1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetOptions.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "wasm-lower"
44
WebAssemblyTargetLowering(const TargetMachine & TM,const WebAssemblySubtarget & STI)45 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
46 const TargetMachine &TM, const WebAssemblySubtarget &STI)
47 : TargetLowering(TM), Subtarget(&STI) {
48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
49
50 // Booleans always contain 0 or 1.
51 setBooleanContents(ZeroOrOneBooleanContent);
52 // Except in SIMD vectors
53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
54 // We don't know the microarchitecture here, so just reduce register pressure.
55 setSchedulingPreference(Sched::RegPressure);
56 // Tell ISel that we have a stack pointer.
57 setStackPointerRegisterToSaveRestore(
58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
59 // Set up the register classes.
60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
64 if (Subtarget->hasSIMD128()) {
65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
71 }
72 if (Subtarget->hasReferenceTypes()) {
73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
75 }
76 // Compute derived properties from the register classes.
77 computeRegisterProperties(Subtarget->getRegisterInfo());
78
79 // Transform loads and stores to pointers in address space 1 to loads and
80 // stores to WebAssembly global variables, outside linear memory.
81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
82 setOperationAction(ISD::LOAD, T, Custom);
83 setOperationAction(ISD::STORE, T, Custom);
84 }
85 if (Subtarget->hasSIMD128()) {
86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
87 MVT::v2f64}) {
88 setOperationAction(ISD::LOAD, T, Custom);
89 setOperationAction(ISD::STORE, T, Custom);
90 }
91 }
92 if (Subtarget->hasReferenceTypes()) {
93 // We need custom load and store lowering for both externref, funcref and
94 // Other. The MVT::Other here represents tables of reference types.
95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
96 setOperationAction(ISD::LOAD, T, Custom);
97 setOperationAction(ISD::STORE, T, Custom);
98 }
99 }
100
101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
104 setOperationAction(ISD::JumpTable, MVTPtr, Custom);
105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
106 setOperationAction(ISD::BRIND, MVT::Other, Custom);
107
108 // Take the default expansion for va_arg, va_copy, and va_end. There is no
109 // default action for va_start, so we do that custom.
110 setOperationAction(ISD::VASTART, MVT::Other, Custom);
111 setOperationAction(ISD::VAARG, MVT::Other, Expand);
112 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
113 setOperationAction(ISD::VAEND, MVT::Other, Expand);
114
115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
116 // Don't expand the floating-point types to constant pools.
117 setOperationAction(ISD::ConstantFP, T, Legal);
118 // Expand floating-point comparisons.
119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
121 setCondCodeAction(CC, T, Expand);
122 // Expand floating-point library function operators.
123 for (auto Op :
124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
125 setOperationAction(Op, T, Expand);
126 // Note supported floating-point library function operators that otherwise
127 // default to expand.
128 for (auto Op :
129 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
130 setOperationAction(Op, T, Legal);
131 // Support minimum and maximum, which otherwise default to expand.
132 setOperationAction(ISD::FMINIMUM, T, Legal);
133 setOperationAction(ISD::FMAXIMUM, T, Legal);
134 // WebAssembly currently has no builtin f16 support.
135 setOperationAction(ISD::FP16_TO_FP, T, Expand);
136 setOperationAction(ISD::FP_TO_FP16, T, Expand);
137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
138 setTruncStoreAction(T, MVT::f16, Expand);
139 }
140
141 // Expand unavailable integer operations.
142 for (auto Op :
143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
146 for (auto T : {MVT::i32, MVT::i64})
147 setOperationAction(Op, T, Expand);
148 if (Subtarget->hasSIMD128())
149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
150 setOperationAction(Op, T, Expand);
151 }
152
153 if (Subtarget->hasNontrappingFPToInt())
154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
155 for (auto T : {MVT::i32, MVT::i64})
156 setOperationAction(Op, T, Custom);
157
158 // SIMD-specific configuration
159 if (Subtarget->hasSIMD128()) {
160 // Hoist bitcasts out of shuffles
161 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
162
163 // Combine extends of extract_subvectors into widening ops
164 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
165
166 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
167 // conversions ops
168 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
169 ISD::EXTRACT_SUBVECTOR});
170
171 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
172 // into conversion ops
173 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
174 ISD::FP_ROUND, ISD::CONCAT_VECTORS});
175
176 setTargetDAGCombine(ISD::TRUNCATE);
177
178 // Support saturating add for i8x16 and i16x8
179 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
180 for (auto T : {MVT::v16i8, MVT::v8i16})
181 setOperationAction(Op, T, Legal);
182
183 // Support integer abs
184 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
185 setOperationAction(ISD::ABS, T, Legal);
186
187 // Custom lower BUILD_VECTORs to minimize number of replace_lanes
188 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
189 MVT::v2f64})
190 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
191
192 // We have custom shuffle lowering to expose the shuffle mask
193 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
194 MVT::v2f64})
195 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
196
197 // Support splatting
198 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
199 MVT::v2f64})
200 setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
201
202 // Custom lowering since wasm shifts must have a scalar shift amount
203 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
205 setOperationAction(Op, T, Custom);
206
207 // Custom lower lane accesses to expand out variable indices
208 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
209 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
210 MVT::v2f64})
211 setOperationAction(Op, T, Custom);
212
213 // There is no i8x16.mul instruction
214 setOperationAction(ISD::MUL, MVT::v16i8, Expand);
215
216 // There is no vector conditional select instruction
217 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
218 MVT::v2f64})
219 setOperationAction(ISD::SELECT_CC, T, Expand);
220
221 // Expand integer operations supported for scalars but not SIMD
222 for (auto Op :
223 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
225 setOperationAction(Op, T, Expand);
226
227 // But we do have integer min and max operations
228 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
229 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
230 setOperationAction(Op, T, Legal);
231
232 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
233 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
234 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
235 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
236
237 // Custom lower bit counting operations for other types to scalarize them.
238 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
239 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
240 setOperationAction(Op, T, Custom);
241
242 // Expand float operations supported for scalars but not SIMD
243 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
244 ISD::FEXP, ISD::FEXP2, ISD::FRINT})
245 for (auto T : {MVT::v4f32, MVT::v2f64})
246 setOperationAction(Op, T, Expand);
247
248 // Unsigned comparison operations are unavailable for i64x2 vectors.
249 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
250 setCondCodeAction(CC, MVT::v2i64, Custom);
251
252 // 64x2 conversions are not in the spec
253 for (auto Op :
254 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
255 for (auto T : {MVT::v2i64, MVT::v2f64})
256 setOperationAction(Op, T, Expand);
257
258 // But saturating fp_to_int converstions are
259 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
260 setOperationAction(Op, MVT::v4i32, Custom);
261 }
262
263 // As a special case, these operators use the type to mean the type to
264 // sign-extend from.
265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
266 if (!Subtarget->hasSignExt()) {
267 // Sign extends are legal only when extending a vector extract
268 auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
269 for (auto T : {MVT::i8, MVT::i16, MVT::i32})
270 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
271 }
272 for (auto T : MVT::integer_fixedlen_vector_valuetypes())
273 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
274
275 // Dynamic stack allocation: use the default expansion.
276 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
277 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
278 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
279
280 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
281 setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
282 setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
283
284 // Expand these forms; we pattern-match the forms that we can handle in isel.
285 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
286 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
287 setOperationAction(Op, T, Expand);
288
289 // We have custom switch handling.
290 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
291
292 // WebAssembly doesn't have:
293 // - Floating-point extending loads.
294 // - Floating-point truncating stores.
295 // - i1 extending loads.
296 // - truncating SIMD stores and most extending loads
297 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
298 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
299 for (auto T : MVT::integer_valuetypes())
300 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
301 setLoadExtAction(Ext, T, MVT::i1, Promote);
302 if (Subtarget->hasSIMD128()) {
303 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
304 MVT::v2f64}) {
305 for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
306 if (MVT(T) != MemT) {
307 setTruncStoreAction(T, MemT, Expand);
308 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
309 setLoadExtAction(Ext, T, MemT, Expand);
310 }
311 }
312 }
313 // But some vector extending loads are legal
314 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
315 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
316 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
317 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
318 }
319 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
320 }
321
322 // Don't do anything clever with build_pairs
323 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
324
325 // Trap lowers to wasm unreachable
326 setOperationAction(ISD::TRAP, MVT::Other, Legal);
327 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
328
329 // Exception handling intrinsics
330 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
331 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
332 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
333
334 setMaxAtomicSizeInBitsSupported(64);
335
336 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
337 // consistent with the f64 and f128 names.
338 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
339 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
340
341 // Define the emscripten name for return address helper.
342 // TODO: when implementing other Wasm backends, make this generic or only do
343 // this on emscripten depending on what they end up doing.
344 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
345
346 // Always convert switches to br_tables unless there is only one case, which
347 // is equivalent to a simple branch. This reduces code size for wasm, and we
348 // defer possible jump table optimizations to the VM.
349 setMinimumJumpTableEntries(2);
350 }
351
getPointerTy(const DataLayout & DL,uint32_t AS) const352 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
353 uint32_t AS) const {
354 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
355 return MVT::externref;
356 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
357 return MVT::funcref;
358 return TargetLowering::getPointerTy(DL, AS);
359 }
360
getPointerMemTy(const DataLayout & DL,uint32_t AS) const361 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
362 uint32_t AS) const {
363 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
364 return MVT::externref;
365 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
366 return MVT::funcref;
367 return TargetLowering::getPointerMemTy(DL, AS);
368 }
369
370 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const371 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
372 // We have wasm instructions for these
373 switch (AI->getOperation()) {
374 case AtomicRMWInst::Add:
375 case AtomicRMWInst::Sub:
376 case AtomicRMWInst::And:
377 case AtomicRMWInst::Or:
378 case AtomicRMWInst::Xor:
379 case AtomicRMWInst::Xchg:
380 return AtomicExpansionKind::None;
381 default:
382 break;
383 }
384 return AtomicExpansionKind::CmpXChg;
385 }
386
shouldScalarizeBinop(SDValue VecOp) const387 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
388 // Implementation copied from X86TargetLowering.
389 unsigned Opc = VecOp.getOpcode();
390
391 // Assume target opcodes can't be scalarized.
392 // TODO - do we have any exceptions?
393 if (Opc >= ISD::BUILTIN_OP_END)
394 return false;
395
396 // If the vector op is not supported, try to convert to scalar.
397 EVT VecVT = VecOp.getValueType();
398 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
399 return true;
400
401 // If the vector op is supported, but the scalar op is not, the transform may
402 // not be worthwhile.
403 EVT ScalarVT = VecVT.getScalarType();
404 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
405 }
406
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const407 FastISel *WebAssemblyTargetLowering::createFastISel(
408 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
409 return WebAssembly::createFastISel(FuncInfo, LibInfo);
410 }
411
getScalarShiftAmountTy(const DataLayout &,EVT VT) const412 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
413 EVT VT) const {
414 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
415 if (BitWidth > 1 && BitWidth < 8)
416 BitWidth = 8;
417
418 if (BitWidth > 64) {
419 // The shift will be lowered to a libcall, and compiler-rt libcalls expect
420 // the count to be an i32.
