1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10 
11 #define ICE_PF_RESET_WAIT_COUNT	300
12 #define ICE_MAX_NETLIST_SIZE	10
13 
14 static const char * const ice_link_mode_str_low[] = {
15 	[0] = "100BASE_TX",
16 	[1] = "100M_SGMII",
17 	[2] = "1000BASE_T",
18 	[3] = "1000BASE_SX",
19 	[4] = "1000BASE_LX",
20 	[5] = "1000BASE_KX",
21 	[6] = "1G_SGMII",
22 	[7] = "2500BASE_T",
23 	[8] = "2500BASE_X",
24 	[9] = "2500BASE_KX",
25 	[10] = "5GBASE_T",
26 	[11] = "5GBASE_KR",
27 	[12] = "10GBASE_T",
28 	[13] = "10G_SFI_DA",
29 	[14] = "10GBASE_SR",
30 	[15] = "10GBASE_LR",
31 	[16] = "10GBASE_KR_CR1",
32 	[17] = "10G_SFI_AOC_ACC",
33 	[18] = "10G_SFI_C2C",
34 	[19] = "25GBASE_T",
35 	[20] = "25GBASE_CR",
36 	[21] = "25GBASE_CR_S",
37 	[22] = "25GBASE_CR1",
38 	[23] = "25GBASE_SR",
39 	[24] = "25GBASE_LR",
40 	[25] = "25GBASE_KR",
41 	[26] = "25GBASE_KR_S",
42 	[27] = "25GBASE_KR1",
43 	[28] = "25G_AUI_AOC_ACC",
44 	[29] = "25G_AUI_C2C",
45 	[30] = "40GBASE_CR4",
46 	[31] = "40GBASE_SR4",
47 	[32] = "40GBASE_LR4",
48 	[33] = "40GBASE_KR4",
49 	[34] = "40G_XLAUI_AOC_ACC",
50 	[35] = "40G_XLAUI",
51 	[36] = "50GBASE_CR2",
52 	[37] = "50GBASE_SR2",
53 	[38] = "50GBASE_LR2",
54 	[39] = "50GBASE_KR2",
55 	[40] = "50G_LAUI2_AOC_ACC",
56 	[41] = "50G_LAUI2",
57 	[42] = "50G_AUI2_AOC_ACC",
58 	[43] = "50G_AUI2",
59 	[44] = "50GBASE_CP",
60 	[45] = "50GBASE_SR",
61 	[46] = "50GBASE_FR",
62 	[47] = "50GBASE_LR",
63 	[48] = "50GBASE_KR_PAM4",
64 	[49] = "50G_AUI1_AOC_ACC",
65 	[50] = "50G_AUI1",
66 	[51] = "100GBASE_CR4",
67 	[52] = "100GBASE_SR4",
68 	[53] = "100GBASE_LR4",
69 	[54] = "100GBASE_KR4",
70 	[55] = "100G_CAUI4_AOC_ACC",
71 	[56] = "100G_CAUI4",
72 	[57] = "100G_AUI4_AOC_ACC",
73 	[58] = "100G_AUI4",
74 	[59] = "100GBASE_CR_PAM4",
75 	[60] = "100GBASE_KR_PAM4",
76 	[61] = "100GBASE_CP2",
77 	[62] = "100GBASE_SR2",
78 	[63] = "100GBASE_DR",
79 };
80 
81 static const char * const ice_link_mode_str_high[] = {
82 	[0] = "100GBASE_KR2_PAM4",
83 	[1] = "100G_CAUI2_AOC_ACC",
84 	[2] = "100G_CAUI2",
85 	[3] = "100G_AUI2_AOC_ACC",
86 	[4] = "100G_AUI2",
87 };
88 
89 /**
90  * ice_dump_phy_type - helper function to dump phy_type
91  * @hw: pointer to the HW structure
92  * @low: 64 bit value for phy_type_low
93  * @high: 64 bit value for phy_type_high
94  * @prefix: prefix string to differentiate multiple dumps
95  */
96 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100 
101 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 		if (low & BIT_ULL(i))
103 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
104 				  prefix, i, ice_link_mode_str_low[i]);
105 	}
106 
107 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108 
109 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 		if (high & BIT_ULL(i))
111 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
112 				  prefix, i, ice_link_mode_str_high[i]);
113 	}
114 }
115 
116 /**
117  * ice_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the MAC type of the adapter based on the
121  * vendor ID and device ID stored in the HW structure.
122  */
ice_set_mac_type(struct ice_hw * hw)123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 		return -ENODEV;
127 
128 	switch (hw->device_id) {
129 	case ICE_DEV_ID_E810C_BACKPLANE:
130 	case ICE_DEV_ID_E810C_QSFP:
131 	case ICE_DEV_ID_E810C_SFP:
132 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 	case ICE_DEV_ID_E810_XXV_QSFP:
134 	case ICE_DEV_ID_E810_XXV_SFP:
135 		hw->mac_type = ICE_MAC_E810;
136 		break;
137 	case ICE_DEV_ID_E823C_10G_BASE_T:
138 	case ICE_DEV_ID_E823C_BACKPLANE:
139 	case ICE_DEV_ID_E823C_QSFP:
140 	case ICE_DEV_ID_E823C_SFP:
141 	case ICE_DEV_ID_E823C_SGMII:
142 	case ICE_DEV_ID_E822C_10G_BASE_T:
143 	case ICE_DEV_ID_E822C_BACKPLANE:
144 	case ICE_DEV_ID_E822C_QSFP:
145 	case ICE_DEV_ID_E822C_SFP:
146 	case ICE_DEV_ID_E822C_SGMII:
147 	case ICE_DEV_ID_E822L_10G_BASE_T:
148 	case ICE_DEV_ID_E822L_BACKPLANE:
149 	case ICE_DEV_ID_E822L_SFP:
150 	case ICE_DEV_ID_E822L_SGMII:
151 	case ICE_DEV_ID_E823L_10G_BASE_T:
152 	case ICE_DEV_ID_E823L_1GBE:
153 	case ICE_DEV_ID_E823L_BACKPLANE:
154 	case ICE_DEV_ID_E823L_QSFP:
155 	case ICE_DEV_ID_E823L_SFP:
156 		hw->mac_type = ICE_MAC_GENERIC;
157 		break;
158 	case ICE_DEV_ID_E825C_BACKPLANE:
159 	case ICE_DEV_ID_E825C_QSFP:
160 	case ICE_DEV_ID_E825C_SFP:
161 	case ICE_DEV_ID_E825C_SGMII:
162 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 		break;
164 	case ICE_DEV_ID_E830CC_BACKPLANE:
165 	case ICE_DEV_ID_E830CC_QSFP56:
166 	case ICE_DEV_ID_E830CC_SFP:
167 	case ICE_DEV_ID_E830CC_SFP_DD:
168 	case ICE_DEV_ID_E830C_BACKPLANE:
169 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 	case ICE_DEV_ID_E830C_QSFP:
171 	case ICE_DEV_ID_E830_XXV_QSFP:
172 	case ICE_DEV_ID_E830C_SFP:
173 	case ICE_DEV_ID_E830_XXV_SFP:
174 		hw->mac_type = ICE_MAC_E830;
175 		break;
176 	default:
177 		hw->mac_type = ICE_MAC_UNKNOWN;
178 		break;
179 	}
180 
181 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
182 	return 0;
183 }
184 
185 /**
186  * ice_is_generic_mac - check if device's mac_type is generic
187  * @hw: pointer to the hardware structure
188  *
189  * Return: true if mac_type is generic (with SBQ support), false if not
190  */
ice_is_generic_mac(struct ice_hw * hw)191 bool ice_is_generic_mac(struct ice_hw *hw)
192 {
193 	return (hw->mac_type == ICE_MAC_GENERIC ||
194 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
195 }
196 
197 /**
198  * ice_is_e810
199  * @hw: pointer to the hardware structure
200  *
201  * returns true if the device is E810 based, false if not.
202  */
ice_is_e810(struct ice_hw * hw)203 bool ice_is_e810(struct ice_hw *hw)
204 {
205 	return hw->mac_type == ICE_MAC_E810;
206 }
207 
208 /**
209  * ice_is_e810t
210  * @hw: pointer to the hardware structure
211  *
212  * returns true if the device is E810T based, false if not.
213  */
ice_is_e810t(struct ice_hw * hw)214 bool ice_is_e810t(struct ice_hw *hw)
215 {
216 	switch (hw->device_id) {
217 	case ICE_DEV_ID_E810C_SFP:
218 		switch (hw->subsystem_device_id) {
219 		case ICE_SUBDEV_ID_E810T:
220 		case ICE_SUBDEV_ID_E810T2:
221 		case ICE_SUBDEV_ID_E810T3:
222 		case ICE_SUBDEV_ID_E810T4:
223 		case ICE_SUBDEV_ID_E810T6:
224 		case ICE_SUBDEV_ID_E810T7:
225 			return true;
226 		}
227 		break;
228 	case ICE_DEV_ID_E810C_QSFP:
229 		switch (hw->subsystem_device_id) {
230 		case ICE_SUBDEV_ID_E810T2:
231 		case ICE_SUBDEV_ID_E810T3:
232 		case ICE_SUBDEV_ID_E810T5:
233 			return true;
234 		}
235 		break;
236 	default:
237 		break;
238 	}
239 
240 	return false;
241 }
242 
243 /**
244  * ice_is_e822 - Check if a device is E822 family device
245  * @hw: pointer to the hardware structure
246  *
247  * Return: true if the device is E822 based, false if not.
248  */
ice_is_e822(struct ice_hw * hw)249 bool ice_is_e822(struct ice_hw *hw)
250 {
251 	switch (hw->device_id) {
252 	case ICE_DEV_ID_E822C_BACKPLANE:
253 	case ICE_DEV_ID_E822C_QSFP:
254 	case ICE_DEV_ID_E822C_SFP:
255 	case ICE_DEV_ID_E822C_10G_BASE_T:
256 	case ICE_DEV_ID_E822C_SGMII:
257 	case ICE_DEV_ID_E822L_BACKPLANE:
258 	case ICE_DEV_ID_E822L_SFP:
259 	case ICE_DEV_ID_E822L_10G_BASE_T:
260 	case ICE_DEV_ID_E822L_SGMII:
261 		return true;
262 	default:
263 		return false;
264 	}
265 }
266 
267 /**
268  * ice_is_e823
269  * @hw: pointer to the hardware structure
270  *
271  * returns true if the device is E823-L or E823-C based, false if not.
