1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package main
6
7// Generic opcodes typically specify a width. The inputs and outputs
8// of that op are the given number of bits wide. There is no notion of
9// "sign", so Add32 can be used both for signed and unsigned 32-bit
10// addition.
11
12// Signed/unsigned is explicit with the extension ops
13// (SignExt*/ZeroExt*) and implicit as the arg to some opcodes
14// (e.g. the second argument to shifts is unsigned). If not mentioned,
15// all args take signed inputs, or don't care whether their inputs
16// are signed or unsigned.
17
18var genericOps = []opData{
19	// 2-input arithmetic
20	// Types must be consistent with Go typing. Add, for example, must take two values
21	// of the same type and produces that same type.
22	{name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1
23	{name: "Add16", argLength: 2, commutative: true},
24	{name: "Add32", argLength: 2, commutative: true},
25	{name: "Add64", argLength: 2, commutative: true},
26	{name: "AddPtr", argLength: 2}, // For address calculations.  arg0 is a pointer and arg1 is an int.
27	{name: "Add32F", argLength: 2, commutative: true},
28	{name: "Add64F", argLength: 2, commutative: true},
29
30	{name: "Sub8", argLength: 2}, // arg0 - arg1
31	{name: "Sub16", argLength: 2},
32	{name: "Sub32", argLength: 2},
33	{name: "Sub64", argLength: 2},
34	{name: "SubPtr", argLength: 2},
35	{name: "Sub32F", argLength: 2},
36	{name: "Sub64F", argLength: 2},
37
38	{name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1
39	{name: "Mul16", argLength: 2, commutative: true},
40	{name: "Mul32", argLength: 2, commutative: true},
41	{name: "Mul64", argLength: 2, commutative: true},
42	{name: "Mul32F", argLength: 2, commutative: true},
43	{name: "Mul64F", argLength: 2, commutative: true},
44
45	{name: "Div32F", argLength: 2}, // arg0 / arg1
46	{name: "Div64F", argLength: 2},
47
48	{name: "Hmul32", argLength: 2, commutative: true},
49	{name: "Hmul32u", argLength: 2, commutative: true},
50	{name: "Hmul64", argLength: 2, commutative: true},
51	{name: "Hmul64u", argLength: 2, commutative: true},
52
53	{name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)", commutative: true}, // arg0 * arg1, returns (hi, lo)
54	{name: "Mul64uhilo", argLength: 2, typ: "(UInt64,UInt64)", commutative: true}, // arg0 * arg1, returns (hi, lo)
55
56	{name: "Mul32uover", argLength: 2, typ: "(UInt32,Bool)", commutative: true}, // Let x = arg0*arg1 (full 32x32-> 64 unsigned multiply), returns (uint32(x), (uint32(x) != x))
57	{name: "Mul64uover", argLength: 2, typ: "(UInt64,Bool)", commutative: true}, // Let x = arg0*arg1 (full 64x64->128 unsigned multiply), returns (uint64(x), (uint64(x) != x))
58
59	// Weird special instructions for use in the strength reduction of divides.
60	// These ops compute unsigned (arg0 + arg1) / 2, correct to all
61	// 32/64 bits, even when the intermediate result of the add has 33/65 bits.
62	// These ops can assume arg0 >= arg1.
63	// Note: these ops aren't commutative!
64	{name: "Avg32u", argLength: 2, typ: "UInt32"}, // 32-bit platforms only
65	{name: "Avg64u", argLength: 2, typ: "UInt64"}, // 64-bit platforms only
66
67	// For Div16, Div32 and Div64, AuxInt non-zero means that the divisor has been proved to be not -1
68	// or that the dividend is not the most negative value.
69	{name: "Div8", argLength: 2},  // arg0 / arg1, signed
70	{name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned
71	{name: "Div16", argLength: 2, aux: "Bool"},
72	{name: "Div16u", argLength: 2},
73	{name: "Div32", argLength: 2, aux: "Bool"},
74	{name: "Div32u", argLength: 2},
75	{name: "Div64", argLength: 2, aux: "Bool"},
76	{name: "Div64u", argLength: 2},
77	{name: "Div128u", argLength: 3}, // arg0:arg1 / arg2 (128-bit divided by 64-bit), returns (q, r)
78
79	// For Mod16, Mod32 and Mod64, AuxInt non-zero means that the divisor has been proved to be not -1.
80	{name: "Mod8", argLength: 2},  // arg0 % arg1, signed
81	{name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned
82	{name: "Mod16", argLength: 2, aux: "Bool"},
83	{name: "Mod16u", argLength: 2},
84	{name: "Mod32", argLength: 2, aux: "Bool"},
85	{name: "Mod32u", argLength: 2},
86	{name: "Mod64", argLength: 2, aux: "Bool"},
87	{name: "Mod64u", argLength: 2},
88
89	{name: "And8", argLength: 2, commutative: true}, // arg0 & arg1
90	{name: "And16", argLength: 2, commutative: true},
91	{name: "And32", argLength: 2, commutative: true},
92	{name: "And64", argLength: 2, commutative: true},
93
94	{name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1
95	{name: "Or16", argLength: 2, commutative: true},
96	{name: "Or32", argLength: 2, commutative: true},
97	{name: "Or64", argLength: 2, commutative: true},
98
99	{name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1
100	{name: "Xor16", argLength: 2, commutative: true},
101	{name: "Xor32", argLength: 2, commutative: true},
102	{name: "Xor64", argLength: 2, commutative: true},
103
104	// For shifts, AxB means the shifted value has A bits and the shift amount has B bits.