421 BitWidth = 32;
422 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
423 "32-bit shift counts ought to be enough for anyone");
424 }
425
426 MVT Result = MVT::getIntegerVT(BitWidth);
427 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
428 "Unable to represent scalar shift amount type");
429 return Result;
430 }
431
432 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
433 // undefined result on invalid/overflow, to the WebAssembly opcode, which
434 // traps on invalid/overflow.
LowerFPToInt(MachineInstr & MI,DebugLoc DL,MachineBasicBlock * BB,const TargetInstrInfo & TII,bool IsUnsigned,bool Int64,bool Float64,unsigned LoweredOpcode)435 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
436 MachineBasicBlock *BB,
437 const TargetInstrInfo &TII,
438 bool IsUnsigned, bool Int64,
439 bool Float64, unsigned LoweredOpcode) {
440 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
441
442 Register OutReg = MI.getOperand(0).getReg();
443 Register InReg = MI.getOperand(1).getReg();
444
445 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
446 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
447 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
448 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
449 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
450 unsigned Eqz = WebAssembly::EQZ_I32;
451 unsigned And = WebAssembly::AND_I32;
452 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
453 int64_t Substitute = IsUnsigned ? 0 : Limit;
454 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
455 auto &Context = BB->getParent()->getFunction().getContext();
456 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
457
458 const BasicBlock *LLVMBB = BB->getBasicBlock();
459 MachineFunction *F = BB->getParent();
460 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
461 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
462 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
463
464 MachineFunction::iterator It = ++BB->getIterator();
465 F->insert(It, FalseMBB);
466 F->insert(It, TrueMBB);
467 F->insert(It, DoneMBB);
468
469 // Transfer the remainder of BB and its successor edges to DoneMBB.
470 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
471 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
472
473 BB->addSuccessor(TrueMBB);
474 BB->addSuccessor(FalseMBB);
475 TrueMBB->addSuccessor(DoneMBB);
476 FalseMBB->addSuccessor(DoneMBB);
477
478 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
479 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
480 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
481 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
482 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
483 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
484 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
485
486 MI.eraseFromParent();
487 // For signed numbers, we can do a single comparison to determine whether
488 // fabs(x) is within range.
489 if (IsUnsigned) {
490 Tmp0 = InReg;
491 } else {
492 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
493 }
494 BuildMI(BB, DL, TII.get(FConst), Tmp1)
495 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
496 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
497
498 // For unsigned numbers, we have to do a separate comparison with zero.
499 if (IsUnsigned) {
500 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
501 Register SecondCmpReg =
502 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
503 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
504 BuildMI(BB, DL, TII.get(FConst), Tmp1)
505 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
506 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
507 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
508 CmpReg = AndReg;
509 }
510
511 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
512
513 // Create the CFG diamond to select between doing the conversion or using
514 // the substitute value.
515 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
516 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
517 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
518 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
519 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
520 .addReg(FalseReg)
521 .addMBB(FalseMBB)
522 .addReg(TrueReg)
523 .addMBB(TrueMBB);
524
525 return DoneMBB;
526 }
527
528 static MachineBasicBlock *
LowerCallResults(MachineInstr & CallResults,DebugLoc DL,MachineBasicBlock * BB,const WebAssemblySubtarget * Subtarget,const TargetInstrInfo & TII)529 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
530 const WebAssemblySubtarget *Subtarget,
531 const TargetInstrInfo &TII) {
532 MachineInstr &CallParams = *CallResults.getPrevNode();
533 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
534 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
535 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
536
537 bool IsIndirect = CallParams.getOperand(0).isReg();
538 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
539
540 bool IsFuncrefCall = false;
541 if (IsIndirect) {
542 Register Reg = CallParams.getOperand(0).getReg();
543 const MachineFunction *MF = BB->getParent();
544 const MachineRegisterInfo &MRI = MF->getRegInfo();
545 const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
546 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
547 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
548 }
549
550 unsigned CallOp;
551 if (IsIndirect && IsRetCall) {
552 CallOp = WebAssembly::RET_CALL_INDIRECT;
553 } else if (IsIndirect) {
554 CallOp = WebAssembly::CALL_INDIRECT;
555 } else if (IsRetCall) {
556 CallOp = WebAssembly::RET_CALL;
557 } else {
558 CallOp = WebAssembly::CALL;
559 }
560
561 MachineFunction &MF = *BB->getParent();
562 const MCInstrDesc &MCID = TII.get(CallOp);
563 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
564
565 // See if we must truncate the function pointer.
566 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
567 // as 64-bit for uniformity with other pointer types.
568 // See also: WebAssemblyFastISel::selectCall
569 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
570 Register Reg32 =
571 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
572 auto &FnPtr = CallParams.getOperand(0);
573 BuildMI(*BB, CallResults.getIterator(), DL,
574 TII.get(WebAssembly::I32_WRAP_I64), Reg32)
575 .addReg(FnPtr.getReg());
576 FnPtr.setReg(Reg32);
577 }
578
579 // Move the function pointer to the end of the arguments for indirect calls
580 if (IsIndirect) {
581 auto FnPtr = CallParams.getOperand(0);
582 CallParams.removeOperand(0);
583
584 // For funcrefs, call_indirect is done through __funcref_call_table and the
585 // funcref is always installed in slot 0 of the table, therefore instead of
586 // having the function pointer added at the end of the params list, a zero
587 // (the index in
588 // __funcref_call_table is added).
589 if (IsFuncrefCall) {
590 Register RegZero =
591 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
592 MachineInstrBuilder MIBC0 =
593 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
594
595 BB->insert(CallResults.getIterator(), MIBC0);
596 MachineInstrBuilder(MF, CallParams).addReg(RegZero);
597 } else
598 CallParams.addOperand(FnPtr);
599 }
600
601 for (auto Def : CallResults.defs())
602 MIB.add(Def);
603
604 if (IsIndirect) {
605 // Placeholder for the type index.
606 MIB.addImm(0);
607 // The table into which this call_indirect indexes.
608 MCSymbolWasm *Table = IsFuncrefCall
609 ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
610 MF.getContext(), Subtarget)
611 : WebAssembly::getOrCreateFunctionTableSymbol(
612 MF.getContext(), Subtarget);
613 if (Subtarget->hasReferenceTypes()) {
614 MIB.addSym(Table);
615 } else {
616 // For the MVP there is at most one table whose number is 0, but we can't
617 // write a table symbol or issue relocations. Instead we just ensure the
618 // table is live and write a zero.
619 Table->setNoStrip();
620 MIB.addImm(0);
621 }
622 }
623
624 for (auto Use : CallParams.uses())
625 MIB.add(Use);
626
627 BB->insert(CallResults.getIterator(), MIB);
628 CallParams.eraseFromParent();
629 CallResults.eraseFromParent();
630
631 // If this is a funcref call, to avoid hidden GC roots, we need to clear the
632 // table slot with ref.null upon call_indirect return.
633 //
634 // This generates the following code, which comes right after a call_indirect
635 // of a funcref:
636 //
637 // i32.const 0
638 // ref.null func
639 // table.set __funcref_call_table
640 if (IsIndirect && IsFuncrefCall) {
641 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
642 MF.getContext(), Subtarget);
643 Register RegZero =
644 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
645 MachineInstr *Const0 =
646 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
647 BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
648
649 Register RegFuncref =
650 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
651 MachineInstr *RefNull =
652 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
653 BB->insertAfter(Const0->getIterator(), RefNull);
654
655 MachineInstr *TableSet =
656 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
657 .addSym(Table)
658 .addReg(RegZero)
659 .addReg(RegFuncref);
660 BB->insertAfter(RefNull->getIterator(), TableSet);
661 }
662
663 return BB;
664 }
665
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const666 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
667 MachineInstr &MI, MachineBasicBlock *BB) const {
668 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
669 DebugLoc DL = MI.getDebugLoc();
670
671 switch (MI.getOpcode()) {
672 default:
673 llvm_unreachable("Unexpected instr type to insert");
674 case WebAssembly::FP_TO_SINT_I32_F32:
675 return LowerFPToInt(MI, DL, BB, TII, false, false, false,
676 WebAssembly::I32_TRUNC_S_F32);
677 case WebAssembly::FP_TO_UINT_I32_F32:
678 return LowerFPToInt(MI, DL, BB, TII, true, false, false,
679 WebAssembly::I32_TRUNC_U_F32);
680 case WebAssembly::FP_TO_SINT_I64_F32:
681 return LowerFPToInt(MI, DL, BB, TII, false, true, false,
682 WebAssembly::I64_TRUNC_S_F32);
683 case WebAssembly::FP_TO_UINT_I64_F32:
684 return LowerFPToInt(MI, DL, BB, TII, true, true, false,
685 WebAssembly::I64_TRUNC_U_F32);
686 case WebAssembly::FP_TO_SINT_I32_F64:
687 return LowerFPToInt(MI, DL, BB, TII, false, false, true,
688 WebAssembly::I32_TRUNC_S_F64);
689 case WebAssembly::FP_TO_UINT_I32_F64:
690 return LowerFPToInt(MI, DL, BB, TII, true, false, true,
691 WebAssembly::I32_TRUNC_U_F64);
692 case WebAssembly::FP_TO_SINT_I64_F64:
693 return LowerFPToInt(MI, DL, BB, TII, false, true, true,
694 WebAssembly::I64_TRUNC_S_F64);
695 case WebAssembly::FP_TO_UINT_I64_F64:
696 return LowerFPToInt(MI, DL, BB, TII, true, true, true,
697 WebAssembly::I64_TRUNC_U_F64);
698 case WebAssembly::CALL_RESULTS:
699 case WebAssembly::RET_CALL_RESULTS:
700 return LowerCallResults(MI, DL, BB, Subtarget, TII);
701 }
702 }
703
704 const char *
getTargetNodeName(unsigned Opcode) const705 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
706 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
707 case WebAssemblyISD::FIRST_NUMBER:
708 case WebAssemblyISD::FIRST_MEM_OPCODE:
709 break;
710 #define HANDLE_NODETYPE(NODE) \
711 case WebAssemblyISD::NODE: \
712 return "WebAssemblyISD::" #NODE;
713 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
714 #include "WebAssemblyISD.def"
715 #undef HANDLE_MEM_NODETYPE
716 #undef HANDLE_NODETYPE
717 }
718 return nullptr;
719 }
720
721 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const722 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
723 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
724 // First, see if this is a constraint that directly corresponds to a
725 // WebAssembly register class.
