return false;
9501 	}
9502 
9503 	return strcmp(sec_name, sec_def->sec) == 0;
9504 }
9505 
find_sec_def(const char * sec_name)9506 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9507 {
9508 	const struct bpf_sec_def *sec_def;
9509 	int i, n;
9510 
9511 	n = custom_sec_def_cnt;
9512 	for (i = 0; i < n; i++) {
9513 		sec_def = &custom_sec_defs[i];
9514 		if (sec_def_matches(sec_def, sec_name))
9515 			return sec_def;
9516 	}
9517 
9518 	n = ARRAY_SIZE(section_defs);
9519 	for (i = 0; i < n; i++) {
9520 		sec_def = &section_defs[i];
9521 		if (sec_def_matches(sec_def, sec_name))
9522 			return sec_def;
9523 	}
9524 
9525 	if (has_custom_fallback_def)
9526 		return &custom_fallback_def;
9527 
9528 	return NULL;
9529 }
9530 
9531 #define MAX_TYPE_NAME_SIZE 32
9532 
libbpf_get_type_names(bool attach_type)9533 static char *libbpf_get_type_names(bool attach_type)
9534 {
9535 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9536 	char *buf;
9537 
9538 	buf = malloc(len);
9539 	if (!buf)
9540 		return NULL;
9541 
9542 	buf[0] = '\0';
9543 	/* Forge string buf with all available names */
9544 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9545 		const struct bpf_sec_def *sec_def = &section_defs[i];
9546 
9547 		if (attach_type) {
9548 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9549 				continue;
9550 
9551 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9552 				continue;
9553 		}
9554 
9555 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9556 			free(buf);
9557 			return NULL;
9558 		}
9559 		strcat(buf, " ");
9560 		strcat(buf, section_defs[i].sec);
9561 	}
9562 
9563 	return buf;
9564 }
9565 
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9566 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9567 			     enum bpf_attach_type *expected_attach_type)
9568 {
9569 	const struct bpf_sec_def *sec_def;
9570 	char *type_names;
9571 
9572 	if (!name)
9573 		return libbpf_err(-EINVAL);
9574 
9575 	sec_def = find_sec_def(name);
9576 	if (sec_def) {
9577 		*prog_type = sec_def->prog_type;
9578 		*expected_attach_type = sec_def->expected_attach_type;
9579 		return 0;
9580 	}
9581 
9582 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9583 	type_names = libbpf_get_type_names(false);
9584 	if (type_names != NULL) {
9585 		pr_debug("supported section(type) names are:%s\n", type_names);
9586 		free(type_names);
9587 	}
9588 
9589 	return libbpf_err(-ESRCH);
9590 }
9591 
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9592 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9593 {
9594 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9595 		return NULL;
9596 
9597 	return attach_type_name[t];
9598 }
9599 
libbpf_bpf_link_type_str(enum bpf_link_type t)9600 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9601 {
9602 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9603 		return NULL;
9604 
9605 	return link_type_name[t];
9606 }
9607 
libbpf_bpf_map_type_str(enum bpf_map_type t)9608 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9609 {
9610 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9611 		return NULL;
9612 
9613 	return map_type_name[t];
9614 }
9615 
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9616 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9617 {
9618 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9619 		return NULL;
9620 
9621 	return prog_type_name[t];
9622 }
9623 
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9624 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9625 						     int sec_idx,
9626 						     size_t offset)
9627 {
9628 	struct bpf_map *map;
9629 	size_t i;
9630 
9631 	for (i = 0; i < obj->nr_maps; i++) {
9632 		map = &obj->maps[i];
9633 		if (!bpf_map__is_struct_ops(map))
9634 			continue;
9635 		if (map->sec_idx == sec_idx &&
9636 		    map->sec_offset <= offset &&
9637 		    offset - map->sec_offset < map->def.value_size)
9638 			return map;
9639 	}
9640 
9641 	return NULL;
9642 }
9643 
9644 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9645  * st_ops->data for shadow type.
9646  */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9647 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9648 					    Elf64_Shdr *shdr, Elf_Data *data)
9649 {
9650 	const struct btf_member *member;
9651 	struct bpf_struct_ops *st_ops;
9652 	struct bpf_program *prog;
9653 	unsigned int shdr_idx;
9654 	const struct btf *btf;
9655 	struct bpf_map *map;
9656 	unsigned int moff, insn_idx;
9657 	const char *name;
9658 	__u32 member_idx;
9659 	Elf64_Sym *sym;
9660 	Elf64_Rel *rel;
9661 	int i, nrels;
9662 
9663 	btf = obj->btf;
9664 	nrels = shdr->sh_size / shdr->sh_entsize;
9665 	for (i = 0; i < nrels; i++) {
9666 		rel = elf_rel_by_idx(data, i);
9667 		if (!rel) {
9668 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9669 			return -LIBBPF_ERRNO__FORMAT;
9670 		}
9671 
9672 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9673 		if (!sym) {
9674 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9675 				(size_t)ELF64_R_SYM(rel->r_info));
9676 			return -LIBBPF_ERRNO__FORMAT;
9677 		}
9678 
9679 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9680 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9681 		if (!map) {
9682 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9683 				(size_t)rel->r_offset);
9684 			return -EINVAL;
9685 		}
9686 
9687 		moff = rel->r_offset - map->sec_offset;
9688 		shdr_idx = sym->st_shndx;
9689 		st_ops = map->st_ops;
9690 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9691 			 map->name,
9692 			 (long long)(rel->r_info >> 32),
9693 			 (long long)sym->st_value,
9694 			 shdr_idx, (size_t)rel->r_offset,
9695 			 map->sec_offset, sym->st_name, name);
9696 
9697 		if (shdr_idx >= SHN_LORESERVE) {
9698 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9699 				map->name, (size_t)rel->r_offset, shdr_idx);
9700 			return -LIBBPF_ERRNO__RELOC;
9701 		}
9702 		if (sym->st_value % BPF_INSN_SZ) {
9703 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9704 				map->name, (unsigned long long)sym->st_value);
9705 			return -LIBBPF_ERRNO__FORMAT;
9706 		}
9707 		insn_idx = sym->st_value / BPF_INSN_SZ;
9708 
9709 		member = find_member_by_offset(st_ops->type, moff * 8);
9710 		if (!member) {
9711 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9712 				map->name, moff);
9713 			return -EINVAL;
9714 		}
9715 		member_idx = member - btf_members(st_ops->type);
9716 		name = btf__name_by_offset(btf, member->name_off);
9717 
9718 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9719 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9720 				map->name, name);
9721 			return -EINVAL;
9722 		}
9723 
9724 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9725 		if (!prog) {
9726 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9727 				map->name, shdr_idx, name);
9728 			return -EINVAL;
9729 		}
9730 
9731 		/* prevent the use of BPF prog with invalid type */
9732 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9733 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9734 				map->name, prog->name);
9735 			return -EINVAL;
9736 		}
9737 
9738 		st_ops->progs[member_idx] = prog;
9739 
9740 		/* st_ops->data will be exposed to users, being returned by
9741 		 * bpf_map__initial_value() as a pointer to the shadow
9742 		 * type. All function pointers in the original struct type
9743 		 * should be converted to a pointer to struct bpf_program
9744 		 * in the shadow type.
9745 		 */
9746 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
9747 	}
9748 
9749 	return 0;
9750 }
9751 
9752 #define BTF_TRACE_PREFIX "btf_trace_"
9753 #define BTF_LSM_PREFIX "bpf_lsm_"
9754 #define BTF_ITER_PREFIX "bpf_iter_"
9755 #define BTF_MAX_NAME_SIZE 128
9756 
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9757 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9758 				const char **prefix, int *kind)
9759 {
9760 	switch (attach_type) {
9761 	case BPF_TRACE_RAW_TP:
9762 		*prefix = BTF_TRACE_PREFIX;
9763 		*kind = BTF_KIND_TYPEDEF;
9764 		break;
9765 	case BPF_LSM_MAC:
9766 	case BPF_LSM_CGROUP:
9767 		*prefix = BTF_LSM_PREFIX;
9768 		*kind = BTF_KIND_FUNC;
9769 		break;
9770 	case BPF_TRACE_ITER:
9771 		*prefix = BTF_ITER_PREFIX;
9772 		*kind = BTF_KIND_FUNC;
9773 		break;
9774 	default:
9775 		*prefix = "";
9776 		*kind = BTF_KIND_FUNC;
9777 	}
9778 }
9779 
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9780 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9781 				   const char *name, __u32 kind)
9782 {
9783 	char btf_type_name[BTF_MAX_NAME_SIZE];
9784 	int ret;
9785 
9786 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9787 		       "%s%s", prefix, name);
9788 	/* snprintf returns the number of characters written excluding the
9789 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9790 	 * indicates truncation.
9791 	 */
9792 	if (ret < 0 || ret >= sizeof(btf_type_name))
9793 		return -ENAMETOOLONG;
9794 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9795 }
9796 
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9797 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9798 				     enum bpf_attach_type attach_type)
9799 {
9800 	const char *prefix;
9801 	int kind;
9802 
9803 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9804 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9805 }
9806 
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9807 int libbpf_find_vmlinux_btf_id(const char *name,
9808 			       enum bpf_attach_type attach_type)
9809 {
9810 	struct btf *btf;
9811 	int err;
9812 
9813 	btf = btf__load_vmlinux_btf();
9814 	err = libbpf_get_error(btf);
9815 	if (err) {
9816 		pr_warn("vmlinux BTF is not found\n");
9817 		return libbpf_err(err);
9818 	}
9819 
9820 	err = find_attach_btf_id(btf, name, attach_type);
9821 	if (err <= 0)
9822 		pr_warn("%s is not found in vmlinux BTF\n", name);
9823 
9824 	btf__free(btf);
9825 	return libbpf_err(err);
9826 }
9827 
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9828 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9829 {
9830 	struct bpf_prog_info info;
9831 	__u32 info_len = sizeof(info);
9832 	struct btf *btf;
9833 	int err;
9834 
9835 	memset(&info, 0, info_len);
9836 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9837 	if (err) {
9838 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9839 			attach_prog_fd, err);
9840 		return err;
9841 	}
9842 
9843 	err = -EINVAL;
9844 	if (!info.btf_id) {
9845 		pr_warn("The target program doesn't have BTF\n");
9846 		goto out;
9847 	}
9848 	btf = btf__load_from_kernel_by_id(info.btf_id);
9849 	err = libbpf_get_error(btf);
9850 	if (err) {
9851 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9852 		goto out;
9853 	}
9854 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9855 	btf__free(btf);
9856 	if (err <= 0) {
9857 		pr_warn("%s is not found in prog's BTF\n", name);
9858 		goto out;
9859 	}
9860 out:
9861 	return err;
9862 }
9863 
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9864 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9865 			      enum bpf_attach_type attach_type,
9866 			      int *btf_obj_fd, int *btf_type_id)
9867 {
9868 	int ret, i;
9869 
9870 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9871 	if (ret > 0) {
9872 		*btf_obj_fd = 0; /* vmlinux BTF */
9873 		*btf_type_id = ret;
9874 		return 0;
9875 	}
9876 	if (ret != -ENOENT)
9877 		return ret;
9878 
9879 	ret = load_module_btfs(obj);
9880 	if (ret)
9881 		return ret;
9882 
9883 	for (i = 0; i < obj->btf_module_cnt; i++) {
9884 		const struct module_btf *mod = &obj->btf_modules[i];
9885 
9886 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9887 		if (ret > 0) {
9888 			*btf_obj_fd = mod->fd;
9889 			*btf_type_id = ret;
9890 			return 0;
9891 		}
9892 		if (ret == -ENOENT)
9893 			continue;
9894 
9895 		return ret;
9896 	}
9897 
9898 	return -ESRCH;
9899 }
9900 
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9901 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9902 				     int *btf_obj_fd, int *btf_type_id)
9903 {
9904 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9905 	__u32 attach_prog_fd = prog->attach_prog_fd;
9906 	int err = 0;
9907 
9908 	/* BPF program's BTF ID */
9909 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9910 		if (!attach_prog_fd) {
9911 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9912 			return -EINVAL;
9913 		}
9914 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9915 		if (err < 0) {
9916 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9917 				 prog->name, attach_prog_fd, attach_name, err);
9918 			return err;
9919 		}
9920 		*btf_obj_fd = 0;
9921 		*btf_type_id = err;
9922 		return 0;
9923 	}
9924 
9925 	/* kernel/module BTF ID */
9926 	if (prog->obj->gen_loader) {
9927 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9928 		*btf_obj_fd = 0;
9929 		*btf_type_id = 1;
9930 	} else {
9931 		err = find_kernel_btf_id(prog->obj, attach_name,
9932 					 attach_type, btf_obj_fd,
9933 					 btf_type_id);
9934 	}
9935 	if (err) {
9936 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9937 			prog->name, attach_name, err);
9938 		return err;
9939 	}
9940 	return 0;
9941 }
9942 
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9943 int libbpf_attach_type_by_name(const char *name,
9944 			       enum bpf_attach_type *attach_type)
9945 {
9946 	char *type_names;
9947 	const struct bpf_sec_def *sec_def;
9948 
9949 	if (!name)
9950 		return libbpf_err(-EINVAL);
9951 
9952 	sec_def = find_sec_def(name);
9953 	if (!sec_def) {
9954 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9955 		type_names = libbpf_get_type_names(true);
9956 		if (type_names != NULL) {
9957 			pr_debug("attachable section(type) names are:%s\n", type_names);
9958 			free(type_names);
9959 		}
9960 
9961 		return libbpf_err(-EINVAL);
9962 	}
9963 
9964 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9965 		return libbpf_err(-EINVAL);
9966 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9967 		return libbpf_err(-EINVAL);
9968 
9969 	*attach_type = sec_def->expected_attach_type;
9970 	return 0;
9971 }
9972 
bpf_map__fd(const struct bpf_map * map)9973 int bpf_map__fd(const struct bpf_map *map)
9974 {
9975 	if (!map)
9976 		return libbpf_err(-EINVAL);
9977 	if (!map_is_created(map))
9978 		return -1;
9979 	return map->fd;
9980 }
9981 
map_uses_real_name(const struct bpf_map * map)9982 static bool map_uses_real_name(const struct bpf_map *map)
9983 {
9984 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9985 	 * their user-visible name differs from kernel-visible name. Users see
9986 	 * such map's corresponding ELF section name as a map name.
9987 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9988 	 * maps to know which name has to be returned to the user.
