1 use core::{
2     borrow::Borrow,
3     panic::{RefUnwindSafe, UnwindSafe},
4 };
5 
6 use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};
7 
8 use regex_syntax::{
9     ast,
10     hir::{self, Hir},
11 };
12 
13 use crate::{
14     meta::{
15         error::BuildError,
16         strategy::{self, Strategy},
17         wrappers,
18     },
19     nfa::thompson::WhichCaptures,
20     util::{
21         captures::{Captures, GroupInfo},
22         iter,
23         pool::{Pool, PoolGuard},
24         prefilter::Prefilter,
25         primitives::{NonMaxUsize, PatternID},
26         search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
27     },
28 };
29 
30 /// A type alias for our pool of meta::Cache that fixes the type parameters to
31 /// what we use for the meta regex below.
32 type CachePool = Pool<Cache, CachePoolFn>;
33 
34 /// Same as above, but for the guard returned by a pool.
35 type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36 
37 /// The type of the closure we use to create new caches. We need to spell out
38 /// all of the marker traits or else we risk leaking !MARKER impls.
39 type CachePoolFn =
40     Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
41 
42 /// A regex matcher that works by composing several other regex matchers
43 /// automatically.
44 ///
45 /// In effect, a meta regex papers over a lot of the quirks or performance
46 /// problems in each of the regex engines in this crate. Its goal is to provide
47 /// an infallible and simple API that "just does the right thing" in the common
48 /// case.
49 ///
50 /// A meta regex is the implementation of a `Regex` in the `regex` crate.
51 /// Indeed, the `regex` crate API is essentially just a light wrapper over
52 /// this type. This includes the `regex` crate's `RegexSet` API!
53 ///
54 /// # Composition
55 ///
56 /// This is called a "meta" matcher precisely because it uses other regex
57 /// matchers to provide a convenient high level regex API. Here are some
58 /// examples of how other regex matchers are composed:
59 ///
60 /// * When calling [`Regex::captures`], instead of immediately
61 /// running a slower but more capable regex engine like the
62 /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
63 /// will usually first look for the bounds of a match with a higher throughput
64 /// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
65 /// is a slower engine like `PikeVM` used to find the matching span for each
66 /// capture group.
67 /// * While higher throughout engines like the lazy DFA cannot handle
68 /// Unicode word boundaries in general, they can still be used on pure ASCII
69 /// haystacks by pretending that Unicode word boundaries are just plain ASCII
70 /// word boundaries. However, if a haystack is not ASCII, the meta regex engine
71 /// will automatically switch to a (possibly slower) regex engine that supports
72 /// Unicode word boundaries in general.
73 /// * In some cases where a regex pattern is just a simple literal or a small
74 /// set of literals, an actual regex engine won't be used at all. Instead,
75 /// substring or multi-substring search algorithms will be employed.
76 ///
77 /// There are many other forms of composition happening too, but the above
78 /// should give a general idea. In particular, it may perhaps be surprising
79 /// that *multiple* regex engines might get executed for a single search. That
80 /// is, the decision of what regex engine to use is not _just_ based on the
81 /// pattern, but also based on the dynamic execution of the search itself.
82 ///
83 /// The primary reason for this composition is performance. The fundamental
84 /// tension is that the faster engines tend to be less capable, and the more
85 /// capable engines tend to be slower.
86 ///
87 /// Note that the forms of composition that are allowed are determined by
88 /// compile time crate features and configuration. For example, if the `hybrid`
89 /// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
90 /// meta regex engine will never use a lazy DFA.
91 ///
92 /// # Synchronization and cloning
93 ///
94 /// Most of the regex engines in this crate require some kind of mutable
95 /// "scratch" space to read and write from while performing a search. Since
96 /// a meta regex composes these regex engines, a meta regex also requires
97 /// mutable scratch space. This scratch space is called a [`Cache`].
98 ///
99 /// Most regex engines _also_ usually have a read-only component, typically
100 /// a [Thompson `NFA`](crate::nfa::thompson::NFA).
101 ///
102 /// In order to make the `Regex` API convenient, most of the routines hide
103 /// the fact that a `Cache` is needed at all. To achieve this, a [memory
104 /// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
105 /// values in a thread safe way that also permits reuse. This in turn implies
106 /// that every such search call requires some form of synchronization. Usually
107 /// this synchronization is fast enough to not notice, but in some cases, it
108 /// can be a bottleneck. This typically occurs when all of the following are
109 /// true:
110 ///
111 /// * The same `Regex` is shared across multiple threads simultaneously,
112 /// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
113 /// similar from the `once_cell` or `lazy_static` crates.
114 /// * The primary unit of work in each thread is a regex search.
115 /// * Searches are run on very short haystacks.
116 ///
117 /// This particular case can lead to high contention on the pool used by a
118 /// `Regex` internally, which can in turn increase latency to a noticeable
119 /// effect. This cost can be mitigated in one of the following ways:
120 ///
121 /// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
122 /// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
123 /// But it does lead to each `Regex` having its own memory pool, which in
124 /// turn eliminates the problem of contention. In general, this technique should
125 /// not result in any additional memory usage when compared to sharing the same
126 /// `Regex` across multiple threads simultaneously.
127 /// * Use lower level APIs, like [`Regex::search_with`], which permit passing
128 /// a `Cache` explicitly. In this case, it is up to you to determine how best
129 /// to provide a `Cache`. For example, you might put a `Cache` in thread-local
130 /// storage if your use case allows for it.
131 ///
132 /// Overall, this is an issue that happens rarely in practice, but it can
133 /// happen.
134 ///
135 /// # Warning: spin-locks may be used in alloc-only mode
136 ///
137 /// When this crate is built without the `std` feature and the high level APIs
138 /// on a `Regex` are used, then a spin-lock will be used to synchronize access
139 /// to an internal pool of `Cache` values. This may be undesirable because
140 /// a spin-lock is [effectively impossible to implement correctly in user
141 /// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
142 /// result in a deadlock.
143 ///
144 /// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
145 ///
146 /// If one wants to avoid the use of spin-locks when the `std` feature is
147 /// disabled, then you must use APIs that accept a `Cache` value explicitly.
148 /// For example, [`Regex::search_with`].
149 ///
150 /// # Example
151 ///
152 /// ```
153 /// use regex_automata::meta::Regex;
154 ///
155 /// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
156 /// assert!(re.is_match("2010-03-14"));
157 ///
158 /// # Ok::<(), Box<dyn std::error::Error>>(())
159 /// ```
160 ///
161 /// # Example: anchored search
162 ///
163 /// This example shows how to use [`Input::anchored`] to run an anchored
164 /// search, even when the regex pattern itself isn't anchored. An anchored
165 /// search guarantees that if a match is found, then the start offset of the
166 /// match corresponds to the offset at which the search was started.
167 ///
168 /// ```
169 /// use regex_automata::{meta::Regex, Anchored, Input, Match};
170 ///
171 /// let re = Regex::new(r"\bfoo\b")?;
172 /// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
173 /// // The offsets are in terms of the original haystack.
174 /// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
175 ///
176 /// // Notice that no match occurs here, because \b still takes the
177 /// // surrounding context into account, even if it means looking back
178 /// // before the start of your search.
179 /// let hay = "xxfoo xx";
180 /// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
181 /// assert_eq!(None, re.find(input));
182 /// // Indeed, you cannot achieve the above by simply slicing the
183 /// // haystack itself, since the regex engine can't see the
184 /// // surrounding context. This is why 'Input' permits setting
185 /// // the bounds of a search!
186 /// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
187 /// // WRONG!
188 /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
189 ///
190 /// # Ok::<(), Box<dyn std::error::Error>>(())
191 /// ```
192 ///
193 /// # Example: earliest search
194 ///
195 /// This example shows how to use [`Input::earliest`] to run a search that
196 /// might stop before finding the typical leftmost match.
197 ///
198 /// ```
199 /// use regex_automata::{meta::Regex, Anchored, Input, Match};
200 ///
201 /// let re = Regex::new(r"[a-z]{3}|b")?;
202 /// let input = Input::new("abc").earliest(true);
203 /// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
204 ///
205 /// // Note that "earliest" isn't really a match semantic unto itself.
206 /// // Instead, it is merely an instruction to whatever regex engine
207 /// // gets used internally to quit as soon as it can. For example,
208 /// // this regex uses a different search technique, and winds up
209 /// // producing a different (but valid) match!
210 /// let re = Regex::new(r"abc|b")?;
211 /// let input = Input::new("abc").earliest(true);
212 /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
213 ///
214 /// # Ok::<(), Box<dyn std::error::Error>>(())
215 /// ```
216 ///
217 /// # Example: change the line terminator
218 ///
219 /// This example shows how to enable multi-line mode by default and change
220 /// the line terminator to the NUL byte:
221 ///
222 /// ```
223 /// use regex_automata::{meta::Regex, util::syntax, Match};
224 ///
225 /// let re = Regex::builder()
226 ///     .syntax(syntax::Config::new().multi_line(true))
227 ///     .configure(Regex::config().line_terminator(b'\x00'))
228 ///     .build(r"^foo$")?;
229 /// let hay = "\x00foo\x00";
230 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
231 ///
232 /// # Ok::<(), Box<dyn std::error::Error>>(())
233 /// ```
234 #[derive(Debug)]
235 pub struct Regex {
236     /// The actual regex implementation.
237     imp: Arc<RegexI>,
238     /// A thread safe pool of caches.
239     ///
240     /// For the higher level search APIs, a `Cache` is automatically plucked
241     /// from this pool before running a search. The lower level `with` methods
242     /// permit the caller to provide their own cache, thereby bypassing
243     /// accesses to this pool.
244     ///
245     /// Note that we put this outside the `Arc` so that cloning a `Regex`
246     /// results in creating a fresh `CachePool`. This in turn permits callers
247     /// to clone regexes into separate threads where each such regex gets
248     /// the pool's "thread owner" optimization. Otherwise, if one shares the
249     /// `Regex` directly, then the pool will go through a slower mutex path for
250     /// all threads except for the "owner."
251     pool: CachePool,
252 }
253 
254 /// The internal implementation of `Regex`, split out so that it can be wrapped
255 /// in an `Arc`.
256 #[derive(Debug)]
257 struct RegexI {
258     /// The core matching engine.
259     ///
260     /// Why is this reference counted when RegexI is already wrapped in an Arc?
261     /// Well, we need to capture this in a closure to our `Pool` below in order
262     /// to create new `Cache` values when needed. So since it needs to be in
263     /// two places, we make it reference counted.
264     ///
265     /// We make `RegexI` itself reference counted too so that `Regex` itself
266     /// stays extremely small and very cheap to clone.
267     strat: Arc<dyn Strategy>,
268     /// Metadata about the regexes driving the strategy. The metadata is also
269     /// usually stored inside the strategy too, but we put it here as well
270     /// so that we can get quick access to it (without virtual calls) before
271     /// executing the regex engine. For example, we use this metadata to
272     /// detect a subset of cases where we know a match is impossible, and can
273     /// thus avoid calling into the strategy at all.
274     ///
275     /// Since `RegexInfo` is stored in multiple places, it is also reference
276     /// counted.
277     info: RegexInfo,
278 }
279 
280 /// Convenience constructors for a `Regex` using the default configuration.
281 impl Regex {
282     /// Builds a `Regex` from a single pattern string using the default
283     /// configuration.
284     ///
285     /// If there was a problem parsing the pattern or a problem turning it into
286     /// a regex matcher, then an error is returned.
287     ///
288     /// If you want to change the configuration of a `Regex`, use a [`Builder`]
289     /// with a [`Config`].
290     ///
291     /// # Example
292     ///
293     /// ```
294     /// use regex_automata::{meta::Regex, Match};
295     ///
296     /// let re = Regex::new(r"(?Rm)^foo$")?;
297     /// let hay = "\r\nfoo\r\n";
298     /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
299     ///
300     /// # Ok::<(), Box<dyn std::error::Error>>(())
301     /// ```
new(pattern: &str) -> Result<Regex, BuildError>302     pub fn new(pattern: &str) -> Result<Regex, BuildError> {
303         Regex::builder().build(pattern)
304     }
305 
306     /// Builds a `Regex` from many pattern strings using the default
307     /// configuration.
308     ///
309     /// If there was a problem parsing any of the patterns or a problem turning
310     /// them into a regex matcher, then an error is returned.
311     ///
312     /// If you want to change the configuration of a `Regex`, use a [`Builder`]
313     /// with a [`Config`].
314     ///
315     /// # Example: simple lexer
316     ///
317     /// This simplistic example leverages the multi-pattern support to build a
318     /// simple little lexer. The pattern ID in the match tells you which regex
319     /// matched, which in turn might be used to map back to the "type" of the
320     /// token returned by the lexer.
321     ///
322     /// ```
323     /// use regex_automata::{meta::Regex, Match};
324     ///
325     /// let re = Regex::new_many(&[
326     ///     r"[[:space:]]",
327     ///     r"[A-Za-z0-9][A-Za-z0-9_]+",
328     ///     r"->",
329     ///     r".",
330     /// ])?;
331     /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
332     /// let matches: Vec<Match> = re.find_iter(haystack).collect();
333     /// assert_eq!(matches, vec![
334     ///     Match::must(1, 0..2),   // 'fn'
335     ///     Match::must(0, 2..3),   // ' '
336     ///     Match::must(1, 3..10),  // 'is_boss'
337     ///     Match::must(3, 10..11), // '('
338     ///     Match::must(1, 11..16), // 'bruce'
339     ///     Match::must(3, 16..17), // ':'
340     ///     Match::must(0, 17..18), // ' '
341     ///     Match::must(1, 18..21), // 'i32'
342     ///     Match::must(3, 21..22), // ','
343     ///     Match::must(0, 22..23), // ' '
344     ///     Match::must(1, 23..34), // 'springsteen'
345     ///     Match::must(3, 34..35), // ':'
346     ///     Match::must(0, 35..36), // ' '
347     ///     Match::must(1, 36..42), // 'String'
348     ///     Match::must(3, 42..43), // ')'
349     ///     Match::must(0, 43..44), // ' '
350     ///     Match::must(2, 44..46), // '->'
351     ///     Match::must(0, 46..47), // ' '
352     ///     Match::must(1, 47..51), // 'bool'
353     ///     Match::must(3, 51..52), // ';'
354     /// ]);
355     ///
356     /// # Ok::<(), Box<dyn std::error::Error>>(())
357     /// ```
358     ///
359     /// One can write a lexer like the above using a regex like
360     /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
361     /// but then you need to ask whether capture group matched to determine
362     /// which branch in the regex matched, and thus, which token the match
363     /// corresponds to. In contrast, the above example includes the pattern ID
364     /// in the match. There's no need to use capture groups at all.
365     ///
366     /// # Example: finding the pattern that caused an error
367     ///
368     /// When a syntax error occurs, it is possible to ask which pattern
369     /// caused the syntax error.
370     ///
371     /// ```
372     /// use regex_automata::{meta::Regex, PatternID};
373     ///
374     /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
375     /// assert_eq!(Some(PatternID::must(2)), err.pattern());
376     /// ```
377     ///
378     /// # Example: zero patterns is valid
379     ///
380     /// Building a regex with zero patterns results in a regex that never
381     /// matches anything. Because this routine is generic, passing an empty
382     /// slice usually requires a turbo-fish (or something else to help type
383     /// inference).
384     ///
385     /// ```
386     /// use regex_automata::{meta::Regex, util::syntax, Match};
387     ///
388     /// let re = Regex::new_many::<&str>(&[])?;
389     /// assert_eq!(None, re.find(""));
390     ///
391     /// # Ok::<(), Box<dyn std::error::Error>>(())
392     /// ```
new_many<P: AsRef<str>>( patterns: &[P], ) -> Result<Regex, BuildError>393     pub fn new_many<P: AsRef<str>>(
394         patterns: &[P],
395     ) -> Result<Regex, BuildError> {
396         Regex::builder().build_many(patterns)
397     }
398 
399     /// Return a default configuration for a `Regex`.
400     ///
401     /// This is a convenience routine to avoid needing to import the [`Config`]
402     /// type when customizing the construction of a `Regex`.
403     ///
404     /// # Example: lower the NFA size limit
405     ///
406     /// In some cases, the default size limit might be too big. The size limit
407     /// can be lowered, which will prevent large regex patterns from compiling.
408     ///
409     /// ```
410     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
411     /// use regex_automata::meta::Regex;
412     ///
413     /// let result = Regex::builder()
414     ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
415     ///     // Not even 20KB is enough to build a single large Unicode class!
416     ///     .build(r"\pL");
417     /// assert!(result.is_err());
418     ///
419     /// # Ok::<(), Box<dyn std::error::Error>>(())
420     /// ```
config() -> Config421     pub fn config() -> Config {
422         Config::new()
423     }
424 
425     /// Return a builder for configuring the construction of a `Regex`.
426     ///
427     /// This is a convenience routine to avoid needing to import the
428     /// [`Builder`] type in common cases.
429     ///
430     /// # Example: change the line terminator
431     ///
432     /// This example shows how to enable multi-line mode by default and change
433     /// the line terminator to the NUL byte:
434     ///
435     /// ```
436     /// use regex_automata::{meta::Regex, util::syntax, Match};
437     ///
438     /// let re = Regex::builder()
439     ///     .syntax(syntax::Config::new().multi_line(true))
440     ///     .configure(Regex::config().line_terminator(b'\x00'))
441     ///     .build(r"^foo$")?;
442     /// let hay = "\x00foo\x00";
443     /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
444     ///
445     /// # Ok::<(), Box<dyn std::error::Error>>(())
446     /// ```
builder() -> Builder447     pub fn builder() -> Builder {
448         Builder::new()
449     }
450 }
451 
452 /// High level convenience routines for using a regex to search a haystack.
453 impl Regex {
454     /// Returns true if and only if this regex matches the given haystack.