726 if (Constraint.size() == 1) {
727 switch (Constraint[0]) {
728 case 'r':
729 assert(VT != MVT::iPTR && "Pointer MVT not expected here");
730 if (Subtarget->hasSIMD128() && VT.isVector()) {
731 if (VT.getSizeInBits() == 128)
732 return std::make_pair(0U, &WebAssembly::V128RegClass);
733 }
734 if (VT.isInteger() && !VT.isVector()) {
735 if (VT.getSizeInBits() <= 32)
736 return std::make_pair(0U, &WebAssembly::I32RegClass);
737 if (VT.getSizeInBits() <= 64)
738 return std::make_pair(0U, &WebAssembly::I64RegClass);
739 }
740 if (VT.isFloatingPoint() && !VT.isVector()) {
741 switch (VT.getSizeInBits()) {
742 case 32:
743 return std::make_pair(0U, &WebAssembly::F32RegClass);
744 case 64:
745 return std::make_pair(0U, &WebAssembly::F64RegClass);
746 default:
747 break;
748 }
749 }
750 break;
751 default:
752 break;
753 }
754 }
755
756 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
757 }
758
isCheapToSpeculateCttz(Type * Ty) const759 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
760 // Assume ctz is a relatively cheap operation.
761 return true;
762 }
763
isCheapToSpeculateCtlz(Type * Ty) const764 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
765 // Assume clz is a relatively cheap operation.
766 return true;
767 }
768
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const769 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
770 const AddrMode &AM,
771 Type *Ty, unsigned AS,
772 Instruction *I) const {
773 // WebAssembly offsets are added as unsigned without wrapping. The
774 // isLegalAddressingMode gives us no way to determine if wrapping could be
775 // happening, so we approximate this by accepting only non-negative offsets.
776 if (AM.BaseOffs < 0)
777 return false;
778
779 // WebAssembly has no scale register operands.
780 if (AM.Scale != 0)
781 return false;
782
783 // Everything else is legal.
784 return true;
785 }
786
allowsMisalignedMemoryAccesses(EVT,unsigned,Align,MachineMemOperand::Flags,unsigned * Fast) const787 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
788 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
789 MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
790 // WebAssembly supports unaligned accesses, though it should be declared
791 // with the p2align attribute on loads and stores which do so, and there
792 // may be a performance impact. We tell LLVM they're "fast" because
793 // for the kinds of things that LLVM uses this for (merging adjacent stores
794 // of constants, etc.), WebAssembly implementations will either want the
795 // unaligned access or they'll split anyway.
796 if (Fast)
797 *Fast = 1;
798 return true;
799 }
800
isIntDivCheap(EVT VT,AttributeList Attr) const801 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
802 AttributeList Attr) const {
803 // The current thinking is that wasm engines will perform this optimization,
804 // so we can save on code size.
805 return true;
806 }
807
isVectorLoadExtDesirable(SDValue ExtVal) const808 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
809 EVT ExtT = ExtVal.getValueType();
810 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
811 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
812 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
813 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
814 }
815
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const816 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
817 const GlobalAddressSDNode *GA) const {
818 // Wasm doesn't support function addresses with offsets
819 const GlobalValue *GV = GA->getGlobal();
820 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
821 }
822
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const823 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
824 LLVMContext &C,
825 EVT VT) const {
826 if (VT.isVector())
827 return VT.changeVectorElementTypeToInteger();
828
829 // So far, all branch instructions in Wasm take an I32 condition.
830 // The default TargetLowering::getSetCCResultType returns the pointer size,
831 // which would be useful to reduce instruction counts when testing
832 // against 64-bit pointers/values if at some point Wasm supports that.
833 return EVT::getIntegerVT(C, 32);
834 }
835
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const836 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
837 const CallInst &I,
838 MachineFunction &MF,
839 unsigned Intrinsic) const {
840 switch (Intrinsic) {
841 case Intrinsic::wasm_memory_atomic_notify:
842 Info.opc = ISD::INTRINSIC_W_CHAIN;
843 Info.memVT = MVT::i32;
844 Info.ptrVal = I.getArgOperand(0);
845 Info.offset = 0;
846 Info.align = Align(4);
847 // atomic.notify instruction does not really load the memory specified with
848 // this argument, but MachineMemOperand should either be load or store, so
849 // we set this to a load.
850 // FIXME Volatile isn't really correct, but currently all LLVM atomic
851 // instructions are treated as volatiles in the backend, so we should be
852 // consistent. The same applies for wasm_atomic_wait intrinsics too.
853 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
854 return true;
855 case Intrinsic::wasm_memory_atomic_wait32:
856 Info.opc = ISD::INTRINSIC_W_CHAIN;
857 Info.memVT = MVT::i32;
858 Info.ptrVal = I.getArgOperand(0);
859 Info.offset = 0;
860 Info.align = Align(4);
861 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
862 return true;
863 case Intrinsic::wasm_memory_atomic_wait64:
864 Info.opc = ISD::INTRINSIC_W_CHAIN;
865 Info.memVT = MVT::i64;
866 Info.ptrVal = I.getArgOperand(0);
867 Info.offset = 0;
868 Info.align = Align(8);
869 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
870 return true;
871 default:
872 return false;
873 }
874 }
875
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const876 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
877 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
878 const SelectionDAG &DAG, unsigned Depth) const {
879 switch (Op.getOpcode()) {
880 default:
881 break;
882 case ISD::INTRINSIC_WO_CHAIN: {
883 unsigned IntNo = Op.getConstantOperandVal(0);
884 switch (IntNo) {
885 default:
886 break;
887 case Intrinsic::wasm_bitmask: {
888 unsigned BitWidth = Known.getBitWidth();
889 EVT VT = Op.getOperand(1).getSimpleValueType();
890 unsigned PossibleBits = VT.getVectorNumElements();
891 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
892 Known.Zero |= ZeroMask;
893 break;
894 }
895 }
896 }
897 }
898 }
899
900 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const901 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
902 if (VT.isFixedLengthVector()) {
903 MVT EltVT = VT.getVectorElementType();
904 // We have legal vector types with these lane types, so widening the
905 // vector would let us use some of the lanes directly without having to
906 // extend or truncate values.
907 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
908 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
909 return TypeWidenVector;
910 }
911
912 return TargetLoweringBase::getPreferredVectorAction(VT);
913 }
914
shouldSimplifyDemandedVectorElts(SDValue Op,const TargetLoweringOpt & TLO) const915 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
916 SDValue Op, const TargetLoweringOpt &TLO) const {
917 // ISel process runs DAGCombiner after legalization; this step is called
918 // SelectionDAG optimization phase. This post-legalization combining process
919 // runs DAGCombiner on each node, and if there was a change to be made,
920 // re-runs legalization again on it and its user nodes to make sure
921 // everythiing is in a legalized state.
922 //
923 // The legalization calls lowering routines, and we do our custom lowering for
924 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
925 // into zeros. But there is a set of routines in DAGCombiner that turns unused
926 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
927 // turns unused vector elements into undefs. But this routine does not work
928 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
929 // combination can result in a infinite loop, in which undefs are converted to
930 // zeros in legalization and back to undefs in combining.
931 //
932 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
933 // running for build_vectors.
934 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
935 return false;
936 return true;
937 }
938
939 //===----------------------------------------------------------------------===//
940 // WebAssembly Lowering private implementation.
941 //===----------------------------------------------------------------------===//
942
943 //===----------------------------------------------------------------------===//
944 // Lowering Code
945 //===----------------------------------------------------------------------===//
946
fail(const SDLoc & DL,SelectionDAG & DAG,const char * Msg)947 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
948 MachineFunction &MF = DAG.getMachineFunction();
949 DAG.getContext()->diagnose(
950 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
951 }
952
953 // Test whether the given calling convention is supported.
callingConvSupported(CallingConv::ID CallConv)954 static bool callingConvSupported(CallingConv::ID CallConv) {
955 // We currently support the language-independent target-independent
956 // conventions. We don't yet have a way to annotate calls with properties like
957 // "cold", and we don't have any call-clobbered registers, so these are mostly
958 // all handled the same.
959 return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
960 CallConv == CallingConv::Cold ||
961 CallConv == CallingConv::PreserveMost ||
962 CallConv == CallingConv::PreserveAll ||
963 CallConv == CallingConv::CXX_FAST_TLS ||
964 CallConv == CallingConv::WASM_EmscriptenInvoke ||
965 CallConv == CallingConv::Swift;
966 }
967
968 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const969 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
970 SmallVectorImpl<SDValue> &InVals) const {
971 SelectionDAG &DAG = CLI.DAG;
972 SDLoc DL = CLI.DL;
973 SDValue Chain = CLI.Chain;
974 SDValue Callee = CLI.Callee;
975 MachineFunction &MF = DAG.getMachineFunction();
976 auto Layout = MF.getDataLayout();
977
978 CallingConv::ID CallConv = CLI.CallConv;
979 if (!callingConvSupported(CallConv))
980 fail(DL, DAG,
981 "WebAssembly doesn't support language-specific or target-specific "
982 "calling conventions yet");
983 if (CLI.IsPatchPoint)
984 fail(DL, DAG, "WebAssembly doesn't support patch point yet");
985
986 if (CLI.IsTailCall) {
987 auto NoTail = [&](const char *Msg) {
988 if (CLI.CB && CLI.CB->isMustTailCall())
989 fail(DL, DAG, Msg);
990 CLI.IsTailCall = false;
991 };
992
993 if (!Subtarget->hasTailCall())
994 NoTail("WebAssembly 'tail-call' feature not enabled");
995
996 // Varargs calls cannot be tail calls because the buffer is on the stack
997 if (CLI.IsVarArg)
998 NoTail("WebAssembly does not support varargs tail calls");
999
1000 // Do not tail call unless caller and callee return types match
1001 const Function &F = MF.getFunction();
1002 const TargetMachine &TM = getTargetMachine();
1003 Type *RetTy = F.getReturnType();
1004 SmallVector<MVT, 4> CallerRetTys;
1005 SmallVector<MVT, 4> CalleeRetTys;
1006 computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1007 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1008 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1009 std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1010 CalleeRetTys.begin());
1011 if (!TypesMatch)
1012 NoTail("WebAssembly tail call requires caller and callee return types to "
1013 "match");
1014
1015 // If pointers to local stack values are passed, we cannot tail call
1016 if (CLI.CB) {
1017 for (auto &Arg : CLI.CB->args()) {
1018 Value *Val = Arg.get();
1019 // Trace the value back through pointer operations
1020 while (true) {
1021 Value *Src = Val->stripPointerCastsAndAliases();
1022 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1023 Src = GEP->getPointerOperand();
1024 if (Val == Src)
1025 break;
1026 Val = Src;
1027 }
1028 if (isa<AllocaInst>(Val)) {
1029 NoTail(
1030 "WebAssembly does not support tail calling with stack arguments");
1031 break;
1032 }
1033 }
1034 }
1035 }
1036
1037 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1038 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1039 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1040
1041 // The generic code may have added an sret argument. If we're lowering an
1042 // invoke function, the ABI requires that the function pointer be the first
1043 // argument, so we may have to swap the arguments.