9989 	 */
9990 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9991 		return true;
9992 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9993 		return true;
9994 	return false;
9995 }
9996 
bpf_map__name(const struct bpf_map * map)9997 const char *bpf_map__name(const struct bpf_map *map)
9998 {
9999 	if (!map)
10000 		return NULL;
10001 
10002 	if (map_uses_real_name(map))
10003 		return map->real_name;
10004 
10005 	return map->name;
10006 }
10007 
bpf_map__type(const struct bpf_map * map)10008 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10009 {
10010 	return map->def.type;
10011 }
10012 
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10013 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10014 {
10015 	if (map_is_created(map))
10016 		return libbpf_err(-EBUSY);
10017 	map->def.type = type;
10018 	return 0;
10019 }
10020 
bpf_map__map_flags(const struct bpf_map * map)10021 __u32 bpf_map__map_flags(const struct bpf_map *map)
10022 {
10023 	return map->def.map_flags;
10024 }
10025 
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10026 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10027 {
10028 	if (map_is_created(map))
10029 		return libbpf_err(-EBUSY);
10030 	map->def.map_flags = flags;
10031 	return 0;
10032 }
10033 
bpf_map__map_extra(const struct bpf_map * map)10034 __u64 bpf_map__map_extra(const struct bpf_map *map)
10035 {
10036 	return map->map_extra;
10037 }
10038 
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10039 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10040 {
10041 	if (map_is_created(map))
10042 		return libbpf_err(-EBUSY);
10043 	map->map_extra = map_extra;
10044 	return 0;
10045 }
10046 
bpf_map__numa_node(const struct bpf_map * map)10047 __u32 bpf_map__numa_node(const struct bpf_map *map)
10048 {
10049 	return map->numa_node;
10050 }
10051 
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10052 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10053 {
10054 	if (map_is_created(map))
10055 		return libbpf_err(-EBUSY);
10056 	map->numa_node = numa_node;
10057 	return 0;
10058 }
10059 
bpf_map__key_size(const struct bpf_map * map)10060 __u32 bpf_map__key_size(const struct bpf_map *map)
10061 {
10062 	return map->def.key_size;
10063 }
10064 
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10065 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10066 {
10067 	if (map_is_created(map))
10068 		return libbpf_err(-EBUSY);
10069 	map->def.key_size = size;
10070 	return 0;
10071 }
10072 
bpf_map__value_size(const struct bpf_map * map)10073 __u32 bpf_map__value_size(const struct bpf_map *map)
10074 {
10075 	return map->def.value_size;
10076 }
10077 
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10078 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10079 {
10080 	struct btf *btf;
10081 	struct btf_type *datasec_type, *var_type;
10082 	struct btf_var_secinfo *var;
10083 	const struct btf_type *array_type;
10084 	const struct btf_array *array;
10085 	int vlen, element_sz, new_array_id;
10086 	__u32 nr_elements;
10087 
10088 	/* check btf existence */
10089 	btf = bpf_object__btf(map->obj);
10090 	if (!btf)
10091 		return -ENOENT;
10092 
10093 	/* verify map is datasec */
10094 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10095 	if (!btf_is_datasec(datasec_type)) {
10096 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10097 			bpf_map__name(map));
10098 		return -EINVAL;
10099 	}
10100 
10101 	/* verify datasec has at least one var */
10102 	vlen = btf_vlen(datasec_type);
10103 	if (vlen == 0) {
10104 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10105 			bpf_map__name(map));
10106 		return -EINVAL;
10107 	}
10108 
10109 	/* verify last var in the datasec is an array */
10110 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10111 	var_type = btf_type_by_id(btf, var->type);
10112 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10113 	if (!btf_is_array(array_type)) {
10114 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10115 			bpf_map__name(map));
10116 		return -EINVAL;
10117 	}
10118 
10119 	/* verify request size aligns with array */
10120 	array = btf_array(array_type);
10121 	element_sz = btf__resolve_size(btf, array->type);
10122 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10123 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10124 			bpf_map__name(map), element_sz, size);
10125 		return -EINVAL;
10126 	}
10127 
10128 	/* create a new array based on the existing array, but with new length */
10129 	nr_elements = (size - var->offset) / element_sz;
10130 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10131 	if (new_array_id < 0)
10132 		return new_array_id;
10133 
10134 	/* adding a new btf type invalidates existing pointers to btf objects,
10135 	 * so refresh pointers before proceeding
10136 	 */
10137 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10138 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10139 	var_type = btf_type_by_id(btf, var->type);
10140 
10141 	/* finally update btf info */
10142 	datasec_type->size = size;
10143 	var->size = size - var->offset;
10144 	var_type->type = new_array_id;
10145 
10146 	return 0;
10147 }
10148 
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10149 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10150 {
10151 	if (map->obj->loaded || map->reused)
10152 		return libbpf_err(-EBUSY);
10153 
10154 	if (map->mmaped) {
10155 		size_t mmap_old_sz, mmap_new_sz;
10156 		int err;
10157 
10158 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10159 			return -EOPNOTSUPP;
10160 
10161 		mmap_old_sz = bpf_map_mmap_sz(map);
10162 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10163 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10164 		if (err) {
10165 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10166 				bpf_map__name(map), err);
10167 			return err;
10168 		}
10169 		err = map_btf_datasec_resize(map, size);
10170 		if (err && err != -ENOENT) {
10171 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10172 				bpf_map__name(map), err);
10173 			map->btf_value_type_id = 0;
10174 			map->btf_key_type_id = 0;
10175 		}
10176 	}
10177 
10178 	map->def.value_size = size;
10179 	return 0;
10180 }
10181 
bpf_map__btf_key_type_id(const struct bpf_map * map)10182 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10183 {
10184 	return map ? map->btf_key_type_id : 0;
10185 }
10186 
bpf_map__btf_value_type_id(const struct bpf_map * map)10187 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10188 {
10189 	return map ? map->btf_value_type_id : 0;
10190 }
10191 
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10192 int bpf_map__set_initial_value(struct bpf_map *map,
10193 			       const void *data, size_t size)
10194 {
10195 	size_t actual_sz;
10196 
10197 	if (map->obj->loaded || map->reused)
10198 		return libbpf_err(-EBUSY);
10199 
10200 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10201 		return libbpf_err(-EINVAL);
10202 
10203 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10204 		actual_sz = map->obj->arena_data_sz;
10205 	else
10206 		actual_sz = map->def.value_size;
10207 	if (size != actual_sz)
10208 		return libbpf_err(-EINVAL);
10209 
10210 	memcpy(map->mmaped, data, size);
10211 	return 0;
10212 }
10213 
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10214 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10215 {
10216 	if (bpf_map__is_struct_ops(map)) {
10217 		if (psize)
10218 			*psize = map->def.value_size;
10219 		return map->st_ops->data;
10220 	}
10221 
10222 	if (!map->mmaped)
10223 		return NULL;
10224 
10225 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10226 		*psize = map->obj->arena_data_sz;
10227 	else
10228 		*psize = map->def.value_size;
10229 
10230 	return map->mmaped;
10231 }
10232 
bpf_map__is_internal(const struct bpf_map * map)10233 bool bpf_map__is_internal(const struct bpf_map *map)
10234 {
10235 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10236 }
10237 
bpf_map__ifindex(const struct bpf_map * map)10238 __u32 bpf_map__ifindex(const struct bpf_map *map)
10239 {
10240 	return map->map_ifindex;
10241 }
10242 
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10243 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10244 {
10245 	if (map_is_created(map))
10246 		return libbpf_err(-EBUSY);
10247 	map->map_ifindex = ifindex;
10248 	return 0;
10249 }
10250 
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10251 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10252 {
10253 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10254 		pr_warn("error: unsupported map type\n");
10255 		return libbpf_err(-EINVAL);
10256 	}
10257 	if (map->inner_map_fd != -1) {
10258 		pr_warn("error: inner_map_fd already specified\n");
10259 		return libbpf_err(-EINVAL);
10260 	}
10261 	if (map->inner_map) {
10262 		bpf_map__destroy(map->inner_map);
10263 		zfree(&map->inner_map);
10264 	}
10265 	map->inner_map_fd = fd;
10266 	return 0;
10267 }
10268 
10269 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10270 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10271 {
10272 	ssize_t idx;
10273 	struct bpf_map *s, *e;
10274 
10275 	if (!obj || !obj->maps)
10276 		return errno = EINVAL, NULL;
10277 
10278 	s = obj->maps;
10279 	e = obj->maps + obj->nr_maps;
10280 
10281 	if ((m < s) || (m >= e)) {
10282 		pr_warn("error in %s: map handler doesn't belong to object\n",
10283 			 __func__);
10284 		return errno = EINVAL, NULL;
10285 	}
10286 
10287 	idx = (m - obj->maps) + i;
10288 	if (idx >= obj->nr_maps || idx < 0)
10289 		return NULL;
10290 	return &obj->maps[idx];
10291 }
10292 
10293 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10294 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10295 {
10296 	if (prev == NULL)
10297 		return obj->maps;
10298 
10299 	return __bpf_map__iter(prev, obj, 1);
10300 }
10301 
10302 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10303 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10304 {
10305 	if (next == NULL) {
10306 		if (!obj->nr_maps)
10307 			return NULL;
10308 		return obj->maps + obj->nr_maps - 1;
10309 	}
10310 
10311 	return __bpf_map__iter(next, obj, -1);
10312 }
10313 
10314 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10315 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10316 {
10317 	struct bpf_map *pos;
10318 
10319 	bpf_object__for_each_map(pos, obj) {
10320 		/* if it's a special internal map name (which always starts
10321 		 * with dot) then check if that special name matches the
10322 		 * real map name (ELF section name)
10323 		 */
10324 		if (name[0] == '.') {
10325 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10326 				return pos;
10327 			continue;
10328 		}
10329 		/* otherwise map name has to be an exact match */
10330 		if (map_uses_real_name(pos)) {
10331 			if (strcmp(pos->real_name, name) == 0)
10332 				return pos;
10333 			continue;
10334 		}
10335 		if (strcmp(pos->name, name) == 0)
10336 			return pos;
10337 	}
10338 	return errno = ENOENT, NULL;
10339 }
10340 
10341 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10342 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10343 {
10344 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10345 }
10346 
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10347 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10348 			   size_t value_sz, bool check_value_sz)
10349 {
10350 	if (!map_is_created(map)) /* map is not yet created */
10351 		return -ENOENT;
10352 
10353 	if (map->def.key_size != key_sz) {
10354 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10355 			map->name, key_sz, map->def.key_size);
10356 		return -EINVAL;
10357 	}
10358 
10359 	if (map->fd < 0) {
10360 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10361 		return -EINVAL;
10362 	}
10363 
10364 	if (!check_value_sz)
10365 		return 0;
10366 
10367 	switch (map->def.type) {
10368 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10369 	case BPF_MAP_TYPE_PERCPU_HASH:
10370 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10371 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10372 		int num_cpu = libbpf_num_possible_cpus();
10373 		size_t elem_sz = roundup(map->def.value_size, 8);
10374 
10375 		if (value_sz != num_cpu * elem_sz) {
10376 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10377 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10378 			return -EINVAL;
10379 		}
10380 		break;
10381 	}
10382 	default:
10383 		if (map->def.value_size != value_sz) {
10384 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10385 				map->name, value_sz, map->def.value_size);
10386 			return -EINVAL;
10387 		}
10388 		break;
10389 	}
10390 	return 0;
10391 }
10392 
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10393 int bpf_map__lookup_elem(const struct bpf_map *map,
10394 			 const void *key, size_t key_sz,
10395 			 void *value, size_t value_sz, __u64 flags)
10396 {
10397 	int err;
10398 
10399 	err = validate_map_op(map, key_sz, value_sz, true);
10400 	if (err)
10401 		return libbpf_err(err);
10402 
10403 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10404 }
10405 
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10406 int bpf_map__update_elem(const struct bpf_map *map,
10407 			 const void *key, size_t key_sz,
10408 			 const void *value, size_t value_sz, __u64 flags)
10409 {
10410 	int err;
10411 
10412 	err = validate_map_op(map, key_sz, value_sz, true);
10413 	if (err)
10414 		return libbpf_err(err);
10415 
10416 	return bpf_map_update_elem(map->fd, key, value, flags);
10417 }
10418 
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10419 int bpf_map__delete_elem(const struct bpf_map *map,
10420 			 const void *key, size_t key_sz, __u64 flags)
10421 {
10422 	int err;
10423 
10424 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10425 	if (err)
10426 		return libbpf_err(err);
10427 
10428 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10429 }
10430 
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10431 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10432 				    const void *key, size_t key_sz,
10433 				    void *value, size_t value_sz, __u64 flags)
10434 {
10435 	int err;
10436 
10437 	err = validate_map_op(map, key_sz, value_sz, true);
10438 	if (err)
10439 		return libbpf_err(err);
10440 
10441 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10442 }
10443 
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10444 int bpf_map__get_next_key(const struct bpf_map *map,
10445 			  const void *cur_key, void *next_key, size_t key_sz)
10446 {
10447 	int err;
10448 
10449 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10450 	if (err)
10451 		return libbpf_err(err);
10452 
10453 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10454 }
10455 
libbpf_get_error(const void * ptr)10456 long libbpf_get_error(const void *ptr)
10457 {
10458 	if (!IS_ERR_OR_NULL(ptr))
10459 		return 0;
10460 
10461 	if (IS_ERR(ptr))
10462 		errno = -PTR_ERR(ptr);
10463 
10464 	/* If ptr == NULL, then errno should be already set by the failing
10465 	 * API, because libbpf never returns NULL on success and it now always
10466 	 * sets errno on error. So no extra errno handling for ptr == NULL
10467 	 * case.
10468 	 */
10469 	return -errno;
10470 }
10471 
10472 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10473 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10474 {
10475 	int ret;
10476 	int prog_fd = bpf_program__fd(prog);
10477 
10478 	if (prog_fd < 0) {
10479 		pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10480 			prog->name);
10481 		return libbpf_err(-EINVAL);
10482 	}
10483 
10484 	ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10485 	return libbpf_err_errno(ret);
10486 }
10487 
10488 /* Release "ownership" of underlying BPF resource (typically, BPF program
10489  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10490  * link, when destructed through bpf_link__destroy() call won't attempt to
10491  * detach/unregisted that BPF resource. This is useful in situations where,
10492  * say, attached BPF program has to outlive userspace program that attached it
10493  * in the system. Depending on type of BPF program, though, there might be
10494  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10495  * exit of userspace program doesn't trigger automatic detachment and clean up
10496  * inside the kernel.