272  */
ice_is_e823(struct ice_hw * hw)273 bool ice_is_e823(struct ice_hw *hw)
274 {
275 	switch (hw->device_id) {
276 	case ICE_DEV_ID_E823L_BACKPLANE:
277 	case ICE_DEV_ID_E823L_SFP:
278 	case ICE_DEV_ID_E823L_10G_BASE_T:
279 	case ICE_DEV_ID_E823L_1GBE:
280 	case ICE_DEV_ID_E823L_QSFP:
281 	case ICE_DEV_ID_E823C_BACKPLANE:
282 	case ICE_DEV_ID_E823C_QSFP:
283 	case ICE_DEV_ID_E823C_SFP:
284 	case ICE_DEV_ID_E823C_10G_BASE_T:
285 	case ICE_DEV_ID_E823C_SGMII:
286 		return true;
287 	default:
288 		return false;
289 	}
290 }
291 
292 /**
293  * ice_is_e825c - Check if a device is E825C family device
294  * @hw: pointer to the hardware structure
295  *
296  * Return: true if the device is E825-C based, false if not.
297  */
ice_is_e825c(struct ice_hw * hw)298 bool ice_is_e825c(struct ice_hw *hw)
299 {
300 	switch (hw->device_id) {
301 	case ICE_DEV_ID_E825C_BACKPLANE:
302 	case ICE_DEV_ID_E825C_QSFP:
303 	case ICE_DEV_ID_E825C_SFP:
304 	case ICE_DEV_ID_E825C_SGMII:
305 		return true;
306 	default:
307 		return false;
308 	}
309 }
310 
311 /**
312  * ice_is_pf_c827 - check if pf contains c827 phy
313  * @hw: pointer to the hw struct
314  *
315  * Return: true if the device has c827 phy.
316  */
ice_is_pf_c827(struct ice_hw * hw)317 static bool ice_is_pf_c827(struct ice_hw *hw)
318 {
319 	struct ice_aqc_get_link_topo cmd = {};
320 	u8 node_part_number;
321 	u16 node_handle;
322 	int status;
323 
324 	if (hw->mac_type != ICE_MAC_E810)
325 		return false;
326 
327 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
328 		return true;
329 
330 	cmd.addr.topo_params.node_type_ctx =
331 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
332 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
333 	cmd.addr.topo_params.index = 0;
334 
335 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
336 					 &node_handle);
337 
338 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
339 		return false;
340 
341 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
342 		return true;
343 
344 	return false;
345 }
346 
347 /**
348  * ice_clear_pf_cfg - Clear PF configuration
349  * @hw: pointer to the hardware structure
350  *
351  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
352  * configuration, flow director filters, etc.).
353  */
ice_clear_pf_cfg(struct ice_hw * hw)354 int ice_clear_pf_cfg(struct ice_hw *hw)
355 {
356 	struct ice_aq_desc desc;
357 
358 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
359 
360 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
361 }
362 
363 /**
364  * ice_aq_manage_mac_read - manage MAC address read command
365  * @hw: pointer to the HW struct
366  * @buf: a virtual buffer to hold the manage MAC read response
367  * @buf_size: Size of the virtual buffer
368  * @cd: pointer to command details structure or NULL
369  *
370  * This function is used to return per PF station MAC address (0x0107).
371  * NOTE: Upon successful completion of this command, MAC address information
372  * is returned in user specified buffer. Please interpret user specified
373  * buffer as "manage_mac_read" response.
374  * Response such as various MAC addresses are stored in HW struct (port.mac)
375  * ice_discover_dev_caps is expected to be called before this function is
376  * called.
377  */
378 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)379 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
380 		       struct ice_sq_cd *cd)
381 {
382 	struct ice_aqc_manage_mac_read_resp *resp;
383 	struct ice_aqc_manage_mac_read *cmd;
384 	struct ice_aq_desc desc;
385 	int status;
386 	u16 flags;
387 	u8 i;
388 
389 	cmd = &desc.params.mac_read;
390 
391 	if (buf_size < sizeof(*resp))
392 		return -EINVAL;
393 
394 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
395 
396 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
397 	if (status)
398 		return status;
399 
400 	resp = buf;
401 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
402 
403 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
404 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
405 		return -EIO;
406 	}
407 
408 	/* A single port can report up to two (LAN and WoL) addresses */
409 	for (i = 0; i < cmd->num_addr; i++)
410 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
411 			ether_addr_copy(hw->port_info->mac.lan_addr,
412 					resp[i].mac_addr);
413 			ether_addr_copy(hw->port_info->mac.perm_addr,
414 					resp[i].mac_addr);
415 			break;
416 		}
417 
418 	return 0;
419 }
420 
421 /**
422  * ice_aq_get_phy_caps - returns PHY capabilities
423  * @pi: port information structure
424  * @qual_mods: report qualified modules
425  * @report_mode: report mode capabilities
426  * @pcaps: structure for PHY capabilities to be filled
427  * @cd: pointer to command details structure or NULL
428  *
429  * Returns the various PHY capabilities supported on the Port (0x0600)
430  */
431 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)432 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
433 		    struct ice_aqc_get_phy_caps_data *pcaps,
434 		    struct ice_sq_cd *cd)
435 {
436 	struct ice_aqc_get_phy_caps *cmd;
437 	u16 pcaps_size = sizeof(*pcaps);
438 	struct ice_aq_desc desc;
439 	const char *prefix;
440 	struct ice_hw *hw;
441 	int status;
442 
443 	cmd = &desc.params.get_phy;
444 
445 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
446 		return -EINVAL;
447 	hw = pi->hw;
448 
449 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
450 	    !ice_fw_supports_report_dflt_cfg(hw))
451 		return -EINVAL;
452 
453 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
454 
455 	if (qual_mods)
456 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
457 
458 	cmd->param0 |= cpu_to_le16(report_mode);
459 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
460 
461 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
462 
463 	switch (report_mode) {
464 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
465 		prefix = "phy_caps_media";
466 		break;
467 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
468 		prefix = "phy_caps_no_media";
469 		break;
470 	case ICE_AQC_REPORT_ACTIVE_CFG:
471 		prefix = "phy_caps_active";
472 		break;
473 	case ICE_AQC_REPORT_DFLT_CFG:
474 		prefix = "phy_caps_default";
475 		break;
476 	default:
477 		prefix = "phy_caps_invalid";
478 	}
479 
480 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
481 			  le64_to_cpu(pcaps->phy_type_high), prefix);
482 
483 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
484 		  prefix, report_mode);
485 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
486 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
487 		  pcaps->low_power_ctrl_an);
488 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
489 		  pcaps->eee_cap);
490 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
491 		  pcaps->eeer_value);
492 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
493 		  pcaps->link_fec_options);
494 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
495 		  prefix, pcaps->module_compliance_enforcement);
496 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
497 		  prefix, pcaps->extended_compliance_code);
498 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
499 		  pcaps->module_type[0]);
500 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
501 		  pcaps->module_type[1]);
502 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
503 		  pcaps->module_type[2]);
504 
505 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
506 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
507 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
508 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
509 		       sizeof(pi->phy.link_info.module_type));
510 	}
511 
512 	return status;
513 }
514 
515 /**
516  * ice_aq_get_link_topo_handle - get link topology node return status
517  * @pi: port information structure
518  * @node_type: requested node type
519  * @cd: pointer to command details structure or NULL
520  *
521  * Get link topology node return status for specified node type (0x06E0)
522  *
523  * Node type cage can be used to determine if cage is present. If AQC
524  * returns error (ENOENT), then no cage present. If no cage present, then
525  * connection type is backplane or BASE-T.
526  */
527 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)528 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
529 			    struct ice_sq_cd *cd)
530 {
531 	struct ice_aqc_get_link_topo *cmd;
532 	struct ice_aq_desc desc;
533 
534 	cmd = &desc.params.get_link_topo;
535 
536 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
537 
538 	cmd->addr.topo_params.node_type_ctx =
539 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
540 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
541 
542 	/* set node type */
543 	cmd->addr.topo_params.node_type_ctx |=
544 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
545 
546 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
547 }
548 
549 /**
550  * ice_aq_get_netlist_node
551  * @hw: pointer to the hw struct
552  * @cmd: get_link_topo AQ structure
553  * @node_part_number: output node part number if node found
554  * @node_handle: output node handle parameter if node found
555  *
556  * Get netlist node handle.
557  */
558 int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)559 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
560 			u8 *node_part_number, u16 *node_handle)
561 {
562 	struct ice_aq_desc desc;
563 
564 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
565 	desc.params.get_link_topo = *cmd;
566 
567 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
568 		return -EINTR;
569 
570 	if (node_handle)
571 		*node_handle =
572 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
573 	if (node_part_number)
574 		*node_part_number = desc.params.get_link_topo.node_part_num;
575 
576 	return 0;
577 }
578 
579 /**
580  * ice_find_netlist_node
581  * @hw: pointer to the hw struct
582  * @node_type: type of netlist node to look for
583  * @ctx: context of the search
584  * @node_part_number: node part number to look for
585  * @node_handle: output parameter if node found - optional
586  *
587  * Scan the netlist for a node handle of the given node type and part number.
588  *
589  * If node_handle is non-NULL it will be modified on function exit. It is only
590  * valid if the function returns zero, and should be ignored on any non-zero
591  * return value.
592  *
593  * Return:
594  * * 0 if the node is found,
595  * * -ENOENT if no handle was found,
596  * * negative error code on failure to access the AQ.
597  */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type,u8 ctx,u8 node_part_number,u16 * node_handle)598 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
599 				 u8 node_part_number, u16 *node_handle)
600 {
601 	u8 idx;
602 
603 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
604 		struct ice_aqc_get_link_topo cmd = {};
605 		u8 rec_node_part_number;
606 		int status;
607 
608 		cmd.addr.topo_params.node_type_ctx =
609 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
610 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
611 		cmd.addr.topo_params.index = idx;
612 
613 		status = ice_aq_get_netlist_node(hw, &cmd,
614 						 &rec_node_part_number,
615 						 node_handle);
616 		if (status)
617 			return status;
618 
619 		if (rec_node_part_number == node_part_number)
620 			return 0;
621 	}
622 
623 	return -ENOENT;
624 }
625 
626 /**
627  * ice_is_media_cage_present
628  * @pi: port information structure
629  *
630  * Returns true if media cage is present, else false. If no cage, then
631  * media type is backplane or BASE-T.