1044 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1045 Outs[0].Flags.isSRet()) {
1046 std::swap(Outs[0], Outs[1]);
1047 std::swap(OutVals[0], OutVals[1]);
1048 }
1049
1050 bool HasSwiftSelfArg = false;
1051 bool HasSwiftErrorArg = false;
1052 unsigned NumFixedArgs = 0;
1053 for (unsigned I = 0; I < Outs.size(); ++I) {
1054 const ISD::OutputArg &Out = Outs[I];
1055 SDValue &OutVal = OutVals[I];
1056 HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1057 HasSwiftErrorArg |= Out.Flags.isSwiftError();
1058 if (Out.Flags.isNest())
1059 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1060 if (Out.Flags.isInAlloca())
1061 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1062 if (Out.Flags.isInConsecutiveRegs())
1063 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1064 if (Out.Flags.isInConsecutiveRegsLast())
1065 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1066 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1067 auto &MFI = MF.getFrameInfo();
1068 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1069 Out.Flags.getNonZeroByValAlign(),
1070 /*isSS=*/false);
1071 SDValue SizeNode =
1072 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1073 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1074 Chain = DAG.getMemcpy(
1075 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1076 /*isVolatile*/ false, /*AlwaysInline=*/false,
1077 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1078 OutVal = FINode;
1079 }
1080 // Count the number of fixed args *after* legalization.
1081 NumFixedArgs += Out.IsFixed;
1082 }
1083
1084 bool IsVarArg = CLI.IsVarArg;
1085 auto PtrVT = getPointerTy(Layout);
1086
1087 // For swiftcc, emit additional swiftself and swifterror arguments
1088 // if there aren't. These additional arguments are also added for callee
1089 // signature They are necessary to match callee and caller signature for
1090 // indirect call.
1091 if (CallConv == CallingConv::Swift) {
1092 if (!HasSwiftSelfArg) {
1093 NumFixedArgs++;
1094 ISD::OutputArg Arg;
1095 Arg.Flags.setSwiftSelf();
1096 CLI.Outs.push_back(Arg);
1097 SDValue ArgVal = DAG.getUNDEF(PtrVT);
1098 CLI.OutVals.push_back(ArgVal);
1099 }
1100 if (!HasSwiftErrorArg) {
1101 NumFixedArgs++;
1102 ISD::OutputArg Arg;
1103 Arg.Flags.setSwiftError();
1104 CLI.Outs.push_back(Arg);
1105 SDValue ArgVal = DAG.getUNDEF(PtrVT);
1106 CLI.OutVals.push_back(ArgVal);
1107 }
1108 }
1109
1110 // Analyze operands of the call, assigning locations to each operand.
1111 SmallVector<CCValAssign, 16> ArgLocs;
1112 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1113
1114 if (IsVarArg) {
1115 // Outgoing non-fixed arguments are placed in a buffer. First
1116 // compute their offsets and the total amount of buffer space needed.
1117 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1118 const ISD::OutputArg &Out = Outs[I];
1119 SDValue &Arg = OutVals[I];
1120 EVT VT = Arg.getValueType();
1121 assert(VT != MVT::iPTR && "Legalized args should be concrete");
1122 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1123 Align Alignment =
1124 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1125 unsigned Offset =
1126 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1127 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1128 Offset, VT.getSimpleVT(),
1129 CCValAssign::Full));
1130 }
1131 }
1132
1133 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1134
1135 SDValue FINode;
1136 if (IsVarArg && NumBytes) {
1137 // For non-fixed arguments, next emit stores to store the argument values
1138 // to the stack buffer at the offsets computed above.
1139 int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1140 Layout.getStackAlignment(),
1141 /*isSS=*/false);
1142 unsigned ValNo = 0;
1143 SmallVector<SDValue, 8> Chains;
1144 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1145 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1146 "ArgLocs should remain in order and only hold varargs args");
1147 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1148 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1149 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1150 DAG.getConstant(Offset, DL, PtrVT));
1151 Chains.push_back(
1152 DAG.getStore(Chain, DL, Arg, Add,
1153 MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1154 }
1155 if (!Chains.empty())
1156 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1157 } else if (IsVarArg) {
1158 FINode = DAG.getIntPtrConstant(0, DL);
1159 }
1160
1161 if (Callee->getOpcode() == ISD::GlobalAddress) {
1162 // If the callee is a GlobalAddress node (quite common, every direct call
1163 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1164 // doesn't at MO_GOT which is not needed for direct calls.
1165 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1166 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1167 getPointerTy(DAG.getDataLayout()),
1168 GA->getOffset());
1169 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1170 getPointerTy(DAG.getDataLayout()), Callee);
1171 }
1172
1173 // Compute the operands for the CALLn node.
1174 SmallVector<SDValue, 16> Ops;
1175 Ops.push_back(Chain);
1176 Ops.push_back(Callee);
1177
1178 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1179 // isn't reliable.
1180 Ops.append(OutVals.begin(),
1181 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1182 // Add a pointer to the vararg buffer.
1183 if (IsVarArg)
1184 Ops.push_back(FINode);
1185
1186 SmallVector<EVT, 8> InTys;
1187 for (const auto &In : Ins) {
1188 assert(!In.Flags.isByVal() && "byval is not valid for return values");
1189 assert(!In.Flags.isNest() && "nest is not valid for return values");
1190 if (In.Flags.isInAlloca())
1191 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1192 if (In.Flags.isInConsecutiveRegs())
1193 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1194 if (In.Flags.isInConsecutiveRegsLast())
1195 fail(DL, DAG,
1196 "WebAssembly hasn't implemented cons regs last return values");
1197 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1198 // registers.
1199 InTys.push_back(In.VT);
1200 }
1201
1202 // Lastly, if this is a call to a funcref we need to add an instruction
1203 // table.set to the chain and transform the call.
1204 if (CLI.CB &&
1205 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1206 // In the absence of function references proposal where a funcref call is
1207 // lowered to call_ref, using reference types we generate a table.set to set
1208 // the funcref to a special table used solely for this purpose, followed by
1209 // a call_indirect. Here we just generate the table set, and return the
1210 // SDValue of the table.set so that LowerCall can finalize the lowering by
1211 // generating the call_indirect.
1212 SDValue Chain = Ops[0];
1213
1214 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1215 MF.getContext(), Subtarget);
1216 SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1217 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1218 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1219 SDValue TableSet = DAG.getMemIntrinsicNode(
1220 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1221 MVT::funcref,
1222 // Machine Mem Operand args
1223 MachinePointerInfo(
1224 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1225 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1226 MachineMemOperand::MOStore);
1227
1228 Ops[0] = TableSet; // The new chain is the TableSet itself
1229 }
1230
1231 if (CLI.IsTailCall) {
1232 // ret_calls do not return values to the current frame
1233 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1234 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1235 }
1236
1237 InTys.push_back(MVT::Other);
1238 SDVTList InTyList = DAG.getVTList(InTys);
1239 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1240
1241 for (size_t I = 0; I < Ins.size(); ++I)
1242 InVals.push_back(Res.getValue(I));
1243
1244 // Return the chain
1245 return Res.getValue(Ins.size());
1246 }
1247
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext &) const1248 bool WebAssemblyTargetLowering::CanLowerReturn(
1249 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1250 const SmallVectorImpl<ISD::OutputArg> &Outs,
1251 LLVMContext & /*Context*/) const {
1252 // WebAssembly can only handle returning tuples with multivalue enabled
1253 return Subtarget->hasMultivalue() || Outs.size() <= 1;
1254 }
1255
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1256 SDValue WebAssemblyTargetLowering::LowerReturn(
1257 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1258 const SmallVectorImpl<ISD::OutputArg> &Outs,
1259 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1260 SelectionDAG &DAG) const {
1261 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1262 "MVP WebAssembly can only return up to one value");
1263 if (!callingConvSupported(CallConv))
1264 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1265
1266 SmallVector<SDValue, 4> RetOps(1, Chain);
1267 RetOps.append(OutVals.begin(), OutVals.end());
1268 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1269
1270 // Record the number and types of the return values.
1271 for (const ISD::OutputArg &Out : Outs) {
1272 assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1273 assert(!Out.Flags.isNest() && "nest is not valid for return values");
1274 assert(Out.IsFixed && "non-fixed return value is not valid");
1275 if (Out.Flags.isInAlloca())
1276 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1277 if (Out.Flags.isInConsecutiveRegs())
1278 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1279 if (Out.Flags.isInConsecutiveRegsLast())
1280 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1281 }
1282
1283 return Chain;
1284 }
1285
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1286 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1287 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1288 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1289 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1290 if (!callingConvSupported(CallConv))
1291 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1292
1293 MachineFunction &MF = DAG.getMachineFunction();
1294 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1295
1296 // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1297 // of the incoming values before they're represented by virtual registers.
1298 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1299
1300 bool HasSwiftErrorArg = false;
1301 bool HasSwiftSelfArg = false;
1302 for (const ISD::InputArg &In : Ins) {
1303 HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1304 HasSwiftErrorArg |= In.Flags.isSwiftError();
1305 if (In.Flags.isInAlloca())
1306 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1307 if (In.Flags.isNest())
1308 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1309 if (In.Flags.isInConsecutiveRegs())
1310 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1311 if (In.Flags.isInConsecutiveRegsLast())
1312 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1313 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1314 // registers.
1315 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1316 DAG.getTargetConstant(InVals.size(),
1317 DL, MVT::i32))
1318 : DAG.getUNDEF(In.VT));
1319
1320 // Record the number and types of arguments.
1321 MFI->addParam(In.VT);
1322 }
1323
1324 // For swiftcc, emit additional swiftself and swifterror arguments
1325 // if there aren't. These additional arguments are also added for callee
1326 // signature They are necessary to match callee and caller signature for
1327 // indirect call.
1328 auto PtrVT = getPointerTy(MF.getDataLayout());
1329 if (CallConv == CallingConv::Swift) {
1330 if (!HasSwiftSelfArg) {
1331 MFI->addParam(PtrVT);
1332 }
1333 if (!HasSwiftErrorArg) {
1334 MFI->addParam(PtrVT);
1335 }
1336 }
1337 // Varargs are copied into a buffer allocated by the caller, and a pointer to
1338 // the buffer is passed as an argument.
1339 if (IsVarArg) {
1340 MVT PtrVT = getPointerTy(MF.getDataLayout());
1341 Register VarargVreg =
1342 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1343 MFI->setVarargBufferVreg(VarargVreg);
1344 Chain = DAG.getCopyToReg(
1345 Chain, DL, VarargVreg,
1346 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1347 DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1348 MFI->addParam(PtrVT);
1349 }
1350
1351 // Record the number and types of arguments and results.