10497  */
bpf_link__disconnect(struct bpf_link * link)10498 void bpf_link__disconnect(struct bpf_link *link)
10499 {
10500 	link->disconnected = true;
10501 }
10502 
bpf_link__destroy(struct bpf_link * link)10503 int bpf_link__destroy(struct bpf_link *link)
10504 {
10505 	int err = 0;
10506 
10507 	if (IS_ERR_OR_NULL(link))
10508 		return 0;
10509 
10510 	if (!link->disconnected && link->detach)
10511 		err = link->detach(link);
10512 	if (link->pin_path)
10513 		free(link->pin_path);
10514 	if (link->dealloc)
10515 		link->dealloc(link);
10516 	else
10517 		free(link);
10518 
10519 	return libbpf_err(err);
10520 }
10521 
bpf_link__fd(const struct bpf_link * link)10522 int bpf_link__fd(const struct bpf_link *link)
10523 {
10524 	return link->fd;
10525 }
10526 
bpf_link__pin_path(const struct bpf_link * link)10527 const char *bpf_link__pin_path(const struct bpf_link *link)
10528 {
10529 	return link->pin_path;
10530 }
10531 
bpf_link__detach_fd(struct bpf_link * link)10532 static int bpf_link__detach_fd(struct bpf_link *link)
10533 {
10534 	return libbpf_err_errno(close(link->fd));
10535 }
10536 
bpf_link__open(const char * path)10537 struct bpf_link *bpf_link__open(const char *path)
10538 {
10539 	struct bpf_link *link;
10540 	int fd;
10541 
10542 	fd = bpf_obj_get(path);
10543 	if (fd < 0) {
10544 		fd = -errno;
10545 		pr_warn("failed to open link at %s: %d\n", path, fd);
10546 		return libbpf_err_ptr(fd);
10547 	}
10548 
10549 	link = calloc(1, sizeof(*link));
10550 	if (!link) {
10551 		close(fd);
10552 		return libbpf_err_ptr(-ENOMEM);
10553 	}
10554 	link->detach = &bpf_link__detach_fd;
10555 	link->fd = fd;
10556 
10557 	link->pin_path = strdup(path);
10558 	if (!link->pin_path) {
10559 		bpf_link__destroy(link);
10560 		return libbpf_err_ptr(-ENOMEM);
10561 	}
10562 
10563 	return link;
10564 }
10565 
bpf_link__detach(struct bpf_link * link)10566 int bpf_link__detach(struct bpf_link *link)
10567 {
10568 	return bpf_link_detach(link->fd) ? -errno : 0;
10569 }
10570 
bpf_link__pin(struct bpf_link * link,const char * path)10571 int bpf_link__pin(struct bpf_link *link, const char *path)
10572 {
10573 	int err;
10574 
10575 	if (link->pin_path)
10576 		return libbpf_err(-EBUSY);
10577 	err = make_parent_dir(path);
10578 	if (err)
10579 		return libbpf_err(err);
10580 	err = check_path(path);
10581 	if (err)
10582 		return libbpf_err(err);
10583 
10584 	link->pin_path = strdup(path);
10585 	if (!link->pin_path)
10586 		return libbpf_err(-ENOMEM);
10587 
10588 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10589 		err = -errno;
10590 		zfree(&link->pin_path);
10591 		return libbpf_err(err);
10592 	}
10593 
10594 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10595 	return 0;
10596 }
10597 
bpf_link__unpin(struct bpf_link * link)10598 int bpf_link__unpin(struct bpf_link *link)
10599 {
10600 	int err;
10601 
10602 	if (!link->pin_path)
10603 		return libbpf_err(-EINVAL);
10604 
10605 	err = unlink(link->pin_path);
10606 	if (err != 0)
10607 		return -errno;
10608 
10609 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10610 	zfree(&link->pin_path);
10611 	return 0;
10612 }
10613 
10614 struct bpf_link_perf {
10615 	struct bpf_link link;
10616 	int perf_event_fd;
10617 	/* legacy kprobe support: keep track of probe identifier and type */
10618 	char *legacy_probe_name;
10619 	bool legacy_is_kprobe;
10620 	bool legacy_is_retprobe;
10621 };
10622 
10623 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10624 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10625 
bpf_link_perf_detach(struct bpf_link * link)10626 static int bpf_link_perf_detach(struct bpf_link *link)
10627 {
10628 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10629 	int err = 0;
10630 
10631 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10632 		err = -errno;
10633 
10634 	if (perf_link->perf_event_fd != link->fd)
10635 		close(perf_link->perf_event_fd);
10636 	close(link->fd);
10637 
10638 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10639 	if (perf_link->legacy_probe_name) {
10640 		if (perf_link->legacy_is_kprobe) {
10641 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10642 							 perf_link->legacy_is_retprobe);
10643 		} else {
10644 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10645 							 perf_link->legacy_is_retprobe);
10646 		}
10647 	}
10648 
10649 	return err;
10650 }
10651 
bpf_link_perf_dealloc(struct bpf_link * link)10652 static void bpf_link_perf_dealloc(struct bpf_link *link)
10653 {
10654 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10655 
10656 	free(perf_link->legacy_probe_name);
10657 	free(perf_link);
10658 }
10659 
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10660 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10661 						     const struct bpf_perf_event_opts *opts)
10662 {
10663 	char errmsg[STRERR_BUFSIZE];
10664 	struct bpf_link_perf *link;
10665 	int prog_fd, link_fd = -1, err;
10666 	bool force_ioctl_attach;
10667 
10668 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10669 		return libbpf_err_ptr(-EINVAL);
10670 
10671 	if (pfd < 0) {
10672 		pr_warn("prog '%s': invalid perf event FD %d\n",
10673 			prog->name, pfd);
10674 		return libbpf_err_ptr(-EINVAL);
10675 	}
10676 	prog_fd = bpf_program__fd(prog);
10677 	if (prog_fd < 0) {
10678 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10679 			prog->name);
10680 		return libbpf_err_ptr(-EINVAL);
10681 	}
10682 
10683 	link = calloc(1, sizeof(*link));
10684 	if (!link)
10685 		return libbpf_err_ptr(-ENOMEM);
10686 	link->link.detach = &bpf_link_perf_detach;
10687 	link->link.dealloc = &bpf_link_perf_dealloc;
10688 	link->perf_event_fd = pfd;
10689 
10690 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10691 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10692 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10693 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10694 
10695 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10696 		if (link_fd < 0) {
10697 			err = -errno;
10698 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10699 				prog->name, pfd,
10700 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10701 			goto err_out;
10702 		}
10703 		link->link.fd = link_fd;
10704 	} else {
10705 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10706 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10707 			err = -EOPNOTSUPP;
10708 			goto err_out;
10709 		}
10710 
10711 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10712 			err = -errno;
10713 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10714 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10715 			if (err == -EPROTO)
10716 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10717 					prog->name, pfd);
10718 			goto err_out;
10719 		}
10720 		link->link.fd = pfd;
10721 	}
10722 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10723 		err = -errno;
10724 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10725 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10726 		goto err_out;
10727 	}
10728 
10729 	return &link->link;
10730 err_out:
10731 	if (link_fd >= 0)
10732 		close(link_fd);
10733 	free(link);
10734 	return libbpf_err_ptr(err);
10735 }
10736 
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10737 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10738 {
10739 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10740 }
10741 
10742 /*
10743  * this function is expected to parse integer in the range of [0, 2^31-1] from
10744  * given file using scanf format string fmt. If actual parsed value is
10745  * negative, the result might be indistinguishable from error
10746  */
parse_uint_from_file(const char * file,const char * fmt)10747 static int parse_uint_from_file(const char *file, const char *fmt)
10748 {
10749 	char buf[STRERR_BUFSIZE];
10750 	int err, ret;
10751 	FILE *f;
10752 
10753 	f = fopen(file, "re");
10754 	if (!f) {
10755 		err = -errno;
10756 		pr_debug("failed to open '%s': %s\n", file,
10757 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10758 		return err;
10759 	}
10760 	err = fscanf(f, fmt, &ret);
10761 	if (err != 1) {
10762 		err = err == EOF ? -EIO : -errno;
10763 		pr_debug("failed to parse '%s': %s\n", file,
10764 			libbpf_strerror_r(err, buf, sizeof(buf)));
10765 		fclose(f);
10766 		return err;
10767 	}
10768 	fclose(f);
10769 	return ret;
10770 }
10771 
determine_kprobe_perf_type(void)10772 static int determine_kprobe_perf_type(void)
10773 {
10774 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10775 
10776 	return parse_uint_from_file(file, "%d\n");
10777 }
10778 
determine_uprobe_perf_type(void)10779 static int determine_uprobe_perf_type(void)
10780 {
10781 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10782 
10783 	return parse_uint_from_file(file, "%d\n");
10784 }
10785 
determine_kprobe_retprobe_bit(void)10786 static int determine_kprobe_retprobe_bit(void)
10787 {
10788 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10789 
10790 	return parse_uint_from_file(file, "config:%d\n");
10791 }
10792 
determine_uprobe_retprobe_bit(void)10793 static int determine_uprobe_retprobe_bit(void)
10794 {
10795 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10796 
10797 	return parse_uint_from_file(file, "config:%d\n");
10798 }
10799 
10800 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10801 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10802 
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10803 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10804 				 uint64_t offset, int pid, size_t ref_ctr_off)
10805 {
10806 	const size_t attr_sz = sizeof(struct perf_event_attr);
10807 	struct perf_event_attr attr;
10808 	char errmsg[STRERR_BUFSIZE];
10809 	int type, pfd;
10810 
10811 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10812 		return -EINVAL;
10813 
10814 	memset(&attr, 0, attr_sz);
10815 
10816 	type = uprobe ? determine_uprobe_perf_type()
10817 		      : determine_kprobe_perf_type();
10818 	if (type < 0) {
10819 		pr_warn("failed to determine %s perf type: %s\n",
10820 			uprobe ? "uprobe" : "kprobe",
10821 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10822 		return type;
10823 	}
10824 	if (retprobe) {
10825 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10826 				 : determine_kprobe_retprobe_bit();
10827 
10828 		if (bit < 0) {
10829 			pr_warn("failed to determine %s retprobe bit: %s\n",
10830 				uprobe ? "uprobe" : "kprobe",
10831 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10832 			return bit;
10833 		}
10834 		attr.config |= 1 << bit;
10835 	}
10836 	attr.size = attr_sz;
10837 	attr.type = type;
10838 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10839 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10840 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10841 
10842 	/* pid filter is meaningful only for uprobes */
10843 	pfd = syscall(__NR_perf_event_open, &attr,
10844 		      pid < 0 ? -1 : pid /* pid */,
10845 		      pid == -1 ? 0 : -1 /* cpu */,
10846 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10847 	return pfd >= 0 ? pfd : -errno;
10848 }
10849 
append_to_file(const char * file,const char * fmt,...)10850 static int append_to_file(const char *file, const char *fmt, ...)
10851 {
10852 	int fd, n, err = 0;
10853 	va_list ap;
10854 	char buf[1024];
10855 
10856 	va_start(ap, fmt);
10857 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10858 	va_end(ap);
10859 
10860 	if (n < 0 || n >= sizeof(buf))
10861 		return -EINVAL;
10862 
10863 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10864 	if (fd < 0)
10865 		return -errno;
10866 
10867 	if (write(fd, buf, n) < 0)
10868 		err = -errno;
10869 
10870 	close(fd);
10871 	return err;
10872 }
10873 
10874 #define DEBUGFS "/sys/kernel/debug/tracing"
10875 #define TRACEFS "/sys/kernel/tracing"
10876 
use_debugfs(void)10877 static bool use_debugfs(void)
10878 {
10879 	static int has_debugfs = -1;
10880 
10881 	if (has_debugfs < 0)
10882 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10883 
10884 	return has_debugfs == 1;
10885 }
10886 
tracefs_path(void)10887 static const char *tracefs_path(void)
10888 {
10889 	return use_debugfs() ? DEBUGFS : TRACEFS;
10890 }
10891 
tracefs_kprobe_events(void)10892 static const char *tracefs_kprobe_events(void)
10893 {
10894 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10895 }
10896 
tracefs_uprobe_events(void)10897 static const char *tracefs_uprobe_events(void)
10898 {
10899 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10900 }
10901 
tracefs_available_filter_functions(void)10902 static const char *tracefs_available_filter_functions(void)
10903 {
10904 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10905 			     : TRACEFS"/available_filter_functions";
10906 }
10907 
tracefs_available_filter_functions_addrs(void)10908 static const char *tracefs_available_filter_functions_addrs(void)
10909 {
10910 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10911 			     : TRACEFS"/available_filter_functions_addrs";
10912 }
10913 
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10914 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10915 					 const char *kfunc_name, size_t offset)
10916 {
10917 	static int index = 0;
10918 	int i;
10919 
10920 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10921 		 __sync_fetch_and_add(&index, 1));
10922 
10923 	/* sanitize binary_path in the probe name */
10924 	for (i = 0; buf[i]; i++) {
10925 		if (!isalnum(buf[i]))
10926 			buf[i] = '_';
10927 	}
10928 }
10929 
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10930 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10931 				   const char *kfunc_name, size_t offset)
10932 {
10933 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10934 			      retprobe ? 'r' : 'p',
10935 			      retprobe ? "kretprobes" : "kprobes",
10936 			      probe_name, kfunc_name, offset);
10937 }
10938 
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10939 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10940 {
10941 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10942 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10943 }
10944 
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10945 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10946 {
10947 	char file[256];
10948 
10949 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10950 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10951 
10952 	return parse_uint_from_file(file, "%d\n");
10953 }
10954 
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10955 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10956 					 const char *kfunc_name, size_t offset, int pid)
10957 {
10958 	const size_t attr_sz = sizeof(struct perf_event_attr);
10959 	struct perf_event_attr attr;
10960 	char errmsg[STRERR_BUFSIZE];
10961 	int type, pfd, err;
10962 
10963 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10964 	if (err < 0) {
10965 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10966 			kfunc_name, offset,
10967 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10968 		return err;
10969 	}
10970 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10971 	if (type < 0) {
10972 		err = type;
10973 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10974 			kfunc_name, offset,
10975 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10976 		goto err_clean_legacy;
10977 	}
10978 
10979 	memset(&attr, 0, attr_sz);
10980 	attr.size = attr_sz;
10981 	attr.config = type;
10982 	attr.type = PERF_TYPE_TRACEPOINT;
10983 
10984 	pfd = syscall(__NR_perf_event_open, &attr,
10985 		      pid < 0 ? -1 : pid, /* pid */
10986 		      pid == -1 ? 0 : -1, /* cpu */
10987 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10988 	if (pfd < 0) {
10989 		err = -errno;
10990 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10991 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10992 		goto err_clean_legacy;
10993 	}
10994 	return pfd;
10995 
10996 err_clean_legacy:
10997 	/* Clear the newly added legacy kprobe_event */
10998 	remove_kprobe_event_legacy(probe_name, retprobe);
10999 	return err;
11000 }
11001 
arch_specific_syscall_pfx(void)11002 static const char *arch_specific_syscall_pfx(void)
11003 {
11004 #if defined(__x86_64__)
11005 	return "x64";
11006 #elif defined(__i386__)
11007 	return "ia32";
11008 #elif defined(__s390x__)
11009 	return "s390x";
11010 #elif defined(__s390__)
11011 	return "s390";
11012 #elif defined(__arm__)
11013 	return "arm";
11014 #elif defined(__aarch64__)
11015 	return "arm64";
11016 #elif defined(__mips__)
11017 	return "mips";
11018 #elif defined(__riscv)
11019 	return "riscv";
11020 #elif defined(__powerpc__)
11021 	return "powerpc";
11022 #elif defined(__powerpc64__)
11023 	return "powerpc64";
11024 #else
11025 	return NULL;
11026 #endif
11027 }
11028 
probe_kern_syscall_wrapper(int token_fd)11029 int probe_kern_syscall_wrapper(int token_fd)
11030 {
11031 	char syscall_name[64];
11032 	const char *ksys_pfx;
11033 
11034 	ksys_pfx = arch_specific_syscall_pfx();
11035 	if (!ksys_pfx)
11036 		return 0;
11037 
11038 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11039 
11040 	if (determine_kprobe_perf_type() >= 0) {
11041 		int pfd;
11042 
11043 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11044 		if (pfd >= 0)
11045 			close(pfd);
11046 
11047 		return pfd >= 0 ? 1 : 0;
11048 	} else { /* legacy mode */
11049 		char probe_name[128];
11050 
11051 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11052 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11053 			return 0;
11054 
11055 		(void)remove_kprobe_event_legacy(probe_name, false);
11056 		return 1;
11057 	}
11058 }
11059 
11060 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11061 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11062 				const char *func_name,
11063 				const struct bpf_kprobe_opts *opts)
11064 {
11065 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11066 	enum probe_attach_mode attach_mode;
11067 	char errmsg[STRERR_BUFSIZE];
11068 	char *legacy_probe = NULL;
11069 	struct bpf_link *link;
11070 	size_t offset;
11071 	bool retprobe, legacy;
11072 	int pfd, err;
11073 
11074 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11075 		return libbpf_err_ptr(-EINVAL);
11076 
11077 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11078 	retprobe = OPTS_GET(opts, retprobe, false);
11079 	offset = OPTS_GET(opts, offset, 0);
11080 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11081 
11082 	legacy = determine_kprobe_perf_type() < 0;
11083 	switch (attach_mode) {
11084 	case PROBE_ATTACH_MODE_LEGACY:
11085 		legacy = true;
11086 		pe_opts.force_ioctl_attach = true;
11087 		break;
11088 	case PROBE_ATTACH_MODE_PERF:
11089 		if (legacy)
11090 			return libbpf_err_ptr(-ENOTSUP);
11091 		pe_opts.force_ioctl_attach = true;
11092 		break;
11093 	case PROBE_ATTACH_MODE_LINK:
11094 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11095 			return libbpf_err_ptr(-ENOTSUP);
11096 		break;
11097 	case PROBE_ATTACH_MODE_DEFAULT:
11098 		break;
11099 	default:
11100 		return libbpf_err_ptr(-EINVAL);
11101 	}
11102 
11103 	if (!legacy) {
11104 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11105 					    func_name, offset,
11106 					    -1 /* pid */, 0 /* ref_ctr_off */);
11107 	} else {
11108 		char probe_name[256];
11109 
11110 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11111 					     func_name, offset);
11112 
11113 		legacy_probe = strdup(probe_name);
11114 		if (!legacy_probe)
11115 			return libbpf_err_ptr(-ENOMEM);
11116 
11117 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11118 						    offset, -1 /* pid */);
11119 	}
11120 	if (pfd < 0) {
11121 		err = -errno;
11122 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11123 			prog->name, retprobe ? "kretprobe" : "kprobe",
11124 			func_name, offset,
11125 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11126 		goto err_out;
11127 	}
11128 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11129 	err = libbpf_get_error(link);
11130 	if (err) {
11131 		close(pfd);
11132 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11133 			prog->name, retprobe ? "kretprobe" : "kprobe",
11134 			func_name, offset,
11135 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11136 		goto err_clean_legacy;
11137 	}
11138 	if (legacy) {
11139 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11140 
11141 		perf_link->legacy_probe_name = legacy_probe;
11142 		perf_link->legacy_is_kprobe = true;
11143 		perf_link->legacy_is_retprobe = retprobe;
11144 	}
11145 
11146 	return link;
11147 
11148 err_clean_legacy:
11149 	if (legacy)
11150 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11151 err_out:
11152 	free(legacy_probe);
11153 	return libbpf_err_ptr(err);
11154 }
11155 
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11156 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11157 					    bool retprobe,
11158 					    const char *func_name)
11159 {
11160 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11161 		.retprobe = retprobe,
11162 	);
11163 
11164 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11165 }
11166 
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11167 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11168 					      const char *syscall_name,
11169 					      const struct bpf_ksyscall_opts *opts)
11170 {
11171 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11172 	char func_name[128];
11173 
11174 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11175 		return libbpf_err_ptr(-EINVAL);
11176 
11177 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11178 		/* arch_specific_syscall_pfx() should never return NULL here
11179 		 * because it is guarded by kernel_supports(). However, since
11180 		 * compiler does not know that we have an explicit conditional
11181 		 * as well.
