xref: /aosp_15_r20/external/google-breakpad/src/common/dwarf/bytereader.h (revision 9712c20fc9bbfbac4935993a2ca0b3958c5adad2)
1 // -*- mode: C++ -*-
2 
3 // Copyright 2010 Google LLC
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google LLC nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 #ifndef COMMON_DWARF_BYTEREADER_H__
32 #define COMMON_DWARF_BYTEREADER_H__
33 
34 #include <stdint.h>
35 
36 #include <string>
37 
38 #include "common/dwarf/types.h"
39 #include "common/dwarf/dwarf2enums.h"
40 
41 namespace google_breakpad {
42 
43 // We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN
44 // because it conflicts with a macro
45 enum Endianness {
46   ENDIANNESS_BIG,
47   ENDIANNESS_LITTLE
48 };
49 
50 // A ByteReader knows how to read single- and multi-byte values of
51 // various endiannesses, sizes, and encodings, as used in DWARF
52 // debugging information and Linux C++ exception handling data.
53 class ByteReader {
54  public:
55   // Construct a ByteReader capable of reading one-, two-, four-, and
56   // eight-byte values according to ENDIANNESS, absolute machine-sized
57   // addresses, DWARF-style "initial length" values, signed and
58   // unsigned LEB128 numbers, and Linux C++ exception handling data's
59   // encoded pointers.
60   explicit ByteReader(enum Endianness endianness);
61   virtual ~ByteReader();
62 
63   // Read a single byte from BUFFER and return it as an unsigned 8 bit
64   // number.
65   uint8_t ReadOneByte(const uint8_t* buffer) const;
66 
67   // Read two bytes from BUFFER and return them as an unsigned 16 bit
68   // number, using this ByteReader's endianness.
69   uint16_t ReadTwoBytes(const uint8_t* buffer) const;
70 
71   // Read three bytes from BUFFER and return them as an unsigned 64 bit
72   // number, using this ByteReader's endianness. DWARF 5 uses this encoding
73   // for various index-related DW_FORMs.
74   uint64_t ReadThreeBytes(const uint8_t* buffer) const;
75 
76   // Read four bytes from BUFFER and return them as an unsigned 32 bit
77   // number, using this ByteReader's endianness. This function returns
78   // a uint64_t so that it is compatible with ReadAddress and
79   // ReadOffset. The number it returns will never be outside the range
80   // of an unsigned 32 bit integer.
81   uint64_t ReadFourBytes(const uint8_t* buffer) const;
82 
83   // Read eight bytes from BUFFER and return them as an unsigned 64
84   // bit number, using this ByteReader's endianness.
85   uint64_t ReadEightBytes(const uint8_t* buffer) const;
86 
87   // Read an unsigned LEB128 (Little Endian Base 128) number from
88   // BUFFER and return it as an unsigned 64 bit integer. Set LEN to
89   // the number of bytes read.
90   //
91   // The unsigned LEB128 representation of an integer N is a variable
92   // number of bytes:
93   //
94   // - If N is between 0 and 0x7f, then its unsigned LEB128
95   //   representation is a single byte whose value is N.
96   //
97   // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
98   //   0x80, followed by the unsigned LEB128 representation of N /
99   //   128, rounded towards negative infinity.
100   //
101   // In other words, we break VALUE into groups of seven bits, put
102   // them in little-endian order, and then write them as eight-bit
103   // bytes with the high bit on all but the last.
104   uint64_t ReadUnsignedLEB128(const uint8_t* buffer, size_t* len) const;
105 
106   // Read a signed LEB128 number from BUFFER and return it as an
107   // signed 64 bit integer. Set LEN to the number of bytes read.
108   //
109   // The signed LEB128 representation of an integer N is a variable
110   // number of bytes:
111   //
112   // - If N is between -0x40 and 0x3f, then its signed LEB128
113   //   representation is a single byte whose value is N in two's
114   //   complement.
115   //
116   // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
117   //   0x80, followed by the signed LEB128 representation of N / 128,
118   //   rounded towards negative infinity.
119   //
120   // In other words, we break VALUE into groups of seven bits, put
121   // them in little-endian order, and then write them as eight-bit
122   // bytes with the high bit on all but the last.
123   int64_t ReadSignedLEB128(const uint8_t* buffer, size_t* len) const;
124 
125   // Indicate that addresses on this architecture are SIZE bytes long. SIZE
126   // must be either 4 or 8. (DWARF allows addresses to be any number of
127   // bytes in length from 1 to 255, but we only support 32- and 64-bit
128   // addresses at the moment.) You must call this before using the
129   // ReadAddress member function.