455     ///
456     /// This routine may short circuit if it knows that scanning future input
457     /// will never lead to a different result. (Consider how this might make
458     /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
459     /// This routine _may_ stop after it sees the first `a`, but routines like
460     /// `find` need to continue searching because `+` is greedy by default.)
461     ///
462     /// # Example
463     ///
464     /// ```
465     /// use regex_automata::meta::Regex;
466     ///
467     /// let re = Regex::new("foo[0-9]+bar")?;
468     ///
469     /// assert!(re.is_match("foo12345bar"));
470     /// assert!(!re.is_match("foobar"));
471     ///
472     /// # Ok::<(), Box<dyn std::error::Error>>(())
473     /// ```
474     ///
475     /// # Example: consistency with search APIs
476     ///
477     /// `is_match` is guaranteed to return `true` whenever `find` returns a
478     /// match. This includes searches that are executed entirely within a
479     /// codepoint:
480     ///
481     /// ```
482     /// use regex_automata::{meta::Regex, Input};
483     ///
484     /// let re = Regex::new("a*")?;
485     ///
486     /// // This doesn't match because the default configuration bans empty
487     /// // matches from splitting a codepoint.
488     /// assert!(!re.is_match(Input::new("☃").span(1..2)));
489     /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
490     ///
491     /// # Ok::<(), Box<dyn std::error::Error>>(())
492     /// ```
493     ///
494     /// Notice that when UTF-8 mode is disabled, then the above reports a
495     /// match because the restriction against zero-width matches that split a
496     /// codepoint has been lifted:
497     ///
498     /// ```
499     /// use regex_automata::{meta::Regex, Input, Match};
500     ///
501     /// let re = Regex::builder()
502     ///     .configure(Regex::config().utf8_empty(false))
503     ///     .build("a*")?;
504     ///
505     /// assert!(re.is_match(Input::new("☃").span(1..2)));
506     /// assert_eq!(
507     ///     Some(Match::must(0, 1..1)),
508     ///     re.find(Input::new("☃").span(1..2)),
509     /// );
510     ///
511     /// # Ok::<(), Box<dyn std::error::Error>>(())
512     /// ```
513     ///
514     /// A similar idea applies when using line anchors with CRLF mode enabled,
515     /// which prevents them from matching between a `\r` and a `\n`.
516     ///
517     /// ```
518     /// use regex_automata::{meta::Regex, Input, Match};
519     ///
520     /// let re = Regex::new(r"(?Rm:$)")?;
521     /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
522     /// // A regular line anchor, which only considers \n as a
523     /// // line terminator, will match.
524     /// let re = Regex::new(r"(?m:$)")?;
525     /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
526     ///
527     /// # Ok::<(), Box<dyn std::error::Error>>(())
528     /// ```
529     #[inline]
is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool530     pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
531         let input = input.into().earliest(true);
532         if self.imp.info.is_impossible(&input) {
533             return false;
534         }
535         let mut guard = self.pool.get();
536         let result = self.imp.strat.is_match(&mut guard, &input);
537         // See 'Regex::search' for why we put the guard back explicitly.
538         PoolGuard::put(guard);
539         result
540     }
541 
542     /// Executes a leftmost search and returns the first match that is found,
543     /// if one exists.
544     ///
545     /// # Example
546     ///
547     /// ```
548     /// use regex_automata::{meta::Regex, Match};
549     ///
550     /// let re = Regex::new("foo[0-9]+")?;
551     /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
552     ///
553     /// # Ok::<(), Box<dyn std::error::Error>>(())
554     /// ```
555     #[inline]
find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match>556     pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
557         self.search(&input.into())
558     }
559 
560     /// Executes a leftmost forward search and writes the spans of capturing
561     /// groups that participated in a match into the provided [`Captures`]
562     /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563     /// to return `false`.
564     ///
565     /// # Example
566     ///
567     /// ```
568     /// use regex_automata::{meta::Regex, Span};
569     ///
570     /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571     /// let mut caps = re.create_captures();
572     ///
573     /// re.captures("2010-03-14", &mut caps);
574     /// assert!(caps.is_match());
575     /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576     /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577     /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578     ///
579     /// # Ok::<(), Box<dyn std::error::Error>>(())
580     /// ```
581     #[inline]
captures<'h, I: Into<Input<'h>>>( &self, input: I, caps: &mut Captures, )582     pub fn captures<'h, I: Into<Input<'h>>>(
583         &self,
584         input: I,
585         caps: &mut Captures,
586     ) {
587         self.search_captures(&input.into(), caps)
588     }
589 
590     /// Returns an iterator over all non-overlapping leftmost matches in
591     /// the given haystack. If no match exists, then the iterator yields no
592     /// elements.
593     ///
594     /// # Example
595     ///
596     /// ```
597     /// use regex_automata::{meta::Regex, Match};
598     ///
599     /// let re = Regex::new("foo[0-9]+")?;
600     /// let haystack = "foo1 foo12 foo123";
601     /// let matches: Vec<Match> = re.find_iter(haystack).collect();
602     /// assert_eq!(matches, vec![
603     ///     Match::must(0, 0..4),
604     ///     Match::must(0, 5..10),
605     ///     Match::must(0, 11..17),
606     /// ]);
607     /// # Ok::<(), Box<dyn std::error::Error>>(())
608     /// ```
609     #[inline]
find_iter<'r, 'h, I: Into<Input<'h>>>( &'r self, input: I, ) -> FindMatches<'r, 'h>610     pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
611         &'r self,
612         input: I,
613     ) -> FindMatches<'r, 'h> {
614         let cache = self.pool.get();
615         let it = iter::Searcher::new(input.into());
616         FindMatches { re: self, cache, it }
617     }
618 
619     /// Returns an iterator over all non-overlapping `Captures` values. If no
620     /// match exists, then the iterator yields no elements.
621     ///
622     /// This yields the same matches as [`Regex::find_iter`], but it includes
623     /// the spans of all capturing groups that participate in each match.
624     ///
625     /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
626     /// how to correctly iterate over all matches in a haystack while avoiding
627     /// the creation of a new `Captures` value for every match. (Which you are
628     /// forced to do with an `Iterator`.)
629     ///
630     /// # Example
631     ///
632     /// ```
633     /// use regex_automata::{meta::Regex, Span};
634     ///
635     /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
636     ///
637     /// let haystack = "foo1 foo12 foo123";
638     /// let matches: Vec<Span> = re
639     ///     .captures_iter(haystack)
640     ///     // The unwrap is OK since 'numbers' matches if the pattern matches.
641     ///     .map(|caps| caps.get_group_by_name("numbers").unwrap())
642     ///     .collect();
643     /// assert_eq!(matches, vec![
644     ///     Span::from(3..4),
645     ///     Span::from(8..10),
646     ///     Span::from(14..17),
647     /// ]);
648     /// # Ok::<(), Box<dyn std::error::Error>>(())
649     /// ```
650     #[inline]
captures_iter<'r, 'h, I: Into<Input<'h>>>( &'r self, input: I, ) -> CapturesMatches<'r, 'h>651     pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
652         &'r self,
653         input: I,
654     ) -> CapturesMatches<'r, 'h> {
655         let cache = self.pool.get();
656         let caps = self.create_captures();
657         let it = iter::Searcher::new(input.into());
658         CapturesMatches { re: self, cache, caps, it }
659     }
660 
661     /// Returns an iterator of spans of the haystack given, delimited by a
662     /// match of the regex. Namely, each element of the iterator corresponds to
663     /// a part of the haystack that *isn't* matched by the regular expression.
664     ///
665     /// # Example
666     ///
667     /// To split a string delimited by arbitrary amounts of spaces or tabs:
668     ///
669     /// ```
670     /// use regex_automata::meta::Regex;
671     ///
672     /// let re = Regex::new(r"[ \t]+")?;
673     /// let hay = "a b \t  c\td    e";
674     /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
675     /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
676     ///
677     /// # Ok::<(), Box<dyn std::error::Error>>(())
678     /// ```
679     ///
680     /// # Example: more cases
681     ///
682     /// Basic usage:
683     ///
684     /// ```
685     /// use regex_automata::meta::Regex;
686     ///
687     /// let re = Regex::new(r" ")?;
688     /// let hay = "Mary had a little lamb";
689     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690     /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
691     ///
692     /// let re = Regex::new(r"X")?;
693     /// let hay = "";
694     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695     /// assert_eq!(got, vec![""]);
696     ///
697     /// let re = Regex::new(r"X")?;
698     /// let hay = "lionXXtigerXleopard";
699     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
700     /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
701     ///
702     /// let re = Regex::new(r"::")?;
703     /// let hay = "lion::tiger::leopard";
704     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
705     /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
706     ///
707     /// # Ok::<(), Box<dyn std::error::Error>>(())
708     /// ```
709     ///
710     /// If a haystack contains multiple contiguous matches, you will end up
711     /// with empty spans yielded by the iterator:
712     ///
713     /// ```
714     /// use regex_automata::meta::Regex;
715     ///
716     /// let re = Regex::new(r"X")?;
717     /// let hay = "XXXXaXXbXc";
718     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
719     /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
720     ///
721     /// let re = Regex::new(r"/")?;
722     /// let hay = "(///)";
723     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
724     /// assert_eq!(got, vec!["(", "", "", ")"]);
725     ///
726     /// # Ok::<(), Box<dyn std::error::Error>>(())
727     /// ```
728     ///
729     /// Separators at the start or end of a haystack are neighbored by empty
730     /// spans.
731     ///
732     /// ```
733     /// use regex_automata::meta::Regex;
734     ///
735     /// let re = Regex::new(r"0")?;
736     /// let hay = "010";
737     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
738     /// assert_eq!(got, vec!["", "1", ""]);
739     ///
740     /// # Ok::<(), Box<dyn std::error::Error>>(())
741     /// ```
742     ///
743     /// When the empty string is used as a regex, it splits at every valid
744     /// UTF-8 boundary by default (which includes the beginning and end of the
745     /// haystack):
746     ///
747     /// ```
748     /// use regex_automata::meta::Regex;
749     ///
750     /// let re = Regex::new(r"")?;
751     /// let hay = "rust";
752     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
753     /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
754     ///
755     /// // Splitting by an empty string is UTF-8 aware by default!
756     /// let re = Regex::new(r"")?;
757     /// let hay = "☃";
758     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
759     /// assert_eq!(got, vec!["", "☃", ""]);
760     ///
761     /// # Ok::<(), Box<dyn std::error::Error>>(())
762     /// ```
763     ///
764     /// But note that UTF-8 mode for empty strings can be disabled, which will
765     /// then result in a match at every byte offset in the haystack,
766     /// including between every UTF-8 code unit.
767     ///
768     /// ```
769     /// use regex_automata::meta::Regex;
770     ///
771     /// let re = Regex::builder()
772     ///     .configure(Regex::config().utf8_empty(false))
773     ///     .build(r"")?;
774     /// let hay = "☃".as_bytes();
775     /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
776     /// assert_eq!(got, vec![
777     ///     // Writing byte string slices is just brutal. The problem is that
778     ///     // b"foo" has type &[u8; 3] instead of &[u8].
779     ///     &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
780     /// ]);
781     ///
782     /// # Ok::<(), Box<dyn std::error::Error>>(())
783     /// ```
784     ///
785     /// Contiguous separators (commonly shows up with whitespace), can lead to
786     /// possibly surprising behavior. For example, this code is correct:
787     ///
788     /// ```
789     /// use regex_automata::meta::Regex;
790     ///
791     /// let re = Regex::new(r" ")?;
792     /// let hay = "    a  b c";
793     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
794     /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
795     ///
796     /// # Ok::<(), Box<dyn std::error::Error>>(())
797     /// ```
798     ///
799     /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
800     /// to match contiguous space characters:
801     ///
802     /// ```
803     /// use regex_automata::meta::Regex;
804     ///
805     /// let re = Regex::new(r" +")?;
806     /// let hay = "    a  b c";
807     /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
808     /// // N.B. This does still include a leading empty span because ' +'
809     /// // matches at the beginning of the haystack.
810     /// assert_eq!(got, vec!["", "a", "b", "c"]);
811     ///
812     /// # Ok::<(), Box<dyn std::error::Error>>(())
813     /// ```
814     #[inline]
split<'r, 'h, I: Into<Input<'h>>>( &'r self, input: I, ) -> Split<'r, 'h>815     pub fn split<'r, 'h, I: Into<Input<'h>>>(
816         &'r self,
817         input: I,
818     ) -> Split<'r, 'h> {
819         Split { finder: self.find_iter(input), last: 0 }
820     }
821 
822     /// Returns an iterator of at most `limit` spans of the haystack given,
823     /// delimited by a match of the regex. (A `limit` of `0` will return no
824     /// spans.) Namely, each element of the iterator corresponds to a part
825     /// of the haystack that *isn't* matched by the regular expression. The
826     /// remainder of the haystack that is not split will be the last element in
827     /// the iterator.
828     ///
829     /// # Example
830     ///
831     /// Get the first two words in some haystack:
832     ///
833     /// ```
834     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
835     /// use regex_automata::meta::Regex;
836     ///
837     /// let re = Regex::new(r"\W+").unwrap();
838     /// let hay = "Hey! How are you?";
839     /// let fields: Vec<&str> =
840     ///     re.splitn(hay, 3).map(|span| &hay[span]).collect();
841     /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
842     ///
843     /// # Ok::<(), Box<dyn std::error::Error>>(())
844     /// ```
845     ///
846     /// # Examples: more cases
847     ///
848     /// ```
849     /// use regex_automata::meta::Regex;
850     ///
851     /// let re = Regex::new(r" ")?;
852     /// let hay = "Mary had a little lamb";
853     /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
854     /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
855     ///
856     /// let re = Regex::new(r"X")?;
857     /// let hay = "";
858     /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
859     /// assert_eq!(got, vec![""]);
860     ///
861     /// let re = Regex::new(r"X")?;
862     /// let hay = "lionXXtigerXleopard";
863     /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
864     /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
865     ///
866     /// let re = Regex::new(r"::")?;
867     /// let hay = "lion::tiger::leopard";
868     /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
869     /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
870     ///
871     /// let re = Regex::new(r"X")?;
872     /// let hay = "abcXdef";
873     /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
874     /// assert_eq!(got, vec!["abcXdef"]);
875     ///
876     /// let re = Regex::new(r"X")?;
877     /// let hay = "abcdef";
878     /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
879     /// assert_eq!(got, vec!["abcdef"]);
880     ///
881     /// let re = Regex::new(r"X")?;
882     /// let hay = "abcXdef";
883     /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
884     /// assert!(got.is_empty());
885     ///
886     /// # Ok::<(), Box<dyn std::error::Error>>(())
887     /// ```
splitn<'r, 'h, I: Into<Input<'h>>>( &'r self, input: I, limit: usize, ) -> SplitN<'r, 'h>888     pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
889         &'r self,
890         input: I,
891         limit: usize,
892     ) -> SplitN<'r, 'h> {
893         SplitN { splits: self.split(input), limit }
894     }
895 }
896 
897 /// Lower level search routines that give more control.
898 impl Regex {
899     /// Returns the start and end offset of the leftmost match. If no match
900     /// exists, then `None` is returned.
901     ///
902     /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
903     /// instead of an `Into<Input>`.
904     ///
905     /// # Example
906     ///
907     /// ```
908     /// use regex_automata::{meta::Regex, Input, Match};
909     ///
910     /// let re = Regex::new(r"Samwise|Sam")?;
911     /// let input = Input::new(
912     ///     "one of the chief characters, Samwise the Brave",
913     /// );
914     /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
915     ///
916     /// # Ok::<(), Box<dyn std::error::Error>>(())
917     /// ```
918     #[inline]
search(&self, input: &Input<'_>) -> Option<Match>919     pub fn search(&self, input: &Input<'_>) -> Option<Match> {
920         if self.imp.info.is_impossible(input) {
921             return None;
922         }
923         let mut guard = self.pool.get();
924         let result = self.imp.strat.search(&mut guard, input);
925         // We do this dance with the guard and explicitly put it back in the
926         // pool because it seems to result in better codegen. If we let the
927         // guard's Drop impl put it back in the pool, then functions like
928         // ptr::drop_in_place get called and they *don't* get inlined. This
929         // isn't usually a big deal, but in latency sensitive benchmarks the
930         // extra function call can matter.
931         //
932         // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
933         // the effects here.
934         //
935         // Note that this doesn't eliminate the latency effects of using the
936         // pool. There is still some (minor) cost for the "thread owner" of the
937         // pool. (i.e., The thread that first calls a regex search routine.)
938         // However, for other threads using the regex, the pool access can be
939         // quite expensive as it goes through a mutex. Callers can avoid this
940         // by either cloning the Regex (which creates a distinct copy of the
941         // pool), or callers can use the lower level APIs that accept a 'Cache'
942         // directly and do their own handling.
943         PoolGuard::put(guard);
944         result
945     }
946 
947     /// Returns the end offset of the leftmost match. If no match exists, then
948     /// `None` is returned.
949     ///
950     /// This is distinct from [`Regex::search`] in that it only returns the end
951     /// of a match and not the start of the match. Depending on a variety of
952     /// implementation details, this _may_ permit the regex engine to do less
953     /// overall work. For example, if a DFA is being used to execute a search,
954     /// then the start of a match usually requires running a separate DFA in
955     /// reverse to the find the start of a match. If one only needs the end of
956     /// a match, then the separate reverse scan to find the start of a match
957     /// can be skipped. (Note that the reverse scan is avoided even when using
958     /// `Regex::search` when possible, for example, in the case of an anchored
959     /// search.)