105	// Shift amounts are considered unsigned.
106	// If arg1 is known to be nonnegative and less than the number of bits in arg0,
107	// then auxInt may be set to 1.
108	// This enables better code generation on some platforms.
109	{name: "Lsh8x8", argLength: 2, aux: "Bool"}, // arg0 << arg1
110	{name: "Lsh8x16", argLength: 2, aux: "Bool"},
111	{name: "Lsh8x32", argLength: 2, aux: "Bool"},
112	{name: "Lsh8x64", argLength: 2, aux: "Bool"},
113	{name: "Lsh16x8", argLength: 2, aux: "Bool"},
114	{name: "Lsh16x16", argLength: 2, aux: "Bool"},
115	{name: "Lsh16x32", argLength: 2, aux: "Bool"},
116	{name: "Lsh16x64", argLength: 2, aux: "Bool"},
117	{name: "Lsh32x8", argLength: 2, aux: "Bool"},
118	{name: "Lsh32x16", argLength: 2, aux: "Bool"},
119	{name: "Lsh32x32", argLength: 2, aux: "Bool"},
120	{name: "Lsh32x64", argLength: 2, aux: "Bool"},
121	{name: "Lsh64x8", argLength: 2, aux: "Bool"},
122	{name: "Lsh64x16", argLength: 2, aux: "Bool"},
123	{name: "Lsh64x32", argLength: 2, aux: "Bool"},
124	{name: "Lsh64x64", argLength: 2, aux: "Bool"},
125
126	{name: "Rsh8x8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, signed
127	{name: "Rsh8x16", argLength: 2, aux: "Bool"},
128	{name: "Rsh8x32", argLength: 2, aux: "Bool"},
129	{name: "Rsh8x64", argLength: 2, aux: "Bool"},
130	{name: "Rsh16x8", argLength: 2, aux: "Bool"},
131	{name: "Rsh16x16", argLength: 2, aux: "Bool"},
132	{name: "Rsh16x32", argLength: 2, aux: "Bool"},
133	{name: "Rsh16x64", argLength: 2, aux: "Bool"},
134	{name: "Rsh32x8", argLength: 2, aux: "Bool"},
135	{name: "Rsh32x16", argLength: 2, aux: "Bool"},
136	{name: "Rsh32x32", argLength: 2, aux: "Bool"},
137	{name: "Rsh32x64", argLength: 2, aux: "Bool"},
138	{name: "Rsh64x8", argLength: 2, aux: "Bool"},
139	{name: "Rsh64x16", argLength: 2, aux: "Bool"},
140	{name: "Rsh64x32", argLength: 2, aux: "Bool"},
141	{name: "Rsh64x64", argLength: 2, aux: "Bool"},
142
143	{name: "Rsh8Ux8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, unsigned
144	{name: "Rsh8Ux16", argLength: 2, aux: "Bool"},
145	{name: "Rsh8Ux32", argLength: 2, aux: "Bool"},
146	{name: "Rsh8Ux64", argLength: 2, aux: "Bool"},
147	{name: "Rsh16Ux8", argLength: 2, aux: "Bool"},
148	{name: "Rsh16Ux16", argLength: 2, aux: "Bool"},
149	{name: "Rsh16Ux32", argLength: 2, aux: "Bool"},
150	{name: "Rsh16Ux64", argLength: 2, aux: "Bool"},
151	{name: "Rsh32Ux8", argLength: 2, aux: "Bool"},
152	{name: "Rsh32Ux16", argLength: 2, aux: "Bool"},
153	{name: "Rsh32Ux32", argLength: 2, aux: "Bool"},
154	{name: "Rsh32Ux64", argLength: 2, aux: "Bool"},
155	{name: "Rsh64Ux8", argLength: 2, aux: "Bool"},
156	{name: "Rsh64Ux16", argLength: 2, aux: "Bool"},
157	{name: "Rsh64Ux32", argLength: 2, aux: "Bool"},
158	{name: "Rsh64Ux64", argLength: 2, aux: "Bool"},
159
160	// 2-input comparisons
161	{name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
162	{name: "Eq16", argLength: 2, commutative: true, typ: "Bool"},
163	{name: "Eq32", argLength: 2, commutative: true, typ: "Bool"},
164	{name: "Eq64", argLength: 2, commutative: true, typ: "Bool"},
165	{name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"},
166	{name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
167	{name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
168	{name: "Eq32F", argLength: 2, commutative: true, typ: "Bool"},
169	{name: "Eq64F", argLength: 2, commutative: true, typ: "Bool"},
170
171	{name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
172	{name: "Neq16", argLength: 2, commutative: true, typ: "Bool"},
173	{name: "Neq32", argLength: 2, commutative: true, typ: "Bool"},
174	{name: "Neq64", argLength: 2, commutative: true, typ: "Bool"},
175	{name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"},
176	{name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
177	{name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
178	{name: "Neq32F", argLength: 2, commutative: true, typ: "Bool"},
179	{name: "Neq64F", argLength: 2, commutative: true, typ: "Bool"},
180
181	{name: "Less8", argLength: 2, typ: "Bool"},  // arg0 < arg1, signed
182	{name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned
183	{name: "Less16", argLength: 2, typ: "Bool"},
184	{name: "Less16U", argLength: 2, typ: "Bool"},
185	{name: "Less32", argLength: 2, typ: "Bool"},
186	{name: "Less32U", argLength: 2, typ: "Bool"},
187	{name: "Less64", argLength: 2, typ: "Bool"},