632  */
ice_is_media_cage_present(struct ice_port_info * pi)633 static bool ice_is_media_cage_present(struct ice_port_info *pi)
634 {
635 	/* Node type cage can be used to determine if cage is present. If AQC
636 	 * returns error (ENOENT), then no cage present. If no cage present then
637 	 * connection type is backplane or BASE-T.
638 	 */
639 	return !ice_aq_get_link_topo_handle(pi,
640 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
641 					    NULL);
642 }
643 
644 /**
645  * ice_get_media_type - Gets media type
646  * @pi: port information structure
647  */
ice_get_media_type(struct ice_port_info * pi)648 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
649 {
650 	struct ice_link_status *hw_link_info;
651 
652 	if (!pi)
653 		return ICE_MEDIA_UNKNOWN;
654 
655 	hw_link_info = &pi->phy.link_info;
656 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
657 		/* If more than one media type is selected, report unknown */
658 		return ICE_MEDIA_UNKNOWN;
659 
660 	if (hw_link_info->phy_type_low) {
661 		/* 1G SGMII is a special case where some DA cable PHYs
662 		 * may show this as an option when it really shouldn't
663 		 * be since SGMII is meant to be between a MAC and a PHY
664 		 * in a backplane. Try to detect this case and handle it
665 		 */
666 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
667 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
668 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
669 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
670 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
671 			return ICE_MEDIA_DA;
672 
673 		switch (hw_link_info->phy_type_low) {
674 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
675 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
676 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
677 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
678 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
679 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
680 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
681 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
682 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
683 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
684 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
685 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
686 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
687 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
688 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
689 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
690 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
691 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
692 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
693 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
694 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
695 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
696 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
697 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
698 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
699 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
700 			return ICE_MEDIA_FIBER;
701 		case ICE_PHY_TYPE_LOW_100BASE_TX:
702 		case ICE_PHY_TYPE_LOW_1000BASE_T:
703 		case ICE_PHY_TYPE_LOW_2500BASE_T:
704 		case ICE_PHY_TYPE_LOW_5GBASE_T:
705 		case ICE_PHY_TYPE_LOW_10GBASE_T:
706 		case ICE_PHY_TYPE_LOW_25GBASE_T:
707 			return ICE_MEDIA_BASET;
708 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
709 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
710 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
711 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
712 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
713 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
714 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
715 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
716 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
717 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
718 			return ICE_MEDIA_DA;
719 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
720 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
721 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
722 		case ICE_PHY_TYPE_LOW_50G_AUI2:
723 		case ICE_PHY_TYPE_LOW_50G_AUI1:
724 		case ICE_PHY_TYPE_LOW_100G_AUI4:
725 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
726 			if (ice_is_media_cage_present(pi))
727 				return ICE_MEDIA_DA;
728 			fallthrough;
729 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
730 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
731 		case ICE_PHY_TYPE_LOW_2500BASE_X:
732 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
733 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
734 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
735 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
736 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
737 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
738 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
739 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
740 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
741 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
742 			return ICE_MEDIA_BACKPLANE;
743 		}
744 	} else {
745 		switch (hw_link_info->phy_type_high) {
746 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
747 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
748 			if (ice_is_media_cage_present(pi))
749 				return ICE_MEDIA_DA;
750 			fallthrough;
751 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
752 			return ICE_MEDIA_BACKPLANE;
753 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
754 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
755 			return ICE_MEDIA_FIBER;
756 		}
757 	}
758 	return ICE_MEDIA_UNKNOWN;
759 }
760 
761 /**
762  * ice_get_link_status_datalen
763  * @hw: pointer to the HW struct
764  *
765  * Returns datalength for the Get Link Status AQ command, which is bigger for
766  * newer adapter families handled by ice driver.
767  */
ice_get_link_status_datalen(struct ice_hw * hw)768 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
769 {
770 	switch (hw->mac_type) {
771 	case ICE_MAC_E830:
772 		return ICE_AQC_LS_DATA_SIZE_V2;
773 	case ICE_MAC_E810:
774 	default:
775 		return ICE_AQC_LS_DATA_SIZE_V1;
776 	}
777 }
778 
779 /**
780  * ice_aq_get_link_info
781  * @pi: port information structure
782  * @ena_lse: enable/disable LinkStatusEvent reporting
783  * @link: pointer to link status structure - optional
784  * @cd: pointer to command details structure or NULL
785  *
786  * Get Link Status (0x607). Returns the link status of the adapter.
787  */
788 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)789 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
790 		     struct ice_link_status *link, struct ice_sq_cd *cd)
791 {
792 	struct ice_aqc_get_link_status_data link_data = { 0 };
793 	struct ice_aqc_get_link_status *resp;
794 	struct ice_link_status *li_old, *li;
795 	enum ice_media_type *hw_media_type;
796 	struct ice_fc_info *hw_fc_info;
797 	bool tx_pause, rx_pause;
798 	struct ice_aq_desc desc;
799 	struct ice_hw *hw;
800 	u16 cmd_flags;
801 	int status;
802 
803 	if (!pi)
804 		return -EINVAL;
805 	hw = pi->hw;
806 	li_old = &pi->phy.link_info_old;
807 	hw_media_type = &pi->phy.media_type;
808 	li = &pi->phy.link_info;
809 	hw_fc_info = &pi->fc;
810 
811 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
812 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
813 	resp = &desc.params.get_link_status;
814 	resp->cmd_flags = cpu_to_le16(cmd_flags);
815 	resp->lport_num = pi->lport;
816 
817 	status = ice_aq_send_cmd(hw, &desc, &link_data,
818 				 ice_get_link_status_datalen(hw), cd);
819 	if (status)
820 		return status;
821 
822 	/* save off old link status information */
823 	*li_old = *li;
824 
825 	/* update current link status information */
826 	li->link_speed = le16_to_cpu(link_data.link_speed);
827 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
828 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
829 	*hw_media_type = ice_get_media_type(pi);
830 	li->link_info = link_data.link_info;
831 	li->link_cfg_err = link_data.link_cfg_err;
832 	li->an_info = link_data.an_info;
833 	li->ext_info = link_data.ext_info;
834 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
835 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
836 	li->topo_media_conflict = link_data.topo_media_conflict;
837 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
838 				      ICE_AQ_CFG_PACING_TYPE_M);
839 
840 	/* update fc info */
841 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
842 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
843 	if (tx_pause && rx_pause)
844 		hw_fc_info->current_mode = ICE_FC_FULL;
845 	else if (tx_pause)
846 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
847 	else if (rx_pause)
848 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
849 	else
850 		hw_fc_info->current_mode = ICE_FC_NONE;
851 
852 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
853 
854 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
855 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
856 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
857 		  (unsigned long long)li->phy_type_low);
858 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
859 		  (unsigned long long)li->phy_type_high);
860 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
861 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
862 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
863 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
864 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
865 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
866 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
867 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
868 		  li->max_frame_size);
869 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
870 
871 	/* save link status information */
872 	if (link)
873 		*link = *li;
874 
875 	/* flag cleared so calling functions don't call AQ again */
876 	pi->phy.get_link_info = false;
877 
878 	return 0;
879 }
880 
881 /**
882  * ice_fill_tx_timer_and_fc_thresh
883  * @hw: pointer to the HW struct
884  * @cmd: pointer to MAC cfg structure
885  *
886  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
887  * descriptor
888  */
889 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)890 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
891 				struct ice_aqc_set_mac_cfg *cmd)
892 {
893 	u32 val, fc_thres_m;
894 
895 	/* We read back the transmit timer and FC threshold value of
896 	 * LFC. Thus, we will use index =
897 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
898 	 *
899 	 * Also, because we are operating on transmit timer and FC
900 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
901 	 */
902 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
903 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
904 
905 	if (hw->mac_type == ICE_MAC_E830) {
906 		/* Retrieve the transmit timer */
907 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
908 		cmd->tx_tmr_value =
909 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
910 
911 		/* Retrieve the fc threshold */
912 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
913 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
914 	} else {
915 		/* Retrieve the transmit timer */
916 		val = rd32(hw,
917 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
918 		cmd->tx_tmr_value =
919 			le16_encode_bits(val,
920 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
921 
922 		/* Retrieve the fc threshold */
923 		val = rd32(hw,
924 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
925 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
926 	}
927 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
928 }
929 
930 /**
931  * ice_aq_set_mac_cfg
932  * @hw: pointer to the HW struct
933  * @max_frame_size: Maximum Frame Size to be supported
934  * @cd: pointer to command details structure or NULL
935  *
936  * Set MAC configuration (0x0603)
937  */
938 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)939 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
940 {
941 	struct ice_aqc_set_mac_cfg *cmd;
942 	struct ice_aq_desc desc;
943 
944 	cmd = &desc.params.set_mac_cfg;
945 
946 	if (max_frame_size == 0)
947 		return -EINVAL;
948 
949 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
950 
951 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
952 
953 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
954 
955 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
956 }
957 
958 /**
959  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
960  * @hw: pointer to the HW struct
961  */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)962 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
963 {
964 	struct ice_switch_info *sw;
965 	int status;
966 
967 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
968 				       sizeof(*hw->switch_info), GFP_KERNEL);
969 	sw = hw->switch_info;
970 
971 	if (!sw)
972 		return -ENOMEM;
973 
974 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
975 	sw->prof_res_bm_init = 0;
976 
977 	/* Initialize recipe count with default recipes read from NVM */
978 	sw->recp_cnt = ICE_SW_LKUP_LAST;
979 
980 	status = ice_init_def_sw_recp(hw);
981 	if (status) {
982 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
983 		return status;
984 	}
985 	return 0;
986 }
987 
988 /**
989  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
990  * @hw: pointer to the HW struct
991  */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)992 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
993 {
994 	struct ice_switch_info *sw = hw->switch_info;
995 	struct ice_vsi_list_map_info *v_pos_map;
996 	struct ice_vsi_list_map_info *v_tmp_map;
997 	struct ice_sw_recipe *recps;
998 	u8 i;
999 
1000 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
1001 				 list_entry) {
1002 		list_del(&v_pos_map->list_entry);
1003 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
1004 	}
1005 	recps = sw->recp_list;
1006 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1007 		recps[i].root_rid = i;
1008 
1009 		if (recps[i].adv_rule) {
1010 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
1011 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
1012 
1013 			mutex_destroy(&recps[i].filt_rule_lock);
1014 			list_for_each_entry_safe(lst_itr, tmp_entry,
1015 						 &recps[i].filt_rules,
1016 						 list_entry) {
1017 				list_del(&lst_itr->list_entry);
1018 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
1019 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
1020 			}
1021 		} else {
1022 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
1023 
1024 			mutex_destroy(&recps[i].filt_rule_lock);
1025 			list_for_each_entry_safe(lst_itr, tmp_entry,
1026 						 &recps[i].filt_rules,
1027 						 list_entry) {
1028 				list_del(&lst_itr->list_entry);
1029 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
1030 			}
1031 		}
1032 	}
1033 	ice_rm_all_sw_replay_rule_info(hw);
1034 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
1035 	devm_kfree(ice_hw_to_dev(hw), sw);
1036 }
1037 
1038 /**
1039  * ice_get_itr_intrl_gran
1040  * @hw: pointer to the HW struct
1041  *
1042  * Determines the ITR/INTRL granularities based on the maximum aggregate
1043  * bandwidth according to the device's configuration during power-on.