960     ///
961     /// # Example
962     ///
963     /// ```
964     /// use regex_automata::{meta::Regex, Input, HalfMatch};
965     ///
966     /// let re = Regex::new(r"Samwise|Sam")?;
967     /// let input = Input::new(
968     ///     "one of the chief characters, Samwise the Brave",
969     /// );
970     /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
971     ///
972     /// # Ok::<(), Box<dyn std::error::Error>>(())
973     /// ```
974     #[inline]
search_half(&self, input: &Input<'_>) -> Option<HalfMatch>975     pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
976         if self.imp.info.is_impossible(input) {
977             return None;
978         }
979         let mut guard = self.pool.get();
980         let result = self.imp.strat.search_half(&mut guard, input);
981         // See 'Regex::search' for why we put the guard back explicitly.
982         PoolGuard::put(guard);
983         result
984     }
985 
986     /// Executes a leftmost forward search and writes the spans of capturing
987     /// groups that participated in a match into the provided [`Captures`]
988     /// value. If no match was found, then [`Captures::is_match`] is guaranteed
989     /// to return `false`.
990     ///
991     /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
992     /// instead of an `Into<Input>`.
993     ///
994     /// # Example: specific pattern search
995     ///
996     /// This example shows how to build a multi-pattern `Regex` that permits
997     /// searching for specific patterns.
998     ///
999     /// ```
1000     /// use regex_automata::{
1001     ///     meta::Regex,
1002     ///     Anchored, Match, PatternID, Input,
1003     /// };
1004     ///
1005     /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1006     /// let mut caps = re.create_captures();
1007     /// let haystack = "foo123";
1008     ///
1009     /// // Since we are using the default leftmost-first match and both
1010     /// // patterns match at the same starting position, only the first pattern
1011     /// // will be returned in this case when doing a search for any of the
1012     /// // patterns.
1013     /// let expected = Some(Match::must(0, 0..6));
1014     /// re.search_captures(&Input::new(haystack), &mut caps);
1015     /// assert_eq!(expected, caps.get_match());
1016     ///
1017     /// // But if we want to check whether some other pattern matches, then we
1018     /// // can provide its pattern ID.
1019     /// let expected = Some(Match::must(1, 0..6));
1020     /// let input = Input::new(haystack)
1021     ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1022     /// re.search_captures(&input, &mut caps);
1023     /// assert_eq!(expected, caps.get_match());
1024     ///
1025     /// # Ok::<(), Box<dyn std::error::Error>>(())
1026     /// ```
1027     ///
1028     /// # Example: specifying the bounds of a search
1029     ///
1030     /// This example shows how providing the bounds of a search can produce
1031     /// different results than simply sub-slicing the haystack.
1032     ///
1033     /// ```
1034     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1035     /// use regex_automata::{meta::Regex, Match, Input};
1036     ///
1037     /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1038     /// let mut caps = re.create_captures();
1039     /// let haystack = "foo123bar";
1040     ///
1041     /// // Since we sub-slice the haystack, the search doesn't know about
1042     /// // the larger context and assumes that `123` is surrounded by word
1043     /// // boundaries. And of course, the match position is reported relative
1044     /// // to the sub-slice as well, which means we get `0..3` instead of
1045     /// // `3..6`.
1046     /// let expected = Some(Match::must(0, 0..3));
1047     /// let input = Input::new(&haystack[3..6]);
1048     /// re.search_captures(&input, &mut caps);
1049     /// assert_eq!(expected, caps.get_match());
1050     ///
1051     /// // But if we provide the bounds of the search within the context of the
1052     /// // entire haystack, then the search can take the surrounding context
1053     /// // into account. (And if we did find a match, it would be reported
1054     /// // as a valid offset into `haystack` instead of its sub-slice.)
1055     /// let expected = None;
1056     /// let input = Input::new(haystack).range(3..6);
1057     /// re.search_captures(&input, &mut caps);
1058     /// assert_eq!(expected, caps.get_match());
1059     ///
1060     /// # Ok::<(), Box<dyn std::error::Error>>(())
1061     /// ```
1062     #[inline]
search_captures(&self, input: &Input<'_>, caps: &mut Captures)1063     pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064         caps.set_pattern(None);
1065         let pid = self.search_slots(input, caps.slots_mut());
1066         caps.set_pattern(pid);
1067     }
1068 
1069     /// Executes a leftmost forward search and writes the spans of capturing
1070     /// groups that participated in a match into the provided `slots`, and
1071     /// returns the matching pattern ID. The contents of the slots for patterns
1072     /// other than the matching pattern are unspecified. If no match was found,
1073     /// then `None` is returned and the contents of `slots` is unspecified.
1074     ///
1075     /// This is like [`Regex::search`], but it accepts a raw slots slice
1076     /// instead of a `Captures` value. This is useful in contexts where you
1077     /// don't want or need to allocate a `Captures`.
1078     ///
1079     /// It is legal to pass _any_ number of slots to this routine. If the regex
1080     /// engine would otherwise write a slot offset that doesn't fit in the
1081     /// provided slice, then it is simply skipped. In general though, there are
1082     /// usually three slice lengths you might want to use:
1083     ///
1084     /// * An empty slice, if you only care about which pattern matched.
1085     /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1086     /// only care about the overall match spans for each matching pattern.
1087     /// * A slice with
1088     /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1089     /// permits recording match offsets for every capturing group in every
1090     /// pattern.
1091     ///
1092     /// # Example
1093     ///
1094     /// This example shows how to find the overall match offsets in a
1095     /// multi-pattern search without allocating a `Captures` value. Indeed, we
1096     /// can put our slots right on the stack.
1097     ///
1098     /// ```
1099     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1100     /// use regex_automata::{meta::Regex, PatternID, Input};
1101     ///
1102     /// let re = Regex::new_many(&[
1103     ///     r"\pL+",
1104     ///     r"\d+",
1105     /// ])?;
1106     /// let input = Input::new("!@#123");
1107     ///
1108     /// // We only care about the overall match offsets here, so we just
1109     /// // allocate two slots for each pattern. Each slot records the start
1110     /// // and end of the match.
1111     /// let mut slots = [None; 4];
1112     /// let pid = re.search_slots(&input, &mut slots);
1113     /// assert_eq!(Some(PatternID::must(1)), pid);
1114     ///
1115     /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1116     /// // See 'GroupInfo' for more details on the mapping between groups and
1117     /// // slot indices.
1118     /// let slot_start = pid.unwrap().as_usize() * 2;
1119     /// let slot_end = slot_start + 1;
1120     /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1121     /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1122     ///
1123     /// # Ok::<(), Box<dyn std::error::Error>>(())
1124     /// ```
1125     #[inline]
search_slots( &self, input: &Input<'_>, slots: &mut [Option<NonMaxUsize>], ) -> Option<PatternID>1126     pub fn search_slots(
1127         &self,
1128         input: &Input<'_>,
1129         slots: &mut [Option<NonMaxUsize>],
1130     ) -> Option<PatternID> {
1131         if self.imp.info.is_impossible(input) {
1132             return None;
1133         }
1134         let mut guard = self.pool.get();
1135         let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136         // See 'Regex::search' for why we put the guard back explicitly.
1137         PoolGuard::put(guard);
1138         result
1139     }
1140 
1141     /// Writes the set of patterns that match anywhere in the given search
1142     /// configuration to `patset`. If multiple patterns match at the same
1143     /// position and this `Regex` was configured with [`MatchKind::All`]
1144     /// semantics, then all matching patterns are written to the given set.
1145     ///
1146     /// Unless all of the patterns in this `Regex` are anchored, then generally
1147     /// speaking, this will scan the entire haystack.
1148     ///
1149     /// This search routine *does not* clear the pattern set. This gives some
1150     /// flexibility to the caller (e.g., running multiple searches with the
1151     /// same pattern set), but does make the API bug-prone if you're reusing
1152     /// the same pattern set for multiple searches but intended them to be
1153     /// independent.
1154     ///
1155     /// If a pattern ID matched but the given `PatternSet` does not have
1156     /// sufficient capacity to store it, then it is not inserted and silently
1157     /// dropped.
1158     ///
1159     /// # Example
1160     ///
1161     /// This example shows how to find all matching patterns in a haystack,
1162     /// even when some patterns match at the same position as other patterns.
1163     /// It is important that we configure the `Regex` with [`MatchKind::All`]
1164     /// semantics here, or else overlapping matches will not be reported.
1165     ///
1166     /// ```
1167     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1168     /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1169     ///
1170     /// let patterns = &[
1171     ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1172     /// ];
1173     /// let re = Regex::builder()
1174     ///     .configure(Regex::config().match_kind(MatchKind::All))
1175     ///     .build_many(patterns)?;
1176     ///
1177     /// let input = Input::new("foobar");
1178     /// let mut patset = PatternSet::new(re.pattern_len());
1179     /// re.which_overlapping_matches(&input, &mut patset);
1180     /// let expected = vec![0, 2, 3, 4, 6];
1181     /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1182     /// assert_eq!(expected, got);
1183     ///
1184     /// # Ok::<(), Box<dyn std::error::Error>>(())
1185     /// ```
1186     #[inline]
which_overlapping_matches( &self, input: &Input<'_>, patset: &mut PatternSet, )1187     pub fn which_overlapping_matches(
1188         &self,
1189         input: &Input<'_>,
1190         patset: &mut PatternSet,
1191     ) {
1192         if self.imp.info.is_impossible(input) {
1193             return;
1194         }
1195         let mut guard = self.pool.get();
1196         let result = self
1197             .imp
1198             .strat
1199             .which_overlapping_matches(&mut guard, input, patset);
1200         // See 'Regex::search' for why we put the guard back explicitly.
1201         PoolGuard::put(guard);
1202         result
1203     }
1204 }
1205 
1206 /// Lower level search routines that give more control, and require the caller
1207 /// to provide an explicit [`Cache`] parameter.
1208 impl Regex {
1209     /// This is like [`Regex::search`], but requires the caller to
1210     /// explicitly pass a [`Cache`].
1211     ///
1212     /// # Why pass a `Cache` explicitly?
1213     ///
1214     /// Passing a `Cache` explicitly will bypass the use of an internal memory
1215     /// pool used by `Regex` to get a `Cache` for a search. The use of this
1216     /// pool can be slower in some cases when a `Regex` is used from multiple
1217     /// threads simultaneously. Typically, performance only becomes an issue
1218     /// when there is heavy contention, which in turn usually only occurs
1219     /// when each thread's primary unit of work is a regex search on a small
1220     /// haystack.
1221     ///
1222     /// # Example
1223     ///
1224     /// ```
1225     /// use regex_automata::{meta::Regex, Input, Match};
1226     ///
1227     /// let re = Regex::new(r"Samwise|Sam")?;
1228     /// let mut cache = re.create_cache();
1229     /// let input = Input::new(
1230     ///     "one of the chief characters, Samwise the Brave",
1231     /// );
1232     /// assert_eq!(
1233     ///     Some(Match::must(0, 29..36)),
1234     ///     re.search_with(&mut cache, &input),
1235     /// );
1236     ///
1237     /// # Ok::<(), Box<dyn std::error::Error>>(())
1238     /// ```
1239     #[inline]
search_with( &self, cache: &mut Cache, input: &Input<'_>, ) -> Option<Match>1240     pub fn search_with(
1241         &self,
1242         cache: &mut Cache,
1243         input: &Input<'_>,
1244     ) -> Option<Match> {
1245         if self.imp.info.is_impossible(input) {
1246             return None;
1247         }
1248         self.imp.strat.search(cache, input)
1249     }
1250 
1251     /// This is like [`Regex::search_half`], but requires the caller to
1252     /// explicitly pass a [`Cache`].
1253     ///
1254     /// # Why pass a `Cache` explicitly?
1255     ///
1256     /// Passing a `Cache` explicitly will bypass the use of an internal memory
1257     /// pool used by `Regex` to get a `Cache` for a search. The use of this
1258     /// pool can be slower in some cases when a `Regex` is used from multiple
1259     /// threads simultaneously. Typically, performance only becomes an issue
1260     /// when there is heavy contention, which in turn usually only occurs
1261     /// when each thread's primary unit of work is a regex search on a small
1262     /// haystack.
1263     ///
1264     /// # Example
1265     ///
1266     /// ```
1267     /// use regex_automata::{meta::Regex, Input, HalfMatch};
1268     ///
1269     /// let re = Regex::new(r"Samwise|Sam")?;
1270     /// let mut cache = re.create_cache();
1271     /// let input = Input::new(
1272     ///     "one of the chief characters, Samwise the Brave",
1273     /// );
1274     /// assert_eq!(
1275     ///     Some(HalfMatch::must(0, 36)),
1276     ///     re.search_half_with(&mut cache, &input),
1277     /// );
1278     ///
1279     /// # Ok::<(), Box<dyn std::error::Error>>(())
1280     /// ```
1281     #[inline]
search_half_with( &self, cache: &mut Cache, input: &Input<'_>, ) -> Option<HalfMatch>1282     pub fn search_half_with(
1283         &self,
1284         cache: &mut Cache,
1285         input: &Input<'_>,
1286     ) -> Option<HalfMatch> {
1287         if self.imp.info.is_impossible(input) {
1288             return None;
1289         }
1290         self.imp.strat.search_half(cache, input)
1291     }
1292 
1293     /// This is like [`Regex::search_captures`], but requires the caller to
1294     /// explicitly pass a [`Cache`].
1295     ///
1296     /// # Why pass a `Cache` explicitly?
1297     ///
1298     /// Passing a `Cache` explicitly will bypass the use of an internal memory
1299     /// pool used by `Regex` to get a `Cache` for a search. The use of this
1300     /// pool can be slower in some cases when a `Regex` is used from multiple
1301     /// threads simultaneously. Typically, performance only becomes an issue
1302     /// when there is heavy contention, which in turn usually only occurs
1303     /// when each thread's primary unit of work is a regex search on a small
1304     /// haystack.
1305     ///
1306     /// # Example: specific pattern search
1307     ///
1308     /// This example shows how to build a multi-pattern `Regex` that permits
1309     /// searching for specific patterns.
1310     ///
1311     /// ```
1312     /// use regex_automata::{
1313     ///     meta::Regex,
1314     ///     Anchored, Match, PatternID, Input,
1315     /// };
1316     ///
1317     /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1318     /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1319     /// let haystack = "foo123";
1320     ///
1321     /// // Since we are using the default leftmost-first match and both
1322     /// // patterns match at the same starting position, only the first pattern
1323     /// // will be returned in this case when doing a search for any of the
1324     /// // patterns.
1325     /// let expected = Some(Match::must(0, 0..6));
1326     /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1327     /// assert_eq!(expected, caps.get_match());
1328     ///
1329     /// // But if we want to check whether some other pattern matches, then we
1330     /// // can provide its pattern ID.
1331     /// let expected = Some(Match::must(1, 0..6));
1332     /// let input = Input::new(haystack)
1333     ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1334     /// re.search_captures_with(&mut cache, &input, &mut caps);
1335     /// assert_eq!(expected, caps.get_match());
1336     ///
1337     /// # Ok::<(), Box<dyn std::error::Error>>(())
1338     /// ```
1339     ///
1340     /// # Example: specifying the bounds of a search
1341     ///
1342     /// This example shows how providing the bounds of a search can produce
1343     /// different results than simply sub-slicing the haystack.
1344     ///
1345     /// ```
1346     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1347     /// use regex_automata::{meta::Regex, Match, Input};
1348     ///
1349     /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1350     /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1351     /// let haystack = "foo123bar";
1352     ///
1353     /// // Since we sub-slice the haystack, the search doesn't know about
1354     /// // the larger context and assumes that `123` is surrounded by word
1355     /// // boundaries. And of course, the match position is reported relative
1356     /// // to the sub-slice as well, which means we get `0..3` instead of
1357     /// // `3..6`.
1358     /// let expected = Some(Match::must(0, 0..3));
1359     /// let input = Input::new(&haystack[3..6]);
1360     /// re.search_captures_with(&mut cache, &input, &mut caps);
1361     /// assert_eq!(expected, caps.get_match());
1362     ///
1363     /// // But if we provide the bounds of the search within the context of the
1364     /// // entire haystack, then the search can take the surrounding context
1365     /// // into account. (And if we did find a match, it would be reported
1366     /// // as a valid offset into `haystack` instead of its sub-slice.)
1367     /// let expected = None;
1368     /// let input = Input::new(haystack).range(3..6);
1369     /// re.search_captures_with(&mut cache, &input, &mut caps);
1370     /// assert_eq!(expected, caps.get_match());
1371     ///
1372     /// # Ok::<(), Box<dyn std::error::Error>>(())
1373     /// ```
1374     #[inline]
search_captures_with( &self, cache: &mut Cache, input: &Input<'_>, caps: &mut Captures, )1375     pub fn search_captures_with(
1376         &self,
1377         cache: &mut Cache,
1378         input: &Input<'_>,
1379         caps: &mut Captures,
1380     ) {
1381         caps.set_pattern(None);
1382         let pid = self.search_slots_with(cache, input, caps.slots_mut());
1383         caps.set_pattern(pid);
1384     }
1385 
1386     /// This is like [`Regex::search_slots`], but requires the caller to
1387     /// explicitly pass a [`Cache`].
1388     ///
1389     /// # Why pass a `Cache` explicitly?
1390     ///
1391     /// Passing a `Cache` explicitly will bypass the use of an internal memory
1392     /// pool used by `Regex` to get a `Cache` for a search. The use of this
1393     /// pool can be slower in some cases when a `Regex` is used from multiple
1394     /// threads simultaneously. Typically, performance only becomes an issue
1395     /// when there is heavy contention, which in turn usually only occurs
1396     /// when each thread's primary unit of work is a regex search on a small
1397     /// haystack.
1398     ///
1399     /// # Example
1400     ///
1401     /// This example shows how to find the overall match offsets in a
1402     /// multi-pattern search without allocating a `Captures` value. Indeed, we
1403     /// can put our slots right on the stack.
1404     ///
1405     /// ```
1406     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1407     /// use regex_automata::{meta::Regex, PatternID, Input};
1408     ///
1409     /// let re = Regex::new_many(&[
1410     ///     r"\pL+",
1411     ///     r"\d+",
1412     /// ])?;
1413     /// let mut cache = re.create_cache();
1414     /// let input = Input::new("!@#123");
1415     ///
1416     /// // We only care about the overall match offsets here, so we just
1417     /// // allocate two slots for each pattern. Each slot records the start
1418     /// // and end of the match.