11182 		 */
11183 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11184 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11185 	} else {
11186 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11187 	}
11188 
11189 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11190 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11191 
11192 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11193 }
11194 
11195 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11196 bool glob_match(const char *str, const char *pat)
11197 {
11198 	while (*str && *pat && *pat != '*') {
11199 		if (*pat == '?') {      /* Matches any single character */
11200 			str++;
11201 			pat++;
11202 			continue;
11203 		}
11204 		if (*str != *pat)
11205 			return false;
11206 		str++;
11207 		pat++;
11208 	}
11209 	/* Check wild card */
11210 	if (*pat == '*') {
11211 		while (*pat == '*')
11212 			pat++;
11213 		if (!*pat) /* Tail wild card matches all */
11214 			return true;
11215 		while (*str)
11216 			if (glob_match(str++, pat))
11217 				return true;
11218 	}
11219 	return !*str && !*pat;
11220 }
11221 
11222 struct kprobe_multi_resolve {
11223 	const char *pattern;
11224 	unsigned long *addrs;
11225 	size_t cap;
11226 	size_t cnt;
11227 };
11228 
11229 struct avail_kallsyms_data {
11230 	char **syms;
11231 	size_t cnt;
11232 	struct kprobe_multi_resolve *res;
11233 };
11234 
avail_func_cmp(const void * a,const void * b)11235 static int avail_func_cmp(const void *a, const void *b)
11236 {
11237 	return strcmp(*(const char **)a, *(const char **)b);
11238 }
11239 
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11240 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11241 			     const char *sym_name, void *ctx)
11242 {
11243 	struct avail_kallsyms_data *data = ctx;
11244 	struct kprobe_multi_resolve *res = data->res;
11245 	int err;
11246 
11247 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11248 		return 0;
11249 
11250 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11251 	if (err)
11252 		return err;
11253 
11254 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11255 	return 0;
11256 }
11257 
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11258 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11259 {
11260 	const char *available_functions_file = tracefs_available_filter_functions();
11261 	struct avail_kallsyms_data data;
11262 	char sym_name[500];
11263 	FILE *f;
11264 	int err = 0, ret, i;
11265 	char **syms = NULL;
11266 	size_t cap = 0, cnt = 0;
11267 
11268 	f = fopen(available_functions_file, "re");
11269 	if (!f) {
11270 		err = -errno;
11271 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11272 		return err;
11273 	}
11274 
11275 	while (true) {
11276 		char *name;
11277 
11278 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11279 		if (ret == EOF && feof(f))
11280 			break;
11281 
11282 		if (ret != 1) {
11283 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11284 			err = -EINVAL;
11285 			goto cleanup;
11286 		}
11287 
11288 		if (!glob_match(sym_name, res->pattern))
11289 			continue;
11290 
11291 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11292 		if (err)
11293 			goto cleanup;
11294 
11295 		name = strdup(sym_name);
11296 		if (!name) {
11297 			err = -errno;
11298 			goto cleanup;
11299 		}
11300 
11301 		syms[cnt++] = name;
11302 	}
11303 
11304 	/* no entries found, bail out */
11305 	if (cnt == 0) {
11306 		err = -ENOENT;
11307 		goto cleanup;
11308 	}
11309 
11310 	/* sort available functions */
11311 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11312 
11313 	data.syms = syms;
11314 	data.res = res;
11315 	data.cnt = cnt;
11316 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11317 
11318 	if (res->cnt == 0)
11319 		err = -ENOENT;
11320 
11321 cleanup:
11322 	for (i = 0; i < cnt; i++)
11323 		free((char *)syms[i]);
11324 	free(syms);
11325 
11326 	fclose(f);
11327 	return err;
11328 }
11329 
has_available_filter_functions_addrs(void)11330 static bool has_available_filter_functions_addrs(void)
11331 {
11332 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11333 }
11334 
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11335 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11336 {
11337 	const char *available_path = tracefs_available_filter_functions_addrs();
11338 	char sym_name[500];
11339 	FILE *f;
11340 	int ret, err = 0;
11341 	unsigned long long sym_addr;
11342 
11343 	f = fopen(available_path, "re");
11344 	if (!f) {
11345 		err = -errno;
11346 		pr_warn("failed to open %s: %d\n", available_path, err);
11347 		return err;
11348 	}
11349 
11350 	while (true) {
11351 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11352 		if (ret == EOF && feof(f))
11353 			break;
11354 
11355 		if (ret != 2) {
11356 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11357 				ret);
11358 			err = -EINVAL;
11359 			goto cleanup;
11360 		}
11361 
11362 		if (!glob_match(sym_name, res->pattern))
11363 			continue;
11364 
11365 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11366 					sizeof(*res->addrs), res->cnt + 1);
11367 		if (err)
11368 			goto cleanup;
11369 
11370 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11371 	}
11372 
11373 	if (res->cnt == 0)
11374 		err = -ENOENT;
11375 
11376 cleanup:
11377 	fclose(f);
11378 	return err;
11379 }
11380 
11381 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11382 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11383 				      const char *pattern,
11384 				      const struct bpf_kprobe_multi_opts *opts)
11385 {
11386 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11387 	struct kprobe_multi_resolve res = {
11388 		.pattern = pattern,
11389 	};
11390 	struct bpf_link *link = NULL;
11391 	char errmsg[STRERR_BUFSIZE];
11392 	const unsigned long *addrs;
11393 	int err, link_fd, prog_fd;
11394 	const __u64 *cookies;
11395 	const char **syms;
11396 	bool retprobe;
11397 	size_t cnt;
11398 
11399 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11400 		return libbpf_err_ptr(-EINVAL);
11401 
11402 	prog_fd = bpf_program__fd(prog);
11403 	if (prog_fd < 0) {
11404 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11405 			prog->name);
11406 		return libbpf_err_ptr(-EINVAL);
11407 	}
11408 
11409 	syms    = OPTS_GET(opts, syms, false);
11410 	addrs   = OPTS_GET(opts, addrs, false);
11411 	cnt     = OPTS_GET(opts, cnt, false);
11412 	cookies = OPTS_GET(opts, cookies, false);
11413 
11414 	if (!pattern && !addrs && !syms)
11415 		return libbpf_err_ptr(-EINVAL);
11416 	if (pattern && (addrs || syms || cookies || cnt))
11417 		return libbpf_err_ptr(-EINVAL);
11418 	if (!pattern && !cnt)
11419 		return libbpf_err_ptr(-EINVAL);
11420 	if (addrs && syms)
11421 		return libbpf_err_ptr(-EINVAL);
11422 
11423 	if (pattern) {
11424 		if (has_available_filter_functions_addrs())
11425 			err = libbpf_available_kprobes_parse(&res);
11426 		else
11427 			err = libbpf_available_kallsyms_parse(&res);
11428 		if (err)
11429 			goto error;
11430 		addrs = res.addrs;
11431 		cnt = res.cnt;
11432 	}
11433 
11434 	retprobe = OPTS_GET(opts, retprobe, false);
11435 
11436 	lopts.kprobe_multi.syms = syms;
11437 	lopts.kprobe_multi.addrs = addrs;
11438 	lopts.kprobe_multi.cookies = cookies;
11439 	lopts.kprobe_multi.cnt = cnt;
11440 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11441 
11442 	link = calloc(1, sizeof(*link));
11443 	if (!link) {
11444 		err = -ENOMEM;
11445 		goto error;
11446 	}
11447 	link->detach = &bpf_link__detach_fd;
11448 
11449 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11450 	if (link_fd < 0) {
11451 		err = -errno;
11452 		pr_warn("prog '%s': failed to attach: %s\n",
11453 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11454 		goto error;
11455 	}
11456 	link->fd = link_fd;
11457 	free(res.addrs);
11458 	return link;
11459 
11460 error:
11461 	free(link);
11462 	free(res.addrs);
11463 	return libbpf_err_ptr(err);
11464 }
11465 
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11466 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11467 {
11468 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11469 	unsigned long offset = 0;
11470 	const char *func_name;
11471 	char *func;
11472 	int n;
11473 
11474 	*link = NULL;
11475 
11476 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11477 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11478 		return 0;
11479 
11480 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11481 	if (opts.retprobe)
11482 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11483 	else
11484 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11485 
11486 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11487 	if (n < 1) {
11488 		pr_warn("kprobe name is invalid: %s\n", func_name);
11489 		return -EINVAL;
11490 	}
11491 	if (opts.retprobe && offset != 0) {
11492 		free(func);
11493 		pr_warn("kretprobes do not support offset specification\n");
11494 		return -EINVAL;
11495 	}
11496 
11497 	opts.offset = offset;
11498 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11499 	free(func);
11500 	return libbpf_get_error(*link);
11501 }
11502 
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11503 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11504 {
11505 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11506 	const char *syscall_name;
11507 
11508 	*link = NULL;
11509 
11510 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11511 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11512 		return 0;
11513 
11514 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11515 	if (opts.retprobe)
11516 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11517 	else
11518 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11519 
11520 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11521 	return *link ? 0 : -errno;
11522 }
11523 
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11524 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11525 {
11526 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11527 	const char *spec;
11528 	char *pattern;
11529 	int n;
11530 
11531 	*link = NULL;
11532 
11533 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11534 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11535 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11536 		return 0;
11537 
11538 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11539 	if (opts.retprobe)
11540 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11541 	else
11542 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11543 
11544 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11545 	if (n < 1) {
11546 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11547 		return -EINVAL;
11548 	}
11549 
11550 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11551 	free(pattern);
11552 	return libbpf_get_error(*link);
11553 }
11554 
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11555 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11556 {
11557 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11558 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11559 	int n, ret = -EINVAL;
11560 
11561 	*link = NULL;
11562 
11563 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11564 		   &probe_type, &binary_path, &func_name);
11565 	switch (n) {
11566 	case 1:
11567 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11568 		ret = 0;
11569 		break;
11570 	case 3:
11571 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11572 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11573 		ret = libbpf_get_error(*link);
11574 		break;
11575 	default:
11576 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11577 			prog->sec_name);
11578 		break;
11579 	}
11580 	free(probe_type);
11581 	free(binary_path);
11582 	free(func_name);
11583 	return ret;
11584 }
11585 
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11586 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11587 					 const char *binary_path, uint64_t offset)
11588 {
11589 	int i;
11590 
11591 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11592 
11593 	/* sanitize binary_path in the probe name */
11594 	for (i = 0; buf[i]; i++) {
11595 		if (!isalnum(buf[i]))
11596 			buf[i] = '_';
11597 	}
11598 }
11599 
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11600 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11601 					  const char *binary_path, size_t offset)
11602 {
11603 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11604 			      retprobe ? 'r' : 'p',
11605 			      retprobe ? "uretprobes" : "uprobes",
11606 			      probe_name, binary_path, offset);
11607 }
11608 
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11609 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11610 {
11611 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11612 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11613 }
11614 
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11615 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11616 {
11617 	char file[512];
11618 
11619 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11620 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11621 
11622 	return parse_uint_from_file(file, "%d\n");
11623 }
11624 
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11625 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11626 					 const char *binary_path, size_t offset, int pid)
11627 {
11628 	const size_t attr_sz = sizeof(struct perf_event_attr);
11629 	struct perf_event_attr attr;
11630 	int type, pfd, err;
11631 
11632 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11633 	if (err < 0) {
11634 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11635 			binary_path, (size_t)offset, err);
11636 		return err;
11637 	}
11638 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11639 	if (type < 0) {
11640 		err = type;
11641 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11642 			binary_path, offset, err);
11643 		goto err_clean_legacy;
11644 	}
11645 
11646 	memset(&attr, 0, attr_sz);
11647 	attr.size = attr_sz;
11648 	attr.config = type;
11649 	attr.type = PERF_TYPE_TRACEPOINT;
11650 
11651 	pfd = syscall(__NR_perf_event_open, &attr,
11652 		      pid < 0 ? -1 : pid, /* pid */
11653 		      pid == -1 ? 0 : -1, /* cpu */
11654 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11655 	if (pfd < 0) {
11656 		err = -errno;
11657 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11658 		goto err_clean_legacy;
11659 	}
11660 	return pfd;
11661 
11662 err_clean_legacy:
11663 	/* Clear the newly added legacy uprobe_event */
11664 	remove_uprobe_event_legacy(probe_name, retprobe);
11665 	return err;
11666 }
11667 
11668 /* Find offset of function name in archive specified by path. Currently
11669  * supported are .zip files that do not compress their contents, as used on
11670  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11671  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11672  * library functions.
11673  *
11674  * An overview of the APK format specifically provided here:
11675  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11676  */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11677 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11678 					      const char *func_name)
11679 {
11680 	struct zip_archive *archive;
11681 	struct zip_entry entry;
11682 	long ret;
11683 	Elf *elf;
11684 
11685 	archive = zip_archive_open(archive_path);
11686 	if (IS_ERR(archive)) {
11687 		ret = PTR_ERR(archive);
11688 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11689 		return ret;
11690 	}
11691 
11692 	ret = zip_archive_find_entry(archive, file_name, &entry);
11693 	if (ret) {
11694 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11695 			archive_path, ret);
11696 		goto out;
11697 	}
11698 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11699 		 (unsigned long)entry.data_offset);
11700 
11701 	if (entry.compression) {
11702 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11703 			archive_path);
11704 		ret = -LIBBPF_ERRNO__FORMAT;
11705 		goto out;
11706 	}
11707 
11708 	elf = elf_memory((void *)entry.data, entry.data_length);
11709 	if (!elf) {
11710 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11711 			elf_errmsg(-1));
11712 		ret = -LIBBPF_ERRNO__LIBELF;
11713 		goto out;
11714 	}
11715 
11716 	ret = elf_find_func_offset(elf, file_name, func_name);
11717 	if (ret > 0) {
11718 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11719 			 func_name, file_name, archive_path, entry.data_offset, ret,
11720 			 ret + entry.data_offset);
11721 		ret += entry.data_offset;
11722 	}
11723 	elf_end(elf);
11724 
11725 out:
11726 	zip_archive_close(archive);
11727 	return ret;
11728 }
11729 
arch_specific_lib_paths(void)11730 static const char *arch_specific_lib_paths(void)
11731 {
11732 	/*
11733 	 * Based on https://packages.debian.org/sid/libc6.
11734 	 *
11735 	 * Assume that the traced program is built for the same architecture
11736 	 * as libbpf, which should cover the vast majority of cases.