1044  */
ice_get_itr_intrl_gran(struct ice_hw * hw)1045 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1046 {
1047 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1048 				  rd32(hw, GL_PWR_MODE_CTL));
1049 
1050 	switch (max_agg_bw) {
1051 	case ICE_MAX_AGG_BW_200G:
1052 	case ICE_MAX_AGG_BW_100G:
1053 	case ICE_MAX_AGG_BW_50G:
1054 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1055 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1056 		break;
1057 	case ICE_MAX_AGG_BW_25G:
1058 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1059 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1060 		break;
1061 	}
1062 }
1063 
1064 /**
1065  * ice_wait_for_fw - wait for full FW readiness
1066  * @hw: pointer to the hardware structure
1067  * @timeout: milliseconds that can elapse before timing out
1068  *
1069  * Return: 0 on success, -ETIMEDOUT on timeout.
1070  */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)1071 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
1072 {
1073 	int fw_loading;
1074 	u32 elapsed = 0;
1075 
1076 	while (elapsed <= timeout) {
1077 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
1078 
1079 		/* firmware was not yet loaded, we have to wait more */
1080 		if (fw_loading) {
1081 			elapsed += 100;
1082 			msleep(100);
1083 			continue;
1084 		}
1085 		return 0;
1086 	}
1087 
1088 	return -ETIMEDOUT;
1089 }
1090 
1091 /**
1092  * ice_init_hw - main hardware initialization routine
1093  * @hw: pointer to the hardware structure
1094  */
ice_init_hw(struct ice_hw * hw)1095 int ice_init_hw(struct ice_hw *hw)
1096 {
1097 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1098 	void *mac_buf __free(kfree) = NULL;
1099 	u16 mac_buf_len;
1100 	int status;
1101 
1102 	/* Set MAC type based on DeviceID */
1103 	status = ice_set_mac_type(hw);
1104 	if (status)
1105 		return status;
1106 
1107 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1108 
1109 	status = ice_reset(hw, ICE_RESET_PFR);
1110 	if (status)
1111 		return status;
1112 
1113 	ice_get_itr_intrl_gran(hw);
1114 
1115 	status = ice_create_all_ctrlq(hw);
1116 	if (status)
1117 		goto err_unroll_cqinit;
1118 
1119 	status = ice_fwlog_init(hw);
1120 	if (status)
1121 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1122 			  status);
1123 
1124 	status = ice_clear_pf_cfg(hw);
1125 	if (status)
1126 		goto err_unroll_cqinit;
1127 
1128 	/* Set bit to enable Flow Director filters */
1129 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1130 	INIT_LIST_HEAD(&hw->fdir_list_head);
1131 
1132 	ice_clear_pxe_mode(hw);
1133 
1134 	status = ice_init_nvm(hw);
1135 	if (status)
1136 		goto err_unroll_cqinit;
1137 
1138 	status = ice_get_caps(hw);
1139 	if (status)
1140 		goto err_unroll_cqinit;
1141 
1142 	if (!hw->port_info)
1143 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1144 					     sizeof(*hw->port_info),
1145 					     GFP_KERNEL);
1146 	if (!hw->port_info) {
1147 		status = -ENOMEM;
1148 		goto err_unroll_cqinit;
1149 	}
1150 
1151 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1152 	/* set the back pointer to HW */
1153 	hw->port_info->hw = hw;
1154 
1155 	/* Initialize port_info struct with switch configuration data */
1156 	status = ice_get_initial_sw_cfg(hw);
1157 	if (status)
1158 		goto err_unroll_alloc;
1159 
1160 	hw->evb_veb = true;
1161 
1162 	/* init xarray for identifying scheduling nodes uniquely */
1163 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1164 
1165 	/* Query the allocated resources for Tx scheduler */
1166 	status = ice_sched_query_res_alloc(hw);
1167 	if (status) {
1168 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1169 		goto err_unroll_alloc;
1170 	}
1171 	ice_sched_get_psm_clk_freq(hw);
1172 
1173 	/* Initialize port_info struct with scheduler data */
1174 	status = ice_sched_init_port(hw->port_info);
1175 	if (status)
1176 		goto err_unroll_sched;
1177 
1178 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1179 	if (!pcaps) {
1180 		status = -ENOMEM;
1181 		goto err_unroll_sched;
1182 	}
1183 
1184 	/* Initialize port_info struct with PHY capabilities */
1185 	status = ice_aq_get_phy_caps(hw->port_info, false,
1186 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1187 				     NULL);
1188 	if (status)
1189 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1190 			 status);
1191 
1192 	/* Initialize port_info struct with link information */
1193 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1194 	if (status)
1195 		goto err_unroll_sched;
1196 
1197 	/* need a valid SW entry point to build a Tx tree */
1198 	if (!hw->sw_entry_point_layer) {
1199 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1200 		status = -EIO;
1201 		goto err_unroll_sched;
1202 	}
1203 	INIT_LIST_HEAD(&hw->agg_list);
1204 	/* Initialize max burst size */
1205 	if (!hw->max_burst_size)
1206 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1207 
1208 	status = ice_init_fltr_mgmt_struct(hw);
1209 	if (status)
1210 		goto err_unroll_sched;
1211 
1212 	/* Get MAC information */
1213 	/* A single port can report up to two (LAN and WoL) addresses */
1214 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1215 			  GFP_KERNEL);
1216 	if (!mac_buf) {
1217 		status = -ENOMEM;
1218 		goto err_unroll_fltr_mgmt_struct;
1219 	}
1220 
1221 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1222 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1223 
1224 	if (status)
1225 		goto err_unroll_fltr_mgmt_struct;
1226 	/* enable jumbo frame support at MAC level */
1227 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1228 	if (status)
1229 		goto err_unroll_fltr_mgmt_struct;
1230 	/* Obtain counter base index which would be used by flow director */
1231 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1232 	if (status)
1233 		goto err_unroll_fltr_mgmt_struct;
1234 	status = ice_init_hw_tbls(hw);
1235 	if (status)
1236 		goto err_unroll_fltr_mgmt_struct;
1237 	mutex_init(&hw->tnl_lock);
1238 	ice_init_chk_recipe_reuse_support(hw);
1239 
1240 	/* Some cards require longer initialization times
1241 	 * due to necessity of loading FW from an external source.
1242 	 * This can take even half a minute.
1243 	 */
1244 	if (ice_is_pf_c827(hw)) {
1245 		status = ice_wait_for_fw(hw, 30000);
1246 		if (status) {
1247 			dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1248 			goto err_unroll_fltr_mgmt_struct;
1249 		}
1250 	}
1251 
1252 	return 0;
1253 err_unroll_fltr_mgmt_struct:
1254 	ice_cleanup_fltr_mgmt_struct(hw);
1255 err_unroll_sched:
1256 	ice_sched_cleanup_all(hw);
1257 err_unroll_alloc:
1258 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1259 err_unroll_cqinit:
1260 	ice_destroy_all_ctrlq(hw);
1261 	return status;
1262 }
1263 
1264 /**
1265  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1266  * @hw: pointer to the hardware structure
1267  *
1268  * This should be called only during nominal operation, not as a result of
1269  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1270  * applicable initializations if it fails for any reason.
1271  */
ice_deinit_hw(struct ice_hw * hw)1272 void ice_deinit_hw(struct ice_hw *hw)
1273 {
1274 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1275 	ice_cleanup_fltr_mgmt_struct(hw);
1276 
1277 	ice_sched_cleanup_all(hw);
1278 	ice_sched_clear_agg(hw);
1279 	ice_free_seg(hw);
1280 	ice_free_hw_tbls(hw);
1281 	mutex_destroy(&hw->tnl_lock);
1282 
1283 	ice_fwlog_deinit(hw);
1284 	ice_destroy_all_ctrlq(hw);
1285 
1286 	/* Clear VSI contexts if not already cleared */
1287 	ice_clear_all_vsi_ctx(hw);
1288 }
1289 
1290 /**
1291  * ice_check_reset - Check to see if a global reset is complete
1292  * @hw: pointer to the hardware structure
1293  */
ice_check_reset(struct ice_hw * hw)1294 int ice_check_reset(struct ice_hw *hw)
1295 {
1296 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1297 
1298 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1299 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1300 	 * Add 1sec for outstanding AQ commands that can take a long time.
1301 	 */
1302 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1303 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1304 
1305 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1306 		mdelay(100);
1307 		reg = rd32(hw, GLGEN_RSTAT);
1308 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1309 			break;
1310 	}
1311 
1312 	if (cnt == grst_timeout) {
1313 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1314 		return -EIO;
1315 	}
1316 
1317 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1318 				 GLNVM_ULD_PCIER_DONE_1_M |\
1319 				 GLNVM_ULD_CORER_DONE_M |\
1320 				 GLNVM_ULD_GLOBR_DONE_M |\
1321 				 GLNVM_ULD_POR_DONE_M |\
1322 				 GLNVM_ULD_POR_DONE_1_M |\
1323 				 GLNVM_ULD_PCIER_DONE_2_M)
1324 
1325 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1326 					  GLNVM_ULD_PE_DONE_M : 0);
1327 
1328 	/* Device is Active; check Global Reset processes are done */
1329 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1330 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1331 		if (reg == uld_mask) {
1332 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1333 			break;
1334 		}
1335 		mdelay(10);
1336 	}
1337 
1338 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1339 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1340 			  reg);
1341 		return -EIO;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 /**
1348  * ice_pf_reset - Reset the PF
1349  * @hw: pointer to the hardware structure
1350  *
1351  * If a global reset has been triggered, this function checks
1352  * for its completion and then issues the PF reset
1353  */
ice_pf_reset(struct ice_hw * hw)1354 static int ice_pf_reset(struct ice_hw *hw)
1355 {
1356 	u32 cnt, reg;
1357 
1358 	/* If at function entry a global reset was already in progress, i.e.