1419     /// let mut slots = [None; 4];
1420     /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1421     /// assert_eq!(Some(PatternID::must(1)), pid);
1422     ///
1423     /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1424     /// // See 'GroupInfo' for more details on the mapping between groups and
1425     /// // slot indices.
1426     /// let slot_start = pid.unwrap().as_usize() * 2;
1427     /// let slot_end = slot_start + 1;
1428     /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1429     /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1430     ///
1431     /// # Ok::<(), Box<dyn std::error::Error>>(())
1432     /// ```
1433     #[inline]
search_slots_with( &self, cache: &mut Cache, input: &Input<'_>, slots: &mut [Option<NonMaxUsize>], ) -> Option<PatternID>1434     pub fn search_slots_with(
1435         &self,
1436         cache: &mut Cache,
1437         input: &Input<'_>,
1438         slots: &mut [Option<NonMaxUsize>],
1439     ) -> Option<PatternID> {
1440         if self.imp.info.is_impossible(input) {
1441             return None;
1442         }
1443         self.imp.strat.search_slots(cache, input, slots)
1444     }
1445 
1446     /// This is like [`Regex::which_overlapping_matches`], but requires the
1447     /// caller to explicitly pass a [`Cache`].
1448     ///
1449     /// Passing a `Cache` explicitly will bypass the use of an internal memory
1450     /// pool used by `Regex` to get a `Cache` for a search. The use of this
1451     /// pool can be slower in some cases when a `Regex` is used from multiple
1452     /// threads simultaneously. Typically, performance only becomes an issue
1453     /// when there is heavy contention, which in turn usually only occurs
1454     /// when each thread's primary unit of work is a regex search on a small
1455     /// haystack.
1456     ///
1457     /// # Why pass a `Cache` explicitly?
1458     ///
1459     /// # Example
1460     ///
1461     /// ```
1462     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1463     /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1464     ///
1465     /// let patterns = &[
1466     ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1467     /// ];
1468     /// let re = Regex::builder()
1469     ///     .configure(Regex::config().match_kind(MatchKind::All))
1470     ///     .build_many(patterns)?;
1471     /// let mut cache = re.create_cache();
1472     ///
1473     /// let input = Input::new("foobar");
1474     /// let mut patset = PatternSet::new(re.pattern_len());
1475     /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
1476     /// let expected = vec![0, 2, 3, 4, 6];
1477     /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1478     /// assert_eq!(expected, got);
1479     ///
1480     /// # Ok::<(), Box<dyn std::error::Error>>(())
1481     /// ```
1482     #[inline]
which_overlapping_matches_with( &self, cache: &mut Cache, input: &Input<'_>, patset: &mut PatternSet, )1483     pub fn which_overlapping_matches_with(
1484         &self,
1485         cache: &mut Cache,
1486         input: &Input<'_>,
1487         patset: &mut PatternSet,
1488     ) {
1489         if self.imp.info.is_impossible(input) {
1490             return;
1491         }
1492         self.imp.strat.which_overlapping_matches(cache, input, patset)
1493     }
1494 }
1495 
1496 /// Various non-search routines for querying properties of a `Regex` and
1497 /// convenience routines for creating [`Captures`] and [`Cache`] values.
1498 impl Regex {
1499     /// Creates a new object for recording capture group offsets. This is used
1500     /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1501     ///
1502     /// This is a convenience routine for
1503     /// `Captures::all(re.group_info().clone())`. Callers may build other types
1504     /// of `Captures` values that record less information (and thus require
1505     /// less work from the regex engine) using [`Captures::matches`] and
1506     /// [`Captures::empty`].
1507     ///
1508     /// # Example
1509     ///
1510     /// This shows some alternatives to [`Regex::create_captures`]:
1511     ///
1512     /// ```
1513     /// use regex_automata::{
1514     ///     meta::Regex,
1515     ///     util::captures::Captures,
1516     ///     Match, PatternID, Span,
1517     /// };
1518     ///
1519     /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1520     ///
1521     /// // This is equivalent to Regex::create_captures. It stores matching
1522     /// // offsets for all groups in the regex.
1523     /// let mut all = Captures::all(re.group_info().clone());
1524     /// re.captures("Bruce Springsteen", &mut all);
1525     /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1526     /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1527     /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1528     ///
1529     /// // In this version, we only care about the implicit groups, which
1530     /// // means offsets for the explicit groups will be unavailable. It can
1531     /// // sometimes be faster to ask for fewer groups, since the underlying
1532     /// // regex engine needs to do less work to keep track of them.
1533     /// let mut matches = Captures::matches(re.group_info().clone());
1534     /// re.captures("Bruce Springsteen", &mut matches);
1535     /// // We still get the overall match info.
1536     /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1537     /// // But now the explicit groups are unavailable.
1538     /// assert_eq!(None, matches.get_group_by_name("first"));
1539     /// assert_eq!(None, matches.get_group_by_name("last"));
1540     ///
1541     /// // Finally, in this version, we don't ask to keep track of offsets for
1542     /// // *any* groups. All we get back is whether a match occurred, and if
1543     /// // so, the ID of the pattern that matched.
1544     /// let mut empty = Captures::empty(re.group_info().clone());
1545     /// re.captures("Bruce Springsteen", &mut empty);
1546     /// // it's a match!
1547     /// assert!(empty.is_match());
1548     /// // for pattern ID 0
1549     /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1550     /// // Match offsets are unavailable.
1551     /// assert_eq!(None, empty.get_match());
1552     /// // And of course, explicit groups are unavailable too.
1553     /// assert_eq!(None, empty.get_group_by_name("first"));
1554     /// assert_eq!(None, empty.get_group_by_name("last"));
1555     ///
1556     /// # Ok::<(), Box<dyn std::error::Error>>(())
1557     /// ```
create_captures(&self) -> Captures1558     pub fn create_captures(&self) -> Captures {
1559         Captures::all(self.group_info().clone())
1560     }
1561 
1562     /// Creates a new cache for use with lower level search APIs like
1563     /// [`Regex::search_with`].
1564     ///
1565     /// The cache returned should only be used for searches for this `Regex`.
1566     /// If you want to reuse the cache for another `Regex`, then you must call
1567     /// [`Cache::reset`] with that `Regex`.
1568     ///
1569     /// This is a convenience routine for [`Cache::new`].
1570     ///
1571     /// # Example
1572     ///
1573     /// ```
1574     /// use regex_automata::{meta::Regex, Input, Match};
1575     ///
1576     /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1577     /// let mut cache = re.create_cache();
1578     /// let input = Input::new("crazy janey and her mission man");
1579     /// assert_eq!(
1580     ///     Some(Match::must(0, 20..31)),
1581     ///     re.search_with(&mut cache, &input),
1582     /// );
1583     ///
1584     /// # Ok::<(), Box<dyn std::error::Error>>(())
1585     /// ```
create_cache(&self) -> Cache1586     pub fn create_cache(&self) -> Cache {
1587         self.imp.strat.create_cache()
1588     }
1589 
1590     /// Returns the total number of patterns in this regex.
1591     ///
1592     /// The standard [`Regex::new`] constructor always results in a `Regex`
1593     /// with a single pattern, but [`Regex::new_many`] permits building a
1594     /// multi-pattern regex.
1595     ///
1596     /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1597     /// any match is `Regex::pattern_len() - 1`. In the case where the number
1598     /// of patterns is `0`, a match is impossible.
1599     ///
1600     /// # Example
1601     ///
1602     /// ```
1603     /// use regex_automata::meta::Regex;
1604     ///
1605     /// let re = Regex::new(r"(?m)^[a-z]$")?;
1606     /// assert_eq!(1, re.pattern_len());
1607     ///
1608     /// let re = Regex::new_many::<&str>(&[])?;
1609     /// assert_eq!(0, re.pattern_len());
1610     ///
1611     /// let re = Regex::new_many(&["a", "b", "c"])?;
1612     /// assert_eq!(3, re.pattern_len());
1613     ///
1614     /// # Ok::<(), Box<dyn std::error::Error>>(())
1615     /// ```
pattern_len(&self) -> usize1616     pub fn pattern_len(&self) -> usize {
1617         self.imp.info.pattern_len()
1618     }
1619 
1620     /// Returns the total number of capturing groups.
1621     ///
1622     /// This includes the implicit capturing group corresponding to the
1623     /// entire match. Therefore, the minimum value returned is `1`.
1624     ///
1625     /// # Example
1626     ///
1627     /// This shows a few patterns and how many capture groups they have.
1628     ///
1629     /// ```
1630     /// use regex_automata::meta::Regex;
1631     ///
1632     /// let len = |pattern| {
1633     ///     Regex::new(pattern).map(|re| re.captures_len())
1634     /// };
1635     ///
1636     /// assert_eq!(1, len("a")?);
1637     /// assert_eq!(2, len("(a)")?);
1638     /// assert_eq!(3, len("(a)|(b)")?);
1639     /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1640     /// assert_eq!(2, len("(a)|b")?);
1641     /// assert_eq!(2, len("a|(b)")?);
1642     /// assert_eq!(2, len("(b)*")?);
1643     /// assert_eq!(2, len("(b)+")?);
1644     ///
1645     /// # Ok::<(), Box<dyn std::error::Error>>(())
1646     /// ```
1647     ///
1648     /// # Example: multiple patterns
1649     ///
1650     /// This routine also works for multiple patterns. The total number is
1651     /// the sum of the capture groups of each pattern.
1652     ///
1653     /// ```
1654     /// use regex_automata::meta::Regex;
1655     ///
1656     /// let len = |patterns| {
1657     ///     Regex::new_many(patterns).map(|re| re.captures_len())
1658     /// };
1659     ///
1660     /// assert_eq!(2, len(&["a", "b"])?);
1661     /// assert_eq!(4, len(&["(a)", "(b)"])?);
1662     /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1663     /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1664     /// assert_eq!(3, len(&["(a)", "b"])?);
1665     /// assert_eq!(3, len(&["a", "(b)"])?);
1666     /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1667     /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1668     ///
1669     /// # Ok::<(), Box<dyn std::error::Error>>(())
1670     /// ```
captures_len(&self) -> usize1671     pub fn captures_len(&self) -> usize {
1672         self.imp
1673             .info
1674             .props_union()
1675             .explicit_captures_len()
1676             .saturating_add(self.pattern_len())
1677     }
1678 
1679     /// Returns the total number of capturing groups that appear in every
1680     /// possible match.
1681     ///
1682     /// If the number of capture groups can vary depending on the match, then
1683     /// this returns `None`. That is, a value is only returned when the number
1684     /// of matching groups is invariant or "static."
1685     ///
1686     /// Note that like [`Regex::captures_len`], this **does** include the
1687     /// implicit capturing group corresponding to the entire match. Therefore,
1688     /// when a non-None value is returned, it is guaranteed to be at least `1`.
1689     /// Stated differently, a return value of `Some(0)` is impossible.
1690     ///
1691     /// # Example
1692     ///
1693     /// This shows a few cases where a static number of capture groups is
1694     /// available and a few cases where it is not.
1695     ///
1696     /// ```
1697     /// use regex_automata::meta::Regex;
1698     ///
1699     /// let len = |pattern| {
1700     ///     Regex::new(pattern).map(|re| re.static_captures_len())
1701     /// };
1702     ///
1703     /// assert_eq!(Some(1), len("a")?);
1704     /// assert_eq!(Some(2), len("(a)")?);
1705     /// assert_eq!(Some(2), len("(a)|(b)")?);
1706     /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1707     /// assert_eq!(None, len("(a)|b")?);
1708     /// assert_eq!(None, len("a|(b)")?);
1709     /// assert_eq!(None, len("(b)*")?);
1710     /// assert_eq!(Some(2), len("(b)+")?);
1711     ///
1712     /// # Ok::<(), Box<dyn std::error::Error>>(())
1713     /// ```
1714     ///
1715     /// # Example: multiple patterns
1716     ///
1717     /// This property extends to regexes with multiple patterns as well. In
1718     /// order for their to be a static number of capture groups in this case,
1719     /// every pattern must have the same static number.
1720     ///
1721     /// ```
1722     /// use regex_automata::meta::Regex;
1723     ///
1724     /// let len = |patterns| {
1725     ///     Regex::new_many(patterns).map(|re| re.static_captures_len())
1726     /// };
1727     ///
1728     /// assert_eq!(Some(1), len(&["a", "b"])?);
1729     /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1730     /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1731     /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1732     /// assert_eq!(None, len(&["(a)", "b"])?);
1733     /// assert_eq!(None, len(&["a", "(b)"])?);
1734     /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1735     /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1736     ///
1737     /// # Ok::<(), Box<dyn std::error::Error>>(())
1738     /// ```
1739     #[inline]
static_captures_len(&self) -> Option<usize>1740     pub fn static_captures_len(&self) -> Option<usize> {
1741         self.imp
1742             .info
1743             .props_union()
1744             .static_explicit_captures_len()
1745             .map(|len| len.saturating_add(1))
1746     }
1747 
1748     /// Return information about the capture groups in this `Regex`.
1749     ///
1750     /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1751     /// is responsible for maintaining a mapping between the capture groups
1752     /// in the concrete syntax of zero or more regex patterns and their
1753     /// internal representation used by some of the regex matchers. It is also
1754     /// responsible for maintaining a mapping between the name of each group
1755     /// (if one exists) and its corresponding group index.
1756     ///
1757     /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1758     /// which is some mutable space where group offsets are stored as a result
1759     /// of a search.
1760     ///
1761     /// # Example
1762     ///
1763     /// This shows some alternatives to [`Regex::create_captures`]:
1764     ///
1765     /// ```
1766     /// use regex_automata::{
1767     ///     meta::Regex,
1768     ///     util::captures::Captures,
1769     ///     Match, PatternID, Span,
1770     /// };
1771     ///
1772     /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1773     ///
1774     /// // This is equivalent to Regex::create_captures. It stores matching
1775     /// // offsets for all groups in the regex.
1776     /// let mut all = Captures::all(re.group_info().clone());
1777     /// re.captures("Bruce Springsteen", &mut all);
1778     /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1779     /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1780     /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1781     ///
1782     /// // In this version, we only care about the implicit groups, which
1783     /// // means offsets for the explicit groups will be unavailable. It can
1784     /// // sometimes be faster to ask for fewer groups, since the underlying
1785     /// // regex engine needs to do less work to keep track of them.
1786     /// let mut matches = Captures::matches(re.group_info().clone());
1787     /// re.captures("Bruce Springsteen", &mut matches);
1788     /// // We still get the overall match info.
1789     /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1790     /// // But now the explicit groups are unavailable.
1791     /// assert_eq!(None, matches.get_group_by_name("first"));
1792     /// assert_eq!(None, matches.get_group_by_name("last"));
1793     ///
1794     /// // Finally, in this version, we don't ask to keep track of offsets for
1795     /// // *any* groups. All we get back is whether a match occurred, and if
1796     /// // so, the ID of the pattern that matched.
1797     /// let mut empty = Captures::empty(re.group_info().clone());
1798     /// re.captures("Bruce Springsteen", &mut empty);
1799     /// // it's a match!
1800     /// assert!(empty.is_match());
1801     /// // for pattern ID 0
1802     /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1803     /// // Match offsets are unavailable.
1804     /// assert_eq!(None, empty.get_match());
1805     /// // And of course, explicit groups are unavailable too.
1806     /// assert_eq!(None, empty.get_group_by_name("first"));
1807     /// assert_eq!(None, empty.get_group_by_name("last"));
1808     ///
1809     /// # Ok::<(), Box<dyn std::error::Error>>(())
1810     /// ```
1811     #[inline]
group_info(&self) -> &GroupInfo1812     pub fn group_info(&self) -> &GroupInfo {
1813         self.imp.strat.group_info()
1814     }
1815 
1816     /// Returns the configuration object used to build this `Regex`.
1817     ///
1818     /// If no configuration object was explicitly passed, then the
1819     /// configuration returned represents the default.
1820     #[inline]
get_config(&self) -> &Config1821     pub fn get_config(&self) -> &Config {
1822         self.imp.info.config()
1823     }
1824 
1825     /// Returns true if this regex has a high chance of being "accelerated."
1826     ///
1827     /// The precise meaning of "accelerated" is specifically left unspecified,
1828     /// but the general meaning is that the search is a high likelihood of
1829     /// running faster than than a character-at-a-time loop inside a standard
1830     /// regex engine.
1831     ///
1832     /// When a regex is accelerated, it is only a *probabilistic* claim. That
1833     /// is, just because the regex is believed to be accelerated, that doesn't
1834     /// mean it will definitely execute searches very fast. Similarly, if a
1835     /// regex is *not* accelerated, that is also a probabilistic claim. That
1836     /// is, a regex for which `is_accelerated` returns `false` could still run
1837     /// searches more quickly than a regex for which `is_accelerated` returns
1838     /// `true`.
1839     ///
1840     /// Whether a regex is marked as accelerated or not is dependent on
1841     /// implementations details that may change in a semver compatible release.
1842     /// That is, a regex that is accelerated in a `x.y.1` release might not be
1843     /// accelerated in a `x.y.2` release.
1844     ///
1845     /// Basically, the value of acceleration boils down to a hedge: a hodge
1846     /// podge of internal heuristics combine to make a probabilistic guess
1847     /// that this regex search may run "fast." The value in knowing this from
1848     /// a caller's perspective is that it may act as a signal that no further
1849     /// work should be done to accelerate a search. For example, a grep-like
1850     /// tool might try to do some extra work extracting literals from a regex
1851     /// to create its own heuristic acceleration strategies. But it might
1852     /// choose to defer to this crate's acceleration strategy if one exists.
1853     /// This routine permits querying whether such a strategy is active for a
1854     /// particular regex.