11737 	 */
11738 #if defined(__x86_64__)
11739 	return "/lib/x86_64-linux-gnu";
11740 #elif defined(__i386__)
11741 	return "/lib/i386-linux-gnu";
11742 #elif defined(__s390x__)
11743 	return "/lib/s390x-linux-gnu";
11744 #elif defined(__s390__)
11745 	return "/lib/s390-linux-gnu";
11746 #elif defined(__arm__) && defined(__SOFTFP__)
11747 	return "/lib/arm-linux-gnueabi";
11748 #elif defined(__arm__) && !defined(__SOFTFP__)
11749 	return "/lib/arm-linux-gnueabihf";
11750 #elif defined(__aarch64__)
11751 	return "/lib/aarch64-linux-gnu";
11752 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11753 	return "/lib/mips64el-linux-gnuabi64";
11754 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11755 	return "/lib/mipsel-linux-gnu";
11756 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11757 	return "/lib/powerpc64le-linux-gnu";
11758 #elif defined(__sparc__) && defined(__arch64__)
11759 	return "/lib/sparc64-linux-gnu";
11760 #elif defined(__riscv) && __riscv_xlen == 64
11761 	return "/lib/riscv64-linux-gnu";
11762 #else
11763 	return NULL;
11764 #endif
11765 }
11766 
11767 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11768 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11769 {
11770 	const char *search_paths[3] = {};
11771 	int i, perm;
11772 
11773 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11774 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11775 		search_paths[1] = "/usr/lib64:/usr/lib";
11776 		search_paths[2] = arch_specific_lib_paths();
11777 		perm = R_OK;
11778 	} else {
11779 		search_paths[0] = getenv("PATH");
11780 		search_paths[1] = "/usr/bin:/usr/sbin";
11781 		perm = R_OK | X_OK;
11782 	}
11783 
11784 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11785 		const char *s;
11786 
11787 		if (!search_paths[i])
11788 			continue;
11789 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11790 			char *next_path;
11791 			int seg_len;
11792 
11793 			if (s[0] == ':')
11794 				s++;
11795 			next_path = strchr(s, ':');
11796 			seg_len = next_path ? next_path - s : strlen(s);
11797 			if (!seg_len)
11798 				continue;
11799 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11800 			/* ensure it has required permissions */
11801 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11802 				continue;
11803 			pr_debug("resolved '%s' to '%s'\n", file, result);
11804 			return 0;
11805 		}
11806 	}
11807 	return -ENOENT;
11808 }
11809 
11810 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11811 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11812 				 pid_t pid,
11813 				 const char *path,
11814 				 const char *func_pattern,
11815 				 const struct bpf_uprobe_multi_opts *opts)
11816 {
11817 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11818 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11819 	unsigned long *resolved_offsets = NULL;
11820 	int err = 0, link_fd, prog_fd;
11821 	struct bpf_link *link = NULL;
11822 	char errmsg[STRERR_BUFSIZE];
11823 	char full_path[PATH_MAX];
11824 	const __u64 *cookies;
11825 	const char **syms;
11826 	size_t cnt;
11827 
11828 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11829 		return libbpf_err_ptr(-EINVAL);
11830 
11831 	prog_fd = bpf_program__fd(prog);
11832 	if (prog_fd < 0) {
11833 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11834 			prog->name);
11835 		return libbpf_err_ptr(-EINVAL);
11836 	}
11837 
11838 	syms = OPTS_GET(opts, syms, NULL);
11839 	offsets = OPTS_GET(opts, offsets, NULL);
11840 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11841 	cookies = OPTS_GET(opts, cookies, NULL);
11842 	cnt = OPTS_GET(opts, cnt, 0);
11843 
11844 	/*
11845 	 * User can specify 2 mutually exclusive set of inputs:
11846 	 *
11847 	 * 1) use only path/func_pattern/pid arguments
11848 	 *
11849 	 * 2) use path/pid with allowed combinations of:
11850 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11851 	 *
11852 	 *    - syms and offsets are mutually exclusive
11853 	 *    - ref_ctr_offsets and cookies are optional
11854 	 *
11855 	 * Any other usage results in error.
11856 	 */
11857 
11858 	if (!path)
11859 		return libbpf_err_ptr(-EINVAL);
11860 	if (!func_pattern && cnt == 0)
11861 		return libbpf_err_ptr(-EINVAL);
11862 
11863 	if (func_pattern) {
11864 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11865 			return libbpf_err_ptr(-EINVAL);
11866 	} else {
11867 		if (!!syms == !!offsets)
11868 			return libbpf_err_ptr(-EINVAL);
11869 	}
11870 
11871 	if (func_pattern) {
11872 		if (!strchr(path, '/')) {
11873 			err = resolve_full_path(path, full_path, sizeof(full_path));
11874 			if (err) {
11875 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11876 					prog->name, path, err);
11877 				return libbpf_err_ptr(err);
11878 			}
11879 			path = full_path;
11880 		}
11881 
11882 		err = elf_resolve_pattern_offsets(path, func_pattern,
11883 						  &resolved_offsets, &cnt);
11884 		if (err < 0)
11885 			return libbpf_err_ptr(err);
11886 		offsets = resolved_offsets;
11887 	} else if (syms) {
11888 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11889 		if (err < 0)
11890 			return libbpf_err_ptr(err);
11891 		offsets = resolved_offsets;
11892 	}
11893 
11894 	lopts.uprobe_multi.path = path;
11895 	lopts.uprobe_multi.offsets = offsets;
11896 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11897 	lopts.uprobe_multi.cookies = cookies;
11898 	lopts.uprobe_multi.cnt = cnt;
11899 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11900 
11901 	if (pid == 0)
11902 		pid = getpid();
11903 	if (pid > 0)
11904 		lopts.uprobe_multi.pid = pid;
11905 
11906 	link = calloc(1, sizeof(*link));
11907 	if (!link) {
11908 		err = -ENOMEM;
11909 		goto error;
11910 	}
11911 	link->detach = &bpf_link__detach_fd;
11912 
11913 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11914 	if (link_fd < 0) {
11915 		err = -errno;
11916 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11917 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11918 		goto error;
11919 	}
11920 	link->fd = link_fd;
11921 	free(resolved_offsets);
11922 	return link;
11923 
11924 error:
11925 	free(resolved_offsets);
11926 	free(link);
11927 	return libbpf_err_ptr(err);
11928 }
11929 
11930 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11931 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11932 				const char *binary_path, size_t func_offset,
11933 				const struct bpf_uprobe_opts *opts)
11934 {
11935 	const char *archive_path = NULL, *archive_sep = NULL;
11936 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11937 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11938 	enum probe_attach_mode attach_mode;
11939 	char full_path[PATH_MAX];
11940 	struct bpf_link *link;
11941 	size_t ref_ctr_off;
11942 	int pfd, err;
11943 	bool retprobe, legacy;
11944 	const char *func_name;
11945 
11946 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11947 		return libbpf_err_ptr(-EINVAL);
11948 
11949 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11950 	retprobe = OPTS_GET(opts, retprobe, false);
11951 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11952 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11953 
11954 	if (!binary_path)
11955 		return libbpf_err_ptr(-EINVAL);
11956 
11957 	/* Check if "binary_path" refers to an archive. */
11958 	archive_sep = strstr(binary_path, "!/");
11959 	if (archive_sep) {
11960 		full_path[0] = '\0';
11961 		libbpf_strlcpy(full_path, binary_path,
11962 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11963 		archive_path = full_path;
11964 		binary_path = archive_sep + 2;
11965 	} else if (!strchr(binary_path, '/')) {
11966 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11967 		if (err) {
11968 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11969 				prog->name, binary_path, err);
11970 			return libbpf_err_ptr(err);
11971 		}
11972 		binary_path = full_path;
11973 	}
11974 	func_name = OPTS_GET(opts, func_name, NULL);
11975 	if (func_name) {
11976 		long sym_off;
11977 
11978 		if (archive_path) {
11979 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11980 								    func_name);
11981 			binary_path = archive_path;
11982 		} else {
11983 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11984 		}
11985 		if (sym_off < 0)
11986 			return libbpf_err_ptr(sym_off);
11987 		func_offset += sym_off;
11988 	}
11989 
11990 	legacy = determine_uprobe_perf_type() < 0;
11991 	switch (attach_mode) {
11992 	case PROBE_ATTACH_MODE_LEGACY:
11993 		legacy = true;
11994 		pe_opts.force_ioctl_attach = true;
11995 		break;
11996 	case PROBE_ATTACH_MODE_PERF:
11997 		if (legacy)
11998 			return libbpf_err_ptr(-ENOTSUP);
11999 		pe_opts.force_ioctl_attach = true;
12000 		break;
12001 	case PROBE_ATTACH_MODE_LINK:
12002 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12003 			return libbpf_err_ptr(-ENOTSUP);
12004 		break;
12005 	case PROBE_ATTACH_MODE_DEFAULT:
12006 		break;
12007 	default:
12008 		return libbpf_err_ptr(-EINVAL);
12009 	}
12010 
12011 	if (!legacy) {
12012 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12013 					    func_offset, pid, ref_ctr_off);
12014 	} else {
12015 		char probe_name[PATH_MAX + 64];
12016 
12017 		if (ref_ctr_off)
12018 			return libbpf_err_ptr(-EINVAL);
12019 
12020 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12021 					     binary_path, func_offset);
12022 
12023 		legacy_probe = strdup(probe_name);
12024 		if (!legacy_probe)
12025 			return libbpf_err_ptr(-ENOMEM);
12026 
12027 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12028 						    binary_path, func_offset, pid);
12029 	}
12030 	if (pfd < 0) {
12031 		err = -errno;
12032 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12033 			prog->name, retprobe ? "uretprobe" : "uprobe",
12034 			binary_path, func_offset,
12035 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12036 		goto err_out;
12037 	}
12038 
12039 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12040 	err = libbpf_get_error(link);
12041 	if (err) {
12042 		close(pfd);
12043 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12044 			prog->name, retprobe ? "uretprobe" : "uprobe",
12045 			binary_path, func_offset,
12046 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12047 		goto err_clean_legacy;
12048 	}
12049 	if (legacy) {
12050 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12051 
12052 		perf_link->legacy_probe_name = legacy_probe;
12053 		perf_link->legacy_is_kprobe = false;
12054 		perf_link->legacy_is_retprobe = retprobe;
12055 	}
12056 	return link;
12057 
12058 err_clean_legacy:
12059 	if (legacy)
12060 		remove_uprobe_event_legacy(legacy_probe, retprobe);
12061 err_out:
12062 	free(legacy_probe);
12063 	return libbpf_err_ptr(err);
12064 }
12065 
12066 /* Format of u[ret]probe section definition supporting auto-attach:
12067  * u[ret]probe/binary:function[+offset]
12068  *
12069  * binary can be an absolute/relative path or a filename; the latter is resolved to a
12070  * full binary path via bpf_program__attach_uprobe_opts.
12071  *
12072  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12073  * specified (and auto-attach is not possible) or the above format is specified for
12074  * auto-attach.
12075  */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12076 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12077 {
12078 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12079 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12080 	int n, c, ret = -EINVAL;
12081 	long offset = 0;
12082 
12083 	*link = NULL;
12084 
12085 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12086 		   &probe_type, &binary_path, &func_name);
12087 	switch (n) {
12088 	case 1:
12089 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12090 		ret = 0;
12091 		break;
12092 	case 2:
12093 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12094 			prog->name, prog->sec_name);
12095 		break;
12096 	case 3:
12097 		/* check if user specifies `+offset`, if yes, this should be
12098 		 * the last part of the string, make sure sscanf read to EOL
12099 		 */
12100 		func_off = strrchr(func_name, '+');
12101 		if (func_off) {
12102 			n = sscanf(func_off, "+%li%n", &offset, &c);
12103 			if (n == 1 && *(func_off + c) == '\0')
12104 				func_off[0] = '\0';
12105 			else
12106 				offset = 0;
12107 		}
12108 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12109 				strcmp(probe_type, "uretprobe.s") == 0;
12110 		if (opts.retprobe && offset != 0) {
12111 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12112 				prog->name);
12113 			break;
12114 		}
12115 		opts.func_name = func_name;
12116 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12117 		ret = libbpf_get_error(*link);
12118 		break;
12119 	default:
12120 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12121 			prog->sec_name);
12122 		break;
12123 	}
12124 	free(probe_type);
12125 	free(binary_path);
12126 	free(func_name);
12127 
12128 	return ret;
12129 }
12130 
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12131 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12132 					    bool retprobe, pid_t pid,
12133 					    const char *binary_path,
12134 					    size_t func_offset)
12135 {
12136 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12137 
12138 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12139 }
12140 
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12141 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12142 					  pid_t pid, const char *binary_path,
12143 					  const char *usdt_provider, const char *usdt_name,
12144 					  const struct bpf_usdt_opts *opts)
12145 {
12146 	char resolved_path[512];
12147 	struct bpf_object *obj = prog->obj;
12148 	struct bpf_link *link;
12149 	__u64 usdt_cookie;
12150 	int err;
12151 
12152 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12153 		return libbpf_err_ptr(-EINVAL);
12154 
12155 	if (bpf_program__fd(prog) < 0) {
12156 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12157 			prog->name);
12158 		return libbpf_err_ptr(-EINVAL);
12159 	}
12160 
12161 	if (!binary_path)
12162 		return libbpf_err_ptr(-EINVAL);
12163 
12164 	if (!strchr(binary_path, '/')) {
12165 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12166 		if (err) {
12167 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12168 				prog->name, binary_path, err);
12169 			return libbpf_err_ptr(err);
12170 		}
12171 		binary_path = resolved_path;
12172 	}
12173 
12174 	/* USDT manager is instantiated lazily on first USDT attach. It will
12175 	 * be destroyed together with BPF object in bpf_object__close().