130   //
131   // For data in a .debug_info section, or something that .debug_info
132   // refers to like line number or macro data, the compilation unit
133   // header's address_size field indicates the address size to use. Call
134   // frame information doesn't indicate its address size (a shortcoming of
135   // the spec); you must supply the appropriate size based on the
136   // architecture of the target machine.
137   void SetAddressSize(uint8_t size);
138 
139   // Return the current address size, in bytes. This is either 4,
140   // indicating 32-bit addresses, or 8, indicating 64-bit addresses.
AddressSize()141   uint8_t AddressSize() const { return address_size_; }
142 
143   // Read an address from BUFFER and return it as an unsigned 64 bit
144   // integer, respecting this ByteReader's endianness and address size. You
145   // must call SetAddressSize before calling this function.
146   uint64_t ReadAddress(const uint8_t* buffer) const;
147 
148   // DWARF actually defines two slightly different formats: 32-bit DWARF
149   // and 64-bit DWARF. This is *not* related to the size of registers or
150   // addresses on the target machine; it refers only to the size of section
151   // offsets and data lengths appearing in the DWARF data. One only needs
152   // 64-bit DWARF when the debugging data itself is larger than 4GiB.
153   // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the
154   // debugging data itself is very large.
155   //
156   // DWARF information identifies itself as 32-bit or 64-bit DWARF: each
157   // compilation unit and call frame information entry begins with an
158   // "initial length" field, which, in addition to giving the length of the
159   // data, also indicates the size of section offsets and lengths appearing
160   // in that data. The ReadInitialLength member function, below, reads an
161   // initial length and sets the ByteReader's offset size as a side effect.
162   // Thus, in the normal process of reading DWARF data, the appropriate
163   // offset size is set automatically. So, you should only need to call
164   // SetOffsetSize if you are using the same ByteReader to jump from the
165   // midst of one block of DWARF data into another.
166 
167   // Read a DWARF "initial length" field from START, and return it as
168   // an unsigned 64 bit integer, respecting this ByteReader's
169   // endianness. Set *LEN to the length of the initial length in
170   // bytes, either four or twelve. As a side effect, set this
171   // ByteReader's offset size to either 4 (if we see a 32-bit DWARF
172   // initial length) or 8 (if we see a 64-bit DWARF initial length).
173   //
174   // A DWARF initial length is either:
175   //
176   // - a byte count stored as an unsigned 32-bit value less than
177   //   0xffffff00, indicating that the data whose length is being
178   //   measured uses the 32-bit DWARF format, or
179   //
180   // - The 32-bit value 0xffffffff, followed by a 64-bit byte count,
181   //   indicating that the data whose length is being measured uses
182   //   the 64-bit DWARF format.
183   uint64_t ReadInitialLength(const uint8_t* start, size_t* len);
184 
185   // Read an offset from BUFFER and return it as an unsigned 64 bit
186   // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the
187   // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes
188   // long. You must call ReadInitialLength or SetOffsetSize before calling
189   // this function; see the comments above for details.
190   uint64_t ReadOffset(const uint8_t* buffer) const;
191 
192   // Return the current offset size, in bytes.
193   // A return value of 4 indicates that we are reading 32-bit DWARF.
194   // A return value of 8 indicates that we are reading 64-bit DWARF.
OffsetSize()195   uint8_t OffsetSize() const { return offset_size_; }
196 
197   // Indicate that section offsets and lengths are SIZE bytes long. SIZE
198   // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF).
199   // Usually, you should not call this function yourself; instead, let a
200   // call to ReadInitialLength establish the data's offset size
201   // automatically.
202   void SetOffsetSize(uint8_t size);
203 
204   // The Linux C++ ABI uses a variant of DWARF call frame information
205   // for exception handling. This data is included in the program's
206   // address space as the ".eh_frame" section, and intepreted at
207   // runtime to walk the stack, find exception handlers, and run
208   // cleanup code. The format is mostly the same as DWARF CFI, with
209   // some adjustments made to provide the additional
210   // exception-handling data, and to make the data easier to work with
211   // in memory --- for example, to allow it to be placed in read-only
212   // memory even when describing position-independent code.
213   //
214   // In particular, exception handling data can select a number of
215   // different encodings for pointers that appear in the data, as
216   // described by the DwarfPointerEncoding enum. There are actually
217   // four axes(!) to the encoding:
218   //
219   // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use
220   //   the DWARF LEB128 encoding.