1855     ///
1856     /// # Example
1857     ///
1858     /// ```
1859     /// use regex_automata::meta::Regex;
1860     ///
1861     /// // A simple literal is very likely to be accelerated.
1862     /// let re = Regex::new(r"foo")?;
1863     /// assert!(re.is_accelerated());
1864     ///
1865     /// // A regex with no literals is likely to not be accelerated.
1866     /// let re = Regex::new(r"\w")?;
1867     /// assert!(!re.is_accelerated());
1868     ///
1869     /// # Ok::<(), Box<dyn std::error::Error>>(())
1870     /// ```
1871     #[inline]
is_accelerated(&self) -> bool1872     pub fn is_accelerated(&self) -> bool {
1873         self.imp.strat.is_accelerated()
1874     }
1875 
1876     /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1877     ///
1878     /// Note that currently, there is no high level configuration for setting
1879     /// a limit on the specific value returned by this routine. Instead, the
1880     /// following routines can be used to control heap memory at a bit of a
1881     /// lower level:
1882     ///
1883     /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1884     /// allowed to be.
1885     /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1886     /// allowed to be.
1887     /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1888     /// DFA is permitted to allocate to store its transition table.
1889     /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1890     /// allowed to be.
1891     /// * [`Config::dfa_state_limit`] controls the conditions under which the
1892     /// meta regex engine will even attempt to build a fully compiled DFA.
1893     #[inline]
memory_usage(&self) -> usize1894     pub fn memory_usage(&self) -> usize {
1895         self.imp.strat.memory_usage()
1896     }
1897 }
1898 
1899 impl Clone for Regex {
clone(&self) -> Regex1900     fn clone(&self) -> Regex {
1901         let imp = Arc::clone(&self.imp);
1902         let pool = {
1903             let strat = Arc::clone(&imp.strat);
1904             let create: CachePoolFn = Box::new(move || strat.create_cache());
1905             Pool::new(create)
1906         };
1907         Regex { imp, pool }
1908     }
1909 }
1910 
1911 #[derive(Clone, Debug)]
1912 pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1913 
1914 #[derive(Clone, Debug)]
1915 struct RegexInfoI {
1916     config: Config,
1917     props: Vec<hir::Properties>,
1918     props_union: hir::Properties,
1919 }
1920 
1921 impl RegexInfo {
new(config: Config, hirs: &[&Hir]) -> RegexInfo1922     fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1923         // Collect all of the properties from each of the HIRs, and also
1924         // union them into one big set of properties representing all HIRs
1925         // as if they were in one big alternation.
1926         let mut props = vec![];
1927         for hir in hirs.iter() {
1928             props.push(hir.properties().clone());
1929         }
1930         let props_union = hir::Properties::union(&props);
1931 
1932         RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1933     }
1934 
config(&self) -> &Config1935     pub(crate) fn config(&self) -> &Config {
1936         &self.0.config
1937     }
1938 
props(&self) -> &[hir::Properties]1939     pub(crate) fn props(&self) -> &[hir::Properties] {
1940         &self.0.props
1941     }
1942 
props_union(&self) -> &hir::Properties1943     pub(crate) fn props_union(&self) -> &hir::Properties {
1944         &self.0.props_union
1945     }
1946 
pattern_len(&self) -> usize1947     pub(crate) fn pattern_len(&self) -> usize {
1948         self.props().len()
1949     }
1950 
memory_usage(&self) -> usize1951     pub(crate) fn memory_usage(&self) -> usize {
1952         self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
1953             + self.props_union().memory_usage()
1954     }
1955 
1956     /// Returns true when the search is guaranteed to be anchored. That is,
1957     /// when a match is reported, its offset is guaranteed to correspond to
1958     /// the start of the search.
1959     ///
1960     /// This includes returning true when `input` _isn't_ anchored but the
1961     /// underlying regex is.
1962     #[cfg_attr(feature = "perf-inline", inline(always))]
is_anchored_start(&self, input: &Input<'_>) -> bool1963     pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1964         input.get_anchored().is_anchored() || self.is_always_anchored_start()
1965     }
1966 
1967     /// Returns true when this regex is always anchored to the start of a
1968     /// search. And in particular, that regardless of an `Input` configuration,
1969     /// if any match is reported it must start at `0`.
1970     #[cfg_attr(feature = "perf-inline", inline(always))]
is_always_anchored_start(&self) -> bool1971     pub(crate) fn is_always_anchored_start(&self) -> bool {
1972         use regex_syntax::hir::Look;
1973         self.props_union().look_set_prefix().contains(Look::Start)
1974     }
1975 
1976     /// Returns true when this regex is always anchored to the end of a
1977     /// search. And in particular, that regardless of an `Input` configuration,
1978     /// if any match is reported it must end at the end of the haystack.
1979     #[cfg_attr(feature = "perf-inline", inline(always))]
is_always_anchored_end(&self) -> bool1980     pub(crate) fn is_always_anchored_end(&self) -> bool {
1981         use regex_syntax::hir::Look;
1982         self.props_union().look_set_suffix().contains(Look::End)
1983     }
1984 
1985     /// Returns true if and only if it is known that a match is impossible
1986     /// for the given input. This is useful for short-circuiting and avoiding
1987     /// running the regex engine if it's known no match can be reported.
1988     ///
1989     /// Note that this doesn't necessarily detect every possible case. For
1990     /// example, when `pattern_len() == 0`, a match is impossible, but that
1991     /// case is so rare that it's fine to be handled by the regex engine
1992     /// itself. That is, it's not worth the cost of adding it here in order to
1993     /// make it a little faster. The reason is that this is called for every
1994     /// search. so there is some cost to adding checks here. Arguably, some of
1995     /// the checks that are here already probably shouldn't be here...
1996     #[cfg_attr(feature = "perf-inline", inline(always))]
is_impossible(&self, input: &Input<'_>) -> bool1997     fn is_impossible(&self, input: &Input<'_>) -> bool {
1998         // The underlying regex is anchored, so if we don't start the search
1999         // at position 0, a match is impossible, because the anchor can only
2000         // match at position 0.
2001         if input.start() > 0 && self.is_always_anchored_start() {
2002             return true;
2003         }
2004         // Same idea, but for the end anchor.
2005         if input.end() < input.haystack().len()
2006             && self.is_always_anchored_end()
2007         {
2008             return true;
2009         }
2010         // If the haystack is smaller than the minimum length required, then
2011         // we know there can be no match.
2012         let minlen = match self.props_union().minimum_len() {
2013             None => return false,
2014             Some(minlen) => minlen,
2015         };
2016         if input.get_span().len() < minlen {
2017             return true;
2018         }
2019         // Same idea as minimum, but for maximum. This is trickier. We can
2020         // only apply the maximum when we know the entire span that we're
2021         // searching *has* to match according to the regex (and possibly the
2022         // input configuration). If we know there is too much for the regex
2023         // to match, we can bail early.
2024         //
2025         // I don't think we can apply the maximum otherwise unfortunately.
2026         if self.is_anchored_start(input) && self.is_always_anchored_end() {
2027             let maxlen = match self.props_union().maximum_len() {
2028                 None => return false,
2029                 Some(maxlen) => maxlen,
2030             };
2031             if input.get_span().len() > maxlen {
2032                 return true;
2033             }
2034         }
2035         false
2036     }
2037 }
2038 
2039 /// An iterator over all non-overlapping matches.
2040 ///
2041 /// The iterator yields a [`Match`] value until no more matches could be found.
2042 ///
2043 /// The lifetime parameters are as follows:
2044 ///
2045 /// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2046 /// * `'h` represents the lifetime of the haystack being searched.
2047 ///
2048 /// This iterator can be created with the [`Regex::find_iter`] method.
2049 #[derive(Debug)]
2050 pub struct FindMatches<'r, 'h> {
2051     re: &'r Regex,
2052     cache: CachePoolGuard<'r>,
2053     it: iter::Searcher<'h>,
2054 }
2055 
2056 impl<'r, 'h> FindMatches<'r, 'h> {
2057     /// Returns the `Regex` value that created this iterator.
2058     #[inline]
regex(&self) -> &'r Regex2059     pub fn regex(&self) -> &'r Regex {
2060         self.re
2061     }
2062 
2063     /// Returns the current `Input` associated with this iterator.
2064     ///
2065     /// The `start` position on the given `Input` may change during iteration,
2066     /// but all other values are guaranteed to remain invariant.
2067     #[inline]
input<'s>(&'s self) -> &'s Input<'h>2068     pub fn input<'s>(&'s self) -> &'s Input<'h> {
2069         self.it.input()
2070     }
2071 }
2072 
2073 impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
2074     type Item = Match;
2075 
2076     #[inline]
next(&mut self) -> Option<Match>2077     fn next(&mut self) -> Option<Match> {
2078         let FindMatches { re, ref mut cache, ref mut it } = *self;
2079         it.advance(|input| Ok(re.search_with(cache, input)))
2080     }
2081 
2082     #[inline]
count(self) -> usize2083     fn count(self) -> usize {
2084         // If all we care about is a count of matches, then we only need to
2085         // find the end position of each match. This can give us a 2x perf
2086         // boost in some cases, because it avoids needing to do a reverse scan
2087         // to find the start of a match.
2088         let FindMatches { re, mut cache, it } = self;
2089         // This does the deref for PoolGuard once instead of every iter.
2090         let cache = &mut *cache;
2091         it.into_half_matches_iter(
2092             |input| Ok(re.search_half_with(cache, input)),
2093         )
2094         .count()
2095     }
2096 }
2097 
2098 impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}
2099 
2100 /// An iterator over all non-overlapping leftmost matches with their capturing
2101 /// groups.
2102 ///
2103 /// The iterator yields a [`Captures`] value until no more matches could be
2104 /// found.
2105 ///
2106 /// The lifetime parameters are as follows:
2107 ///
2108 /// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2109 /// * `'h` represents the lifetime of the haystack being searched.
2110 ///
2111 /// This iterator can be created with the [`Regex::captures_iter`] method.
2112 #[derive(Debug)]
2113 pub struct CapturesMatches<'r, 'h> {
2114     re: &'r Regex,
2115     cache: CachePoolGuard<'r>,
2116     caps: Captures,
2117     it: iter::Searcher<'h>,
2118 }
2119 
2120 impl<'r, 'h> CapturesMatches<'r, 'h> {
2121     /// Returns the `Regex` value that created this iterator.
2122     #[inline]
regex(&self) -> &'r Regex2123     pub fn regex(&self) -> &'r Regex {
2124         self.re
2125     }
2126 
2127     /// Returns the current `Input` associated with this iterator.
2128     ///
2129     /// The `start` position on the given `Input` may change during iteration,
2130     /// but all other values are guaranteed to remain invariant.
2131     #[inline]
input<'s>(&'s self) -> &'s Input<'h>2132     pub fn input<'s>(&'s self) -> &'s Input<'h> {
2133         self.it.input()
2134     }
2135 }
2136 
2137 impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
2138     type Item = Captures;
2139 
2140     #[inline]
next(&mut self) -> Option<Captures>2141     fn next(&mut self) -> Option<Captures> {
2142         // Splitting 'self' apart seems necessary to appease borrowck.
2143         let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
2144             *self;
2145         let _ = it.advance(|input| {
2146             re.search_captures_with(cache, input, caps);
2147             Ok(caps.get_match())
2148         });
2149         if caps.is_match() {
2150             Some(caps.clone())
2151         } else {
2152             None
2153         }
2154     }
2155 
2156     #[inline]
count(self) -> usize2157     fn count(self) -> usize {
2158         let CapturesMatches { re, mut cache, it, .. } = self;
2159         // This does the deref for PoolGuard once instead of every iter.
2160         let cache = &mut *cache;
2161         it.into_half_matches_iter(
2162             |input| Ok(re.search_half_with(cache, input)),
2163         )
2164         .count()
2165     }
2166 }
2167 
2168 impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}
2169 
2170 /// Yields all substrings delimited by a regular expression match.
2171 ///
2172 /// The spans correspond to the offsets between matches.
2173 ///
2174 /// The lifetime parameters are as follows:
2175 ///
2176 /// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2177 /// * `'h` represents the lifetime of the haystack being searched.
2178 ///
2179 /// This iterator can be created with the [`Regex::split`] method.
2180 #[derive(Debug)]
2181 pub struct Split<'r, 'h> {
2182     finder: FindMatches<'r, 'h>,
2183     last: usize,
2184 }
2185 
2186 impl<'r, 'h> Split<'r, 'h> {
2187     /// Returns the current `Input` associated with this iterator.
2188     ///
2189     /// The `start` position on the given `Input` may change during iteration,
2190     /// but all other values are guaranteed to remain invariant.
2191     #[inline]
input<'s>(&'s self) -> &'s Input<'h>2192     pub fn input<'s>(&'s self) -> &'s Input<'h> {
2193         self.finder.input()
2194     }
2195 }
2196 
2197 impl<'r, 'h> Iterator for Split<'r, 'h> {
2198     type Item = Span;
2199 
next(&mut self) -> Option<Span>2200     fn next(&mut self) -> Option<Span> {
2201         match self.finder.next() {
2202             None => {
2203                 let len = self.finder.it.input().haystack().len();
2204                 if self.last > len {
2205                     None
2206                 } else {
2207                     let span = Span::from(self.last..len);
2208                     self.last = len + 1; // Next call will return None
2209                     Some(span)
2210                 }
2211             }
2212             Some(m) => {
2213                 let span = Span::from(self.last..m.start());
2214                 self.last = m.end();
2215                 Some(span)
2216             }
2217         }
2218     }
2219 }
2220 
2221 impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2222 
2223 /// Yields at most `N` spans delimited by a regular expression match.
2224 ///
2225 /// The spans correspond to the offsets between matches. The last span will be
2226 /// whatever remains after splitting.
2227 ///
2228 /// The lifetime parameters are as follows:
2229 ///
2230 /// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2231 /// * `'h` represents the lifetime of the haystack being searched.
2232 ///
2233 /// This iterator can be created with the [`Regex::splitn`] method.
2234 #[derive(Debug)]
2235 pub struct SplitN<'r, 'h> {
2236     splits: Split<'r, 'h>,
2237     limit: usize,
2238 }
2239 
2240 impl<'r, 'h> SplitN<'r, 'h> {
2241     /// Returns the current `Input` associated with this iterator.
2242     ///
2243     /// The `start` position on the given `Input` may change during iteration,
2244     /// but all other values are guaranteed to remain invariant.
2245     #[inline]
input<'s>(&'s self) -> &'s Input<'h>2246     pub fn input<'s>(&'s self) -> &'s Input<'h> {
2247         self.splits.input()
2248     }
2249 }
2250 
2251 impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2252     type Item = Span;
2253 
next(&mut self) -> Option<Span>2254     fn next(&mut self) -> Option<Span> {
2255         if self.limit == 0 {
2256             return None;
2257         }
2258 
2259         self.limit -= 1;
2260         if self.limit > 0 {
2261             return self.splits.next();
2262         }
2263 
2264         let len = self.splits.finder.it.input().haystack().len();
2265         if self.splits.last > len {
2266             // We've already returned all substrings.
2267             None
2268         } else {
2269             // self.n == 0, so future calls will return None immediately
2270             Some(Span::from(self.splits.last..len))
2271         }
2272     }
2273 
size_hint(&self) -> (usize, Option<usize>)2274     fn size_hint(&self) -> (usize, Option<usize>) {
2275         (0, Some(self.limit))
2276     }
2277 }
2278 
2279 impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2280 
2281 /// Represents mutable scratch space used by regex engines during a search.
2282 ///
2283 /// Most of the regex engines in this crate require some kind of
2284 /// mutable state in order to execute a search. This mutable state is
2285 /// explicitly separated from the the core regex object (such as a
2286 /// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2287 /// object can be shared across multiple threads simultaneously without any
2288 /// synchronization. Conversely, a `Cache` must either be duplicated if using
2289 /// the same `Regex` from multiple threads, or else there must be some kind of
2290 /// synchronization that guarantees exclusive access while it's in use by one
2291 /// thread.
2292 ///
2293 /// A `Regex` attempts to do this synchronization for you by using a thread
2294 /// pool internally. Its size scales roughly with the number of simultaneous
2295 /// regex searches.
2296 ///
2297 /// For cases where one does not want to rely on a `Regex`'s internal thread
2298 /// pool, lower level routines such as [`Regex::search_with`] are provided
2299 /// that permit callers to pass a `Cache` into the search routine explicitly.
2300 ///
2301 /// General advice is that the thread pool is often more than good enough.
2302 /// However, it may be possible to observe the effects of its latency,
2303 /// especially when searching many small haystacks from many threads
2304 /// simultaneously.
2305 ///
2306 /// Caches can be created from their corresponding `Regex` via
2307 /// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2308 /// that created it, or the `Regex` that was most recently used to reset it
2309 /// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2310 /// panics or incorrect results.
2311 ///
2312 /// # Example
2313 ///
2314 /// ```
2315 /// use regex_automata::{meta::Regex, Input, Match};
2316 ///
2317 /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2318 /// let mut cache = re.create_cache();
2319 /// let input = Input::new("crazy janey and her mission man");
2320 /// assert_eq!(
2321 ///     Some(Match::must(0, 20..31)),
2322 ///     re.search_with(&mut cache, &input),
2323 /// );
2324 ///
2325 /// # Ok::<(), Box<dyn std::error::Error>>(())
2326 /// ```
2327 #[derive(Debug, Clone)]
2328 pub struct Cache {
2329     pub(crate) capmatches: Captures,
2330     pub(crate) pikevm: wrappers::PikeVMCache,
2331     pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2332     pub(crate) onepass: wrappers::OnePassCache,
2333     pub(crate) hybrid: wrappers::HybridCache,
2334     pub(crate) revhybrid: wrappers::ReverseHybridCache,
2335 }
2336 
2337 impl Cache {
2338     /// Creates a new `Cache` for use with this regex.