12176 	 */
12177 	if (IS_ERR(obj->usdt_man))
12178 		return libbpf_ptr(obj->usdt_man);
12179 	if (!obj->usdt_man) {
12180 		obj->usdt_man = usdt_manager_new(obj);
12181 		if (IS_ERR(obj->usdt_man))
12182 			return libbpf_ptr(obj->usdt_man);
12183 	}
12184 
12185 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12186 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12187 					usdt_provider, usdt_name, usdt_cookie);
12188 	err = libbpf_get_error(link);
12189 	if (err)
12190 		return libbpf_err_ptr(err);
12191 	return link;
12192 }
12193 
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12194 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12195 {
12196 	char *path = NULL, *provider = NULL, *name = NULL;
12197 	const char *sec_name;
12198 	int n, err;
12199 
12200 	sec_name = bpf_program__section_name(prog);
12201 	if (strcmp(sec_name, "usdt") == 0) {
12202 		/* no auto-attach for just SEC("usdt") */
12203 		*link = NULL;
12204 		return 0;
12205 	}
12206 
12207 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12208 	if (n != 3) {
12209 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12210 			sec_name);
12211 		err = -EINVAL;
12212 	} else {
12213 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12214 						 provider, name, NULL);
12215 		err = libbpf_get_error(*link);
12216 	}
12217 	free(path);
12218 	free(provider);
12219 	free(name);
12220 	return err;
12221 }
12222 
determine_tracepoint_id(const char * tp_category,const char * tp_name)12223 static int determine_tracepoint_id(const char *tp_category,
12224 				   const char *tp_name)
12225 {
12226 	char file[PATH_MAX];
12227 	int ret;
12228 
12229 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12230 		       tracefs_path(), tp_category, tp_name);
12231 	if (ret < 0)
12232 		return -errno;
12233 	if (ret >= sizeof(file)) {
12234 		pr_debug("tracepoint %s/%s path is too long\n",
12235 			 tp_category, tp_name);
12236 		return -E2BIG;
12237 	}
12238 	return parse_uint_from_file(file, "%d\n");
12239 }
12240 
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12241 static int perf_event_open_tracepoint(const char *tp_category,
12242 				      const char *tp_name)
12243 {
12244 	const size_t attr_sz = sizeof(struct perf_event_attr);
12245 	struct perf_event_attr attr;
12246 	char errmsg[STRERR_BUFSIZE];
12247 	int tp_id, pfd, err;
12248 
12249 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12250 	if (tp_id < 0) {
12251 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12252 			tp_category, tp_name,
12253 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12254 		return tp_id;
12255 	}
12256 
12257 	memset(&attr, 0, attr_sz);
12258 	attr.type = PERF_TYPE_TRACEPOINT;
12259 	attr.size = attr_sz;
12260 	attr.config = tp_id;
12261 
12262 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12263 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12264 	if (pfd < 0) {
12265 		err = -errno;
12266 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12267 			tp_category, tp_name,
12268 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12269 		return err;
12270 	}
12271 	return pfd;
12272 }
12273 
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12274 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12275 						     const char *tp_category,
12276 						     const char *tp_name,
12277 						     const struct bpf_tracepoint_opts *opts)
12278 {
12279 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12280 	char errmsg[STRERR_BUFSIZE];
12281 	struct bpf_link *link;
12282 	int pfd, err;
12283 
12284 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12285 		return libbpf_err_ptr(-EINVAL);
12286 
12287 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12288 
12289 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12290 	if (pfd < 0) {
12291 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12292 			prog->name, tp_category, tp_name,
12293 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12294 		return libbpf_err_ptr(pfd);
12295 	}
12296 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12297 	err = libbpf_get_error(link);
12298 	if (err) {
12299 		close(pfd);
12300 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12301 			prog->name, tp_category, tp_name,
12302 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12303 		return libbpf_err_ptr(err);
12304 	}
12305 	return link;
12306 }
12307 
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12308 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12309 						const char *tp_category,
12310 						const char *tp_name)
12311 {
12312 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12313 }
12314 
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12315 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12316 {
12317 	char *sec_name, *tp_cat, *tp_name;
12318 
12319 	*link = NULL;
12320 
12321 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12322 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12323 		return 0;
12324 
12325 	sec_name = strdup(prog->sec_name);
12326 	if (!sec_name)
12327 		return -ENOMEM;
12328 
12329 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12330 	if (str_has_pfx(prog->sec_name, "tp/"))
12331 		tp_cat = sec_name + sizeof("tp/") - 1;
12332 	else
12333 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12334 	tp_name = strchr(tp_cat, '/');
12335 	if (!tp_name) {
12336 		free(sec_name);
12337 		return -EINVAL;
12338 	}
12339 	*tp_name = '\0';
12340 	tp_name++;
12341 
12342 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12343 	free(sec_name);
12344 	return libbpf_get_error(*link);
12345 }
12346 
12347 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12348 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12349 					const char *tp_name,
12350 					struct bpf_raw_tracepoint_opts *opts)
12351 {
12352 	LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12353 	char errmsg[STRERR_BUFSIZE];
12354 	struct bpf_link *link;
12355 	int prog_fd, pfd;
12356 
12357 	if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12358 		return libbpf_err_ptr(-EINVAL);
12359 
12360 	prog_fd = bpf_program__fd(prog);
12361 	if (prog_fd < 0) {
12362 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12363 		return libbpf_err_ptr(-EINVAL);
12364 	}
12365 
12366 	link = calloc(1, sizeof(*link));
12367 	if (!link)
12368 		return libbpf_err_ptr(-ENOMEM);
12369 	link->detach = &bpf_link__detach_fd;
12370 
12371 	raw_opts.tp_name = tp_name;
12372 	raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12373 	pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12374 	if (pfd < 0) {
12375 		pfd = -errno;
12376 		free(link);
12377 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12378 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12379 		return libbpf_err_ptr(pfd);
12380 	}
12381 	link->fd = pfd;
12382 	return link;
12383 }
12384 
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12385 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12386 						    const char *tp_name)
12387 {
12388 	return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12389 }
12390 
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12391 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12392 {
12393 	static const char *const prefixes[] = {
12394 		"raw_tp",
12395 		"raw_tracepoint",
12396 		"raw_tp.w",
12397 		"raw_tracepoint.w",
12398 	};
12399 	size_t i;
12400 	const char *tp_name = NULL;
12401 
12402 	*link = NULL;
12403 
12404 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12405 		size_t pfx_len;
12406 
12407 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12408 			continue;
12409 
12410 		pfx_len = strlen(prefixes[i]);
12411 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12412 		if (prog->sec_name[pfx_len] == '\0')
12413 			return 0;
12414 
12415 		if (prog->sec_name[pfx_len] != '/')
12416 			continue;
12417 
12418 		tp_name = prog->sec_name + pfx_len + 1;
12419 		break;
12420 	}
12421 
12422 	if (!tp_name) {
12423 		pr_warn("prog '%s': invalid section name '%s'\n",
12424 			prog->name, prog->sec_name);
12425 		return -EINVAL;
12426 	}
12427 
12428 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12429 	return libbpf_get_error(*link);
12430 }
12431 
12432 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12433 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12434 						   const struct bpf_trace_opts *opts)
12435 {
12436 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12437 	char errmsg[STRERR_BUFSIZE];
12438 	struct bpf_link *link;
12439 	int prog_fd, pfd;
12440 
12441 	if (!OPTS_VALID(opts, bpf_trace_opts))
12442 		return libbpf_err_ptr(-EINVAL);
12443 
12444 	prog_fd = bpf_program__fd(prog);
12445 	if (prog_fd < 0) {
12446 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12447 		return libbpf_err_ptr(-EINVAL);
12448 	}
12449 
12450 	link = calloc(1, sizeof(*link));
12451 	if (!link)
12452 		return libbpf_err_ptr(-ENOMEM);
12453 	link->detach = &bpf_link__detach_fd;
12454 
12455 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12456 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12457 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12458 	if (pfd < 0) {
12459 		pfd = -errno;
12460 		free(link);
12461 		pr_warn("prog '%s': failed to attach: %s\n",
12462 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12463 		return libbpf_err_ptr(pfd);
12464 	}
12465 	link->fd = pfd;
12466 	return link;
12467 }
12468 
bpf_program__attach_trace(const struct bpf_program * prog)12469 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12470 {
12471 	return bpf_program__attach_btf_id(prog, NULL);
12472 }
12473 
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12474 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12475 						const struct bpf_trace_opts *opts)
12476 {
12477 	return bpf_program__attach_btf_id(prog, opts);
12478 }
12479 
bpf_program__attach_lsm(const struct bpf_program * prog)12480 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12481 {
12482 	return bpf_program__attach_btf_id(prog, NULL);
12483 }
12484 
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12485 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12486 {
12487 	*link = bpf_program__attach_trace(prog);
12488 	return libbpf_get_error(*link);
12489 }
12490 
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12491 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12492 {
12493 	*link = bpf_program__attach_lsm(prog);
12494 	return libbpf_get_error(*link);
12495 }
12496 
12497 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12498 bpf_program_attach_fd(const struct bpf_program *prog,
12499 		      int target_fd, const char *target_name,
12500 		      const struct bpf_link_create_opts *opts)
12501 {
12502 	enum bpf_attach_type attach_type;
12503 	char errmsg[STRERR_BUFSIZE];
12504 	struct bpf_link *link;
12505 	int prog_fd, link_fd;
12506 
12507 	prog_fd = bpf_program__fd(prog);
12508 	if (prog_fd < 0) {
12509 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12510 		return libbpf_err_ptr(-EINVAL);
12511 	}
12512 
12513 	link = calloc(1, sizeof(*link));
12514 	if (!link)
12515 		return libbpf_err_ptr(-ENOMEM);
12516 	link->detach = &bpf_link__detach_fd;
12517 
12518 	attach_type = bpf_program__expected_attach_type(prog);
12519 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12520 	if (link_fd < 0) {
12521 		link_fd = -errno;
12522 		free(link);
12523 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12524 			prog->name, target_name,
12525 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12526 		return libbpf_err_ptr(link_fd);
12527 	}
12528 	link->fd = link_fd;
12529 	return link;
12530 }
12531 
12532 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12533 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12534 {
12535 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12536 }
12537 
12538 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12539 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12540 {
12541 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12542 }
12543 
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12544 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12545 {
12546 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12547 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12548 }
12549 
12550 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12551 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12552 			const struct bpf_tcx_opts *opts)
12553 {
12554 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12555 	__u32 relative_id;
12556 	int relative_fd;
12557 
12558 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12559 		return libbpf_err_ptr(-EINVAL);
12560 
12561 	relative_id = OPTS_GET(opts, relative_id, 0);
12562 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12563 
12564 	/* validate we don't have unexpected combinations of non-zero fields */
12565 	if (!ifindex) {
12566 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12567 			prog->name);
12568 		return libbpf_err_ptr(-EINVAL);
12569 	}
12570 	if (relative_fd && relative_id) {
12571 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12572 			prog->name);
12573 		return libbpf_err_ptr(-EINVAL);
12574 	}
12575 
12576 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12577 	link_create_opts.tcx.relative_fd = relative_fd;
12578 	link_create_opts.tcx.relative_id = relative_id;
12579 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12580 
12581 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12582 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12583 }
12584 
12585 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12586 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12587 			   const struct bpf_netkit_opts *opts)
12588 {
12589 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12590 	__u32 relative_id;
12591 	int relative_fd;
12592 
12593 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12594 		return libbpf_err_ptr(-EINVAL);
12595 
12596 	relative_id = OPTS_GET(opts, relative_id, 0);
12597 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12598 
12599 	/* validate we don't have unexpected combinations of non-zero fields */
12600 	if (!ifindex) {
12601 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12602 			prog->name);
12603 		return libbpf_err_ptr(-EINVAL);
12604 	}
12605 	if (relative_fd && relative_id) {
12606 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12607 			prog->name);
12608 		return libbpf_err_ptr(-EINVAL);
12609 	}
12610 
12611 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12612 	link_create_opts.netkit.relative_fd = relative_fd;
12613 	link_create_opts.netkit.relative_id = relative_id;
12614 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12615 
12616 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12617 }
12618 
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12619 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12620 					      int target_fd,
12621 					      const char *attach_func_name)
12622 {
12623 	int btf_id;
12624 
12625 	if (!!target_fd != !!attach_func_name) {
12626 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12627 			prog->name);
12628 		return libbpf_err_ptr(-EINVAL);
12629 	}
12630 
12631 	if (prog->type != BPF_PROG_TYPE_EXT) {
12632 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12633 			prog->name);
12634 		return libbpf_err_ptr(-EINVAL);
12635 	}
12636 
12637 	if (target_fd) {
12638 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12639 
12640 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12641 		if (btf_id < 0)
12642 			return libbpf_err_ptr(btf_id);
12643 
12644 		target_opts.target_btf_id = btf_id;
12645 
12646 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12647 					     &target_opts);
12648 	} else {
12649 		/* no target, so use raw_tracepoint_open for compatibility
12650 		 * with old kernels
12651 		 */
12652 		return bpf_program__attach_trace(prog);
12653 	}
12654 }
12655 
12656 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12657 bpf_program__attach_iter(const struct bpf_program *prog,
12658 			 const struct bpf_iter_attach_opts *opts)
12659 {
12660 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12661 	char errmsg[STRERR_BUFSIZE];
12662 	struct bpf_link *link;
12663 	int prog_fd, link_fd;
12664 	__u32 target_fd = 0;
12665 
12666 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12667 		return libbpf_err_ptr(-EINVAL);
12668 
12669 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12670 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12671 
12672 	prog_fd = bpf_program__fd(prog);
12673 	if (prog_fd < 0) {
12674 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12675 		return libbpf_err_ptr(-EINVAL);
12676 	}
12677 
12678 	link = calloc(1, sizeof(*link));
12679 	if (!link)
12680 		return libbpf_err_ptr(-ENOMEM);
12681 	link->detach = &bpf_link__detach_fd;
12682 
12683 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12684 				  &link_create_opts);
12685 	if (link_fd < 0) {
12686 		link_fd = -errno;
12687 		free(link);
12688 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12689 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12690 		return libbpf_err_ptr(link_fd);
12691 	}
12692 	link->fd = link_fd;
12693 	return link;
12694 }
12695 
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12696 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12697 {
12698 	*link = bpf_program__attach_iter(prog, NULL);
12699 	return libbpf_get_error(*link);
12700 }
12701 
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12702 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12703 					       const struct bpf_netfilter_opts *opts)
12704 {
12705 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12706 	struct bpf_link *link;
12707 	int prog_fd, link_fd;
12708 
12709 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12710 		return libbpf_err_ptr(-EINVAL);
12711 
12712 	prog_fd = bpf_program__fd(prog);
12713 	if (prog_fd < 0) {
12714 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12715 		return libbpf_err_ptr(-EINVAL);
12716 	}
12717 
12718 	link = calloc(1, sizeof(*link));
12719 	if (!link)
12720 		return libbpf_err_ptr(-ENOMEM);
12721 
12722 	link->detach = &bpf_link__detach_fd;
12723 
12724 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12725 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12726 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12727 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12728 
12729 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12730 	if (link_fd < 0) {
12731 		char errmsg[STRERR_BUFSIZE];
12732 
12733 		link_fd = -errno;
12734 		free(link);
12735 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12736 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12737 		return libbpf_err_ptr(link_fd);
12738 	}
12739 	link->fd = link_fd;
12740 
12741 	return link;
12742 }
12743 
bpf_program__attach(const struct bpf_program * prog)12744 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12745 {
12746 	struct bpf_link *link = NULL;
12747 	int err;
12748 
12749 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12750 		return libbpf_err_ptr(-EOPNOTSUPP);
12751 
12752 	if (bpf_program__fd(prog) < 0) {
12753 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12754 			prog->name);
12755 		return libbpf_err_ptr(-EINVAL);
12756 	}
12757 
12758 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12759 	if (err)
12760 		return libbpf_err_ptr(err);
12761 
12762 	/* When calling bpf_program__attach() explicitly, auto-attach support
12763 	 * is expected to work, so NULL returned link is considered an error.
12764 	 * This is different for skeleton's attach, see comment in
12765 	 * bpf_object__attach_skeleton().
12766 	 */
12767 	if (!link)
12768 		return libbpf_err_ptr(-EOPNOTSUPP);
12769 
12770 	return link;
12771 }
12772 
12773 struct bpf_link_struct_ops {
12774 	struct bpf_link link;
12775 	int map_fd;
12776 };
12777 
bpf_link__detach_struct_ops(struct bpf_link * link)12778 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12779 {
12780 	struct bpf_link_struct_ops *st_link;
12781 	__u32 zero = 0;
12782 
12783 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12784 
12785 	if (st_link->map_fd < 0)
12786 		/* w/o a real link */
12787 		return bpf_map_delete_elem(link->fd, &zero);
12788 
12789 	return close(link->fd);
12790 }
12791 
bpf_map__attach_struct_ops(const struct bpf_map * map)12792 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12793 {
12794 	struct bpf_link_struct_ops *link;
12795 	__u32 zero = 0;
12796 	int err, fd;
12797 
12798 	if (!bpf_map__is_struct_ops(map))
12799 		return libbpf_err_ptr(-EINVAL);
12800 
12801 	if (map->fd < 0) {
12802 		pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
12803 		return libbpf_err_ptr(-EINVAL);
12804 	}
12805 
12806 	link = calloc(1, sizeof(*link));
12807 	if (!link)
12808 		return libbpf_err_ptr(-EINVAL);
12809 
12810 	/* kern_vdata should be prepared during the loading phase. */
12811 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12812 	/* It can be EBUSY if the map has been used to create or
12813 	 * update a link before.  We don't allow updating the value of
12814 	 * a struct_ops once it is set.  That ensures that the value
12815 	 * never changed.  So, it is safe to skip EBUSY.