188	{name: "Less64U", argLength: 2, typ: "Bool"},
189	{name: "Less32F", argLength: 2, typ: "Bool"},
190	{name: "Less64F", argLength: 2, typ: "Bool"},
191
192	{name: "Leq8", argLength: 2, typ: "Bool"},  // arg0 <= arg1, signed
193	{name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned
194	{name: "Leq16", argLength: 2, typ: "Bool"},
195	{name: "Leq16U", argLength: 2, typ: "Bool"},
196	{name: "Leq32", argLength: 2, typ: "Bool"},
197	{name: "Leq32U", argLength: 2, typ: "Bool"},
198	{name: "Leq64", argLength: 2, typ: "Bool"},
199	{name: "Leq64U", argLength: 2, typ: "Bool"},
200	{name: "Leq32F", argLength: 2, typ: "Bool"},
201	{name: "Leq64F", argLength: 2, typ: "Bool"},
202
203	// the type of a CondSelect is the same as the type of its first
204	// two arguments, which should be register-width scalars; the third
205	// argument should be a boolean
206	{name: "CondSelect", argLength: 3}, // arg2 ? arg0 : arg1
207
208	// boolean ops
209	{name: "AndB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 && arg1 (not shortcircuited)
210	{name: "OrB", argLength: 2, commutative: true, typ: "Bool"},  // arg0 || arg1 (not shortcircuited)
211	{name: "EqB", argLength: 2, commutative: true, typ: "Bool"},  // arg0 == arg1
212	{name: "NeqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
213	{name: "Not", argLength: 1, typ: "Bool"},                     // !arg0, boolean
214
215	// 1-input ops
216	{name: "Neg8", argLength: 1}, // -arg0
217	{name: "Neg16", argLength: 1},
218	{name: "Neg32", argLength: 1},
219	{name: "Neg64", argLength: 1},
220	{name: "Neg32F", argLength: 1},
221	{name: "Neg64F", argLength: 1},
222
223	{name: "Com8", argLength: 1}, // ^arg0
224	{name: "Com16", argLength: 1},
225	{name: "Com32", argLength: 1},
226	{name: "Com64", argLength: 1},
227
228	{name: "Ctz8", argLength: 1},         // Count trailing (low order) zeroes (returns 0-8)
229	{name: "Ctz16", argLength: 1},        // Count trailing (low order) zeroes (returns 0-16)
230	{name: "Ctz32", argLength: 1},        // Count trailing (low order) zeroes (returns 0-32)
231	{name: "Ctz64", argLength: 1},        // Count trailing (low order) zeroes (returns 0-64)
232	{name: "Ctz8NonZero", argLength: 1},  // same as above, but arg[0] known to be non-zero, returns 0-7
233	{name: "Ctz16NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-15
234	{name: "Ctz32NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-31
235	{name: "Ctz64NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-63
236	{name: "BitLen8", argLength: 1},      // Number of bits in arg[0] (returns 0-8)
237	{name: "BitLen16", argLength: 1},     // Number of bits in arg[0] (returns 0-16)
238	{name: "BitLen32", argLength: 1},     // Number of bits in arg[0] (returns 0-32)
239	{name: "BitLen64", argLength: 1},     // Number of bits in arg[0] (returns 0-64)
240
241	{name: "Bswap16", argLength: 1}, // Swap bytes
242	{name: "Bswap32", argLength: 1}, // Swap bytes
243	{name: "Bswap64", argLength: 1}, // Swap bytes
244
245	{name: "BitRev8", argLength: 1},  // Reverse the bits in arg[0]
246	{name: "BitRev16", argLength: 1}, // Reverse the bits in arg[0]
247	{name: "BitRev32", argLength: 1}, // Reverse the bits in arg[0]
248	{name: "BitRev64", argLength: 1}, // Reverse the bits in arg[0]
249
250	{name: "PopCount8", argLength: 1},  // Count bits in arg[0]
251	{name: "PopCount16", argLength: 1}, // Count bits in arg[0]
252	{name: "PopCount32", argLength: 1}, // Count bits in arg[0]
253	{name: "PopCount64", argLength: 1}, // Count bits in arg[0]
254
255	// RotateLeftX instructions rotate the X bits of arg[0] to the left
256	// by the low lg_2(X) bits of arg[1], interpreted as an unsigned value.
257	// Note that this works out regardless of the bit width or signedness of
258	// arg[1]. In particular, RotateLeft by x is the same as RotateRight by -x.
259	{name: "RotateLeft64", argLength: 2},
260	{name: "RotateLeft32", argLength: 2},
261	{name: "RotateLeft16", argLength: 2},
262	{name: "RotateLeft8", argLength: 2},
263
264	// Square root.
265	// Special cases:
266	//   +∞  → +∞
267	//   ±0  → ±0 (sign preserved)
268	//   x<0 → NaN
269	//   NaN → NaN
270	{name: "Sqrt", argLength: 1},   // √arg0 (floating point, double precision)
271	{name: "Sqrt32", argLength: 1}, // √arg0 (floating point, single precision)
272
273	// Round to integer, float64 only.