2339     ///
2340     /// The cache returned should only be used for searches for the given
2341     /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2342     /// must call [`Cache::reset`] with that `Regex`.
new(re: &Regex) -> Cache2343     pub fn new(re: &Regex) -> Cache {
2344         re.create_cache()
2345     }
2346 
2347     /// Reset this cache such that it can be used for searching with the given
2348     /// `Regex` (and only that `Regex`).
2349     ///
2350     /// A cache reset permits potentially reusing memory already allocated in
2351     /// this cache with a different `Regex`.
2352     ///
2353     /// # Example
2354     ///
2355     /// This shows how to re-purpose a cache for use with a different `Regex`.
2356     ///
2357     /// ```
2358     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2359     /// use regex_automata::{meta::Regex, Match, Input};
2360     ///
2361     /// let re1 = Regex::new(r"\w")?;
2362     /// let re2 = Regex::new(r"\W")?;
2363     ///
2364     /// let mut cache = re1.create_cache();
2365     /// assert_eq!(
2366     ///     Some(Match::must(0, 0..2)),
2367     ///     re1.search_with(&mut cache, &Input::new("Δ")),
2368     /// );
2369     ///
2370     /// // Using 'cache' with re2 is not allowed. It may result in panics or
2371     /// // incorrect results. In order to re-purpose the cache, we must reset
2372     /// // it with the Regex we'd like to use it with.
2373     /// //
2374     /// // Similarly, after this reset, using the cache with 're1' is also not
2375     /// // allowed.
2376     /// cache.reset(&re2);
2377     /// assert_eq!(
2378     ///     Some(Match::must(0, 0..3)),
2379     ///     re2.search_with(&mut cache, &Input::new("☃")),
2380     /// );
2381     ///
2382     /// # Ok::<(), Box<dyn std::error::Error>>(())
2383     /// ```
reset(&mut self, re: &Regex)2384     pub fn reset(&mut self, re: &Regex) {
2385         re.imp.strat.reset_cache(self)
2386     }
2387 
2388     /// Returns the heap memory usage, in bytes, of this cache.
2389     ///
2390     /// This does **not** include the stack size used up by this cache. To
2391     /// compute that, use `std::mem::size_of::<Cache>()`.
memory_usage(&self) -> usize2392     pub fn memory_usage(&self) -> usize {
2393         let mut bytes = 0;
2394         bytes += self.pikevm.memory_usage();
2395         bytes += self.backtrack.memory_usage();
2396         bytes += self.onepass.memory_usage();
2397         bytes += self.hybrid.memory_usage();
2398         bytes += self.revhybrid.memory_usage();
2399         bytes
2400     }
2401 }
2402 
2403 /// An object describing the configuration of a `Regex`.
2404 ///
2405 /// This configuration only includes options for the
2406 /// non-syntax behavior of a `Regex`, and can be applied via the
2407 /// [`Builder::configure`] method. For configuring the syntax options, see
2408 /// [`util::syntax::Config`](crate::util::syntax::Config).
2409 ///
2410 /// # Example: lower the NFA size limit
2411 ///
2412 /// In some cases, the default size limit might be too big. The size limit can
2413 /// be lowered, which will prevent large regex patterns from compiling.
2414 ///
2415 /// ```
2416 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2417 /// use regex_automata::meta::Regex;
2418 ///
2419 /// let result = Regex::builder()
2420 ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2421 ///     // Not even 20KB is enough to build a single large Unicode class!
2422 ///     .build(r"\pL");
2423 /// assert!(result.is_err());
2424 ///
2425 /// # Ok::<(), Box<dyn std::error::Error>>(())
2426 /// ```
2427 #[derive(Clone, Debug, Default)]
2428 pub struct Config {
2429     // As with other configuration types in this crate, we put all our knobs
2430     // in options so that we can distinguish between "default" and "not set."
2431     // This makes it possible to easily combine multiple configurations
2432     // without default values overwriting explicitly specified values. See the
2433     // 'overwrite' method.
2434     //
2435     // For docs on the fields below, see the corresponding method setters.
2436     match_kind: Option<MatchKind>,
2437     utf8_empty: Option<bool>,
2438     autopre: Option<bool>,
2439     pre: Option<Option<Prefilter>>,
2440     which_captures: Option<WhichCaptures>,
2441     nfa_size_limit: Option<Option<usize>>,
2442     onepass_size_limit: Option<Option<usize>>,
2443     hybrid_cache_capacity: Option<usize>,
2444     hybrid: Option<bool>,
2445     dfa: Option<bool>,
2446     dfa_size_limit: Option<Option<usize>>,
2447     dfa_state_limit: Option<Option<usize>>,
2448     onepass: Option<bool>,
2449     backtrack: Option<bool>,
2450     byte_classes: Option<bool>,
2451     line_terminator: Option<u8>,
2452 }
2453 
2454 impl Config {
2455     /// Create a new configuration object for a `Regex`.
new() -> Config2456     pub fn new() -> Config {
2457         Config::default()
2458     }
2459 
2460     /// Set the match semantics for a `Regex`.
2461     ///
2462     /// The default value is [`MatchKind::LeftmostFirst`].
2463     ///
2464     /// # Example
2465     ///
2466     /// ```
2467     /// use regex_automata::{meta::Regex, Match, MatchKind};
2468     ///
2469     /// // By default, leftmost-first semantics are used, which
2470     /// // disambiguates matches at the same position by selecting
2471     /// // the one that corresponds earlier in the pattern.
2472     /// let re = Regex::new("sam|samwise")?;
2473     /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2474     ///
2475     /// // But with 'all' semantics, match priority is ignored
2476     /// // and all match states are included. When coupled with
2477     /// // a leftmost search, the search will report the last
2478     /// // possible match.
2479     /// let re = Regex::builder()
2480     ///     .configure(Regex::config().match_kind(MatchKind::All))
2481     ///     .build("sam|samwise")?;
2482     /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2483     /// // Beware that this can lead to skipping matches!
2484     /// // Usually 'all' is used for anchored reverse searches
2485     /// // only, or for overlapping searches.
2486     /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2487     ///
2488     /// # Ok::<(), Box<dyn std::error::Error>>(())
2489     /// ```
match_kind(self, kind: MatchKind) -> Config2490     pub fn match_kind(self, kind: MatchKind) -> Config {
2491         Config { match_kind: Some(kind), ..self }
2492     }
2493 
2494     /// Toggles whether empty matches are permitted to occur between the code
2495     /// units of a UTF-8 encoded codepoint.
2496     ///
2497     /// This should generally be enabled when search a `&str` or anything that
2498     /// you otherwise know is valid UTF-8. It should be disabled in all other
2499     /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2500     /// then behavior is unspecified.
2501     ///
2502     /// By default, this is enabled.
2503     ///
2504     /// # Example
2505     ///
2506     /// ```
2507     /// use regex_automata::{meta::Regex, Match};
2508     ///
2509     /// let re = Regex::new("")?;
2510     /// let got: Vec<Match> = re.find_iter("☃").collect();
2511     /// // Matches only occur at the beginning and end of the snowman.
2512     /// assert_eq!(got, vec![
2513     ///     Match::must(0, 0..0),
2514     ///     Match::must(0, 3..3),
2515     /// ]);
2516     ///
2517     /// let re = Regex::builder()
2518     ///     .configure(Regex::config().utf8_empty(false))
2519     ///     .build("")?;
2520     /// let got: Vec<Match> = re.find_iter("☃").collect();
2521     /// // Matches now occur at every position!
2522     /// assert_eq!(got, vec![
2523     ///     Match::must(0, 0..0),
2524     ///     Match::must(0, 1..1),
2525     ///     Match::must(0, 2..2),
2526     ///     Match::must(0, 3..3),
2527     /// ]);
2528     ///
2529     /// Ok::<(), Box<dyn std::error::Error>>(())
2530     /// ```
utf8_empty(self, yes: bool) -> Config2531     pub fn utf8_empty(self, yes: bool) -> Config {
2532         Config { utf8_empty: Some(yes), ..self }
2533     }
2534 
2535     /// Toggles whether automatic prefilter support is enabled.
2536     ///
2537     /// If this is disabled and [`Config::prefilter`] is not set, then the
2538     /// meta regex engine will not use any prefilters. This can sometimes
2539     /// be beneficial in cases where you know (or have measured) that the
2540     /// prefilter leads to overall worse search performance.
2541     ///
2542     /// By default, this is enabled.
2543     ///
2544     /// # Example
2545     ///
2546     /// ```
2547     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2548     /// use regex_automata::{meta::Regex, Match};
2549     ///
2550     /// let re = Regex::builder()
2551     ///     .configure(Regex::config().auto_prefilter(false))
2552     ///     .build(r"Bruce \w+")?;
2553     /// let hay = "Hello Bruce Springsteen!";
2554     /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2555     ///
2556     /// Ok::<(), Box<dyn std::error::Error>>(())
2557     /// ```
auto_prefilter(self, yes: bool) -> Config2558     pub fn auto_prefilter(self, yes: bool) -> Config {
2559         Config { autopre: Some(yes), ..self }
2560     }
2561 
2562     /// Overrides and sets the prefilter to use inside a `Regex`.
2563     ///
2564     /// This permits one to forcefully set a prefilter in cases where the
2565     /// caller knows better than whatever the automatic prefilter logic is
2566     /// capable of.
2567     ///
2568     /// By default, this is set to `None` and an automatic prefilter will be
2569     /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2570     /// enabled, which it is by default.)
2571     ///
2572     /// # Example
2573     ///
2574     /// This example shows how to set your own prefilter. In the case of a
2575     /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2576     /// constructed in a way that it will look for occurrences of `Bruce `.
2577     /// In most cases, this is the best choice. But in some cases, it may be
2578     /// the case that running `memchr` on `B` is the best choice. One can
2579     /// achieve that behavior by overriding the automatic prefilter logic
2580     /// and providing a prefilter that just matches `B`.
2581     ///
2582     /// ```
2583     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2584     /// use regex_automata::{
2585     ///     meta::Regex,
2586     ///     util::prefilter::Prefilter,
2587     ///     Match, MatchKind,
2588     /// };
2589     ///
2590     /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2591     ///     .expect("a prefilter");
2592     /// let re = Regex::builder()
2593     ///     .configure(Regex::config().prefilter(Some(pre)))
2594     ///     .build(r"Bruce \w+")?;
2595     /// let hay = "Hello Bruce Springsteen!";
2596     /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2597     ///
2598     /// # Ok::<(), Box<dyn std::error::Error>>(())
2599     /// ```
2600     ///
2601     /// # Example: incorrect prefilters can lead to incorrect results!
2602     ///
2603     /// Be warned that setting an incorrect prefilter can lead to missed
2604     /// matches. So if you use this option, ensure your prefilter can _never_
2605     /// report false negatives. (A false positive is, on the other hand, quite
2606     /// okay and generally unavoidable.)
2607     ///
2608     /// ```
2609     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2610     /// use regex_automata::{
2611     ///     meta::Regex,
2612     ///     util::prefilter::Prefilter,
2613     ///     Match, MatchKind,
2614     /// };
2615     ///
2616     /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2617     ///     .expect("a prefilter");
2618     /// let re = Regex::builder()
2619     ///     .configure(Regex::config().prefilter(Some(pre)))
2620     ///     .build(r"Bruce \w+")?;
2621     /// let hay = "Hello Bruce Springsteen!";
2622     /// // Oops! No match found, but there should be one!
2623     /// assert_eq!(None, re.find(hay));
2624     ///
2625     /// # Ok::<(), Box<dyn std::error::Error>>(())
2626     /// ```
prefilter(self, pre: Option<Prefilter>) -> Config2627     pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2628         Config { pre: Some(pre), ..self }
2629     }
2630 
2631     /// Configures what kinds of groups are compiled as "capturing" in the
2632     /// underlying regex engine.
2633     ///
2634     /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2635     /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2636     /// overhead of capture states for explicit groups.
2637     ///
2638     /// Note that another approach to avoiding the overhead of capture groups
2639     /// is by using non-capturing groups in the regex pattern. That is,
2640     /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2641     /// the concrete syntax but know that you don't need the underlying capture
2642     /// states. For example, using `WhichCaptures::Implicit` will behave as if
2643     /// all explicit capturing groups in the pattern were non-capturing.
2644     ///
2645     /// Setting this to `WhichCaptures::None` is usually not the right thing to
2646     /// do. When no capture states are compiled, some regex engines (such as
2647     /// the `PikeVM`) won't be able to report match offsets. This will manifest
2648     /// as no match being found.
2649     ///
2650     /// # Example
2651     ///
2652     /// This example demonstrates how the results of capture groups can change
2653     /// based on this option. First we show the default (all capture groups in
2654     /// the pattern are capturing):
2655     ///
2656     /// ```
2657     /// use regex_automata::{meta::Regex, Match, Span};
2658     ///
2659     /// let re = Regex::new(r"foo([0-9]+)bar")?;
2660     /// let hay = "foo123bar";
2661     ///
2662     /// let mut caps = re.create_captures();
2663     /// re.captures(hay, &mut caps);
2664     /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2665     /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2666     ///
2667     /// Ok::<(), Box<dyn std::error::Error>>(())
2668     /// ```
2669     ///
2670     /// And now we show the behavior when we only include implicit capture
2671     /// groups. In this case, we can only find the overall match span, but the
2672     /// spans of any other explicit group don't exist because they are treated
2673     /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2674     /// there is no real point in using [`Regex::captures`] since it will never
2675     /// be able to report more information than [`Regex::find`].)
2676     ///
2677     /// ```
2678     /// use regex_automata::{
2679     ///     meta::Regex,
2680     ///     nfa::thompson::WhichCaptures,
2681     ///     Match,
2682     ///     Span,
2683     /// };
2684     ///
2685     /// let re = Regex::builder()
2686     ///     .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2687     ///     .build(r"foo([0-9]+)bar")?;
2688     /// let hay = "foo123bar";
2689     ///
2690     /// let mut caps = re.create_captures();
2691     /// re.captures(hay, &mut caps);
2692     /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2693     /// assert_eq!(None, caps.get_group(1));
2694     ///
2695     /// Ok::<(), Box<dyn std::error::Error>>(())
2696     /// ```
which_captures(mut self, which_captures: WhichCaptures) -> Config2697     pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2698         self.which_captures = Some(which_captures);
2699         self
2700     }
2701 
2702     /// Sets the size limit, in bytes, to enforce on the construction of every
2703     /// NFA build by the meta regex engine.
2704     ///
2705     /// Setting it to `None` disables the limit. This is not recommended if
2706     /// you're compiling untrusted patterns.
2707     ///
2708     /// Note that this limit is applied to _each_ NFA built, and if any of
2709     /// them exceed the limit, then construction will fail. This limit does
2710     /// _not_ correspond to the total memory used by all NFAs in the meta regex
2711     /// engine.
2712     ///
2713     /// This defaults to some reasonable number that permits most reasonable
2714     /// patterns.
2715     ///
2716     /// # Example
2717     ///
2718     /// ```
2719     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2720     /// use regex_automata::meta::Regex;
2721     ///
2722     /// let result = Regex::builder()
2723     ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2724     ///     // Not even 20KB is enough to build a single large Unicode class!
2725     ///     .build(r"\pL");
2726     /// assert!(result.is_err());
2727     ///
2728     /// // But notice that building such a regex with the exact same limit
2729     /// // can succeed depending on other aspects of the configuration. For
2730     /// // example, a single *forward* NFA will (at time of writing) fit into
2731     /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2732     /// // So if one configures a meta regex such that a reverse NFA is never
2733     /// // needed and thus never built, then the 20KB limit will be enough for
2734     /// // a pattern like \pL!
2735     /// let result = Regex::builder()
2736     ///     .configure(Regex::config()
2737     ///         .nfa_size_limit(Some(20 * (1<<10)))
2738     ///         // The DFAs are the only thing that (currently) need a reverse
2739     ///         // NFA. So if both are disabled, the meta regex engine will
2740     ///         // skip building the reverse NFA. Note that this isn't an API
2741     ///         // guarantee. A future semver compatible version may introduce
2742     ///         // new use cases for a reverse NFA.
2743     ///         .hybrid(false)
2744     ///         .dfa(false)
2745     ///     )
2746     ///     // Not even 20KB is enough to build a single large Unicode class!
2747     ///     .build(r"\pL");
2748     /// assert!(result.is_ok());
2749     ///
2750     /// # Ok::<(), Box<dyn std::error::Error>>(())
2751     /// ```
nfa_size_limit(self, limit: Option<usize>) -> Config2752     pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2753         Config { nfa_size_limit: Some(limit), ..self }
2754     }
2755 
2756     /// Sets the size limit, in bytes, for the one-pass DFA.
2757     ///
2758     /// Setting it to `None` disables the limit. Disabling the limit is
2759     /// strongly discouraged when compiling untrusted patterns. Even if the
2760     /// patterns are trusted, it still may not be a good idea, since a one-pass
2761     /// DFA can use a lot of memory. With that said, as the size of a regex
2762     /// increases, the likelihood of it being one-pass likely decreases.
2763     ///
2764     /// This defaults to some reasonable number that permits most reasonable
2765     /// one-pass patterns.
2766     ///
2767     /// # Example
2768     ///
2769     /// This shows how to set the one-pass DFA size limit. Note that since
2770     /// a one-pass DFA is an optional component of the meta regex engine,
2771     /// this size limit only impacts what is built internally and will never
2772     /// determine whether a `Regex` itself fails to build.
2773     ///
2774     /// ```
2775     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2776     /// use regex_automata::meta::Regex;
2777     ///
2778     /// let result = Regex::builder()
2779     ///     .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2780     ///     .build(r"\pL{5}");
2781     /// assert!(result.is_ok());
2782     /// # Ok::<(), Box<dyn std::error::Error>>(())
2783     /// ```
onepass_size_limit(self, limit: Option<usize>) -> Config2784     pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2785         Config { onepass_size_limit: Some(limit), ..self }
2786     }
2787 
2788     /// Set the cache capacity, in bytes, for the lazy DFA.