1359 	 * state is not 'device active' or any of the reset done bits are not
1360 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1361 	 * global reset is done.
1362 	 */
1363 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1364 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1365 		/* poll on global reset currently in progress until done */
1366 		if (ice_check_reset(hw))
1367 			return -EIO;
1368 
1369 		return 0;
1370 	}
1371 
1372 	/* Reset the PF */
1373 	reg = rd32(hw, PFGEN_CTRL);
1374 
1375 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1376 
1377 	/* Wait for the PFR to complete. The wait time is the global config lock
1378 	 * timeout plus the PFR timeout which will account for a possible reset
1379 	 * that is occurring during a download package operation.
1380 	 */
1381 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1382 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1383 		reg = rd32(hw, PFGEN_CTRL);
1384 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1385 			break;
1386 
1387 		mdelay(1);
1388 	}
1389 
1390 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1391 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1392 		return -EIO;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * ice_reset - Perform different types of reset
1400  * @hw: pointer to the hardware structure
1401  * @req: reset request
1402  *
1403  * This function triggers a reset as specified by the req parameter.
1404  *
1405  * Note:
1406  * If anything other than a PF reset is triggered, PXE mode is restored.
1407  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1408  * interface has been restored in the rebuild flow.
1409  */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1410 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1411 {
1412 	u32 val = 0;
1413 
1414 	switch (req) {
1415 	case ICE_RESET_PFR:
1416 		return ice_pf_reset(hw);
1417 	case ICE_RESET_CORER:
1418 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1419 		val = GLGEN_RTRIG_CORER_M;
1420 		break;
1421 	case ICE_RESET_GLOBR:
1422 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1423 		val = GLGEN_RTRIG_GLOBR_M;
1424 		break;
1425 	default:
1426 		return -EINVAL;
1427 	}
1428 
1429 	val |= rd32(hw, GLGEN_RTRIG);
1430 	wr32(hw, GLGEN_RTRIG, val);
1431 	ice_flush(hw);
1432 
1433 	/* wait for the FW to be ready */
1434 	return ice_check_reset(hw);
1435 }
1436 
1437 /**
1438  * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1439  * @hw: pointer to the hardware structure
1440  * @rxq_ctx: pointer to the packed Rx queue context
1441  * @rxq_index: the index of the Rx queue
1442  */
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,const ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1443 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1444 				   const ice_rxq_ctx_buf_t *rxq_ctx,
1445 				   u32 rxq_index)
1446 {
1447 	/* Copy each dword separately to HW */
1448 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1449 		u32 ctx = ((const u32 *)rxq_ctx)[i];
1450 
1451 		wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1452 
1453 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1454 	}
1455 }
1456 
1457 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1458 	PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1459 
1460 /* LAN Rx Queue Context */
1461 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1462 				 /* Field		Width	LSB */
1463 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1464 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1465 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1466 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1467 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1468 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1469 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1470 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1471 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1472 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1473 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1474 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1475 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1476 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1477 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1478 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1479 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1480 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1481 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1482 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1483 };
1484 
1485 /**
1486  * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1487  * @ctx: the Rx queue context to pack
1488  * @buf: the HW buffer to pack into
1489  *
1490  * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1491  * bit-packed HW layout.
1492  */
ice_pack_rxq_ctx(const struct ice_rlan_ctx * ctx,ice_rxq_ctx_buf_t * buf)1493 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1494 			     ice_rxq_ctx_buf_t *buf)
1495 {
1496 	pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1497 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1498 }
1499 
1500 /**
1501  * ice_write_rxq_ctx - Write Rx Queue context to hardware
1502  * @hw: pointer to the hardware structure
1503  * @rlan_ctx: pointer to the unpacked Rx queue context
1504  * @rxq_index: the index of the Rx queue
1505  *
1506  * Pack the sparse Rx Queue context into dense hardware format and write it
1507  * into the HW register space.
1508  *
1509  * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1510  */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1511 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1512 		      u32 rxq_index)
1513 {
1514 	ice_rxq_ctx_buf_t buf = {};
1515 
1516 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1517 		return -EINVAL;
1518 
1519 	ice_pack_rxq_ctx(rlan_ctx, &buf);
1520 	ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1521 
1522 	return 0;
1523 }
1524 
1525 /* LAN Tx Queue Context */
1526 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1527 				    /* Field			Width	LSB */
1528 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1529 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1530 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1531 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1532 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1533 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1534 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1535 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1536 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1537 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1538 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1539 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1540 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1541 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1542 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1543 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1544 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1545 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1546 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1547 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1548 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1549 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1550 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1551 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1552 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1553 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1554 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1555 };
1556 
1557 /**
1558  * ice_pack_txq_ctx - Pack Tx queue context into a HW buffer
1559  * @ctx: the Tx queue context to pack
1560  * @buf: the HW buffer to pack into
1561  *
1562  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1563  * bit-packed HW layout.
1564  */
ice_pack_txq_ctx(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_t * buf)1565 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1566 {
1567 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1568 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1569 }
1570 
1571 /* Sideband Queue command wrappers */
1572 
1573 /**
1574  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1575  * @hw: pointer to the HW struct
1576  * @desc: descriptor describing the command
1577  * @buf: buffer to use for indirect commands (NULL for direct commands)
1578  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1579  * @cd: pointer to command details structure
1580  */
1581 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1582 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1583 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1584 {
1585 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1586 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1587 }
1588 
1589 /**
1590  * ice_sbq_rw_reg - Fill Sideband Queue command
1591  * @hw: pointer to the HW struct
1592  * @in: message info to be filled in descriptor
1593  * @flags: control queue descriptor flags
1594  */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1595 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1596 {
1597 	struct ice_sbq_cmd_desc desc = {0};
1598 	struct ice_sbq_msg_req msg = {0};
1599 	u16 msg_len;
1600 	int status;
1601 
1602 	msg_len = sizeof(msg);
1603 
1604 	msg.dest_dev = in->dest_dev;
1605 	msg.opcode = in->opcode;
1606 	msg.flags = ICE_SBQ_MSG_FLAGS;
1607 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1608 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1609 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1610 
1611 	if (in->opcode)
1612 		msg.data = cpu_to_le32(in->data);
1613 	else
1614 		/* data read comes back in completion, so shorten the struct by
1615 		 * sizeof(msg.data)
1616 		 */
1617 		msg_len -= sizeof(msg.data);
1618 
1619 	desc.flags = cpu_to_le16(flags);
1620 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1621 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1622 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1623 	if (!status && !in->opcode)
1624 		in->data = le32_to_cpu
1625 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1626 	return status;
1627 }
1628 
1629 /* FW Admin Queue command wrappers */
1630 
1631 /* Software lock/mutex that is meant to be held while the Global Config Lock
1632  * in firmware is acquired by the software to prevent most (but not all) types
1633  * of AQ commands from being sent to FW
1634  */
1635 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1636 
1637 /**
1638  * ice_should_retry_sq_send_cmd
1639  * @opcode: AQ opcode
1640  *
1641  * Decide if we should retry the send command routine for the ATQ, depending
1642  * on the opcode.
1643  */
ice_should_retry_sq_send_cmd(u16 opcode)1644 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1645 {
1646 	switch (opcode) {
1647 	case ice_aqc_opc_get_link_topo:
1648 	case ice_aqc_opc_lldp_stop:
1649 	case ice_aqc_opc_lldp_start:
1650 	case ice_aqc_opc_lldp_filter_ctrl:
1651 		return true;
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 /**
1658  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1659  * @hw: pointer to the HW struct
1660  * @cq: pointer to the specific Control queue
1661  * @desc: prefilled descriptor describing the command
1662  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1663  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1664  * @cd: pointer to command details structure
1665  *
1666  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1667  * Queue if the EBUSY AQ error is returned.