274	// Special cases:
275	//   ±∞  → ±∞ (sign preserved)
276	//   ±0  → ±0 (sign preserved)
277	//   NaN → NaN
278	{name: "Floor", argLength: 1},       // round arg0 toward -∞
279	{name: "Ceil", argLength: 1},        // round arg0 toward +∞
280	{name: "Trunc", argLength: 1},       // round arg0 toward 0
281	{name: "Round", argLength: 1},       // round arg0 to nearest, ties away from 0
282	{name: "RoundToEven", argLength: 1}, // round arg0 to nearest, ties to even
283
284	// Modify the sign bit
285	{name: "Abs", argLength: 1},      // absolute value arg0
286	{name: "Copysign", argLength: 2}, // copy sign from arg0 to arg1
287
288	// Float min/max implementation, if hardware is available.
289	{name: "Min64F", argLength: 2}, // min(arg0,arg1)
290	{name: "Min32F", argLength: 2}, // min(arg0,arg1)
291	{name: "Max64F", argLength: 2}, // max(arg0,arg1)
292	{name: "Max32F", argLength: 2}, // max(arg0,arg1)
293
294	// 3-input opcode.
295	// Fused-multiply-add, float64 only.
296	// When a*b+c is exactly zero (before rounding), then the result is +0 or -0.
297	// The 0's sign is determined according to the standard rules for the
298	// addition (-0 if both a*b and c are -0, +0 otherwise).
299	//
300	// Otherwise, when a*b+c rounds to zero, then the resulting 0's sign is
301	// determined by the sign of the exact result a*b+c.
302	// See section 6.3 in ieee754.
303	//
304	// When the multiply is an infinity times a zero, the result is NaN.
305	// See section 7.2 in ieee754.
306	{name: "FMA", argLength: 3}, // compute (a*b)+c without intermediate rounding
307
308	// Data movement. Max argument length for Phi is indefinite.
309	{name: "Phi", argLength: -1, zeroWidth: true}, // select an argument based on which predecessor block we came from
310	{name: "Copy", argLength: 1},                  // output = arg0
311	// Convert converts between pointers and integers.
312	// We have a special op for this so as to not confuse GC
313	// (particularly stack maps).  It takes a memory arg so it
314	// gets correctly ordered with respect to GC safepoints.
315	// It gets compiled to nothing, so its result must in the same
316	// register as its argument. regalloc knows it can use any
317	// allocatable integer register for OpConvert.
318	// arg0=ptr/int arg1=mem, output=int/ptr
319	{name: "Convert", argLength: 2, zeroWidth: true, resultInArg0: true},
320
321	// constants. Constant values are stored in the aux or
322	// auxint fields.
323	{name: "ConstBool", aux: "Bool"},     // auxint is 0 for false and 1 for true
324	{name: "ConstString", aux: "String"}, // value is aux.(string)
325	{name: "ConstNil", typ: "BytePtr"},   // nil pointer
326	{name: "Const8", aux: "Int8"},        // auxint is sign-extended 8 bits
327	{name: "Const16", aux: "Int16"},      // auxint is sign-extended 16 bits
328	{name: "Const32", aux: "Int32"},      // auxint is sign-extended 32 bits
329	// Note: ConstX are sign-extended even when the type of the value is unsigned.
330	// For instance, uint8(0xaa) is stored as auxint=0xffffffffffffffaa.
331	{name: "Const64", aux: "Int64"}, // value is auxint
332	// Note: for both Const32F and Const64F, we disallow encoding NaNs.
333	// Signaling NaNs are tricky because if you do anything with them, they become quiet.
334	// Particularly, converting a 32 bit sNaN to 64 bit and back converts it to a qNaN.
335	// See issue 36399 and 36400.
336	// Encodings of +inf, -inf, and -0 are fine.
337	{name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly representable as float 32
338	{name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint))
339	{name: "ConstInterface"},           // nil interface
340	{name: "ConstSlice"},               // nil slice
341
342	// Constant-like things
343	{name: "InitMem", zeroWidth: true},                               // memory input to the function.
344	{name: "Arg", aux: "SymOff", symEffect: "Read", zeroWidth: true}, // argument to the function.  aux=GCNode of arg, off = offset in that arg.
345
346	// Like Arg, these are generic ops that survive lowering. AuxInt is a register index, and the actual output register for each index is defined by the architecture.
347	// AuxInt = integer argument index (not a register number). ABI-specified spill loc obtained from function
348	{name: "ArgIntReg", aux: "NameOffsetInt8", zeroWidth: true},   // argument to the function in an int reg.
349	{name: "ArgFloatReg", aux: "NameOffsetInt8", zeroWidth: true}, // argument to the function in a float reg.
350
351	// The address of a variable.  arg0 is the base pointer.
352	// If the variable is a global, the base pointer will be SB and
353	// the Aux field will be a *obj.LSym.
354	// If the variable is a local, the base pointer will be SP and
355	// the Aux field will be a *gc.Node.
356	{name: "Addr", argLength: 1, aux: "Sym", symEffect: "Addr"},      // Address of a variable.  Arg0=SB.  Aux identifies the variable.
357	{name: "LocalAddr", argLength: 2, aux: "Sym", symEffect: "Addr"}, // Address of a variable.  Arg0=SP. Arg1=mem. Aux identifies the variable.
358
359	{name: "SP", zeroWidth: true},                                       // stack pointer
360	{name: "SB", typ: "Uintptr", zeroWidth: true},                       // static base pointer (a.k.a. globals pointer)
361	{name: "Invalid"},                                                   // unused value
362	{name: "SPanchored", typ: "Uintptr", argLength: 2, zeroWidth: true}, // arg0 = SP, arg1 = mem. Result is identical to arg0, but cannot be scheduled before memory state arg1.