221   //
222   // - The pointer's signedness: pointers can be signed or unsigned.
223   //
224   // - The pointer's base address: the data stored in the exception
225   //   handling data can be the actual address (that is, an absolute
226   //   pointer), or relative to one of a number of different base
227   //   addreses --- including that of the encoded pointer itself, for
228   //   a form of "pc-relative" addressing.
229   //
230   // - The pointer may be indirect: it may be the address where the
231   //   true pointer is stored. (This is used to refer to things via
232   //   global offset table entries, program linkage table entries, or
233   //   other tricks used in position-independent code.)
234   //
235   // There are also two options that fall outside that matrix
236   // altogether: the pointer may be omitted, or it may have padding to
237   // align it on an appropriate address boundary. (That last option
238   // may seem like it should be just another axis, but it is not.)
239 
240   // Indicate that the exception handling data is loaded starting at
241   // SECTION_BASE, and that the start of its buffer in our own memory
242   // is BUFFER_BASE. This allows us to find the address that a given
243   // byte in our buffer would have when loaded into the program the
244   // data describes. We need this to resolve DW_EH_PE_pcrel pointers.
245   void SetCFIDataBase(uint64_t section_base, const uint8_t* buffer_base);
246 
247   // Indicate that the base address of the program's ".text" section
248   // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers.
249   void SetTextBase(uint64_t text_base);
250 
251   // Indicate that the base address for DW_EH_PE_datarel pointers is
252   // DATA_BASE. The proper value depends on the ABI; it is usually the
253   // address of the global offset table, held in a designated register in
254   // position-independent code. You will need to look at the startup code
255   // for the target system to be sure. I tried; my eyes bled.
256   void SetDataBase(uint64_t data_base);
257 
258   // Indicate that the base address for the FDE we are processing is
259   // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel
260   // pointers. (This encoding does not seem to be used by the GNU
261   // toolchain.)
262   void SetFunctionBase(uint64_t function_base);
263 
264   // Indicate that we are no longer processing any FDE, so any use of
265   // a DW_EH_PE_funcrel encoding is an error.
266   void ClearFunctionBase();
267 
268   // Return true if ENCODING is a valid pointer encoding.
269   bool ValidEncoding(DwarfPointerEncoding encoding) const;
270 
271   // Return true if we have all the information we need to read a
272   // pointer that uses ENCODING. This checks that the appropriate
273   // SetFooBase function for ENCODING has been called.
274   bool UsableEncoding(DwarfPointerEncoding encoding) const;
275 
276   // Read an encoded pointer from BUFFER using ENCODING; return the
277   // absolute address it represents, and set *LEN to the pointer's
278   // length in bytes, including any padding for aligned pointers.
279   //
280   // This function calls 'abort' if ENCODING is invalid or refers to a
281   // base address this reader hasn't been given, so you should check
282   // with ValidEncoding and UsableEncoding first if you would rather
283   // die in a more helpful way.
284   uint64_t ReadEncodedPointer(const uint8_t* buffer,
285                             DwarfPointerEncoding encoding,
286                             size_t* len) const;
287 
288   Endianness GetEndianness() const;
289  private:
290 
291   // Function pointer type for our address and offset readers.
292   typedef uint64_t (ByteReader::*AddressReader)(const uint8_t*) const;
293 
294   // Read an offset from BUFFER and return it as an unsigned 64 bit
295   // integer.  DWARF2/3 define offsets as either 4 or 8 bytes,
296   // generally depending on the amount of DWARF2/3 info present.
297   // This function pointer gets set by SetOffsetSize.
298   AddressReader offset_reader_;
299 
300   // Read an address from BUFFER and return it as an unsigned 64 bit
301   // integer.  DWARF2/3 allow addresses to be any size from 0-255
302   // bytes currently.  Internally we support 4 and 8 byte addresses,
303   // and will CHECK on anything else.
304   // This function pointer gets set by SetAddressSize.
305   AddressReader address_reader_;
306 
307   Endianness endian_;
308   uint8_t address_size_;
309   uint8_t offset_size_;
310 
311   // Base addresses for Linux C++ exception handling data's encoded pointers.
312   bool have_section_base_, have_text_base_, have_data_base_;
313   bool have_function_base_;
314   uint64_t section_base_, text_base_, data_base_, function_base_;
315   const uint8_t* buffer_base_;
316 };
317 
318 }  // namespace google_breakpad
319 
320 #endif  // COMMON_DWARF_BYTEREADER_H__
321