12816 	 */
12817 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12818 		free(link);
12819 		return libbpf_err_ptr(err);
12820 	}
12821 
12822 	link->link.detach = bpf_link__detach_struct_ops;
12823 
12824 	if (!(map->def.map_flags & BPF_F_LINK)) {
12825 		/* w/o a real link */
12826 		link->link.fd = map->fd;
12827 		link->map_fd = -1;
12828 		return &link->link;
12829 	}
12830 
12831 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12832 	if (fd < 0) {
12833 		free(link);
12834 		return libbpf_err_ptr(fd);
12835 	}
12836 
12837 	link->link.fd = fd;
12838 	link->map_fd = map->fd;
12839 
12840 	return &link->link;
12841 }
12842 
12843 /*
12844  * Swap the back struct_ops of a link with a new struct_ops map.
12845  */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)12846 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12847 {
12848 	struct bpf_link_struct_ops *st_ops_link;
12849 	__u32 zero = 0;
12850 	int err;
12851 
12852 	if (!bpf_map__is_struct_ops(map))
12853 		return -EINVAL;
12854 
12855 	if (map->fd < 0) {
12856 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
12857 		return -EINVAL;
12858 	}
12859 
12860 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12861 	/* Ensure the type of a link is correct */
12862 	if (st_ops_link->map_fd < 0)
12863 		return -EINVAL;
12864 
12865 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12866 	/* It can be EBUSY if the map has been used to create or
12867 	 * update a link before.  We don't allow updating the value of
12868 	 * a struct_ops once it is set.  That ensures that the value
12869 	 * never changed.  So, it is safe to skip EBUSY.
12870 	 */
12871 	if (err && err != -EBUSY)
12872 		return err;
12873 
12874 	err = bpf_link_update(link->fd, map->fd, NULL);
12875 	if (err < 0)
12876 		return err;
12877 
12878 	st_ops_link->map_fd = map->fd;
12879 
12880 	return 0;
12881 }
12882 
12883 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12884 							  void *private_data);
12885 
12886 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)12887 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12888 		       void **copy_mem, size_t *copy_size,
12889 		       bpf_perf_event_print_t fn, void *private_data)
12890 {
12891 	struct perf_event_mmap_page *header = mmap_mem;
12892 	__u64 data_head = ring_buffer_read_head(header);
12893 	__u64 data_tail = header->data_tail;
12894 	void *base = ((__u8 *)header) + page_size;
12895 	int ret = LIBBPF_PERF_EVENT_CONT;
12896 	struct perf_event_header *ehdr;
12897 	size_t ehdr_size;
12898 
12899 	while (data_head != data_tail) {
12900 		ehdr = base + (data_tail & (mmap_size - 1));
12901 		ehdr_size = ehdr->size;
12902 
12903 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12904 			void *copy_start = ehdr;
12905 			size_t len_first = base + mmap_size - copy_start;
12906 			size_t len_secnd = ehdr_size - len_first;
12907 
12908 			if (*copy_size < ehdr_size) {
12909 				free(*copy_mem);
12910 				*copy_mem = malloc(ehdr_size);
12911 				if (!*copy_mem) {
12912 					*copy_size = 0;
12913 					ret = LIBBPF_PERF_EVENT_ERROR;
12914 					break;
12915 				}
12916 				*copy_size = ehdr_size;
12917 			}
12918 
12919 			memcpy(*copy_mem, copy_start, len_first);
12920 			memcpy(*copy_mem + len_first, base, len_secnd);
12921 			ehdr = *copy_mem;
12922 		}
12923 
12924 		ret = fn(ehdr, private_data);
12925 		data_tail += ehdr_size;
12926 		if (ret != LIBBPF_PERF_EVENT_CONT)
12927 			break;
12928 	}
12929 
12930 	ring_buffer_write_tail(header, data_tail);
12931 	return libbpf_err(ret);
12932 }
12933 
12934 struct perf_buffer;
12935 
12936 struct perf_buffer_params {
12937 	struct perf_event_attr *attr;
12938 	/* if event_cb is specified, it takes precendence */
12939 	perf_buffer_event_fn event_cb;
12940 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12941 	perf_buffer_sample_fn sample_cb;
12942 	perf_buffer_lost_fn lost_cb;
12943 	void *ctx;
12944 	int cpu_cnt;
12945 	int *cpus;
12946 	int *map_keys;
12947 };
12948 
12949 struct perf_cpu_buf {
12950 	struct perf_buffer *pb;
12951 	void *base; /* mmap()'ed memory */
12952 	void *buf; /* for reconstructing segmented data */
12953 	size_t buf_size;
12954 	int fd;
12955 	int cpu;
12956 	int map_key;
12957 };
12958 
12959 struct perf_buffer {
12960 	perf_buffer_event_fn event_cb;
12961 	perf_buffer_sample_fn sample_cb;
12962 	perf_buffer_lost_fn lost_cb;
12963 	void *ctx; /* passed into callbacks */
12964 
12965 	size_t page_size;
12966 	size_t mmap_size;
12967 	struct perf_cpu_buf **cpu_bufs;
12968 	struct epoll_event *events;
12969 	int cpu_cnt; /* number of allocated CPU buffers */
12970 	int epoll_fd; /* perf event FD */
12971 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12972 };
12973 
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12974 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12975 				      struct perf_cpu_buf *cpu_buf)
12976 {
12977 	if (!cpu_buf)
12978 		return;
12979 	if (cpu_buf->base &&
12980 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12981 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12982 	if (cpu_buf->fd >= 0) {
12983 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12984 		close(cpu_buf->fd);
12985 	}
12986 	free(cpu_buf->buf);
12987 	free(cpu_buf);
12988 }
12989 
perf_buffer__free(struct perf_buffer * pb)12990 void perf_buffer__free(struct perf_buffer *pb)
12991 {
12992 	int i;
12993 
12994 	if (IS_ERR_OR_NULL(pb))
12995 		return;
12996 	if (pb->cpu_bufs) {
12997 		for (i = 0; i < pb->cpu_cnt; i++) {
12998 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12999 
13000 			if (!cpu_buf)
13001 				continue;
13002 
13003 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13004 			perf_buffer__free_cpu_buf(pb, cpu_buf);
13005 		}
13006 		free(pb->cpu_bufs);
13007 	}
13008 	if (pb->epoll_fd >= 0)
13009 		close(pb->epoll_fd);
13010 	free(pb->events);
13011 	free(pb);
13012 }
13013 
13014 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13015 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13016 			  int cpu, int map_key)
13017 {
13018 	struct perf_cpu_buf *cpu_buf;
13019 	char msg[STRERR_BUFSIZE];
13020 	int err;
13021 
13022 	cpu_buf = calloc(1, sizeof(*cpu_buf));
13023 	if (!cpu_buf)
13024 		return ERR_PTR(-ENOMEM);
13025 
13026 	cpu_buf->pb = pb;
13027 	cpu_buf->cpu = cpu;
13028 	cpu_buf->map_key = map_key;
13029 
13030 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13031 			      -1, PERF_FLAG_FD_CLOEXEC);
13032 	if (cpu_buf->fd < 0) {
13033 		err = -errno;
13034 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13035 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13036 		goto error;
13037 	}
13038 
13039 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13040 			     PROT_READ | PROT_WRITE, MAP_SHARED,
13041 			     cpu_buf->fd, 0);
13042 	if (cpu_buf->base == MAP_FAILED) {
13043 		cpu_buf->base = NULL;
13044 		err = -errno;
13045 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13046 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13047 		goto error;
13048 	}
13049 
13050 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13051 		err = -errno;
13052 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13053 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13054 		goto error;
13055 	}
13056 
13057 	return cpu_buf;
13058 
13059 error:
13060 	perf_buffer__free_cpu_buf(pb, cpu_buf);
13061 	return (struct perf_cpu_buf *)ERR_PTR(err);
13062 }
13063 
13064 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13065 					      struct perf_buffer_params *p);
13066 
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13067 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13068 				     perf_buffer_sample_fn sample_cb,
13069 				     perf_buffer_lost_fn lost_cb,
13070 				     void *ctx,
13071 				     const struct perf_buffer_opts *opts)
13072 {
13073 	const size_t attr_sz = sizeof(struct perf_event_attr);
13074 	struct perf_buffer_params p = {};
13075 	struct perf_event_attr attr;
13076 	__u32 sample_period;
13077 
13078 	if (!OPTS_VALID(opts, perf_buffer_opts))
13079 		return libbpf_err_ptr(-EINVAL);
13080 
13081 	sample_period = OPTS_GET(opts, sample_period, 1);
13082 	if (!sample_period)
13083 		sample_period = 1;
13084 
13085 	memset(&attr, 0, attr_sz);
13086 	attr.size = attr_sz;
13087 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13088 	attr.type = PERF_TYPE_SOFTWARE;
13089 	attr.sample_type = PERF_SAMPLE_RAW;
13090 	attr.sample_period = sample_period;
13091 	attr.wakeup_events = sample_period;
13092 
13093 	p.attr = &attr;
13094 	p.sample_cb = sample_cb;
13095 	p.lost_cb = lost_cb;
13096 	p.ctx = ctx;
13097 
13098 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13099 }
13100 
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13101 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13102 					 struct perf_event_attr *attr,
13103 					 perf_buffer_event_fn event_cb, void *ctx,
13104 					 const struct perf_buffer_raw_opts *opts)
13105 {
13106 	struct perf_buffer_params p = {};
13107 
13108 	if (!attr)
13109 		return libbpf_err_ptr(-EINVAL);
13110 
13111 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13112 		return libbpf_err_ptr(-EINVAL);
13113 
13114 	p.attr = attr;
13115 	p.event_cb = event_cb;
13116 	p.ctx = ctx;
13117 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13118 	p.cpus = OPTS_GET(opts, cpus, NULL);
13119 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13120 
13121 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13122 }
13123 
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13124 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13125 					      struct perf_buffer_params *p)
13126 {
13127 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13128 	struct bpf_map_info map;
13129 	char msg[STRERR_BUFSIZE];
13130 	struct perf_buffer *pb;
13131 	bool *online = NULL;
13132 	__u32 map_info_len;
13133 	int err, i, j, n;
13134 
13135 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13136 		pr_warn("page count should be power of two, but is %zu\n",
13137 			page_cnt);
13138 		return ERR_PTR(-EINVAL);
13139 	}
13140 
13141 	/* best-effort sanity checks */
13142 	memset(&map, 0, sizeof(map));
13143 	map_info_len = sizeof(map);
13144 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13145 	if (err) {
13146 		err = -errno;
13147 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13148 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13149 		 */
13150 		if (err != -EINVAL) {
13151 			pr_warn("failed to get map info for map FD %d: %s\n",
13152 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13153 			return ERR_PTR(err);
13154 		}
13155 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13156 			 map_fd);
13157 	} else {
13158 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13159 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13160 				map.name);
13161 			return ERR_PTR(-EINVAL);
13162 		}
13163 	}
13164 
13165 	pb = calloc(1, sizeof(*pb));
13166 	if (!pb)
13167 		return ERR_PTR(-ENOMEM);
13168 
13169 	pb->event_cb = p->event_cb;
13170 	pb->sample_cb = p->sample_cb;
13171 	pb->lost_cb = p->lost_cb;
13172 	pb->ctx = p->ctx;
13173 
13174 	pb->page_size = getpagesize();
13175 	pb->mmap_size = pb->page_size * page_cnt;
13176 	pb->map_fd = map_fd;
13177 
13178 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13179 	if (pb->epoll_fd < 0) {
13180 		err = -errno;
13181 		pr_warn("failed to create epoll instance: %s\n",
13182 			libbpf_strerror_r(err, msg, sizeof(msg)));
13183 		goto error;
13184 	}
13185 
13186 	if (p->cpu_cnt > 0) {
13187 		pb->cpu_cnt = p->cpu_cnt;
13188 	} else {
13189 		pb->cpu_cnt = libbpf_num_possible_cpus();
13190 		if (pb->cpu_cnt < 0) {
13191 			err = pb->cpu_cnt;
13192 			goto error;
13193 		}
13194 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13195 			pb->cpu_cnt = map.max_entries;
13196 	}
13197 
13198 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13199 	if (!pb->events) {
13200 		err = -ENOMEM;
13201 		pr_warn("failed to allocate events: out of memory\n");
13202 		goto error;
13203 	}
13204 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13205 	if (!pb->cpu_bufs) {
13206 		err = -ENOMEM;
13207 		pr_warn("failed to allocate buffers: out of memory\n");
13208 		goto error;
13209 	}
13210 
13211 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13212 	if (err) {
13213 		pr_warn("failed to get online CPU mask: %d\n", err);
13214 		goto error;
13215 	}
13216 
13217 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13218 		struct perf_cpu_buf *cpu_buf;
13219 		int cpu, map_key;
13220 
13221 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13222 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13223 
13224 		/* in case user didn't explicitly requested particular CPUs to
13225 		 * be attached to, skip offline/not present CPUs
13226 		 */
13227 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13228 			continue;
13229 
13230 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13231 		if (IS_ERR(cpu_buf)) {
13232 			err = PTR_ERR(cpu_buf);
13233 			goto error;
13234 		}
13235 
13236 		pb->cpu_bufs[j] = cpu_buf;
13237 
13238 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13239 					  &cpu_buf->fd, 0);
13240 		if (err) {
13241 			err = -errno;
13242 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13243 				cpu, map_key, cpu_buf->fd,
13244 				libbpf_strerror_r(err, msg, sizeof(msg)));
13245 			goto error;
13246 		}
13247 
13248 		pb->events[j].events = EPOLLIN;
13249 		pb->events[j].data.ptr = cpu_buf;
13250 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13251 			      &pb->events[j]) < 0) {
13252 			err = -errno;
13253 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13254 				cpu, cpu_buf->fd,
13255 				libbpf_strerror_r(err, msg, sizeof(msg)));
13256 			goto error;
13257 		}
13258 		j++;
13259 	}
13260 	pb->cpu_cnt = j;
13261 	free(online);
13262 
13263 	return pb;
13264 
13265 error:
13266 	free(online);
13267 	if (pb)
13268 		perf_buffer__free(pb);
13269 	return ERR_PTR(err);
13270 }
13271 
13272 struct perf_sample_raw {
13273 	struct perf_event_header header;
13274 	uint32_t size;
13275 	char data[];
13276 };
13277 
13278 struct perf_sample_lost {
13279 	struct perf_event_header header;
13280 	uint64_t id;
13281 	uint64_t lost;
13282 	uint64_t sample_id;
13283 };
13284 
13285 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13286 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13287 {
13288 	struct perf_cpu_buf *cpu_buf = ctx;
13289 	struct perf_buffer *pb = cpu_buf->pb;
13290 	void *data = e;
13291 
13292 	/* user wants full control over parsing perf event */
13293 	if (pb->event_cb)
13294 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13295 
13296 	switch (e->type) {
13297 	case PERF_RECORD_SAMPLE: {
13298 		struct perf_sample_raw *s = data;
13299 
13300 		if (pb->sample_cb)
13301 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13302 		break;
13303 	}
13304 	case PERF_RECORD_LOST: {
13305 		struct perf_sample_lost *s = data;
13306 
13307 		if (pb->lost_cb)
13308 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13309 		break;
13310 	}
13311 	default:
13312 		pr_warn("unknown perf sample type %d\n", e->type);
13313 		return LIBBPF_PERF_EVENT_ERROR;
13314 	}
13315 	return LIBBPF_PERF_EVENT_CONT;
13316 }
13317 
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13318 static int perf_buffer__process_records(struct perf_buffer *pb,
13319 					struct perf_cpu_buf *cpu_buf)
13320 {
13321 	enum bpf_perf_event_ret ret;
13322 
13323 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13324 				     pb->page_size, &cpu_buf->buf,
13325 				     &cpu_buf->buf_size,
13326 				     perf_buffer__process_record, cpu_buf);
13327 	if (ret != LIBBPF_PERF_EVENT_CONT)
13328 		return ret;
13329 	return 0;
13330 }
13331 
perf_buffer__epoll_fd(const struct perf_buffer * pb)13332 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13333 {
13334 	return pb->epoll_fd;
13335 }
13336 
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13337 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13338 {
13339 	int i, cnt, err;
13340 
13341 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13342 	if (cnt < 0)
13343 		return -errno;
13344 
13345 	for (i = 0; i < cnt; i++) {
13346 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13347 
13348 		err = perf_buffer__process_records(pb, cpu_buf);
13349 		if (err) {
13350 			pr_warn("error while processing records: %d\n", err);
13351 			return libbpf_err(err);
13352 		}
13353 	}
13354 	return cnt;
13355 }
13356 
13357 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13358  * manager.