363
364	// Memory operations
365	{name: "Load", argLength: 2},                          // Load from arg0.  arg1=memory
366	{name: "Dereference", argLength: 2},                   // Load from arg0.  arg1=memory.  Helper op for arg/result passing, result is an otherwise not-SSA-able "value".
367	{name: "Store", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0.  arg2=memory, aux=type.  Returns memory.
368	// Normally we require that the source and destination of Move do not overlap.
369	// There is an exception when we know all the loads will happen before all
370	// the stores. In that case, overlap is ok. See
371	// memmove inlining in generic.rules. When inlineablememmovesize (in ../rewrite.go)
372	// returns true, we must do all loads before all stores, when lowering Move.
373	// The type of Move is used for the write barrier pass to insert write barriers
374	// and for alignment on some architectures.
375	// For pointerless types, it is possible for the type to be inaccurate.
376	// For type alignment and pointer information, use the type in Aux;
377	// for type size, use the size in AuxInt.
378	// The "inline runtime.memmove" rewrite rule generates Moves with inaccurate types,
379	// such as type byte instead of the more accurate type [8]byte.
380	{name: "Move", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type.  Returns memory.
381	{name: "Zero", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
382
383	// Memory operations with write barriers.
384	// Expand to runtime calls. Write barrier will be removed if write on stack.
385	{name: "StoreWB", argLength: 3, typ: "Mem", aux: "Typ"},    // Store arg1 to arg0. arg2=memory, aux=type.  Returns memory.
386	{name: "MoveWB", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type.  Returns memory.
387	{name: "ZeroWB", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
388	{name: "WBend", argLength: 1, typ: "Mem"},                  // Write barrier code is done, interrupting is now allowed.
389
390	// WB invokes runtime.gcWriteBarrier.  This is not a normal
391	// call: it takes arguments in registers, doesn't clobber
392	// general-purpose registers (the exact clobber set is
393	// arch-dependent), and is not a safe-point.
394	{name: "WB", argLength: 1, typ: "(BytePtr,Mem)", aux: "Int64"}, // arg0=mem, auxint=# of buffer entries needed. Returns buffer pointer and memory.
395
396	{name: "HasCPUFeature", argLength: 0, typ: "bool", aux: "Sym", symEffect: "None"}, // aux=place that this feature flag can be loaded from
397
398	// PanicBounds and PanicExtend generate a runtime panic.
399	// Their arguments provide index values to use in panic messages.
400	// Both PanicBounds and PanicExtend have an AuxInt value from the BoundsKind type (in ../op.go).
401	// PanicBounds' index is int sized.
402	// PanicExtend's index is int64 sized. (PanicExtend is only used on 32-bit archs.)
403	{name: "PanicBounds", argLength: 3, aux: "Int64", typ: "Mem", call: true}, // arg0=idx, arg1=len, arg2=mem, returns memory.
404	{name: "PanicExtend", argLength: 4, aux: "Int64", typ: "Mem", call: true}, // arg0=idxHi, arg1=idxLo, arg2=len, arg3=mem, returns memory.
405
406	// Function calls. Arguments to the call have already been written to the stack.
407	// Return values appear on the stack. The method receiver, if any, is treated
408	// as a phantom first argument.
409	// TODO(josharian): ClosureCall and InterCall should have Int32 aux
410	// to match StaticCall's 32 bit arg size limit.
411	// TODO(drchase,josharian): could the arg size limit be bundled into the rules for CallOff?
412
413	// Before lowering, LECalls receive their fixed inputs (first), memory (last),
414	// and a variable number of input values in the middle.
415	// They produce a variable number of result values.
416	// These values are not necessarily "SSA-able"; they can be too large,
417	// but in that case inputs are loaded immediately before with OpDereference,
418	// and outputs are stored immediately with OpStore.
419	//
420	// After call expansion, Calls have the same fixed-middle-memory arrangement of inputs,
421	// with the difference that the "middle" is only the register-resident inputs,
422	// and the non-register inputs are instead stored at ABI-defined offsets from SP
423	// (and the stores thread through the memory that is ultimately an input to the call).
424	// Outputs follow a similar pattern; register-resident outputs are the leading elements
425	// of a Result-typed output, with memory last, and any memory-resident outputs have been
426	// stored to ABI-defined locations.  Each non-memory input or output fits in a register.
427	//
428	// Subsequent architecture-specific lowering only changes the opcode.
429
430	{name: "ClosureCall", argLength: -1, aux: "CallOff", call: true}, // arg0=code pointer, arg1=context ptr, arg2..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
431	{name: "StaticCall", argLength: -1, aux: "CallOff", call: true},  // call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
432	{name: "InterCall", argLength: -1, aux: "CallOff", call: true},   // interface call.  arg0=code pointer, arg1..argN-1 are register inputs, argN=memory, auxint=arg size.  Returns Result of register results, plus memory.