1668  */
1669 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1670 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1671 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1672 		      struct ice_sq_cd *cd)
1673 {
1674 	struct ice_aq_desc desc_cpy;
1675 	bool is_cmd_for_retry;
1676 	u8 idx = 0;
1677 	u16 opcode;
1678 	int status;
1679 
1680 	opcode = le16_to_cpu(desc->opcode);
1681 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1682 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1683 
1684 	if (is_cmd_for_retry) {
1685 		/* All retryable cmds are direct, without buf. */
1686 		WARN_ON(buf);
1687 
1688 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1689 	}
1690 
1691 	do {
1692 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1693 
1694 		if (!is_cmd_for_retry || !status ||
1695 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1696 			break;
1697 
1698 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1699 
1700 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1701 
1702 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1703 
1704 	return status;
1705 }
1706 
1707 /**
1708  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1709  * @hw: pointer to the HW struct
1710  * @desc: descriptor describing the command
1711  * @buf: buffer to use for indirect commands (NULL for direct commands)
1712  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1713  * @cd: pointer to command details structure
1714  *
1715  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1716  */
1717 int
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1718 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1719 		u16 buf_size, struct ice_sq_cd *cd)
1720 {
1721 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1722 	bool lock_acquired = false;
1723 	int status;
1724 
1725 	/* When a package download is in process (i.e. when the firmware's
1726 	 * Global Configuration Lock resource is held), only the Download
1727 	 * Package, Get Version, Get Package Info List, Upload Section,
1728 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1729 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1730 	 * Recipes to Profile Association, and Release Resource (with resource
1731 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1732 	 * must block until the package download completes and the Global Config
1733 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1734 	 */
1735 	switch (le16_to_cpu(desc->opcode)) {
1736 	case ice_aqc_opc_download_pkg:
1737 	case ice_aqc_opc_get_pkg_info_list:
1738 	case ice_aqc_opc_get_ver:
1739 	case ice_aqc_opc_upload_section:
1740 	case ice_aqc_opc_update_pkg:
1741 	case ice_aqc_opc_set_port_params:
1742 	case ice_aqc_opc_get_vlan_mode_parameters:
1743 	case ice_aqc_opc_set_vlan_mode_parameters:
1744 	case ice_aqc_opc_set_tx_topo:
1745 	case ice_aqc_opc_get_tx_topo:
1746 	case ice_aqc_opc_add_recipe:
1747 	case ice_aqc_opc_recipe_to_profile:
1748 	case ice_aqc_opc_get_recipe:
1749 	case ice_aqc_opc_get_recipe_to_profile:
1750 		break;
1751 	case ice_aqc_opc_release_res:
1752 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1753 			break;
1754 		fallthrough;
1755 	default:
1756 		mutex_lock(&ice_global_cfg_lock_sw);
1757 		lock_acquired = true;
1758 		break;
1759 	}
1760 
1761 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1762 	if (lock_acquired)
1763 		mutex_unlock(&ice_global_cfg_lock_sw);
1764 
1765 	return status;
1766 }
1767 
1768 /**
1769  * ice_aq_get_fw_ver
1770  * @hw: pointer to the HW struct
1771  * @cd: pointer to command details structure or NULL
1772  *
1773  * Get the firmware version (0x0001) from the admin queue commands
1774  */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1775 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1776 {
1777 	struct ice_aqc_get_ver *resp;
1778 	struct ice_aq_desc desc;
1779 	int status;
1780 
1781 	resp = &desc.params.get_ver;
1782 
1783 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1784 
1785 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1786 
1787 	if (!status) {
1788 		hw->fw_branch = resp->fw_branch;
1789 		hw->fw_maj_ver = resp->fw_major;
1790 		hw->fw_min_ver = resp->fw_minor;
1791 		hw->fw_patch = resp->fw_patch;
1792 		hw->fw_build = le32_to_cpu(resp->fw_build);
1793 		hw->api_branch = resp->api_branch;
1794 		hw->api_maj_ver = resp->api_major;
1795 		hw->api_min_ver = resp->api_minor;
1796 		hw->api_patch = resp->api_patch;
1797 	}
1798 
1799 	return status;
1800 }
1801 
1802 /**
1803  * ice_aq_send_driver_ver
1804  * @hw: pointer to the HW struct
1805  * @dv: driver's major, minor version
1806  * @cd: pointer to command details structure or NULL
1807  *
1808  * Send the driver version (0x0002) to the firmware
1809  */
1810 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1811 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1812 		       struct ice_sq_cd *cd)
1813 {
1814 	struct ice_aqc_driver_ver *cmd;
1815 	struct ice_aq_desc desc;
1816 	u16 len;
1817 
1818 	cmd = &desc.params.driver_ver;
1819 
1820 	if (!dv)
1821 		return -EINVAL;
1822 
1823 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1824 
1825 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1826 	cmd->major_ver = dv->major_ver;
1827 	cmd->minor_ver = dv->minor_ver;
1828 	cmd->build_ver = dv->build_ver;
1829 	cmd->subbuild_ver = dv->subbuild_ver;
1830 
1831 	len = 0;
1832 	while (len < sizeof(dv->driver_string) &&
1833 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1834 		len++;
1835 
1836 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1837 }
1838 
1839 /**
1840  * ice_aq_q_shutdown
1841  * @hw: pointer to the HW struct
1842  * @unloading: is the driver unloading itself
1843  *
1844  * Tell the Firmware that we're shutting down the AdminQ and whether
1845  * or not the driver is unloading as well (0x0003).
1846  */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1847 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1848 {
1849 	struct ice_aqc_q_shutdown *cmd;
1850 	struct ice_aq_desc desc;
1851 
1852 	cmd = &desc.params.q_shutdown;
1853 
1854 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1855 
1856 	if (unloading)
1857 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1858 
1859 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1860 }
1861 
1862 /**
1863  * ice_aq_req_res
1864  * @hw: pointer to the HW struct
1865  * @res: resource ID
1866  * @access: access type
1867  * @sdp_number: resource number
1868  * @timeout: the maximum time in ms that the driver may hold the resource
1869  * @cd: pointer to command details structure or NULL
1870  *
1871  * Requests common resource using the admin queue commands (0x0008).
1872  * When attempting to acquire the Global Config Lock, the driver can
1873  * learn of three states:
1874  *  1) 0 -         acquired lock, and can perform download package
1875  *  2) -EIO -      did not get lock, driver should fail to load
1876  *  3) -EALREADY - did not get lock, but another driver has
1877  *                 successfully downloaded the package; the driver does
1878  *                 not have to download the package and can continue
1879  *                 loading
1880  *
1881  * Note that if the caller is in an acquire lock, perform action, release lock
1882  * phase of operation, it is possible that the FW may detect a timeout and issue
1883  * a CORER. In this case, the driver will receive a CORER interrupt and will
1884  * have to determine its cause. The calling thread that is handling this flow
1885  * will likely get an error propagated back to it indicating the Download
1886  * Package, Update Package or the Release Resource AQ commands timed out.
1887  */
1888 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1889 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1890 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1891 	       struct ice_sq_cd *cd)
1892 {
1893 	struct ice_aqc_req_res *cmd_resp;
1894 	struct ice_aq_desc desc;
1895 	int status;
1896 
1897 	cmd_resp = &desc.params.res_owner;
1898 
1899 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1900 
1901 	cmd_resp->res_id = cpu_to_le16(res);
1902 	cmd_resp->access_type = cpu_to_le16(access);
1903 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1904 	cmd_resp->timeout = cpu_to_le32(*timeout);
1905 	*timeout = 0;
1906 
1907 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1908 
1909 	/* The completion specifies the maximum time in ms that the driver
1910 	 * may hold the resource in the Timeout field.
1911 	 */
1912 
1913 	/* Global config lock response utilizes an additional status field.
1914 	 *
1915 	 * If the Global config lock resource is held by some other driver, the
1916 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1917 	 * and the timeout field indicates the maximum time the current owner
1918 	 * of the resource has to free it.
1919 	 */
1920 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1921 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1922 			*timeout = le32_to_cpu(cmd_resp->timeout);
1923 			return 0;
1924 		} else if (le16_to_cpu(cmd_resp->status) ==
1925 			   ICE_AQ_RES_GLBL_IN_PROG) {
1926 			*timeout = le32_to_cpu(cmd_resp->timeout);
1927 			return -EIO;
1928 		} else if (le16_to_cpu(cmd_resp->status) ==
1929 			   ICE_AQ_RES_GLBL_DONE) {
1930 			return -EALREADY;
1931 		}
1932 
1933 		/* invalid FW response, force a timeout immediately */
1934 		*timeout = 0;
1935 		return -EIO;
1936 	}
1937 
1938 	/* If the resource is held by some other driver, the command completes
1939 	 * with a busy return value and the timeout field indicates the maximum
1940 	 * time the current owner of the resource has to free it.
1941 	 */
1942 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1943 		*timeout = le32_to_cpu(cmd_resp->timeout);
1944 
1945 	return status;
1946 }
1947 
1948 /**
1949  * ice_aq_release_res
1950  * @hw: pointer to the HW struct
1951  * @res: resource ID
1952  * @sdp_number: resource number
1953  * @cd: pointer to command details structure or NULL
1954  *
1955  * release common resource using the admin queue commands (0x0009)
1956  */
1957 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1958 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1959 		   struct ice_sq_cd *cd)
1960 {
1961 	struct ice_aqc_req_res *cmd;
1962 	struct ice_aq_desc desc;
1963 
1964 	cmd = &desc.params.res_owner;
1965 
1966 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1967 
1968 	cmd->res_id = cpu_to_le16(res);
1969 	cmd->res_number = cpu_to_le32(sdp_number);
1970 
1971 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1972 }
1973 
1974 /**
1975  * ice_acquire_res
1976  * @hw: pointer to the HW structure
1977  * @res: resource ID
1978  * @access: access type (read or write)
1979  * @timeout: timeout in milliseconds
1980  *
1981  * This function will attempt to acquire the ownership of a resource.
1982  */
1983 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1984 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1985 		enum ice_aq_res_access_type access, u32 timeout)
1986 {
1987 #define ICE_RES_POLLING_DELAY_MS	10
1988 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1989 	u32 time_left = timeout;
1990 	int status;
1991 
1992 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1993 
1994 	/* A return code of -EALREADY means that another driver has
1995 	 * previously acquired the resource and performed any necessary updates;
1996 	 * in this case the caller does not obtain the resource and has no
1997 	 * further work to do.
1998 	 */
1999 	if (status == -EALREADY)
2000 		goto ice_acquire_res_exit;
2001 
2002 	if (status)
2003 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2004 
2005 	/* If necessary, poll until the current lock owner timeouts */
2006 	timeout = time_left;
2007 	while (status && timeout && time_left) {
2008 		mdelay(delay);
2009 		timeout = (timeout > delay) ? timeout - delay : 0;
2010 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2011 
2012 		if (status == -EALREADY)
2013 			/* lock free, but no work to do */
2014 			break;
2015 
2016 		if (!status)
2017 			/* lock acquired */
2018 			break;
2019 	}
2020 	if (status && status != -EALREADY)
2021 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2022 
2023 ice_acquire_res_exit:
2024 	if (status == -EALREADY) {
2025 		if (access == ICE_RES_WRITE)
2026 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2027 		else
2028 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2029 	}
2030 	return status;
2031 }
2032 
2033 /**
2034  * ice_release_res
2035  * @hw: pointer to the HW structure
2036  * @res: resource ID
2037  *
2038  * This function will release a resource using the proper Admin Command.