1352 SmallVector<MVT, 4> Params;
1353 SmallVector<MVT, 4> Results;
1354 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1355 MF.getFunction(), DAG.getTarget(), Params, Results);
1356 for (MVT VT : Results)
1357 MFI->addResult(VT);
1358 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1359 // the param logic here with ComputeSignatureVTs
1360 assert(MFI->getParams().size() == Params.size() &&
1361 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1362 Params.begin()));
1363
1364 return Chain;
1365 }
1366
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1367 void WebAssemblyTargetLowering::ReplaceNodeResults(
1368 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1369 switch (N->getOpcode()) {
1370 case ISD::SIGN_EXTEND_INREG:
1371 // Do not add any results, signifying that N should not be custom lowered
1372 // after all. This happens because simd128 turns on custom lowering for
1373 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1374 // illegal type.
1375 break;
1376 default:
1377 llvm_unreachable(
1378 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1379 }
1380 }
1381
1382 //===----------------------------------------------------------------------===//
1383 // Custom lowering hooks.
1384 //===----------------------------------------------------------------------===//
1385
LowerOperation(SDValue Op,SelectionDAG & DAG) const1386 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1387 SelectionDAG &DAG) const {
1388 SDLoc DL(Op);
1389 switch (Op.getOpcode()) {
1390 default:
1391 llvm_unreachable("unimplemented operation lowering");
1392 return SDValue();
1393 case ISD::FrameIndex:
1394 return LowerFrameIndex(Op, DAG);
1395 case ISD::GlobalAddress:
1396 return LowerGlobalAddress(Op, DAG);
1397 case ISD::GlobalTLSAddress:
1398 return LowerGlobalTLSAddress(Op, DAG);
1399 case ISD::ExternalSymbol:
1400 return LowerExternalSymbol(Op, DAG);
1401 case ISD::JumpTable:
1402 return LowerJumpTable(Op, DAG);
1403 case ISD::BR_JT:
1404 return LowerBR_JT(Op, DAG);
1405 case ISD::VASTART:
1406 return LowerVASTART(Op, DAG);
1407 case ISD::BlockAddress:
1408 case ISD::BRIND:
1409 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1410 return SDValue();
1411 case ISD::RETURNADDR:
1412 return LowerRETURNADDR(Op, DAG);
1413 case ISD::FRAMEADDR:
1414 return LowerFRAMEADDR(Op, DAG);
1415 case ISD::CopyToReg:
1416 return LowerCopyToReg(Op, DAG);
1417 case ISD::EXTRACT_VECTOR_ELT:
1418 case ISD::INSERT_VECTOR_ELT:
1419 return LowerAccessVectorElement(Op, DAG);
1420 case ISD::INTRINSIC_VOID:
1421 case ISD::INTRINSIC_WO_CHAIN:
1422 case ISD::INTRINSIC_W_CHAIN:
1423 return LowerIntrinsic(Op, DAG);
1424 case ISD::SIGN_EXTEND_INREG:
1425 return LowerSIGN_EXTEND_INREG(Op, DAG);
1426 case ISD::BUILD_VECTOR:
1427 return LowerBUILD_VECTOR(Op, DAG);
1428 case ISD::VECTOR_SHUFFLE:
1429 return LowerVECTOR_SHUFFLE(Op, DAG);
1430 case ISD::SETCC:
1431 return LowerSETCC(Op, DAG);
1432 case ISD::SHL:
1433 case ISD::SRA:
1434 case ISD::SRL:
1435 return LowerShift(Op, DAG);
1436 case ISD::FP_TO_SINT_SAT:
1437 case ISD::FP_TO_UINT_SAT:
1438 return LowerFP_TO_INT_SAT(Op, DAG);
1439 case ISD::LOAD:
1440 return LowerLoad(Op, DAG);
1441 case ISD::STORE:
1442 return LowerStore(Op, DAG);
1443 case ISD::CTPOP:
1444 case ISD::CTLZ:
1445 case ISD::CTTZ:
1446 return DAG.UnrollVectorOp(Op.getNode());
1447 }
1448 }
1449
IsWebAssemblyGlobal(SDValue Op)1450 static bool IsWebAssemblyGlobal(SDValue Op) {
1451 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1452 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1453
1454 return false;
1455 }
1456
IsWebAssemblyLocal(SDValue Op,SelectionDAG & DAG)1457 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1458 SelectionDAG &DAG) {
1459 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1460 if (!FI)
1461 return std::nullopt;
1462
1463 auto &MF = DAG.getMachineFunction();
1464 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1465 }
1466
LowerStore(SDValue Op,SelectionDAG & DAG) const1467 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1468 SelectionDAG &DAG) const {
1469 SDLoc DL(Op);
1470 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1471 const SDValue &Value = SN->getValue();
1472 const SDValue &Base = SN->getBasePtr();
1473 const SDValue &Offset = SN->getOffset();
1474
1475 if (IsWebAssemblyGlobal(Base)) {
1476 if (!Offset->isUndef())
1477 report_fatal_error("unexpected offset when storing to webassembly global",
1478 false);
1479
1480 SDVTList Tys = DAG.getVTList(MVT::Other);
1481 SDValue Ops[] = {SN->getChain(), Value, Base};
1482 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1483 SN->getMemoryVT(), SN->getMemOperand());
1484 }
1485
1486 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1487 if (!Offset->isUndef())
1488 report_fatal_error("unexpected offset when storing to webassembly local",
1489 false);
1490
1491 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1492 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1493 SDValue Ops[] = {SN->getChain(), Idx, Value};
1494 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1495 }
1496
1497 if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1498 report_fatal_error(
1499 "Encountered an unlowerable store to the wasm_var address space",
1500 false);
1501
1502 return Op;
1503 }
1504
LowerLoad(SDValue Op,SelectionDAG & DAG) const1505 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1506 SelectionDAG &DAG) const {
1507 SDLoc DL(Op);
1508 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1509 const SDValue &Base = LN->getBasePtr();
1510 const SDValue &Offset = LN->getOffset();
1511
1512 if (IsWebAssemblyGlobal(Base)) {
1513 if (!Offset->isUndef())
1514 report_fatal_error(
1515 "unexpected offset when loading from webassembly global", false);
1516
1517 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1518 SDValue Ops[] = {LN->getChain(), Base};
1519 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1520 LN->getMemoryVT(), LN->getMemOperand());
1521 }
1522
1523 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1524 if (!Offset->isUndef())
1525 report_fatal_error(
1526 "unexpected offset when loading from webassembly local", false);
1527
1528 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1529 EVT LocalVT = LN->getValueType(0);
1530 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1531 {LN->getChain(), Idx});
1532 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1533 assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1534 return Result;
1535 }
1536
1537 if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1538 report_fatal_error(
1539 "Encountered an unlowerable load from the wasm_var address space",
1540 false);
1541
1542 return Op;
1543 }
1544
LowerCopyToReg(SDValue Op,SelectionDAG & DAG) const1545 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1546 SelectionDAG &DAG) const {
1547 SDValue Src = Op.getOperand(2);
1548 if (isa<FrameIndexSDNode>(Src.getNode())) {
1549 // CopyToReg nodes don't support FrameIndex operands. Other targets select
1550 // the FI to some LEA-like instruction, but since we don't have that, we
1551 // need to insert some kind of instruction that can take an FI operand and
1552 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1553 // local.copy between Op and its FI operand.
1554 SDValue Chain = Op.getOperand(0);
1555 SDLoc DL(Op);
1556 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1557 EVT VT = Src.getValueType();
1558 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1559 : WebAssembly::COPY_I64,
1560 DL, VT, Src),
1561 0);
1562 return Op.getNode()->getNumValues() == 1
1563 ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1564 : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1565 Op.getNumOperands() == 4 ? Op.getOperand(3)
1566 : SDValue());
1567 }
1568 return SDValue();
1569 }
1570
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1571 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1572 SelectionDAG &DAG) const {
1573 int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1574 return DAG.getTargetFrameIndex(FI, Op.getValueType());
1575 }
1576
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1577 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1578 SelectionDAG &DAG) const {
1579 SDLoc DL(Op);
1580
1581 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1582 fail(DL, DAG,
1583 "Non-Emscripten WebAssembly hasn't implemented "
1584 "__builtin_return_address");
1585 return SDValue();
1586 }
1587
1588 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1589 return SDValue();
1590
1591 unsigned Depth = Op.getConstantOperandVal(0);
1592 MakeLibCallOptions CallOptions;
1593 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1594 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1595 .first;
1596 }
1597
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1598 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1599 SelectionDAG &DAG) const {
1600 // Non-zero depths are not supported by WebAssembly currently. Use the
1601 // legalizer's default expansion, which is to return 0 (what this function is
1602 // documented to do).
1603 if (Op.getConstantOperandVal(0) > 0)
1604 return SDValue();
1605
1606 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1607 EVT VT = Op.getValueType();
1608 Register FP =
1609 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1610 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1611 }
1612
1613 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1614 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1615 SelectionDAG &DAG) const {
1616 SDLoc DL(Op);
1617 const auto *GA = cast<GlobalAddressSDNode>(Op);
1618
1619 MachineFunction &MF = DAG.getMachineFunction();
1620 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1621 report_fatal_error("cannot use thread-local storage without bulk memory",
1622 false);
1623
1624 const GlobalValue *GV = GA->getGlobal();
1625
1626 // Currently only Emscripten supports dynamic linking with threads. Therefore,
1627 // on other targets, if we have thread-local storage, only the local-exec
1628 // model is possible.
1629 auto model = Subtarget->getTargetTriple().isOSEmscripten()
1630 ? GV->getThreadLocalMode()
1631 : GlobalValue::LocalExecTLSModel;
1632
1633 // Unsupported TLS modes
1634 assert(model != GlobalValue::NotThreadLocal);
1635 assert(model != GlobalValue::InitialExecTLSModel);
1636
1637 if (model == GlobalValue::LocalExecTLSModel ||
1638 model == GlobalValue::LocalDynamicTLSModel ||
1639 (model == GlobalValue::GeneralDynamicTLSModel &&
1640 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1641 // For DSO-local TLS variables we use offset from __tls_base
1642
1643 MVT PtrVT = getPointerTy(DAG.getDataLayout());
1644 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1645 : WebAssembly::GLOBAL_GET_I32;
1646 const char *BaseName = MF.createExternalSymbolName("__tls_base");
1647
1648 SDValue BaseAddr(
1649 DAG.getMachineNode(GlobalGet, DL, PtrVT,
1650 DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1651 0);
1652
1653 SDValue TLSOffset = DAG.getTargetGlobalAddress(
1654 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1655 SDValue SymOffset =
1656 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1657
1658 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1659 }
1660
1661 assert(model == GlobalValue::GeneralDynamicTLSModel);
1662
1663 EVT VT = Op.getValueType();
1664 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1665 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1666 GA->getOffset(),
1667 WebAssemblyII::MO_GOT_TLS));
1668 }
1669
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1670 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1671 SelectionDAG &DAG) const {
1672 SDLoc DL(Op);
1673 const auto *GA = cast<GlobalAddressSDNode>(Op);
1674 EVT VT = Op.getValueType();
1675 assert(GA->getTargetFlags() == 0 &&
1676 "Unexpected target flags on generic GlobalAddressSDNode");
1677 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1678 fail(DL, DAG, "Invalid address space for WebAssembly target");
1679
1680 unsigned OperandFlags = 0;
1681 if (isPositionIndependent()) {
1682 const GlobalValue *GV = GA->getGlobal();
1683 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1684 MachineFunction &MF = DAG.getMachineFunction();
1685 MVT PtrVT = getPointerTy(MF.getDataLayout());
1686 const char *BaseName;
1687 if (GV->getValueType()->isFunctionTy()) {
1688 BaseName = MF.createExternalSymbolName("__table_base");
1689 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1690 } else {
1691 BaseName = MF.createExternalSymbolName("__memory_base");
1692 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1693 }
1694 SDValue BaseAddr =
1695 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1696 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1697
1698 SDValue SymAddr = DAG.getNode(
1699 WebAssemblyISD::WrapperREL, DL, VT,
1700 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1701 OperandFlags));
1702
1703 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1704 }
1705 OperandFlags = WebAssemblyII::MO_GOT;
1706 }
1707
1708 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1709 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1710 GA->getOffset(), OperandFlags));
1711 }
1712
1713 SDValue
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const1714 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1715 SelectionDAG &DAG) const {
1716 SDLoc DL(Op);
1717 const auto *ES = cast<ExternalSymbolSDNode>(Op);
1718 EVT VT = Op.getValueType();
1719 assert(ES->getTargetFlags() == 0 &&
1720 "Unexpected target flags on generic ExternalSymbolSDNode");
1721 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1722 DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1723 }
1724
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1725 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1726 SelectionDAG &DAG) const {
1727 // There's no need for a Wrapper node because we always incorporate a jump
1728 // table operand into a BR_TABLE instruction, rather than ever
1729 // materializing it in a register.