433	{name: "TailCall", argLength: -1, aux: "CallOff", call: true},    // tail call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
434
435	{name: "ClosureLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded closure call. arg0=code pointer, arg1=context ptr,  arg2..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
436	{name: "StaticLECall", argLength: -1, aux: "CallOff", call: true},  // late-expanded static call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
437	{name: "InterLECall", argLength: -1, aux: "CallOff", call: true},   // late-expanded interface call. arg0=code pointer, arg1..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
438	{name: "TailLECall", argLength: -1, aux: "CallOff", call: true},    // late-expanded static tail call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
439
440	// Conversions: signed extensions, zero (unsigned) extensions, truncations
441	{name: "SignExt8to16", argLength: 1, typ: "Int16"},
442	{name: "SignExt8to32", argLength: 1, typ: "Int32"},
443	{name: "SignExt8to64", argLength: 1, typ: "Int64"},
444	{name: "SignExt16to32", argLength: 1, typ: "Int32"},
445	{name: "SignExt16to64", argLength: 1, typ: "Int64"},
446	{name: "SignExt32to64", argLength: 1, typ: "Int64"},
447	{name: "ZeroExt8to16", argLength: 1, typ: "UInt16"},
448	{name: "ZeroExt8to32", argLength: 1, typ: "UInt32"},
449	{name: "ZeroExt8to64", argLength: 1, typ: "UInt64"},
450	{name: "ZeroExt16to32", argLength: 1, typ: "UInt32"},
451	{name: "ZeroExt16to64", argLength: 1, typ: "UInt64"},
452	{name: "ZeroExt32to64", argLength: 1, typ: "UInt64"},
453	{name: "Trunc16to8", argLength: 1},
454	{name: "Trunc32to8", argLength: 1},
455	{name: "Trunc32to16", argLength: 1},
456	{name: "Trunc64to8", argLength: 1},
457	{name: "Trunc64to16", argLength: 1},
458	{name: "Trunc64to32", argLength: 1},
459
460	{name: "Cvt32to32F", argLength: 1},
461	{name: "Cvt32to64F", argLength: 1},
462	{name: "Cvt64to32F", argLength: 1},
463	{name: "Cvt64to64F", argLength: 1},
464	{name: "Cvt32Fto32", argLength: 1},
465	{name: "Cvt32Fto64", argLength: 1},
466	{name: "Cvt64Fto32", argLength: 1},
467	{name: "Cvt64Fto64", argLength: 1},
468	{name: "Cvt32Fto64F", argLength: 1},
469	{name: "Cvt64Fto32F", argLength: 1},
470	{name: "CvtBoolToUint8", argLength: 1},
471
472	// Force rounding to precision of type.
473	{name: "Round32F", argLength: 1},
474	{name: "Round64F", argLength: 1},
475
476	// Automatically inserted safety checks
477	{name: "IsNonNil", argLength: 1, typ: "Bool"},        // arg0 != nil
478	{name: "IsInBounds", argLength: 2, typ: "Bool"},      // 0 <= arg0 < arg1. arg1 is guaranteed >= 0.
479	{name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0.
480	{name: "NilCheck", argLength: 2, nilCheck: true},     // arg0=ptr, arg1=mem. Panics if arg0 is nil. Returns the ptr unmodified.
481
482	// Pseudo-ops
483	{name: "GetG", argLength: 1, zeroWidth: true}, // runtime.getg() (read g pointer). arg0=mem
484	{name: "GetClosurePtr"},                       // get closure pointer from dedicated register
485	{name: "GetCallerPC"},                         // for getcallerpc intrinsic
486	{name: "GetCallerSP", argLength: 1},           // for getcallersp intrinsic. arg0=mem.
487
488	// Indexing operations
489	{name: "PtrIndex", argLength: 2},             // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type
490	{name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers)
491
492	// Slices
493	{name: "SliceMake", argLength: 3},                // arg0=ptr, arg1=len, arg2=cap
494	{name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
495	{name: "SliceLen", argLength: 1},                 // len(arg0)
496	{name: "SliceCap", argLength: 1},                 // cap(arg0)
497	// SlicePtrUnchecked, like SlicePtr, extracts the pointer from a slice.
498	// SlicePtr values are assumed non-nil, because they are guarded by bounds checks.
499	// SlicePtrUnchecked values can be nil.
500	{name: "SlicePtrUnchecked", argLength: 1},
501
502	// Complex (part/whole)
503	{name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag
504	{name: "ComplexReal", argLength: 1}, // real(arg0)
505	{name: "ComplexImag", argLength: 1}, // imag(arg0)
506
507	// Strings
508	{name: "StringMake", argLength: 2},                // arg0=ptr, arg1=len
509	{name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
510	{name: "StringLen", argLength: 1, typ: "Int"},     // len(arg0)
511
512	// Interfaces
513	{name: "IMake", argLength: 2},                // arg0=itab, arg1=data
514	{name: "ITab", argLength: 1, typ: "Uintptr"}, // arg0=interface, returns itable field
515	{name: "IData", argLength: 1},                // arg0=interface, returns data field
516
517	// Structs
518	{name: "StructMake0"},                              // Returns struct with 0 fields.
519	{name: "StructMake1", argLength: 1},                // arg0=field0.  Returns struct.
520	{name: "StructMake2", argLength: 2},                // arg0,arg1=field0,field1.  Returns struct.
521	{name: "StructMake3", argLength: 3},                // arg0..2=field0..2.  Returns struct.
522	{name: "StructMake4", argLength: 4},                // arg0..3=field0..3.  Returns struct.
523	{name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index.  Returns the auxint'th field.
524
525	// Arrays
526	{name: "ArrayMake0"},                              // Returns array with 0 elements
527	{name: "ArrayMake1", argLength: 1},                // Returns array with 1 element
528	{name: "ArraySelect", argLength: 1, aux: "Int64"}, // arg0=array, auxint=index. Returns a[i].