2039  */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)2040 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2041 {
2042 	unsigned long timeout;
2043 	int status;
2044 
2045 	/* there are some rare cases when trying to release the resource
2046 	 * results in an admin queue timeout, so handle them correctly
2047 	 */
2048 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2049 	do {
2050 		status = ice_aq_release_res(hw, res, 0, NULL);
2051 		if (status != -EIO)
2052 			break;
2053 		usleep_range(1000, 2000);
2054 	} while (time_before(jiffies, timeout));
2055 }
2056 
2057 /**
2058  * ice_aq_alloc_free_res - command to allocate/free resources
2059  * @hw: pointer to the HW struct
2060  * @buf: Indirect buffer to hold data parameters and response
2061  * @buf_size: size of buffer for indirect commands
2062  * @opc: pass in the command opcode
2063  *
2064  * Helper function to allocate/free resources using the admin queue commands
2065  */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)2066 int ice_aq_alloc_free_res(struct ice_hw *hw,
2067 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2068 			  enum ice_adminq_opc opc)
2069 {
2070 	struct ice_aqc_alloc_free_res_cmd *cmd;
2071 	struct ice_aq_desc desc;
2072 
2073 	cmd = &desc.params.sw_res_ctrl;
2074 
2075 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2076 		return -EINVAL;
2077 
2078 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2079 
2080 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2081 
2082 	cmd->num_entries = cpu_to_le16(1);
2083 
2084 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2085 }
2086 
2087 /**
2088  * ice_alloc_hw_res - allocate resource
2089  * @hw: pointer to the HW struct
2090  * @type: type of resource
2091  * @num: number of resources to allocate
2092  * @btm: allocate from bottom
2093  * @res: pointer to array that will receive the resources
2094  */
2095 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)2096 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2097 {
2098 	struct ice_aqc_alloc_free_res_elem *buf;
2099 	u16 buf_len;
2100 	int status;
2101 
2102 	buf_len = struct_size(buf, elem, num);
2103 	buf = kzalloc(buf_len, GFP_KERNEL);
2104 	if (!buf)
2105 		return -ENOMEM;
2106 
2107 	/* Prepare buffer to allocate resource. */
2108 	buf->num_elems = cpu_to_le16(num);
2109 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2110 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2111 	if (btm)
2112 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2113 
2114 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2115 	if (status)
2116 		goto ice_alloc_res_exit;
2117 
2118 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2119 
2120 ice_alloc_res_exit:
2121 	kfree(buf);
2122 	return status;
2123 }
2124 
2125 /**
2126  * ice_free_hw_res - free allocated HW resource
2127  * @hw: pointer to the HW struct
2128  * @type: type of resource to free
2129  * @num: number of resources
2130  * @res: pointer to array that contains the resources to free
2131  */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2132 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2133 {
2134 	struct ice_aqc_alloc_free_res_elem *buf;
2135 	u16 buf_len;
2136 	int status;
2137 
2138 	buf_len = struct_size(buf, elem, num);
2139 	buf = kzalloc(buf_len, GFP_KERNEL);
2140 	if (!buf)
2141 		return -ENOMEM;
2142 
2143 	/* Prepare buffer to free resource. */
2144 	buf->num_elems = cpu_to_le16(num);
2145 	buf->res_type = cpu_to_le16(type);
2146 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2147 
2148 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2149 	if (status)
2150 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2151 
2152 	kfree(buf);
2153 	return status;
2154 }
2155 
2156 /**
2157  * ice_get_num_per_func - determine number of resources per PF
2158  * @hw: pointer to the HW structure
2159  * @max: value to be evenly split between each PF
2160  *
2161  * Determine the number of valid functions by going through the bitmap returned
2162  * from parsing capabilities and use this to calculate the number of resources
2163  * per PF based on the max value passed in.
2164  */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2165 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2166 {
2167 	u8 funcs;
2168 
2169 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2170 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2171 			 ICE_CAPS_VALID_FUNCS_M);
2172 
2173 	if (!funcs)
2174 		return 0;
2175 
2176 	return max / funcs;
2177 }
2178 
2179 /**
2180  * ice_parse_common_caps - parse common device/function capabilities
2181  * @hw: pointer to the HW struct
2182  * @caps: pointer to common capabilities structure
2183  * @elem: the capability element to parse
2184  * @prefix: message prefix for tracing capabilities
2185  *
2186  * Given a capability element, extract relevant details into the common
2187  * capability structure.
2188  *
2189  * Returns: true if the capability matches one of the common capability ids,
2190  * false otherwise.
2191  */
2192 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)2193 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2194 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2195 {
2196 	u32 logical_id = le32_to_cpu(elem->logical_id);
2197 	u32 phys_id = le32_to_cpu(elem->phys_id);
2198 	u32 number = le32_to_cpu(elem->number);
2199 	u16 cap = le16_to_cpu(elem->cap);
2200 	bool found = true;
2201 
2202 	switch (cap) {
2203 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2204 		caps->valid_functions = number;
2205 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2206 			  caps->valid_functions);
2207 		break;
2208 	case ICE_AQC_CAPS_SRIOV:
2209 		caps->sr_iov_1_1 = (number == 1);
2210 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2211 			  caps->sr_iov_1_1);
2212 		break;
2213 	case ICE_AQC_CAPS_DCB:
2214 		caps->dcb = (number == 1);
2215 		caps->active_tc_bitmap = logical_id;
2216 		caps->maxtc = phys_id;
2217 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2218 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2219 			  caps->active_tc_bitmap);
2220 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2221 		break;
2222 	case ICE_AQC_CAPS_RSS:
2223 		caps->rss_table_size = number;
2224 		caps->rss_table_entry_width = logical_id;
2225 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2226 			  caps->rss_table_size);
2227 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2228 			  caps->rss_table_entry_width);
2229 		break;
2230 	case ICE_AQC_CAPS_RXQS:
2231 		caps->num_rxq = number;
2232 		caps->rxq_first_id = phys_id;
2233 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2234 			  caps->num_rxq);
2235 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2236 			  caps->rxq_first_id);
2237 		break;
2238 	case ICE_AQC_CAPS_TXQS:
2239 		caps->num_txq = number;
2240 		caps->txq_first_id = phys_id;
2241 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2242 			  caps->num_txq);
2243 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2244 			  caps->txq_first_id);
2245 		break;
2246 	case ICE_AQC_CAPS_MSIX:
2247 		caps->num_msix_vectors = number;
2248 		caps->msix_vector_first_id = phys_id;
2249 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2250 			  caps->num_msix_vectors);
2251 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2252 			  caps->msix_vector_first_id);
2253 		break;
2254 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2255 		caps->nvm_update_pending_nvm = true;
2256 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2257 		break;
2258 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2259 		caps->nvm_update_pending_orom = true;
2260 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2261 		break;
2262 	case ICE_AQC_CAPS_PENDING_NET_VER:
2263 		caps->nvm_update_pending_netlist = true;
2264 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2265 		break;
2266 	case ICE_AQC_CAPS_NVM_MGMT:
2267 		caps->nvm_unified_update =
2268 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2269 			true : false;
2270 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2271 			  caps->nvm_unified_update);
2272 		break;
2273 	case ICE_AQC_CAPS_RDMA:
2274 		if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2275 			caps->rdma = (number == 1);
2276 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2277 		break;
2278 	case ICE_AQC_CAPS_MAX_MTU:
2279 		caps->max_mtu = number;
2280 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2281 			  prefix, caps->max_mtu);
2282 		break;
2283 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2284 		caps->pcie_reset_avoidance = (number > 0);
2285 		ice_debug(hw, ICE_DBG_INIT,
2286 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2287 			  caps->pcie_reset_avoidance);
2288 		break;
2289 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2290 		caps->reset_restrict_support = (number == 1);
2291 		ice_debug(hw, ICE_DBG_INIT,
2292 			  "%s: reset_restrict_support = %d\n", prefix,
2293 			  caps->reset_restrict_support);
2294 		break;
2295 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2296 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2297 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2298 			  prefix, caps->roce_lag);
2299 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2300 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2301 			  prefix, caps->sriov_lag);
2302 		break;
2303 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2304 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2305 		break;
2306 	default:
2307 		/* Not one of the recognized common capabilities */
2308 		found = false;
2309 	}
2310 
2311 	return found;
2312 }
2313 
2314 /**
2315  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2316  * @hw: pointer to the HW structure
2317  * @caps: pointer to capabilities structure to fix
2318  *
2319  * Re-calculate the capabilities that are dependent on the number of physical
2320  * ports; i.e. some features are not supported or function differently on
2321  * devices with more than 4 ports.
2322  */
2323 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2324 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2325 {
2326 	/* This assumes device capabilities are always scanned before function
2327 	 * capabilities during the initialization flow.
2328 	 */
2329 	if (hw->dev_caps.num_funcs > 4) {
2330 		/* Max 4 TCs per port */
2331 		caps->maxtc = 4;
2332 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2333 			  caps->maxtc);
2334 		if (caps->rdma) {
2335 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2336 			caps->rdma = 0;
2337 		}
2338 
2339 		/* print message only when processing device capabilities
2340 		 * during initialization.
2341 		 */
2342 		if (caps == &hw->dev_caps.common_cap)
2343 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2344 	}
2345 }
2346 
2347 /**
2348  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2349  * @hw: pointer to the HW struct
2350  * @func_p: pointer to function capabilities structure
2351  * @cap: pointer to the capability element to parse
2352  *
2353  * Extract function capabilities for ICE_AQC_CAPS_VF.
2354  */
2355 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2356 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2357 		       struct ice_aqc_list_caps_elem *cap)
2358 {
2359 	u32 logical_id = le32_to_cpu(cap->logical_id);
2360 	u32 number = le32_to_cpu(cap->number);
2361 
2362 	func_p->num_allocd_vfs = number;
2363 	func_p->vf_base_id = logical_id;
2364 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2365 		  func_p->num_allocd_vfs);
2366 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2367 		  func_p->vf_base_id);
2368 }
2369 
2370 /**
2371  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2372  * @hw: pointer to the HW struct
2373  * @func_p: pointer to function capabilities structure
2374  * @cap: pointer to the capability element to parse
2375  *
2376  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2377  */
2378 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2379 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2380 			struct ice_aqc_list_caps_elem *cap)
2381 {
2382 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2383 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2384 		  le32_to_cpu(cap->number));
2385 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2386 		  func_p->guar_num_vsi);
2387 }
2388 
2389 /**
2390  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2391  * @hw: pointer to the HW struct
2392  * @func_p: pointer to function capabilities structure
2393  * @cap: pointer to the capability element to parse
2394  *
2395  * Extract function capabilities for ICE_AQC_CAPS_1588.
2396  */
2397 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2398 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2399 			 struct ice_aqc_list_caps_elem *cap)
2400 {
2401 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2402 	u32 number = le32_to_cpu(cap->number);
2403 
2404 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2405 	func_p->common_cap.ieee_1588 = info->ena;
2406 
2407 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2408 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2409 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2410 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2411 
2412 	if (!ice_is_e825c(hw)) {
2413 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2414 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2415 	} else {
2416 		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2417 		info->clk_src = ICE_CLK_SRC_TCXO;
2418 	}
2419 
2420 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2421 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2422 	} else {
2423 		/* Unknown clock frequency, so assume a (probably incorrect)
2424 		 * default to avoid out-of-bounds look ups of frequency
2425 		 * related information.
2426 		 */
2427 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2428 			  info->clk_freq);
2429 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2430 	}
2431 
2432 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2433 		  func_p->common_cap.ieee_1588);
2434 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2435 		  info->src_tmr_owned);
2436 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2437 		  info->tmr_ena);
2438 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2439 		  info->tmr_index_owned);
2440 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2441 		  info->tmr_index_assoc);
2442 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2443 		  info->clk_freq);
2444 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2445 		  info->clk_src);
2446 }
2447 
2448 /**
2449  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2450  * @hw: pointer to the HW struct
2451  * @func_p: pointer to function capabilities structure
2452  *
2453  * Extract function capabilities for ICE_AQC_CAPS_FD.