2789     ///
2790     /// The cache capacity of the lazy DFA determines approximately how much
2791     /// heap memory it is allowed to use to store its state transitions. The
2792     /// state transitions are computed at search time, and if the cache fills
2793     /// up it, it is cleared. At this point, any previously generated state
2794     /// transitions are lost and are re-generated if they're needed again.
2795     ///
2796     /// This sort of cache filling and clearing works quite well _so long as
2797     /// cache clearing happens infrequently_. If it happens too often, then the
2798     /// meta regex engine will stop using the lazy DFA and switch over to a
2799     /// different regex engine.
2800     ///
2801     /// In cases where the cache is cleared too often, it may be possible to
2802     /// give the cache more space and reduce (or eliminate) how often it is
2803     /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2804     /// used at all if its cache capacity isn't big enough.
2805     ///
2806     /// The capacity set here is a _limit_ on how much memory is used. The
2807     /// actual memory used is only allocated as it's needed.
2808     ///
2809     /// Determining the right value for this is a little tricky and will likely
2810     /// required some profiling. Enabling the `logging` feature and setting the
2811     /// log level to `trace` will also tell you how often the cache is being
2812     /// cleared.
2813     ///
2814     /// # Example
2815     ///
2816     /// ```
2817     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2818     /// use regex_automata::meta::Regex;
2819     ///
2820     /// let result = Regex::builder()
2821     ///     .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2822     ///     .build(r"\pL{5}");
2823     /// assert!(result.is_ok());
2824     /// # Ok::<(), Box<dyn std::error::Error>>(())
2825     /// ```
hybrid_cache_capacity(self, limit: usize) -> Config2826     pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2827         Config { hybrid_cache_capacity: Some(limit), ..self }
2828     }
2829 
2830     /// Sets the size limit, in bytes, for heap memory used for a fully
2831     /// compiled DFA.
2832     ///
2833     /// **NOTE:** If you increase this, you'll likely also need to increase
2834     /// [`Config::dfa_state_limit`].
2835     ///
2836     /// In contrast to the lazy DFA, building a full DFA requires computing
2837     /// all of its state transitions up front. This can be a very expensive
2838     /// process, and runs in worst case `2^n` time and space (where `n` is
2839     /// proportional to the size of the regex). However, a full DFA unlocks
2840     /// some additional optimization opportunities.
2841     ///
2842     /// Because full DFAs can be so expensive, the default limits for them are
2843     /// incredibly small. Generally speaking, if your regex is moderately big
2844     /// or if you're using Unicode features (`\w` is Unicode-aware by default
2845     /// for example), then you can expect that the meta regex engine won't even
2846     /// attempt to build a DFA for it.
2847     ///
2848     /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2849     /// meta regex will not use any sort of limits when deciding whether to
2850     /// build a DFA. This in turn makes construction of a `Regex` take
2851     /// worst case exponential time and space. Even short patterns can result
2852     /// in huge space blow ups. So it is strongly recommended to keep some kind
2853     /// of limit set!
2854     ///
2855     /// The default is set to a small number that permits some simple regexes
2856     /// to get compiled into DFAs in reasonable time.
2857     ///
2858     /// # Example
2859     ///
2860     /// ```
2861     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2862     /// use regex_automata::meta::Regex;
2863     ///
2864     /// let result = Regex::builder()
2865     ///     // 100MB is much bigger than the default.
2866     ///     .configure(Regex::config()
2867     ///         .dfa_size_limit(Some(100 * (1<<20)))
2868     ///         // We don't care about size too much here, so just
2869     ///         // remove the NFA state limit altogether.
2870     ///         .dfa_state_limit(None))
2871     ///     .build(r"\pL{5}");
2872     /// assert!(result.is_ok());
2873     /// # Ok::<(), Box<dyn std::error::Error>>(())
2874     /// ```
dfa_size_limit(self, limit: Option<usize>) -> Config2875     pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2876         Config { dfa_size_limit: Some(limit), ..self }
2877     }
2878 
2879     /// Sets a limit on the total number of NFA states, beyond which, a full
2880     /// DFA is not attempted to be compiled.
2881     ///
2882     /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2883     /// where as `Config::dfa_size_limit` is applied by attempting to construct
2884     /// a DFA, this limit is used to avoid the attempt in the first place. This
2885     /// is useful to avoid hefty initialization costs associated with building
2886     /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2887     ///
2888     /// By default, this is set to a very small number.
2889     ///
2890     /// # Example
2891     ///
2892     /// ```
2893     /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2894     /// use regex_automata::meta::Regex;
2895     ///
2896     /// let result = Regex::builder()
2897     ///     .configure(Regex::config()
2898     ///         // Sometimes the default state limit rejects DFAs even
2899     ///         // if they would fit in the size limit. Here, we disable
2900     ///         // the check on the number of NFA states and just rely on
2901     ///         // the size limit.
2902     ///         .dfa_state_limit(None))
2903     ///     .build(r"(?-u)\w{30}");
2904     /// assert!(result.is_ok());
2905     /// # Ok::<(), Box<dyn std::error::Error>>(())
2906     /// ```
dfa_state_limit(self, limit: Option<usize>) -> Config2907     pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2908         Config { dfa_state_limit: Some(limit), ..self }
2909     }
2910 
2911     /// Whether to attempt to shrink the size of the alphabet for the regex
2912     /// pattern or not. When enabled, the alphabet is shrunk into a set of
2913     /// equivalence classes, where every byte in the same equivalence class
2914     /// cannot discriminate between a match or non-match.
2915     ///
2916     /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2917     /// does not yield any speed advantages. Indeed, disabling it can result
2918     /// in much higher memory usage. Disabling byte classes is useful for
2919     /// debugging the actual generated transitions because it lets one see the
2920     /// transitions defined on actual bytes instead of the equivalence classes.
2921     ///
2922     /// This option is enabled by default and should never be disabled unless
2923     /// one is debugging the meta regex engine's internals.
2924     ///
2925     /// # Example
2926     ///
2927     /// ```
2928     /// use regex_automata::{meta::Regex, Match};
2929     ///
2930     /// let re = Regex::builder()
2931     ///     .configure(Regex::config().byte_classes(false))
2932     ///     .build(r"[a-z]+")?;
2933     /// let hay = "!!quux!!";
2934     /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2935     ///
2936     /// # Ok::<(), Box<dyn std::error::Error>>(())
2937     /// ```
byte_classes(self, yes: bool) -> Config2938     pub fn byte_classes(self, yes: bool) -> Config {
2939         Config { byte_classes: Some(yes), ..self }
2940     }
2941 
2942     /// Set the line terminator to be used by the `^` and `$` anchors in
2943     /// multi-line mode.
2944     ///
2945     /// This option has no effect when CRLF mode is enabled. That is,
2946     /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
2947     /// `\r` and `\n` as line terminators (and will never match between a `\r`
2948     /// and a `\n`).
2949     ///
2950     /// By default, `\n` is the line terminator.
2951     ///
2952     /// **Warning**: This does not change the behavior of `.`. To do that,
2953     /// you'll need to configure the syntax option
2954     /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
2955     /// in addition to this. Otherwise, `.` will continue to match any
2956     /// character other than `\n`.
2957     ///
2958     /// # Example
2959     ///
2960     /// ```
2961     /// use regex_automata::{meta::Regex, util::syntax, Match};
2962     ///
2963     /// let re = Regex::builder()
2964     ///     .syntax(syntax::Config::new().multi_line(true))
2965     ///     .configure(Regex::config().line_terminator(b'\x00'))
2966     ///     .build(r"^foo$")?;
2967     /// let hay = "\x00foo\x00";
2968     /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
2969     ///
2970     /// # Ok::<(), Box<dyn std::error::Error>>(())
2971     /// ```
line_terminator(self, byte: u8) -> Config2972     pub fn line_terminator(self, byte: u8) -> Config {
2973         Config { line_terminator: Some(byte), ..self }
2974     }
2975 
2976     /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
2977     /// be available for use by the meta regex engine.
2978     ///
2979     /// Enabling this does not necessarily mean that the lazy DFA will
2980     /// definitely be used. It just means that it will be _available_ for use
2981     /// if the meta regex engine thinks it will be useful.
2982     ///
2983     /// When the `hybrid` crate feature is enabled, then this is enabled by
2984     /// default. Otherwise, if the crate feature is disabled, then this is
2985     /// always disabled, regardless of its setting by the caller.
hybrid(self, yes: bool) -> Config2986     pub fn hybrid(self, yes: bool) -> Config {
2987         Config { hybrid: Some(yes), ..self }
2988     }
2989 
2990     /// Toggle whether a fully compiled DFA should be available for use by the
2991     /// meta regex engine.
2992     ///
2993     /// Enabling this does not necessarily mean that a DFA will definitely be
2994     /// used. It just means that it will be _available_ for use if the meta
2995     /// regex engine thinks it will be useful.
2996     ///
2997     /// When the `dfa-build` crate feature is enabled, then this is enabled by
2998     /// default. Otherwise, if the crate feature is disabled, then this is
2999     /// always disabled, regardless of its setting by the caller.
dfa(self, yes: bool) -> Config3000     pub fn dfa(self, yes: bool) -> Config {
3001         Config { dfa: Some(yes), ..self }
3002     }
3003 
3004     /// Toggle whether a one-pass DFA should be available for use by the meta
3005     /// regex engine.
3006     ///
3007     /// Enabling this does not necessarily mean that a one-pass DFA will
3008     /// definitely be used. It just means that it will be _available_ for
3009     /// use if the meta regex engine thinks it will be useful. (Indeed, a
3010     /// one-pass DFA can only be used when the regex is one-pass. See the
3011     /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
3012     ///
3013     /// When the `dfa-onepass` crate feature is enabled, then this is enabled
3014     /// by default. Otherwise, if the crate feature is disabled, then this is
3015     /// always disabled, regardless of its setting by the caller.
onepass(self, yes: bool) -> Config3016     pub fn onepass(self, yes: bool) -> Config {
3017         Config { onepass: Some(yes), ..self }
3018     }
3019 
3020     /// Toggle whether a bounded backtracking regex engine should be available
3021     /// for use by the meta regex engine.
3022     ///
3023     /// Enabling this does not necessarily mean that a bounded backtracker will
3024     /// definitely be used. It just means that it will be _available_ for use
3025     /// if the meta regex engine thinks it will be useful.
3026     ///
3027     /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
3028     /// by default. Otherwise, if the crate feature is disabled, then this is
3029     /// always disabled, regardless of its setting by the caller.
backtrack(self, yes: bool) -> Config3030     pub fn backtrack(self, yes: bool) -> Config {
3031         Config { backtrack: Some(yes), ..self }
3032     }
3033 
3034     /// Returns the match kind on this configuration, as set by
3035     /// [`Config::match_kind`].
3036     ///
3037     /// If it was not explicitly set, then a default value is returned.
get_match_kind(&self) -> MatchKind3038     pub fn get_match_kind(&self) -> MatchKind {
3039         self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3040     }
3041 
3042     /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
3043     /// set by [`Config::utf8_empty`].
3044     ///
3045     /// If it was not explicitly set, then a default value is returned.
get_utf8_empty(&self) -> bool3046     pub fn get_utf8_empty(&self) -> bool {
3047         self.utf8_empty.unwrap_or(true)
3048     }
3049 
3050     /// Returns whether automatic prefilters are enabled, as set by
3051     /// [`Config::auto_prefilter`].
3052     ///
3053     /// If it was not explicitly set, then a default value is returned.
get_auto_prefilter(&self) -> bool3054     pub fn get_auto_prefilter(&self) -> bool {
3055         self.autopre.unwrap_or(true)
3056     }
3057 
3058     /// Returns a manually set prefilter, if one was set by
3059     /// [`Config::prefilter`].
3060     ///
3061     /// If it was not explicitly set, then a default value is returned.
get_prefilter(&self) -> Option<&Prefilter>3062     pub fn get_prefilter(&self) -> Option<&Prefilter> {
3063         self.pre.as_ref().unwrap_or(&None).as_ref()
3064     }
3065 
3066     /// Returns the capture configuration, as set by
3067     /// [`Config::which_captures`].
3068     ///
3069     /// If it was not explicitly set, then a default value is returned.
get_which_captures(&self) -> WhichCaptures3070     pub fn get_which_captures(&self) -> WhichCaptures {
3071         self.which_captures.unwrap_or(WhichCaptures::All)
3072     }
3073 
3074     /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
3075     ///
3076     /// If it was not explicitly set, then a default value is returned.
get_nfa_size_limit(&self) -> Option<usize>3077     pub fn get_nfa_size_limit(&self) -> Option<usize> {
3078         self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3079     }
3080 
3081     /// Returns one-pass DFA size limit, as set by
3082     /// [`Config::onepass_size_limit`].
3083     ///
3084     /// If it was not explicitly set, then a default value is returned.
get_onepass_size_limit(&self) -> Option<usize>3085     pub fn get_onepass_size_limit(&self) -> Option<usize> {
3086         self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3087     }
3088 
3089     /// Returns hybrid NFA/DFA cache capacity, as set by
3090     /// [`Config::hybrid_cache_capacity`].
3091     ///
3092     /// If it was not explicitly set, then a default value is returned.
get_hybrid_cache_capacity(&self) -> usize3093     pub fn get_hybrid_cache_capacity(&self) -> usize {
3094         self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3095     }
3096 
3097     /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3098     ///
3099     /// If it was not explicitly set, then a default value is returned.
get_dfa_size_limit(&self) -> Option<usize>3100     pub fn get_dfa_size_limit(&self) -> Option<usize> {
3101         // The default for this is VERY small because building a full DFA is
3102         // ridiculously costly. But for regexes that are very small, it can be
3103         // beneficial to use a full DFA. In particular, a full DFA can enable
3104         // additional optimizations via something called "accelerated" states.
3105         // Namely, when there's a state with only a few outgoing transitions,
3106         // we can temporary suspend walking the transition table and use memchr
3107         // for just those outgoing transitions to skip ahead very quickly.
3108         //
3109         // Generally speaking, if Unicode is enabled in your regex and you're
3110         // using some kind of Unicode feature, then it's going to blow this
3111         // size limit. Moreover, Unicode tends to defeat the "accelerated"
3112         // state optimization too, so it's a double whammy.
3113         //
3114         // We also use a limit on the number of NFA states to avoid even
3115         // starting the DFA construction process. Namely, DFA construction
3116         // itself could make lots of initial allocs proportional to the size
3117         // of the NFA, and if the NFA is large, it doesn't make sense to pay
3118         // that cost if we know it's likely to be blown by a large margin.
3119         self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3120     }
3121 
3122     /// Returns DFA size limit in terms of the number of states in the NFA, as
3123     /// set by [`Config::dfa_state_limit`].
3124     ///
3125     /// If it was not explicitly set, then a default value is returned.
get_dfa_state_limit(&self) -> Option<usize>3126     pub fn get_dfa_state_limit(&self) -> Option<usize> {
3127         // Again, as with the size limit, we keep this very small.
3128         self.dfa_state_limit.unwrap_or(Some(30))
3129     }
3130 
3131     /// Returns whether byte classes are enabled, as set by
3132     /// [`Config::byte_classes`].
3133     ///
3134     /// If it was not explicitly set, then a default value is returned.
get_byte_classes(&self) -> bool3135     pub fn get_byte_classes(&self) -> bool {
3136         self.byte_classes.unwrap_or(true)
3137     }
3138 
3139     /// Returns the line terminator for this configuration, as set by
3140     /// [`Config::line_terminator`].
3141     ///
3142     /// If it was not explicitly set, then a default value is returned.
get_line_terminator(&self) -> u83143     pub fn get_line_terminator(&self) -> u8 {
3144         self.line_terminator.unwrap_or(b'\n')
3145     }
3146 
3147     /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3148     /// [`Config::hybrid`].
3149     ///
3150     /// If it was not explicitly set, then a default value is returned.
get_hybrid(&self) -> bool3151     pub fn get_hybrid(&self) -> bool {
3152         #[cfg(feature = "hybrid")]
3153         {
3154             self.hybrid.unwrap_or(true)
3155         }
3156         #[cfg(not(feature = "hybrid"))]
3157         {
3158             false
3159         }
3160     }
3161 
3162     /// Returns whether the DFA regex engine may be used, as set by
3163     /// [`Config::dfa`].
3164     ///
3165     /// If it was not explicitly set, then a default value is returned.
get_dfa(&self) -> bool3166     pub fn get_dfa(&self) -> bool {
3167         #[cfg(feature = "dfa-build")]
3168         {
3169             self.dfa.unwrap_or(true)
3170         }
3171         #[cfg(not(feature = "dfa-build"))]
3172         {
3173             false
3174         }
3175     }
3176 
3177     /// Returns whether the one-pass DFA regex engine may be used, as set by
3178     /// [`Config::onepass`].
3179     ///
3180     /// If it was not explicitly set, then a default value is returned.
get_onepass(&self) -> bool3181     pub fn get_onepass(&self) -> bool {
3182         #[cfg(feature = "dfa-onepass")]
3183         {
3184             self.onepass.unwrap_or(true)
3185         }
3186         #[cfg(not(feature = "dfa-onepass"))]
3187         {
3188             false
3189         }
3190     }
3191 
3192     /// Returns whether the bounded backtracking regex engine may be used, as
3193     /// set by [`Config::backtrack`].