529
530	// Spill&restore ops for the register allocator. These are
531	// semantically identical to OpCopy; they do not take/return
532	// stores like regular memory ops do. We can get away without memory
533	// args because we know there is no aliasing of spill slots on the stack.
534	{name: "StoreReg", argLength: 1},
535	{name: "LoadReg", argLength: 1},
536
537	// Used during ssa construction. Like Copy, but the arg has not been specified yet.
538	{name: "FwdRef", aux: "Sym", symEffect: "None"},
539
540	// Unknown value. Used for Values whose values don't matter because they are dead code.
541	{name: "Unknown"},
542
543	{name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem", symEffect: "None", zeroWidth: true}, // aux is a *gc.Node of a variable that is about to be initialized.  arg0=mem, returns mem
544	// TODO: what's the difference between VarLive and KeepAlive?
545	{name: "VarLive", argLength: 1, aux: "Sym", symEffect: "Read", zeroWidth: true}, // aux is a *gc.Node of a variable that must be kept live.  arg0=mem, returns mem
546	{name: "KeepAlive", argLength: 2, typ: "Mem", zeroWidth: true},                  // arg[0] is a value that must be kept alive until this mark.  arg[1]=mem, returns mem
547
548	// InlMark marks the start of an inlined function body. Its AuxInt field
549	// distinguishes which entry in the local inline tree it is marking.
550	{name: "InlMark", argLength: 1, aux: "Int32", typ: "Void"}, // arg[0]=mem, returns void.
551
552	// Ops for breaking 64-bit operations on 32-bit architectures
553	{name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo
554	{name: "Int64Hi", argLength: 1, typ: "UInt32"},   // high 32-bit of arg0
555	{name: "Int64Lo", argLength: 1, typ: "UInt32"},   // low 32-bit of arg0
556
557	{name: "Add32carry", argLength: 2, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1, returns (value, carry)
558	{name: "Add32withcarry", argLength: 3, commutative: true},                    // arg0 + arg1 + arg2, arg2=carry (0 or 1)
559
560	{name: "Sub32carry", argLength: 2, typ: "(UInt32,Flags)"}, // arg0 - arg1, returns (value, carry)
561	{name: "Sub32withcarry", argLength: 3},                    // arg0 - arg1 - arg2, arg2=carry (0 or 1)
562
563	{name: "Add64carry", argLength: 3, commutative: true, typ: "(UInt64,UInt64)"}, // arg0 + arg1 + arg2, arg2 must be 0 or 1. returns (value, value>>64)
564	{name: "Sub64borrow", argLength: 3, typ: "(UInt64,UInt64)"},                   // arg0 - (arg1 + arg2), arg2 must be 0 or 1. returns (value, value>>64&1)
565
566	{name: "Signmask", argLength: 1, typ: "Int32"},  // 0 if arg0 >= 0, -1 if arg0 < 0
567	{name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0
568	{name: "Slicemask", argLength: 1},               // 0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0. Type is native int size.
569
570	{name: "SpectreIndex", argLength: 2},      // arg0 if 0 <= arg0 < arg1, 0 otherwise. Type is native int size.
571	{name: "SpectreSliceIndex", argLength: 2}, // arg0 if 0 <= arg0 <= arg1, 0 otherwise. Type is native int size.
572
573	{name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch
574	{name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch
575	{name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch
576	{name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch
577	{name: "Cvt64Uto32F", argLength: 1}, // uint64 -> float32, only used on archs that has the instruction
578	{name: "Cvt64Uto64F", argLength: 1}, // uint64 -> float64, only used on archs that has the instruction
579	{name: "Cvt32Fto64U", argLength: 1}, // float32 -> uint64, only used on archs that has the instruction
580	{name: "Cvt64Fto64U", argLength: 1}, // float64 -> uint64, only used on archs that has the instruction
581
582	// pseudo-ops for breaking Tuple
583	{name: "Select0", argLength: 1, zeroWidth: true},  // the first component of a tuple
584	{name: "Select1", argLength: 1, zeroWidth: true},  // the second component of a tuple
585	{name: "SelectN", argLength: 1, aux: "Int64"},     // arg0=result, auxint=field index.  Returns the auxint'th member.
586	{name: "SelectNAddr", argLength: 1, aux: "Int64"}, // arg0=result, auxint=field index.  Returns the address of auxint'th member. Used for un-SSA-able result types.
587	{name: "MakeResult", argLength: -1},               // arg0 .. are components of a "Result" (like the result from a Call). The last arg should be memory (like the result from a call).
588
589	// Atomic operations used for semantically inlining sync/atomic and
590	// internal/runtime/atomic. Atomic loads return a new memory so that
591	// the loads are properly ordered with respect to other loads and
592	// stores.
593	{name: "AtomicLoad8", argLength: 2, typ: "(UInt8,Mem)"},                                    // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
594	{name: "AtomicLoad32", argLength: 2, typ: "(UInt32,Mem)"},                                  // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
595	{name: "AtomicLoad64", argLength: 2, typ: "(UInt64,Mem)"},                                  // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
596	{name: "AtomicLoadPtr", argLength: 2, typ: "(BytePtr,Mem)"},                                // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
597	{name: "AtomicLoadAcq32", argLength: 2, typ: "(UInt32,Mem)"},                               // Load from arg0.  arg1=memory.  Lock acquisition, returns loaded value and new memory.