13359  */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13360 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13361 {
13362 	return pb->cpu_cnt;
13363 }
13364 
13365 /*
13366  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13367  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13368  * select()/poll()/epoll() Linux syscalls.
13369  */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13370 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13371 {
13372 	struct perf_cpu_buf *cpu_buf;
13373 
13374 	if (buf_idx >= pb->cpu_cnt)
13375 		return libbpf_err(-EINVAL);
13376 
13377 	cpu_buf = pb->cpu_bufs[buf_idx];
13378 	if (!cpu_buf)
13379 		return libbpf_err(-ENOENT);
13380 
13381 	return cpu_buf->fd;
13382 }
13383 
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13384 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13385 {
13386 	struct perf_cpu_buf *cpu_buf;
13387 
13388 	if (buf_idx >= pb->cpu_cnt)
13389 		return libbpf_err(-EINVAL);
13390 
13391 	cpu_buf = pb->cpu_bufs[buf_idx];
13392 	if (!cpu_buf)
13393 		return libbpf_err(-ENOENT);
13394 
13395 	*buf = cpu_buf->base;
13396 	*buf_size = pb->mmap_size;
13397 	return 0;
13398 }
13399 
13400 /*
13401  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13402  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13403  * consume, do nothing and return success.
13404  * Returns:
13405  *   - 0 on success;
13406  *   - <0 on failure.
13407  */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13408 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13409 {
13410 	struct perf_cpu_buf *cpu_buf;
13411 
13412 	if (buf_idx >= pb->cpu_cnt)
13413 		return libbpf_err(-EINVAL);
13414 
13415 	cpu_buf = pb->cpu_bufs[buf_idx];
13416 	if (!cpu_buf)
13417 		return libbpf_err(-ENOENT);
13418 
13419 	return perf_buffer__process_records(pb, cpu_buf);
13420 }
13421 
perf_buffer__consume(struct perf_buffer * pb)13422 int perf_buffer__consume(struct perf_buffer *pb)
13423 {
13424 	int i, err;
13425 
13426 	for (i = 0; i < pb->cpu_cnt; i++) {
13427 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13428 
13429 		if (!cpu_buf)
13430 			continue;
13431 
13432 		err = perf_buffer__process_records(pb, cpu_buf);
13433 		if (err) {
13434 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13435 			return libbpf_err(err);
13436 		}
13437 	}
13438 	return 0;
13439 }
13440 
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13441 int bpf_program__set_attach_target(struct bpf_program *prog,
13442 				   int attach_prog_fd,
13443 				   const char *attach_func_name)
13444 {
13445 	int btf_obj_fd = 0, btf_id = 0, err;
13446 
13447 	if (!prog || attach_prog_fd < 0)
13448 		return libbpf_err(-EINVAL);
13449 
13450 	if (prog->obj->loaded)
13451 		return libbpf_err(-EINVAL);
13452 
13453 	if (attach_prog_fd && !attach_func_name) {
13454 		/* remember attach_prog_fd and let bpf_program__load() find
13455 		 * BTF ID during the program load
13456 		 */
13457 		prog->attach_prog_fd = attach_prog_fd;
13458 		return 0;
13459 	}
13460 
13461 	if (attach_prog_fd) {
13462 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13463 						 attach_prog_fd);
13464 		if (btf_id < 0)
13465 			return libbpf_err(btf_id);
13466 	} else {
13467 		if (!attach_func_name)
13468 			return libbpf_err(-EINVAL);
13469 
13470 		/* load btf_vmlinux, if not yet */
13471 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13472 		if (err)
13473 			return libbpf_err(err);
13474 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13475 					 prog->expected_attach_type,
13476 					 &btf_obj_fd, &btf_id);
13477 		if (err)
13478 			return libbpf_err(err);
13479 	}
13480 
13481 	prog->attach_btf_id = btf_id;
13482 	prog->attach_btf_obj_fd = btf_obj_fd;
13483 	prog->attach_prog_fd = attach_prog_fd;
13484 	return 0;
13485 }
13486 
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13487 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13488 {
13489 	int err = 0, n, len, start, end = -1;
13490 	bool *tmp;
13491 
13492 	*mask = NULL;
13493 	*mask_sz = 0;
13494 
13495 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13496 	while (*s) {
13497 		if (*s == ',' || *s == '\n') {
13498 			s++;
13499 			continue;
13500 		}
13501 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13502 		if (n <= 0 || n > 2) {
13503 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13504 			err = -EINVAL;
13505 			goto cleanup;
13506 		} else if (n == 1) {
13507 			end = start;
13508 		}
13509 		if (start < 0 || start > end) {
13510 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13511 				start, end, s);
13512 			err = -EINVAL;
13513 			goto cleanup;
13514 		}
13515 		tmp = realloc(*mask, end + 1);
13516 		if (!tmp) {
13517 			err = -ENOMEM;
13518 			goto cleanup;
13519 		}
13520 		*mask = tmp;
13521 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13522 		memset(tmp + start, 1, end - start + 1);
13523 		*mask_sz = end + 1;
13524 		s += len;
13525 	}
13526 	if (!*mask_sz) {
13527 		pr_warn("Empty CPU range\n");
13528 		return -EINVAL;
13529 	}
13530 	return 0;
13531 cleanup:
13532 	free(*mask);
13533 	*mask = NULL;
13534 	return err;
13535 }
13536 
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13537 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13538 {
13539 	int fd, err = 0, len;
13540 	char buf[128];
13541 
13542 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13543 	if (fd < 0) {
13544 		err = -errno;
13545 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13546 		return err;
13547 	}
13548 	len = read(fd, buf, sizeof(buf));
13549 	close(fd);
13550 	if (len <= 0) {
13551 		err = len ? -errno : -EINVAL;
13552 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13553 		return err;
13554 	}
13555 	if (len >= sizeof(buf)) {
13556 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13557 		return -E2BIG;
13558 	}
13559 	buf[len] = '\0';
13560 
13561 	return parse_cpu_mask_str(buf, mask, mask_sz);
13562 }
13563 
libbpf_num_possible_cpus(void)13564 int libbpf_num_possible_cpus(void)
13565 {
13566 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13567 	static int cpus;
13568 	int err, n, i, tmp_cpus;
13569 	bool *mask;
13570 
13571 	tmp_cpus = READ_ONCE(cpus);
13572 	if (tmp_cpus > 0)
13573 		return tmp_cpus;
13574 
13575 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13576 	if (err)
13577 		return libbpf_err(err);
13578 
13579 	tmp_cpus = 0;
13580 	for (i = 0; i < n; i++) {
13581 		if (mask[i])
13582 			tmp_cpus++;
13583 	}
13584 	free(mask);
13585 
13586 	WRITE_ONCE(cpus, tmp_cpus);
13587 	return tmp_cpus;
13588 }
13589 
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13590 static int populate_skeleton_maps(const struct bpf_object *obj,
13591 				  struct bpf_map_skeleton *maps,
13592 				  size_t map_cnt, size_t map_skel_sz)
13593 {
13594 	int i;
13595 
13596 	for (i = 0; i < map_cnt; i++) {
13597 		struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13598 		struct bpf_map **map = map_skel->map;
13599 		const char *name = map_skel->name;
13600 		void **mmaped = map_skel->mmaped;
13601 
13602 		*map = bpf_object__find_map_by_name(obj, name);
13603 		if (!*map) {
13604 			pr_warn("failed to find skeleton map '%s'\n", name);
13605 			return -ESRCH;
13606 		}
13607 
13608 		/* externs shouldn't be pre-setup from user code */
13609 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13610 			*mmaped = (*map)->mmaped;
13611 	}
13612 	return 0;
13613 }
13614 
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13615 static int populate_skeleton_progs(const struct bpf_object *obj,
13616 				   struct bpf_prog_skeleton *progs,
13617 				   size_t prog_cnt, size_t prog_skel_sz)
13618 {
13619 	int i;
13620 
13621 	for (i = 0; i < prog_cnt; i++) {
13622 		struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13623 		struct bpf_program **prog = prog_skel->prog;
13624 		const char *name = prog_skel->name;
13625 
13626 		*prog = bpf_object__find_program_by_name(obj, name);
13627 		if (!*prog) {
13628 			pr_warn("failed to find skeleton program '%s'\n", name);
13629 			return -ESRCH;
13630 		}
13631 	}
13632 	return 0;
13633 }
13634 
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13635 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13636 			      const struct bpf_object_open_opts *opts)
13637 {
13638 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13639 		.object_name = s->name,
13640 	);
13641 	struct bpf_object *obj;
13642 	int err;
13643 
13644 	/* Attempt to preserve opts->object_name, unless overriden by user
13645 	 * explicitly. Overwriting object name for skeletons is discouraged,
13646 	 * as it breaks global data maps, because they contain object name
13647 	 * prefix as their own map name prefix. When skeleton is generated,
13648 	 * bpftool is making an assumption that this name will stay the same.
13649 	 */
13650 	if (opts) {
13651 		memcpy(&skel_opts, opts, sizeof(*opts));
13652 		if (!opts->object_name)
13653 			skel_opts.object_name = s->name;
13654 	}
13655 
13656 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13657 	err = libbpf_get_error(obj);
13658 	if (err) {
13659 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13660 			s->name, err);
13661 		return libbpf_err(err);
13662 	}
13663 
13664 	*s->obj = obj;
13665 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13666 	if (err) {
13667 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13668 		return libbpf_err(err);
13669 	}
13670 
13671 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13672 	if (err) {
13673 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13674 		return libbpf_err(err);
13675 	}
13676 
13677 	return 0;
13678 }
13679 
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13680 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13681 {
13682 	int err, len, var_idx, i;
13683 	const char *var_name;
13684 	const struct bpf_map *map;
13685 	struct btf *btf;
13686 	__u32 map_type_id;
13687 	const struct btf_type *map_type, *var_type;
13688 	const struct bpf_var_skeleton *var_skel;
13689 	struct btf_var_secinfo *var;
13690 
13691 	if (!s->obj)
13692 		return libbpf_err(-EINVAL);
13693 
13694 	btf = bpf_object__btf(s->obj);
13695 	if (!btf) {
13696 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13697 			bpf_object__name(s->obj));
13698 		return libbpf_err(-errno);
13699 	}
13700 
13701 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
13702 	if (err) {
13703 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13704 		return libbpf_err(err);
13705 	}
13706 
13707 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13708 	if (err) {
13709 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13710 		return libbpf_err(err);
13711 	}
13712 
13713 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13714 		var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
13715 		map = *var_skel->map;
13716 		map_type_id = bpf_map__btf_value_type_id(map);
13717 		map_type = btf__type_by_id(btf, map_type_id);
13718 
13719 		if (!btf_is_datasec(map_type)) {
13720 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13721 				bpf_map__name(map),
13722 				__btf_kind_str(btf_kind(map_type)));
13723 			return libbpf_err(-EINVAL);
13724 		}
13725 
13726 		len = btf_vlen(map_type);
13727 		var = btf_var_secinfos(map_type);
13728 		for (i = 0; i < len; i++, var++) {
13729 			var_type = btf__type_by_id(btf, var->type);
13730 			var_name = btf__name_by_offset(btf, var_type->name_off);
13731 			if (strcmp(var_name, var_skel->name) == 0) {
13732 				*var_skel->addr = map->mmaped + var->offset;
13733 				break;
13734 			}
13735 		}
13736 	}
13737 	return 0;
13738 }
13739 
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13740 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13741 {
13742 	if (!s)
13743 		return;
13744 	free(s->maps);
13745 	free(s->progs);
13746 	free(s->vars);
13747 	free(s);
13748 }
13749 
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13750 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13751 {
13752 	int i, err;
13753 
13754 	err = bpf_object__load(*s->obj);
13755 	if (err) {
13756 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13757 		return libbpf_err(err);
13758 	}
13759 
13760 	for (i = 0; i < s->map_cnt; i++) {
13761 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13762 		struct bpf_map *map = *map_skel->map;
13763 		size_t mmap_sz = bpf_map_mmap_sz(map);
13764 		int prot, map_fd = map->fd;
13765 		void **mmaped = map_skel->mmaped;
13766 
13767 		if (!mmaped)
13768 			continue;
13769 
13770 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13771 			*mmaped = NULL;
13772 			continue;
13773 		}
13774 
13775 		if (map->def.type == BPF_MAP_TYPE_ARENA) {
13776 			*mmaped = map->mmaped;
13777 			continue;
13778 		}
13779 
13780 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13781 			prot = PROT_READ;
13782 		else
13783 			prot = PROT_READ | PROT_WRITE;
13784 
13785 		/* Remap anonymous mmap()-ed "map initialization image" as
13786 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13787 		 * memory address. This will cause kernel to change process'
13788 		 * page table to point to a different piece of kernel memory,
13789 		 * but from userspace point of view memory address (and its
13790 		 * contents, being identical at this point) will stay the
13791 		 * same. This mapping will be released by bpf_object__close()
13792 		 * as per normal clean up procedure, so we don't need to worry
13793 		 * about it from skeleton's clean up perspective.
13794 		 */
13795 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13796 		if (*mmaped == MAP_FAILED) {
13797 			err = -errno;
13798 			*mmaped = NULL;
13799 			pr_warn("failed to re-mmap() map '%s': %d\n",
13800 				 bpf_map__name(map), err);
13801 			return libbpf_err(err);
13802 		}
13803 	}
13804 
13805 	return 0;
13806 }
13807 
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13808 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13809 {
13810 	int i, err;
13811 
13812 	for (i = 0; i < s->prog_cnt; i++) {
13813 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
13814 		struct bpf_program *prog = *prog_skel->prog;
13815 		struct bpf_link **link = prog_skel->link;
13816 
13817 		if (!prog->autoload || !prog->autoattach)
13818 			continue;
13819 
13820 		/* auto-attaching not supported for this program */
13821 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13822 			continue;
13823 
13824 		/* if user already set the link manually, don't attempt auto-attach */
13825 		if (*link)
13826 			continue;
13827 
13828 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13829 		if (err) {
13830 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13831 				bpf_program__name(prog), err);
13832 			return libbpf_err(err);
13833 		}
13834 
13835 		/* It's possible that for some SEC() definitions auto-attach
13836 		 * is supported in some cases (e.g., if definition completely
13837 		 * specifies target information), but is not in other cases.
13838 		 * SEC("uprobe") is one such case. If user specified target
13839 		 * binary and function name, such BPF program can be
13840 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13841 		 * attach to fail. It should just be skipped.
13842 		 * attach_fn signals such case with returning 0 (no error) and
13843 		 * setting link to NULL.
13844 		 */
13845 	}
13846 
13847 	return 0;
13848 }
13849 
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13850 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13851 {
13852 	int i;
13853 
13854 	for (i = 0; i < s->prog_cnt; i++) {
13855 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
13856 		struct bpf_link **link = prog_skel->link;
13857 
13858 		bpf_link__destroy(*link);
13859 		*link = NULL;
13860 	}
13861 }
13862 
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13863 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13864 {
13865 	if (!s)
13866 		return;
13867 
13868 	if (s->progs)
13869 		bpf_object__detach_skeleton(s);
13870 	if (s->obj)
13871 		bpf_object__close(*s->obj);
13872 	free(s->maps);
13873 	free(s->progs);
13874 	free(s);
13875 }
13876