1730 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1731 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1732 JT->getTargetFlags());
1733 }
1734
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const1735 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1736 SelectionDAG &DAG) const {
1737 SDLoc DL(Op);
1738 SDValue Chain = Op.getOperand(0);
1739 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1740 SDValue Index = Op.getOperand(2);
1741 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1742
1743 SmallVector<SDValue, 8> Ops;
1744 Ops.push_back(Chain);
1745 Ops.push_back(Index);
1746
1747 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1748 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1749
1750 // Add an operand for each case.
1751 for (auto *MBB : MBBs)
1752 Ops.push_back(DAG.getBasicBlock(MBB));
1753
1754 // Add the first MBB as a dummy default target for now. This will be replaced
1755 // with the proper default target (and the preceding range check eliminated)
1756 // if possible by WebAssemblyFixBrTableDefaults.
1757 Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1758 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1759 }
1760
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1761 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1762 SelectionDAG &DAG) const {
1763 SDLoc DL(Op);
1764 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1765
1766 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1767 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1768
1769 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1770 MFI->getVarargBufferVreg(), PtrVT);
1771 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1772 MachinePointerInfo(SV));
1773 }
1774
LowerIntrinsic(SDValue Op,SelectionDAG & DAG) const1775 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1776 SelectionDAG &DAG) const {
1777 MachineFunction &MF = DAG.getMachineFunction();
1778 unsigned IntNo;
1779 switch (Op.getOpcode()) {
1780 case ISD::INTRINSIC_VOID:
1781 case ISD::INTRINSIC_W_CHAIN:
1782 IntNo = Op.getConstantOperandVal(1);
1783 break;
1784 case ISD::INTRINSIC_WO_CHAIN:
1785 IntNo = Op.getConstantOperandVal(0);
1786 break;
1787 default:
1788 llvm_unreachable("Invalid intrinsic");
1789 }
1790 SDLoc DL(Op);
1791
1792 switch (IntNo) {
1793 default:
1794 return SDValue(); // Don't custom lower most intrinsics.
1795
1796 case Intrinsic::wasm_lsda: {
1797 auto PtrVT = getPointerTy(MF.getDataLayout());
1798 const char *SymName = MF.createExternalSymbolName(
1799 "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1800 if (isPositionIndependent()) {
1801 SDValue Node = DAG.getTargetExternalSymbol(
1802 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1803 const char *BaseName = MF.createExternalSymbolName("__memory_base");
1804 SDValue BaseAddr =
1805 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1806 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1807 SDValue SymAddr =
1808 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1809 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1810 }
1811 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1812 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1813 }
1814
1815 case Intrinsic::wasm_shuffle: {
1816 // Drop in-chain and replace undefs, but otherwise pass through unchanged
1817 SDValue Ops[18];
1818 size_t OpIdx = 0;
1819 Ops[OpIdx++] = Op.getOperand(1);
1820 Ops[OpIdx++] = Op.getOperand(2);
1821 while (OpIdx < 18) {
1822 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1823 if (MaskIdx.isUndef() ||
1824 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1825 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1826 } else {
1827 Ops[OpIdx++] = MaskIdx;
1828 }
1829 }
1830 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1831 }
1832 }
1833 }
1834
1835 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const1836 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1837 SelectionDAG &DAG) const {
1838 SDLoc DL(Op);
1839 // If sign extension operations are disabled, allow sext_inreg only if operand
1840 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1841 // extension operations, but allowing sext_inreg in this context lets us have
1842 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1843 // everywhere would be simpler in this file, but would necessitate large and
1844 // brittle patterns to undo the expansion and select extract_lane_s
1845 // instructions.
1846 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1847 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1848 return SDValue();
1849
1850 const SDValue &Extract = Op.getOperand(0);
1851 MVT VecT = Extract.getOperand(0).getSimpleValueType();
1852 if (VecT.getVectorElementType().getSizeInBits() > 32)
1853 return SDValue();
1854 MVT ExtractedLaneT =
1855 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1856 MVT ExtractedVecT =
1857 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1858 if (ExtractedVecT == VecT)
1859 return Op;
1860
1861 // Bitcast vector to appropriate type to ensure ISel pattern coverage
1862 const SDNode *Index = Extract.getOperand(1).getNode();
1863 if (!isa<ConstantSDNode>(Index))
1864 return SDValue();
1865 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1866 unsigned Scale =
1867 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1868 assert(Scale > 1);
1869 SDValue NewIndex =
1870 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1871 SDValue NewExtract = DAG.getNode(
1872 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1873 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1874 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1875 Op.getOperand(1));
1876 }
1877
LowerConvertLow(SDValue Op,SelectionDAG & DAG)1878 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1879 SDLoc DL(Op);
1880 if (Op.getValueType() != MVT::v2f64)
1881 return SDValue();
1882
1883 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1884 unsigned &Index) -> bool {
1885 switch (Op.getOpcode()) {
1886 case ISD::SINT_TO_FP:
1887 Opcode = WebAssemblyISD::CONVERT_LOW_S;
1888 break;
1889 case ISD::UINT_TO_FP:
1890 Opcode = WebAssemblyISD::CONVERT_LOW_U;
1891 break;
1892 case ISD::FP_EXTEND:
1893 Opcode = WebAssemblyISD::PROMOTE_LOW;
1894 break;
1895 default:
1896 return false;
1897 }
1898
1899 auto ExtractVector = Op.getOperand(0);
1900 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1901 return false;
1902
1903 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1904 return false;
1905
1906 SrcVec = ExtractVector.getOperand(0);
1907 Index = ExtractVector.getConstantOperandVal(1);
1908 return true;
1909 };
1910
1911 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
1912 SDValue LHSSrcVec, RHSSrcVec;
1913 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
1914 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
1915 return SDValue();
1916
1917 if (LHSOpcode != RHSOpcode)
1918 return SDValue();
1919
1920 MVT ExpectedSrcVT;
1921 switch (LHSOpcode) {
1922 case WebAssemblyISD::CONVERT_LOW_S:
1923 case WebAssemblyISD::CONVERT_LOW_U:
1924 ExpectedSrcVT = MVT::v4i32;
1925 break;
1926 case WebAssemblyISD::PROMOTE_LOW:
1927 ExpectedSrcVT = MVT::v4f32;
1928 break;
1929 }
1930 if (LHSSrcVec.getValueType() != ExpectedSrcVT)
1931 return SDValue();
1932
1933 auto Src = LHSSrcVec;
1934 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
1935 // Shuffle the source vector so that the converted lanes are the low lanes.
1936 Src = DAG.getVectorShuffle(
1937 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
1938 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
1939 }
1940 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
1941 }
1942
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const1943 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1944 SelectionDAG &DAG) const {
1945 if (auto ConvertLow = LowerConvertLow(Op, DAG))
1946 return ConvertLow;
1947
1948 SDLoc DL(Op);
1949 const EVT VecT = Op.getValueType();
1950 const EVT LaneT = Op.getOperand(0).getValueType();
1951 const size_t Lanes = Op.getNumOperands();
1952 bool CanSwizzle = VecT == MVT::v16i8;
1953
1954 // BUILD_VECTORs are lowered to the instruction that initializes the highest
1955 // possible number of lanes at once followed by a sequence of replace_lane
1956 // instructions to individually initialize any remaining lanes.
1957
1958 // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1959 // swizzled lanes should be given greater weight.
1960
1961 // TODO: Investigate looping rather than always extracting/replacing specific
1962 // lanes to fill gaps.
1963
1964 auto IsConstant = [](const SDValue &V) {
1965 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1966 };
1967
1968 // Returns the source vector and index vector pair if they exist. Checks for:
1969 // (extract_vector_elt
1970 // $src,
1971 // (sign_extend_inreg (extract_vector_elt $indices, $i))
1972 // )
1973 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1974 auto Bail = std::make_pair(SDValue(), SDValue());
1975 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1976 return Bail;
1977 const SDValue &SwizzleSrc = Lane->getOperand(0);
1978 const SDValue &IndexExt = Lane->getOperand(1);
1979 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1980 return Bail;
1981 const SDValue &Index = IndexExt->getOperand(0);
1982 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1983 return Bail;
1984 const SDValue &SwizzleIndices = Index->getOperand(0);
1985 if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1986 SwizzleIndices.getValueType() != MVT::v16i8 ||
1987 Index->getOperand(1)->getOpcode() != ISD::Constant ||
1988 Index->getConstantOperandVal(1) != I)
1989 return Bail;
1990 return std::make_pair(SwizzleSrc, SwizzleIndices);
1991 };
1992
1993 // If the lane is extracted from another vector at a constant index, return
1994 // that vector. The source vector must not have more lanes than the dest
1995 // because the shufflevector indices are in terms of the destination lanes and
1996 // would not be able to address the smaller individual source lanes.