598	{name: "AtomicLoadAcq64", argLength: 2, typ: "(UInt64,Mem)"},                               // Load from arg0.  arg1=memory.  Lock acquisition, returns loaded value and new memory.
599	{name: "AtomicStore8", argLength: 3, typ: "Mem", hasSideEffects: true},                     // Store arg1 to *arg0.  arg2=memory.  Returns memory.
600	{name: "AtomicStore32", argLength: 3, typ: "Mem", hasSideEffects: true},                    // Store arg1 to *arg0.  arg2=memory.  Returns memory.
601	{name: "AtomicStore64", argLength: 3, typ: "Mem", hasSideEffects: true},                    // Store arg1 to *arg0.  arg2=memory.  Returns memory.
602	{name: "AtomicStorePtrNoWB", argLength: 3, typ: "Mem", hasSideEffects: true},               // Store arg1 to *arg0.  arg2=memory.  Returns memory.
603	{name: "AtomicStoreRel32", argLength: 3, typ: "Mem", hasSideEffects: true},                 // Store arg1 to *arg0.  arg2=memory.  Lock release, returns memory.
604	{name: "AtomicStoreRel64", argLength: 3, typ: "Mem", hasSideEffects: true},                 // Store arg1 to *arg0.  arg2=memory.  Lock release, returns memory.
605	{name: "AtomicExchange32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},        // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
606	{name: "AtomicExchange64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},        // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
607	{name: "AtomicAdd32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},             // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
608	{name: "AtomicAdd64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},             // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
609	{name: "AtomicCompareAndSwap32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true},    // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
610	{name: "AtomicCompareAndSwap64", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true},    // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
611	{name: "AtomicCompareAndSwapRel32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Lock release, reports whether store happens and new memory.
612	{name: "AtomicAnd8", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},              // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
613	{name: "AtomicOr8", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},               // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
614	{name: "AtomicAnd64", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},            // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
615	{name: "AtomicAnd32", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},            // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
616	{name: "AtomicOr64", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},             // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
617	{name: "AtomicOr32", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},             // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
618
619	// Atomic operation variants
620	// These variants have the same semantics as above atomic operations.
621	// But they are used for generating more efficient code on certain modern machines, with run-time CPU feature detection.
622	// On ARM64, these are used when the LSE hardware feature is avaliable (either known at compile time or detected at runtime). If LSE is not avaliable,
623	// then the basic atomic oprations are used instead.
624	// These are not currently used on any other platform.
625	{name: "AtomicAdd32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},          // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
626	{name: "AtomicAdd64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},          // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
627	{name: "AtomicExchange32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},     // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
628	{name: "AtomicExchange64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},     // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
629	{name: "AtomicCompareAndSwap32Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
630	{name: "AtomicCompareAndSwap64Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
631	{name: "AtomicAnd8Variant", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},           // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
632	{name: "AtomicOr8Variant", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},            // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
633	{name: "AtomicAnd64Variant", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},         // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
634	{name: "AtomicOr64Variant", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},          // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
635	{name: "AtomicAnd32Variant", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},         // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
636	{name: "AtomicOr32Variant", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},          // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
637
638	// Publication barrier
639	{name: "PubBarrier", argLength: 1, hasSideEffects: true}, // Do data barrier. arg0=memory.
640
641	// Clobber experiment op
642	{name: "Clobber", argLength: 0, typ: "Void", aux: "SymOff", symEffect: "None"}, // write an invalid pointer value to the given pointer slot of a stack variable
643	{name: "ClobberReg", argLength: 0, typ: "Void"},                                // clobber a register
644
645	// Prefetch instruction
646	{name: "PrefetchCache", argLength: 2, hasSideEffects: true},         // Do prefetch arg0 to cache. arg0=addr, arg1=memory.
647	{name: "PrefetchCacheStreamed", argLength: 2, hasSideEffects: true}, // Do non-temporal or streamed prefetch arg0 to cache. arg0=addr, arg1=memory.
648}
649
650//     kind          controls        successors   implicit exit
651//   ----------------------------------------------------------
652//     Exit      [return mem]                []             yes
653//      Ret      [return mem]                []             yes
654//   RetJmp      [return mem]                []             yes
655//    Plain                []            [next]
656//       If   [boolean Value]      [then, else]
657//    First                []   [always, never]
658//    Defer             [mem]  [nopanic, panic]                  (control opcode should be OpStaticCall to runtime.deferproc)
659// JumpTable   [integer Value]  [succ1,succ2,..]
660
661var genericBlocks = []blockData{
662	{name: "Plain"},                  // a single successor
663	{name: "If", controls: 1},        // if Controls[0] goto Succs[0] else goto Succs[1]
664	{name: "Defer", controls: 1},     // Succs[0]=defer queued, Succs[1]=defer recovered. Controls[0] is call op (of memory type)
665	{name: "Ret", controls: 1},       // no successors, Controls[0] value is memory result
666	{name: "RetJmp", controls: 1},    // no successors, Controls[0] value is a tail call
667	{name: "Exit", controls: 1},      // no successors, Controls[0] value generates a panic
668	{name: "JumpTable", controls: 1}, // multiple successors, the integer Controls[0] selects which one
669
670	// transient block state used for dead code removal
671	{name: "First"}, // 2 successors, always takes the first one (second is dead)
672}
673
674func init() {
675	archs = append(archs, arch{
676		name:    "generic",
677		ops:     genericOps,
678		blocks:  genericBlocks,
679		generic: true,
680	})
681}
682