3194     ///
3195     /// If it was not explicitly set, then a default value is returned.
get_backtrack(&self) -> bool3196     pub fn get_backtrack(&self) -> bool {
3197         #[cfg(feature = "nfa-backtrack")]
3198         {
3199             self.backtrack.unwrap_or(true)
3200         }
3201         #[cfg(not(feature = "nfa-backtrack"))]
3202         {
3203             false
3204         }
3205     }
3206 
3207     /// Overwrite the default configuration such that the options in `o` are
3208     /// always used. If an option in `o` is not set, then the corresponding
3209     /// option in `self` is used. If it's not set in `self` either, then it
3210     /// remains not set.
overwrite(&self, o: Config) -> Config3211     pub(crate) fn overwrite(&self, o: Config) -> Config {
3212         Config {
3213             match_kind: o.match_kind.or(self.match_kind),
3214             utf8_empty: o.utf8_empty.or(self.utf8_empty),
3215             autopre: o.autopre.or(self.autopre),
3216             pre: o.pre.or_else(|| self.pre.clone()),
3217             which_captures: o.which_captures.or(self.which_captures),
3218             nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3219             onepass_size_limit: o
3220                 .onepass_size_limit
3221                 .or(self.onepass_size_limit),
3222             hybrid_cache_capacity: o
3223                 .hybrid_cache_capacity
3224                 .or(self.hybrid_cache_capacity),
3225             hybrid: o.hybrid.or(self.hybrid),
3226             dfa: o.dfa.or(self.dfa),
3227             dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3228             dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3229             onepass: o.onepass.or(self.onepass),
3230             backtrack: o.backtrack.or(self.backtrack),
3231             byte_classes: o.byte_classes.or(self.byte_classes),
3232             line_terminator: o.line_terminator.or(self.line_terminator),
3233         }
3234     }
3235 }
3236 
3237 /// A builder for configuring and constructing a `Regex`.
3238 ///
3239 /// The builder permits configuring two different aspects of a `Regex`:
3240 ///
3241 /// * [`Builder::configure`] will set high-level configuration options as
3242 /// described by a [`Config`].
3243 /// * [`Builder::syntax`] will set the syntax level configuration options
3244 /// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3245 /// This only applies when building a `Regex` from pattern strings.
3246 ///
3247 /// Once configured, the builder can then be used to construct a `Regex` from
3248 /// one of 4 different inputs:
3249 ///
3250 /// * [`Builder::build`] creates a regex from a single pattern string.
3251 /// * [`Builder::build_many`] creates a regex from many pattern strings.
3252 /// * [`Builder::build_from_hir`] creates a regex from a
3253 /// [`regex-syntax::Hir`](Hir) expression.
3254 /// * [`Builder::build_many_from_hir`] creates a regex from many
3255 /// [`regex-syntax::Hir`](Hir) expressions.
3256 ///
3257 /// The latter two methods in particular provide a way to construct a fully
3258 /// feature regular expression matcher directly from an `Hir` expression
3259 /// without having to first convert it to a string. (This is in contrast to the
3260 /// top-level `regex` crate which intentionally provides no such API in order
3261 /// to avoid making `regex-syntax` a public dependency.)
3262 ///
3263 /// As a convenience, this builder may be created via [`Regex::builder`], which
3264 /// may help avoid an extra import.
3265 ///
3266 /// # Example: change the line terminator
3267 ///
3268 /// This example shows how to enable multi-line mode by default and change the
3269 /// line terminator to the NUL byte:
3270 ///
3271 /// ```
3272 /// use regex_automata::{meta::Regex, util::syntax, Match};
3273 ///
3274 /// let re = Regex::builder()
3275 ///     .syntax(syntax::Config::new().multi_line(true))
3276 ///     .configure(Regex::config().line_terminator(b'\x00'))
3277 ///     .build(r"^foo$")?;
3278 /// let hay = "\x00foo\x00";
3279 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3280 ///
3281 /// # Ok::<(), Box<dyn std::error::Error>>(())
3282 /// ```
3283 ///
3284 /// # Example: disable UTF-8 requirement
3285 ///
3286 /// By default, regex patterns are required to match UTF-8. This includes
3287 /// regex patterns that can produce matches of length zero. In the case of an
3288 /// empty match, by default, matches will not appear between the code units of
3289 /// a UTF-8 encoded codepoint.
3290 ///
3291 /// However, it can be useful to disable this requirement, particularly if
3292 /// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3293 ///
3294 /// ```
3295 /// use regex_automata::{meta::Regex, util::syntax, Match};
3296 ///
3297 /// let mut builder = Regex::builder();
3298 /// // Disables the requirement that non-empty matches match UTF-8.
3299 /// builder.syntax(syntax::Config::new().utf8(false));
3300 /// // Disables the requirement that empty matches match UTF-8 boundaries.
3301 /// builder.configure(Regex::config().utf8_empty(false));
3302 ///
3303 /// // We can match raw bytes via \xZZ syntax, but we need to disable
3304 /// // Unicode mode to do that. We could disable it everywhere, or just
3305 /// // selectively, as shown here.
3306 /// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3307 /// let hay = b"\xFFfoo\xFF";
3308 /// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3309 ///
3310 /// // We can also match between code units.
3311 /// let re = builder.build(r"")?;
3312 /// let hay = "☃";
3313 /// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3314 ///     Match::must(0, 0..0),
3315 ///     Match::must(0, 1..1),
3316 ///     Match::must(0, 2..2),
3317 ///     Match::must(0, 3..3),
3318 /// ]);
3319 ///
3320 /// # Ok::<(), Box<dyn std::error::Error>>(())
3321 /// ```
3322 #[derive(Clone, Debug)]
3323 pub struct Builder {
3324     config: Config,
3325     ast: ast::parse::ParserBuilder,
3326     hir: hir::translate::TranslatorBuilder,
3327 }
3328 
3329 impl Builder {
3330     /// Creates a new builder for configuring and constructing a [`Regex`].
new() -> Builder3331     pub fn new() -> Builder {
3332         Builder {
3333             config: Config::default(),
3334             ast: ast::parse::ParserBuilder::new(),
3335             hir: hir::translate::TranslatorBuilder::new(),
3336         }
3337     }
3338 
3339     /// Builds a `Regex` from a single pattern string.
3340     ///
3341     /// If there was a problem parsing the pattern or a problem turning it into
3342     /// a regex matcher, then an error is returned.
3343     ///
3344     /// # Example
3345     ///
3346     /// This example shows how to configure syntax options.
3347     ///
3348     /// ```
3349     /// use regex_automata::{meta::Regex, util::syntax, Match};
3350     ///
3351     /// let re = Regex::builder()
3352     ///     .syntax(syntax::Config::new().crlf(true).multi_line(true))
3353     ///     .build(r"^foo$")?;
3354     /// let hay = "\r\nfoo\r\n";
3355     /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3356     ///
3357     /// # Ok::<(), Box<dyn std::error::Error>>(())
3358     /// ```
build(&self, pattern: &str) -> Result<Regex, BuildError>3359     pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3360         self.build_many(&[pattern])
3361     }
3362 
3363     /// Builds a `Regex` from many pattern strings.
3364     ///
3365     /// If there was a problem parsing any of the patterns or a problem turning
3366     /// them into a regex matcher, then an error is returned.
3367     ///
3368     /// # Example: finding the pattern that caused an error
3369     ///
3370     /// When a syntax error occurs, it is possible to ask which pattern
3371     /// caused the syntax error.
3372     ///
3373     /// ```
3374     /// use regex_automata::{meta::Regex, PatternID};
3375     ///
3376     /// let err = Regex::builder()
3377     ///     .build_many(&["a", "b", r"\p{Foo}", "c"])
3378     ///     .unwrap_err();
3379     /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3380     /// ```
3381     ///
3382     /// # Example: zero patterns is valid
3383     ///
3384     /// Building a regex with zero patterns results in a regex that never
3385     /// matches anything. Because this routine is generic, passing an empty
3386     /// slice usually requires a turbo-fish (or something else to help type
3387     /// inference).
3388     ///
3389     /// ```
3390     /// use regex_automata::{meta::Regex, util::syntax, Match};
3391     ///
3392     /// let re = Regex::builder()
3393     ///     .build_many::<&str>(&[])?;
3394     /// assert_eq!(None, re.find(""));
3395     ///
3396     /// # Ok::<(), Box<dyn std::error::Error>>(())
3397     /// ```
build_many<P: AsRef<str>>( &self, patterns: &[P], ) -> Result<Regex, BuildError>3398     pub fn build_many<P: AsRef<str>>(
3399         &self,
3400         patterns: &[P],
3401     ) -> Result<Regex, BuildError> {
3402         use crate::util::primitives::IteratorIndexExt;
3403         log! {
3404             debug!("building meta regex with {} patterns:", patterns.len());
3405             for (pid, p) in patterns.iter().with_pattern_ids() {
3406                 let p = p.as_ref();
3407                 // We might split a grapheme with this truncation logic, but
3408                 // that's fine. We at least avoid splitting a codepoint.
3409                 let maxoff = p
3410                     .char_indices()
3411                     .map(|(i, ch)| i + ch.len_utf8())
3412                     .take(1000)
3413                     .last()
3414                     .unwrap_or(0);
3415                 if maxoff < p.len() {
3416                     debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
3417                 } else {
3418                     debug!("{:?}: {}", pid, p);
3419                 }
3420             }
3421         }
3422         let (mut asts, mut hirs) = (vec![], vec![]);
3423         for (pid, p) in patterns.iter().with_pattern_ids() {
3424             let ast = self
3425                 .ast
3426                 .build()
3427                 .parse(p.as_ref())
3428                 .map_err(|err| BuildError::ast(pid, err))?;
3429             asts.push(ast);
3430         }
3431         for ((pid, p), ast) in
3432             patterns.iter().with_pattern_ids().zip(asts.iter())
3433         {
3434             let hir = self
3435                 .hir
3436                 .build()
3437                 .translate(p.as_ref(), ast)
3438                 .map_err(|err| BuildError::hir(pid, err))?;
3439             hirs.push(hir);
3440         }
3441         self.build_many_from_hir(&hirs)
3442     }
3443 
3444     /// Builds a `Regex` directly from an `Hir` expression.
3445     ///
3446     /// This is useful if you needed to parse a pattern string into an `Hir`
3447     /// for other reasons (such as analysis or transformations). This routine
3448     /// permits building a `Regex` directly from the `Hir` expression instead
3449     /// of first converting the `Hir` back to a pattern string.
3450     ///
3451     /// When using this method, any options set via [`Builder::syntax`] are
3452     /// ignored. Namely, the syntax options only apply when parsing a pattern
3453     /// string, which isn't relevant here.
3454     ///
3455     /// If there was a problem building the underlying regex matcher for the
3456     /// given `Hir`, then an error is returned.
3457     ///
3458     /// # Example
3459     ///
3460     /// This example shows how one can hand-construct an `Hir` expression and
3461     /// build a regex from it without doing any parsing at all.
3462     ///
3463     /// ```
3464     /// use {
3465     ///     regex_automata::{meta::Regex, Match},
3466     ///     regex_syntax::hir::{Hir, Look},
3467     /// };
3468     ///
3469     /// // (?Rm)^foo$
3470     /// let hir = Hir::concat(vec![
3471     ///     Hir::look(Look::StartCRLF),
3472     ///     Hir::literal("foo".as_bytes()),
3473     ///     Hir::look(Look::EndCRLF),
3474     /// ]);
3475     /// let re = Regex::builder()
3476     ///     .build_from_hir(&hir)?;
3477     /// let hay = "\r\nfoo\r\n";
3478     /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3479     ///
3480     /// Ok::<(), Box<dyn std::error::Error>>(())
3481     /// ```
build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError>3482     pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
3483         self.build_many_from_hir(&[hir])
3484     }
3485 
3486     /// Builds a `Regex` directly from many `Hir` expressions.
3487     ///
3488     /// This is useful if you needed to parse pattern strings into `Hir`
3489     /// expressions for other reasons (such as analysis or transformations).
3490     /// This routine permits building a `Regex` directly from the `Hir`
3491     /// expressions instead of first converting the `Hir` expressions back to
3492     /// pattern strings.
3493     ///
3494     /// When using this method, any options set via [`Builder::syntax`] are
3495     /// ignored. Namely, the syntax options only apply when parsing a pattern
3496     /// string, which isn't relevant here.
3497     ///
3498     /// If there was a problem building the underlying regex matcher for the
3499     /// given `Hir` expressions, then an error is returned.
3500     ///
3501     /// Note that unlike [`Builder::build_many`], this can only fail as a
3502     /// result of building the underlying matcher. In that case, there is
3503     /// no single `Hir` expression that can be isolated as a reason for the
3504     /// failure. So if this routine fails, it's not possible to determine which
3505     /// `Hir` expression caused the failure.
3506     ///
3507     /// # Example
3508     ///
3509     /// This example shows how one can hand-construct multiple `Hir`
3510     /// expressions and build a single regex from them without doing any
3511     /// parsing at all.
3512     ///
3513     /// ```
3514     /// use {
3515     ///     regex_automata::{meta::Regex, Match},
3516     ///     regex_syntax::hir::{Hir, Look},
3517     /// };
3518     ///
3519     /// // (?Rm)^foo$
3520     /// let hir1 = Hir::concat(vec![
3521     ///     Hir::look(Look::StartCRLF),
3522     ///     Hir::literal("foo".as_bytes()),
3523     ///     Hir::look(Look::EndCRLF),
3524     /// ]);
3525     /// // (?Rm)^bar$
3526     /// let hir2 = Hir::concat(vec![
3527     ///     Hir::look(Look::StartCRLF),
3528     ///     Hir::literal("bar".as_bytes()),
3529     ///     Hir::look(Look::EndCRLF),
3530     /// ]);
3531     /// let re = Regex::builder()
3532     ///     .build_many_from_hir(&[&hir1, &hir2])?;
3533     /// let hay = "\r\nfoo\r\nbar";
3534     /// let got: Vec<Match> = re.find_iter(hay).collect();
3535     /// let expected = vec![
3536     ///     Match::must(0, 2..5),
3537     ///     Match::must(1, 7..10),
3538     /// ];
3539     /// assert_eq!(expected, got);
3540     ///
3541     /// Ok::<(), Box<dyn std::error::Error>>(())
3542     /// ```
build_many_from_hir<H: Borrow<Hir>>( &self, hirs: &[H], ) -> Result<Regex, BuildError>3543     pub fn build_many_from_hir<H: Borrow<Hir>>(
3544         &self,
3545         hirs: &[H],
3546     ) -> Result<Regex, BuildError> {
3547         let config = self.config.clone();
3548         // We collect the HIRs into a vec so we can write internal routines
3549         // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3550         // bloat down..
3551         let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3552         let info = RegexInfo::new(config, &hirs);
3553         let strat = strategy::new(&info, &hirs)?;
3554         let pool = {
3555             let strat = Arc::clone(&strat);
3556             let create: CachePoolFn = Box::new(move || strat.create_cache());
3557             Pool::new(create)
3558         };
3559         Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3560     }
3561 
3562     /// Configure the behavior of a `Regex`.
3563     ///
3564     /// This configuration controls non-syntax options related to the behavior
3565     /// of a `Regex`. This includes things like whether empty matches can split
3566     /// a codepoint, prefilters, line terminators and a long list of options
3567     /// for configuring which regex engines the meta regex engine will be able
3568     /// to use internally.
3569     ///
3570     /// # Example
3571     ///
3572     /// This example shows how to disable UTF-8 empty mode. This will permit
3573     /// empty matches to occur between the UTF-8 encoding of a codepoint.
3574     ///
3575     /// ```
3576     /// use regex_automata::{meta::Regex, Match};
3577     ///
3578     /// let re = Regex::new("")?;
3579     /// let got: Vec<Match> = re.find_iter("☃").collect();
3580     /// // Matches only occur at the beginning and end of the snowman.
3581     /// assert_eq!(got, vec![
3582     ///     Match::must(0, 0..0),
3583     ///     Match::must(0, 3..3),
3584     /// ]);
3585     ///
3586     /// let re = Regex::builder()
3587     ///     .configure(Regex::config().utf8_empty(false))
3588     ///     .build("")?;
3589     /// let got: Vec<Match> = re.find_iter("☃").collect();
3590     /// // Matches now occur at every position!
3591     /// assert_eq!(got, vec![
3592     ///     Match::must(0, 0..0),
3593     ///     Match::must(0, 1..1),
3594     ///     Match::must(0, 2..2),
3595     ///     Match::must(0, 3..3),
3596     /// ]);
3597     ///
3598     /// Ok::<(), Box<dyn std::error::Error>>(())
3599     /// ```
configure(&mut self, config: Config) -> &mut Builder3600     pub fn configure(&mut self, config: Config) -> &mut Builder {
3601         self.config = self.config.overwrite(config);
3602         self
3603     }
3604 
3605     /// Configure the syntax options when parsing a pattern string while
3606     /// building a `Regex`.
3607     ///
3608     /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3609     /// are used. The other build methods accept `Hir` values, which have
3610     /// already been parsed.
3611     ///
3612     /// # Example
3613     ///
3614     /// This example shows how to enable case insensitive mode.
3615     ///
3616     /// ```
3617     /// use regex_automata::{meta::Regex, util::syntax, Match};
3618     ///
3619     /// let re = Regex::builder()
3620     ///     .syntax(syntax::Config::new().case_insensitive(true))
3621     ///     .build(r"δ")?;
3622     /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3623     ///
3624     /// Ok::<(), Box<dyn std::error::Error>>(())
3625     /// ```
syntax( &mut self, config: crate::util::syntax::Config, ) -> &mut Builder3626     pub fn syntax(
3627         &mut self,
3628         config: crate::util::syntax::Config,
3629     ) -> &mut Builder {
3630         config.apply_ast(&mut self.ast);
3631         config.apply_hir(&mut self.hir);
3632         self
3633     }
3634 }
3635 
3636 #[cfg(test)]
3637 mod tests {
3638     use super::*;
3639 
3640     // I found this in the course of building out the benchmark suite for
3641     // rebar.
3642     #[test]
regression_suffix_literal_count()3643     fn regression_suffix_literal_count() {
3644         let _ = env_logger::try_init();
3645 
3646         let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3647         assert_eq!(1, re.find_iter("tingling").count());
3648     }
3649 }
3650