1997 auto GetShuffleSrc = [&](const SDValue &Lane) {
1998 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1999 return SDValue();
2000 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2001 return SDValue();
2002 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2003 VecT.getVectorNumElements())
2004 return SDValue();
2005 return Lane->getOperand(0);
2006 };
2007
2008 using ValueEntry = std::pair<SDValue, size_t>;
2009 SmallVector<ValueEntry, 16> SplatValueCounts;
2010
2011 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2012 SmallVector<SwizzleEntry, 16> SwizzleCounts;
2013
2014 using ShuffleEntry = std::pair<SDValue, size_t>;
2015 SmallVector<ShuffleEntry, 16> ShuffleCounts;
2016
2017 auto AddCount = [](auto &Counts, const auto &Val) {
2018 auto CountIt =
2019 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2020 if (CountIt == Counts.end()) {
2021 Counts.emplace_back(Val, 1);
2022 } else {
2023 CountIt->second++;
2024 }
2025 };
2026
2027 auto GetMostCommon = [](auto &Counts) {
2028 auto CommonIt =
2029 std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2030 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2031 return *CommonIt;
2032 };
2033
2034 size_t NumConstantLanes = 0;
2035
2036 // Count eligible lanes for each type of vector creation op
2037 for (size_t I = 0; I < Lanes; ++I) {
2038 const SDValue &Lane = Op->getOperand(I);
2039 if (Lane.isUndef())
2040 continue;
2041
2042 AddCount(SplatValueCounts, Lane);
2043
2044 if (IsConstant(Lane))
2045 NumConstantLanes++;
2046 if (auto ShuffleSrc = GetShuffleSrc(Lane))
2047 AddCount(ShuffleCounts, ShuffleSrc);
2048 if (CanSwizzle) {
2049 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2050 if (SwizzleSrcs.first)
2051 AddCount(SwizzleCounts, SwizzleSrcs);
2052 }
2053 }
2054
2055 SDValue SplatValue;
2056 size_t NumSplatLanes;
2057 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2058
2059 SDValue SwizzleSrc;
2060 SDValue SwizzleIndices;
2061 size_t NumSwizzleLanes = 0;
2062 if (SwizzleCounts.size())
2063 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2064 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2065
2066 // Shuffles can draw from up to two vectors, so find the two most common
2067 // sources.
2068 SDValue ShuffleSrc1, ShuffleSrc2;
2069 size_t NumShuffleLanes = 0;
2070 if (ShuffleCounts.size()) {
2071 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2072 llvm::erase_if(ShuffleCounts,
2073 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2074 }
2075 if (ShuffleCounts.size()) {
2076 size_t AdditionalShuffleLanes;
2077 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2078 GetMostCommon(ShuffleCounts);
2079 NumShuffleLanes += AdditionalShuffleLanes;
2080 }
2081
2082 // Predicate returning true if the lane is properly initialized by the
2083 // original instruction
2084 std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2085 SDValue Result;
2086 // Prefer swizzles over shuffles over vector consts over splats
2087 if (NumSwizzleLanes >= NumShuffleLanes &&
2088 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2089 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2090 SwizzleIndices);
2091 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2092 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2093 return Swizzled == GetSwizzleSrcs(I, Lane);
2094 };
2095 } else if (NumShuffleLanes >= NumConstantLanes &&
2096 NumShuffleLanes >= NumSplatLanes) {
2097 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2098 size_t DestLaneCount = VecT.getVectorNumElements();
2099 size_t Scale1 = 1;
2100 size_t Scale2 = 1;
2101 SDValue Src1 = ShuffleSrc1;
2102 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2103 if (Src1.getValueType() != VecT) {
2104 size_t LaneSize =
2105 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2106 assert(LaneSize > DestLaneSize);
2107 Scale1 = LaneSize / DestLaneSize;
2108 Src1 = DAG.getBitcast(VecT, Src1);
2109 }
2110 if (Src2.getValueType() != VecT) {
2111 size_t LaneSize =
2112 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2113 assert(LaneSize > DestLaneSize);
2114 Scale2 = LaneSize / DestLaneSize;
2115 Src2 = DAG.getBitcast(VecT, Src2);
2116 }
2117
2118 int Mask[16];
2119 assert(DestLaneCount <= 16);
2120 for (size_t I = 0; I < DestLaneCount; ++I) {
2121 const SDValue &Lane = Op->getOperand(I);
2122 SDValue Src = GetShuffleSrc(Lane);
2123 if (Src == ShuffleSrc1) {
2124 Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2125 } else if (Src && Src == ShuffleSrc2) {
2126 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2127 } else {
2128 Mask[I] = -1;
2129 }
2130 }
2131 ArrayRef<int> MaskRef(Mask, DestLaneCount);
2132 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2133 IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2134 auto Src = GetShuffleSrc(Lane);
2135 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2136 };
2137 } else if (NumConstantLanes >= NumSplatLanes) {
2138 SmallVector<SDValue, 16> ConstLanes;
2139 for (const SDValue &Lane : Op->op_values()) {
2140 if (IsConstant(Lane)) {
2141 // Values may need to be fixed so that they will sign extend to be
2142 // within the expected range during ISel. Check whether the value is in
2143 // bounds based on the lane bit width and if it is out of bounds, lop
2144 // off the extra bits and subtract 2^n to reflect giving the high bit
2145 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2146 // cannot possibly be out of range.
2147 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2148 int64_t Val = Const ? Const->getSExtValue() : 0;
2149 uint64_t LaneBits = 128 / Lanes;
2150 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2151 "Unexpected out of bounds negative value");
2152 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2153 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2154 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2155 } else {
2156 ConstLanes.push_back(Lane);
2157 }
2158 } else if (LaneT.isFloatingPoint()) {
2159 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2160 } else {
2161 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2162 }
2163 }
2164 Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2165 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2166 return IsConstant(Lane);
2167 };
2168 } else {
2169 // Use a splat (which might be selected as a load splat)
2170 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2171 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2172 return Lane == SplatValue;
2173 };
2174 }
2175
2176 assert(Result);
2177 assert(IsLaneConstructed);
2178
2179 // Add replace_lane instructions for any unhandled values
2180 for (size_t I = 0; I < Lanes; ++I) {
2181 const SDValue &Lane = Op->getOperand(I);
2182 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2183 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2184 DAG.getConstant(I, DL, MVT::i32));
2185 }
2186
2187 return Result;
2188 }
2189
2190 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2191 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2192 SelectionDAG &DAG) const {
2193 SDLoc DL(Op);
2194 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2195 MVT VecType = Op.getOperand(0).getSimpleValueType();
2196 assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2197 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2198
2199 // Space for two vector args and sixteen mask indices
2200 SDValue Ops[18];
2201 size_t OpIdx = 0;
2202 Ops[OpIdx++] = Op.getOperand(0);
2203 Ops[OpIdx++] = Op.getOperand(1);
2204
2205 // Expand mask indices to byte indices and materialize them as operands
2206 for (int M : Mask) {
2207 for (size_t J = 0; J < LaneBytes; ++J) {
2208 // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2209 // whole lane of vector input, to allow further reduction at VM. E.g.
2210 // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2211 uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2212 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2213 }
2214 }
2215
2216 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2217 }
2218
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2219 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2220 SelectionDAG &DAG) const {
2221 SDLoc DL(Op);
2222 // The legalizer does not know how to expand the unsupported comparison modes
2223 // of i64x2 vectors, so we manually unroll them here.
2224 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2225 SmallVector<SDValue, 2> LHS, RHS;
2226 DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2227 DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2228 const SDValue &CC = Op->getOperand(2);
2229 auto MakeLane = [&](unsigned I) {
2230 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2231 DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2232 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2233 };
2234 return DAG.getBuildVector(Op->getValueType(0), DL,
2235 {MakeLane(0), MakeLane(1)});
2236 }
2237
2238 SDValue
LowerAccessVectorElement(SDValue Op,SelectionDAG & DAG) const2239 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2240 SelectionDAG &DAG) const {
2241 // Allow constant lane indices, expand variable lane indices
2242 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2243 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) {
2244 // Ensure the index type is i32 to match the tablegen patterns
2245 uint64_t Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
2246 SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2247 Ops[Op.getNumOperands() - 1] =
2248 DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2249 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2250 }
2251 // Perform default expansion
2252 return SDValue();
2253 }
2254
unrollVectorShift(SDValue Op,SelectionDAG & DAG)2255 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2256 EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2257 // 32-bit and 64-bit unrolled shifts will have proper semantics
2258 if (LaneT.bitsGE(MVT::i32))
2259 return DAG.UnrollVectorOp(Op.getNode());
2260 // Otherwise mask the shift value to get proper semantics from 32-bit shift
2261 SDLoc DL(Op);
2262 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2263 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2264 unsigned ShiftOpcode = Op.getOpcode();
2265 SmallVector<SDValue, 16> ShiftedElements;
2266 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2267 SmallVector<SDValue, 16> ShiftElements;
2268 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2269 SmallVector<SDValue, 16> UnrolledOps;
2270 for (size_t i = 0; i < NumLanes; ++i) {
2271 SDValue MaskedShiftValue =
2272 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2273 SDValue ShiftedValue = ShiftedElements[i];
2274 if (ShiftOpcode == ISD::SRA)
2275 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2276 ShiftedValue, DAG.getValueType(LaneT));
2277 UnrolledOps.push_back(
2278 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2279 }
2280 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2281 }
2282
LowerShift(SDValue Op,SelectionDAG & DAG) const2283 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2284 SelectionDAG &DAG) const {
2285 SDLoc DL(Op);
2286
2287 // Only manually lower vector shifts
2288 assert(Op.getSimpleValueType().isVector());
2289
2290 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2291 if (!ShiftVal)
2292 return unrollVectorShift(Op, DAG);
2293
2294 // Use anyext because none of the high bits can affect the shift
2295 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2296
2297 unsigned Opcode;
2298 switch (Op.getOpcode()) {
2299 case ISD::SHL:
2300 Opcode = WebAssemblyISD::VEC_SHL;
2301 break;
2302 case ISD::SRA:
2303 Opcode = WebAssemblyISD::VEC_SHR_S;
2304 break;
2305 case ISD::SRL:
2306 Opcode = WebAssemblyISD::VEC_SHR_U;
2307 break;
2308 default:
2309 llvm_unreachable("unexpected opcode");
2310 }
2311
2312 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2313 }
2314
LowerFP_TO_INT_SAT(SDValue Op,SelectionDAG & DAG) const2315 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2316 SelectionDAG &DAG) const {
2317 SDLoc DL(Op);
2318 EVT ResT = Op.getValueType();
2319 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2320
2321 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2322 (SatVT == MVT::i32 || SatVT == MVT::i64))
2323 return Op;
2324
2325 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2326 return Op;
2327
2328 return SDValue();
2329 }
2330
2331 //===----------------------------------------------------------------------===//
2332 // Custom DAG combine hooks
2333 //===----------------------------------------------------------------------===//
2334 static SDValue
performVECTOR_SHUFFLECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2335 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2336 auto &DAG = DCI.DAG;
2337 auto Shuffle = cast<ShuffleVectorSDNode>(N);
2338
2339 // Hoist vector bitcasts that don't change the number of lanes out of unary
2340 // shuffles, where they are less likely to get in the way of other combines.
2341 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2342 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2343 SDValue Bitcast = N->getOperand(0);
2344 if (Bitcast.getOpcode() != ISD::BITCAST)
2345 return SDValue();
2346 if (!N->getOperand(1).isUndef())
2347 return SDValue();
2348 SDValue CastOp = Bitcast.getOperand(0);
2349 MVT SrcType = CastOp.getSimpleValueType();
2350 MVT DstType = Bitcast.getSimpleValueType();
2351 if (!SrcType.is128BitVector() ||
2352 SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2353 return SDValue();
2354 SDValue NewShuffle = DAG.getVectorShuffle(
2355 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2356 return DAG.getBitcast(DstType, NewShuffle);
2357 }
2358
2359 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2360 /// split up into scalar instructions during legalization, and the vector
2361 /// extending instructions are selected in performVectorExtendCombine below.
2362 static SDValue
performVectorExtendToFPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2363 performVectorExtendToFPCombine(SDNode *N,
2364 TargetLowering::DAGCombinerInfo &DCI) {
2365 auto &DAG = DCI.DAG;
2366 assert(N->getOpcode() == ISD::UINT_TO_FP ||
2367 N->getOpcode() == ISD::SINT_TO_FP);
2368
2369 EVT InVT = N->getOperand(0)->getValueType(0);
2370 EVT ResVT = N->getValueType(0);
2371 MVT ExtVT;
2372 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2373 ExtVT = MVT::v4i32;
2374 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2375 ExtVT = MVT::v2i32;
2376 else
2377 return SDValue();
2378
2379 unsigned Op =
2380 N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2381 SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2382 return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2383 }
2384
2385 static SDValue
performVectorExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2386 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2387 auto &DAG = DCI.DAG;
2388 assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2389 N->getOpcode() == ISD::ZERO_EXTEND);
2390
2391 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2392 // possible before the extract_subvector can be expanded.
2393 auto Extract = N->getOperand(0);
2394 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2395 return SDValue();
2396 auto Source = Extract.getOperand(0);
2397 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2398 if (IndexNode == nullptr)
2399 return SDValue();
2400 auto Index = IndexNode->getZExtValue();
2401
2402 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2403 // extracted subvector is the low or high half of its source.
2404 EVT ResVT = N->getValueType(0);
2405 if (ResVT == MVT::v8i16) {
2406 if (Extract.getValueType() != MVT::v8i8 ||
2407 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2408 return SDValue();
2409 } else if (ResVT == MVT::v4i32) {
2410 if (Extract.getValueType() != MVT::v4i16 ||
2411 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2412 return SDValue();
2413 } else if (ResVT == MVT::v2i64) {
2414 if (Extract.getValueType() != MVT::v2i32 ||
2415 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2416 return SDValue();
2417 } else {
2418 return SDValue();
2419 }
2420
2421 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2422 bool IsLow = Index == 0;
2423
2424 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2425 : WebAssemblyISD::EXTEND_HIGH_S)
2426 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2427 : WebAssemblyISD::EXTEND_HIGH_U);
2428
2429 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2430 }
2431
2432 static SDValue
performVectorTruncZeroCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2433 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2434 auto &DAG = DCI.DAG;
2435
2436 auto GetWasmConversionOp = [](unsigned Op) {
2437 switch (Op) {
2438 case ISD::FP_TO_SINT_SAT:
2439 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2440 case ISD::FP_TO_UINT_SAT:
2441 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2442 case ISD::FP_ROUND:
2443 return WebAssemblyISD::DEMOTE_ZERO;
2444 }
2445 llvm_unreachable("unexpected op");
2446 };
2447
2448 auto IsZeroSplat = [](SDValue SplatVal) {
2449 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2450 APInt SplatValue, SplatUndef;
2451 unsigned SplatBitSize;
2452 bool HasAnyUndefs;
2453 return Splat &&
2454 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2455 HasAnyUndefs) &&
2456 SplatValue == 0;
2457 };
2458
2459 if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2460 // Combine this:
2461 //
2462 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2463 //
2464 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2465 //
2466 // Or this:
2467 //
2468 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2469 //
2470 // into (f32x4.demote_zero_f64x2 $x).
2471 EVT ResVT;
2472 EVT ExpectedConversionType;
2473 auto Conversion = N->getOperand(0);
2474 auto ConversionOp = Conversion.getOpcode();
2475 switch (ConversionOp) {
2476 case ISD::FP_TO_SINT_SAT:
2477 case ISD::FP_TO_UINT_SAT:
2478 ResVT = MVT::v4i32;
2479 ExpectedConversionType = MVT::v2i32;
2480 break;
2481 case ISD::FP_ROUND:
2482 ResVT = MVT::v4f32;
2483 ExpectedConversionType = MVT::v2f32;
2484 break;
2485 default:
2486 return SDValue();
2487 }
2488
2489 if (N->getValueType(0) != ResVT)
2490 return SDValue();
2491
2492 if (Conversion.getValueType() != ExpectedConversionType)
2493 return SDValue();
2494
2495 auto Source = Conversion.getOperand(0);
2496 if (Source.getValueType() != MVT::v2f64)
2497 return SDValue();
2498
2499 if (!IsZeroSplat(N->getOperand(1)) ||
2500 N->getOperand(1).getValueType() != ExpectedConversionType)
2501 return SDValue();
2502
2503 unsigned Op = GetWasmConversionOp(ConversionOp);
2504 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2505 }
2506
2507 // Combine this:
2508 //
2509 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2510 //
2511 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2512 //
2513 // Or this:
2514 //
2515 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2516 //
2517 // into (f32x4.demote_zero_f64x2 $x).
2518 EVT ResVT;
2519 auto ConversionOp = N->getOpcode();
2520 switch (ConversionOp) {
2521 case ISD::FP_TO_SINT_SAT:
2522 case ISD::FP_TO_UINT_SAT:
2523 ResVT = MVT::v4i32;
2524 break;
2525 case ISD::FP_ROUND:
2526 ResVT = MVT::v4f32;
2527 break;
2528 default:
2529 llvm_unreachable("unexpected op");
2530 }
2531
2532 if (N->getValueType(0) != ResVT)
2533 return SDValue();
2534
2535 auto Concat = N->getOperand(0);
2536 if (Concat.getValueType() != MVT::v4f64)
2537 return SDValue();
2538
2539 auto Source = Concat.getOperand(0);
2540 if (Source.getValueType() != MVT::v2f64)
2541 return SDValue();
2542
2543 if (!IsZeroSplat(Concat.getOperand(1)) ||
2544 Concat.getOperand(1).getValueType() != MVT::v2f64)
2545 return SDValue();
2546
2547 unsigned Op = GetWasmConversionOp(ConversionOp);
2548 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2549 }
2550
2551 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
extractSubVector(SDValue Vec,unsigned IdxVal,SelectionDAG & DAG,const SDLoc & DL,unsigned VectorWidth)2552 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2553 const SDLoc &DL, unsigned VectorWidth) {
2554 EVT VT = Vec.getValueType();
2555 EVT ElVT = VT.getVectorElementType();
2556 unsigned Factor = VT.getSizeInBits() / VectorWidth;
2557 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2558 VT.getVectorNumElements() / Factor);
2559
2560 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR
2561 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2562 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2563
2564 // This is the index of the first element of the VectorWidth-bit chunk
2565 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2566 IdxVal &= ~(ElemsPerChunk - 1);
2567
2568 // If the input is a buildvector just emit a smaller one.
2569 if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2570 return DAG.getBuildVector(ResultVT, DL,
2571 Vec->ops().slice(IdxVal, ElemsPerChunk));
2572
2573 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2574 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2575 }
2576
2577 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2578 // is the expected destination value type after recursion. In is the initial
2579 // input. Note that the input should have enough leading zero bits to prevent
2580 // NARROW_U from saturating results.
truncateVectorWithNARROW(EVT DstVT,SDValue In,const SDLoc & DL,SelectionDAG & DAG)2581 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2582 SelectionDAG &DAG) {
2583 EVT SrcVT = In.getValueType();
2584
2585 // No truncation required, we might get here due to recursive calls.
2586 if (SrcVT == DstVT)
2587 return In;
2588
2589 unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2590 unsigned NumElems = SrcVT.getVectorNumElements();
2591 if (!isPowerOf2_32(NumElems))
2592 return SDValue();
2593 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2594 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2595
2596 LLVMContext &Ctx = *DAG.getContext();
2597 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2598
2599 // Narrow to the largest type possible:
2600 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2601 EVT InVT = MVT::i16, OutVT = MVT::i8;
2602 if (SrcVT.getScalarSizeInBits() > 16) {
2603 InVT = MVT::i32;
2604 OutVT = MVT::i16;
2605 }
2606 unsigned SubSizeInBits = SrcSizeInBits / 2;
2607 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2608 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2609
2610 // Split lower/upper subvectors.
2611 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2612 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2613
2614 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2615 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2616 Lo = DAG.getBitcast(InVT, Lo);
2617 Hi = DAG.getBitcast(InVT, Hi);
2618 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2619 return DAG.getBitcast(DstVT, Res);
2620 }
2621
2622 // Recursively narrow lower/upper subvectors, concat result and narrow again.
2623 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2624 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2625 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2626
2627 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2628 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2629 return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2630 }
2631
performTruncateCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2632 static SDValue performTruncateCombine(SDNode *N,
2633 TargetLowering::DAGCombinerInfo &DCI) {
2634 auto &DAG = DCI.DAG;
2635
2636 SDValue In = N->getOperand(0);
2637 EVT InVT = In.getValueType();
2638 if (!InVT.isSimple())
2639 return SDValue();
2640
2641 EVT OutVT = N->getValueType(0);
2642 if (!OutVT.isVector())
2643 return SDValue();
2644
2645 EVT OutSVT = OutVT.getVectorElementType();
2646 EVT InSVT = InVT.getVectorElementType();
2647 // Currently only cover truncate to v16i8 or v8i16.
2648 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2649 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2650 return SDValue();
2651
2652 SDLoc DL(N);
2653 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2654 OutVT.getScalarSizeInBits());
2655 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2656 return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2657 }
2658
2659 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2660 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2661 DAGCombinerInfo &DCI) const {
2662 switch (N->getOpcode()) {
2663 default:
2664 return SDValue();
2665 case ISD::VECTOR_SHUFFLE:
2666 return performVECTOR_SHUFFLECombine(N, DCI);
2667 case ISD::SIGN_EXTEND:
2668 case ISD::ZERO_EXTEND:
2669 return performVectorExtendCombine(N, DCI);
2670 case ISD::UINT_TO_FP:
2671 case ISD::SINT_TO_FP:
2672 return performVectorExtendToFPCombine(N, DCI);
2673 case ISD::FP_TO_SINT_SAT:
2674 case ISD::FP_TO_UINT_SAT:
2675 case ISD::FP_ROUND:
2676 case ISD::CONCAT_VECTORS:
2677 return performVectorTruncZeroCombine(N, DCI);
2678 case ISD::TRUNCATE:
2679 return performTruncateCombine(N, DCI);
2680 }
2681 }
2682