2454  */
2455 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2456 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2457 {
2458 	u32 reg_val, gsize, bsize;
2459 
2460 	reg_val = rd32(hw, GLQF_FD_SIZE);
2461 	switch (hw->mac_type) {
2462 	case ICE_MAC_E830:
2463 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2464 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2465 		break;
2466 	case ICE_MAC_E810:
2467 	default:
2468 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2469 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2470 	}
2471 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2472 	func_p->fd_fltr_best_effort = bsize;
2473 
2474 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2475 		  func_p->fd_fltr_guar);
2476 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2477 		  func_p->fd_fltr_best_effort);
2478 }
2479 
2480 /**
2481  * ice_parse_func_caps - Parse function capabilities
2482  * @hw: pointer to the HW struct
2483  * @func_p: pointer to function capabilities structure
2484  * @buf: buffer containing the function capability records
2485  * @cap_count: the number of capabilities
2486  *
2487  * Helper function to parse function (0x000A) capabilities list. For
2488  * capabilities shared between device and function, this relies on
2489  * ice_parse_common_caps.
2490  *
2491  * Loop through the list of provided capabilities and extract the relevant
2492  * data into the function capabilities structured.
2493  */
2494 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2495 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2496 		    void *buf, u32 cap_count)
2497 {
2498 	struct ice_aqc_list_caps_elem *cap_resp;
2499 	u32 i;
2500 
2501 	cap_resp = buf;
2502 
2503 	memset(func_p, 0, sizeof(*func_p));
2504 
2505 	for (i = 0; i < cap_count; i++) {
2506 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2507 		bool found;
2508 
2509 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2510 					      &cap_resp[i], "func caps");
2511 
2512 		switch (cap) {
2513 		case ICE_AQC_CAPS_VF:
2514 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2515 			break;
2516 		case ICE_AQC_CAPS_VSI:
2517 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2518 			break;
2519 		case ICE_AQC_CAPS_1588:
2520 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2521 			break;
2522 		case ICE_AQC_CAPS_FD:
2523 			ice_parse_fdir_func_caps(hw, func_p);
2524 			break;
2525 		default:
2526 			/* Don't list common capabilities as unknown */
2527 			if (!found)
2528 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2529 					  i, cap);
2530 			break;
2531 		}
2532 	}
2533 
2534 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2535 }
2536 
2537 /**
2538  * ice_func_id_to_logical_id - map from function id to logical pf id
2539  * @active_function_bitmap: active function bitmap
2540  * @pf_id: function number of device
2541  *
2542  * Return: logical PF ID.
2543  */
ice_func_id_to_logical_id(u32 active_function_bitmap,u8 pf_id)2544 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2545 {
2546 	u8 logical_id = 0;
2547 	u8 i;
2548 
2549 	for (i = 0; i < pf_id; i++)
2550 		if (active_function_bitmap & BIT(i))
2551 			logical_id++;
2552 
2553 	return logical_id;
2554 }
2555 
2556 /**
2557  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2558  * @hw: pointer to the HW struct
2559  * @dev_p: pointer to device capabilities structure
2560  * @cap: capability element to parse
2561  *
2562  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2563  */
2564 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2565 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2566 			      struct ice_aqc_list_caps_elem *cap)
2567 {
2568 	u32 number = le32_to_cpu(cap->number);
2569 
2570 	dev_p->num_funcs = hweight32(number);
2571 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2572 		  dev_p->num_funcs);
2573 
2574 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2575 }
2576 
2577 /**
2578  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2579  * @hw: pointer to the HW struct
2580  * @dev_p: pointer to device capabilities structure
2581  * @cap: capability element to parse
2582  *
2583  * Parse ICE_AQC_CAPS_VF for device capabilities.
2584  */
2585 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2586 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2587 		      struct ice_aqc_list_caps_elem *cap)
2588 {
2589 	u32 number = le32_to_cpu(cap->number);
2590 
2591 	dev_p->num_vfs_exposed = number;
2592 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2593 		  dev_p->num_vfs_exposed);
2594 }
2595 
2596 /**
2597  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2598  * @hw: pointer to the HW struct
2599  * @dev_p: pointer to device capabilities structure
2600  * @cap: capability element to parse
2601  *
2602  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2603  */
2604 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2605 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2606 		       struct ice_aqc_list_caps_elem *cap)
2607 {
2608 	u32 number = le32_to_cpu(cap->number);
2609 
2610 	dev_p->num_vsi_allocd_to_host = number;
2611 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2612 		  dev_p->num_vsi_allocd_to_host);
2613 }
2614 
2615 /**
2616  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2617  * @hw: pointer to the HW struct
2618  * @dev_p: pointer to device capabilities structure
2619  * @cap: capability element to parse
2620  *
2621  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2622  */
2623 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2624 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2625 			struct ice_aqc_list_caps_elem *cap)
2626 {
2627 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2628 	u32 logical_id = le32_to_cpu(cap->logical_id);
2629 	u32 phys_id = le32_to_cpu(cap->phys_id);
2630 	u32 number = le32_to_cpu(cap->number);
2631 
2632 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2633 	dev_p->common_cap.ieee_1588 = info->ena;
2634 
2635 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2636 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2637 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2638 
2639 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2640 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2641 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2642 
2643 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2644 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2645 	info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2646 
2647 	info->ena_ports = logical_id;
2648 	info->tmr_own_map = phys_id;
2649 
2650 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2651 		  dev_p->common_cap.ieee_1588);
2652 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2653 		  info->tmr0_owner);
2654 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2655 		  info->tmr0_owned);
2656 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2657 		  info->tmr0_ena);
2658 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2659 		  info->tmr1_owner);
2660 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2661 		  info->tmr1_owned);
2662 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2663 		  info->tmr1_ena);
2664 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2665 		  info->ts_ll_read);
2666 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2667 		  info->ts_ll_int_read);
2668 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2669 		  info->ll_phy_tmr_update);
2670 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2671 		  info->ena_ports);
2672 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2673 		  info->tmr_own_map);
2674 }
2675 
2676 /**
2677  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2678  * @hw: pointer to the HW struct
2679  * @dev_p: pointer to device capabilities structure
2680  * @cap: capability element to parse
2681  *
2682  * Parse ICE_AQC_CAPS_FD for device capabilities.
2683  */
2684 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2685 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2686 			struct ice_aqc_list_caps_elem *cap)
2687 {
2688 	u32 number = le32_to_cpu(cap->number);
2689 
2690 	dev_p->num_flow_director_fltr = number;
2691 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2692 		  dev_p->num_flow_director_fltr);
2693 }
2694 
2695 /**
2696  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2697  * @hw: pointer to the HW struct
2698  * @dev_p: pointer to device capabilities structure
2699  * @cap: capability element to parse
2700  *
2701  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2702  * enabled sensors.
2703  */
2704 static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2705 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2706 			     struct ice_aqc_list_caps_elem *cap)
2707 {
2708 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2709 
2710 	ice_debug(hw, ICE_DBG_INIT,
2711 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2712 		  dev_p->supported_sensors);
2713 }
2714 
2715 /**
2716  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2717  * @hw: pointer to the HW struct
2718  * @dev_p: pointer to device capabilities structure
2719  * @cap: capability element to parse
2720  *
2721  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2722  */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2723 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2724 					struct ice_hw_dev_caps *dev_p,
2725 					struct ice_aqc_list_caps_elem *cap)
2726 {
2727 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2728 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2729 
2730 	dev_info(ice_hw_to_dev(hw),
2731 		 "PF is configured in %s mode with IP instance ID %d\n",
2732 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2733 		 "primary" : "secondary", dev_p->nac_topo.id);
2734 
2735 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2736 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2737 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2738 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2739 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2740 		  dev_p->nac_topo.id);
2741 }
2742 
2743 /**
2744  * ice_parse_dev_caps - Parse device capabilities
2745  * @hw: pointer to the HW struct
2746  * @dev_p: pointer to device capabilities structure
2747  * @buf: buffer containing the device capability records
2748  * @cap_count: the number of capabilities
2749  *
2750  * Helper device to parse device (0x000B) capabilities list. For
2751  * capabilities shared between device and function, this relies on
2752  * ice_parse_common_caps.
2753  *
2754  * Loop through the list of provided capabilities and extract the relevant
2755  * data into the device capabilities structured.
2756  */
2757 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2758 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2759 		   void *buf, u32 cap_count)
2760 {
2761 	struct ice_aqc_list_caps_elem *cap_resp;
2762 	u32 i;
2763 
2764 	cap_resp = buf;
2765 
2766 	memset(dev_p, 0, sizeof(*dev_p));
2767 
2768 	for (i = 0; i < cap_count; i++) {
2769 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2770 		bool found;
2771 
2772 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2773 					      &cap_resp[i], "dev caps");
2774 
2775 		switch (cap) {
2776 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2777 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2778 			break;
2779 		case ICE_AQC_CAPS_VF:
2780 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2781 			break;
2782 		case ICE_AQC_CAPS_VSI:
2783 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2784 			break;
2785 		case ICE_AQC_CAPS_1588:
2786 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2787 			break;
2788 		case ICE_AQC_CAPS_FD:
2789 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2790 			break;
2791 		case ICE_AQC_CAPS_SENSOR_READING:
2792 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2793 			break;
2794 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2795 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2796 			break;
2797 		default:
2798 			/* Don't list common capabilities as unknown */
2799 			if (!found)
2800 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2801 					  i, cap);
2802 			break;
2803 		}
2804 	}
2805 
2806 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2807 }
2808 
2809 /**
2810  * ice_is_phy_rclk_in_netlist
2811  * @hw: pointer to the hw struct
2812  *
2813  * Check if the PHY Recovered Clock device is present in the netlist
2814  */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)2815 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2816 {
2817 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2818 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2819 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2820 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2821 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2822 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2823 		return false;
2824 
2825 	return true;
2826 }
2827 
2828 /**
2829  * ice_is_clock_mux_in_netlist
2830  * @hw: pointer to the hw struct
2831  *
2832  * Check if the Clock Multiplexer device is present in the netlist
2833  */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)2834 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2835 {
2836 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2837 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2838 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2839 				  NULL))
2840 		return false;
2841 
2842 	return true;
2843 }
2844 
2845 /**
2846  * ice_is_cgu_in_netlist - check for CGU presence
2847  * @hw: pointer to the hw struct
2848  *
2849  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2850  * Save the CGU part number in the hw structure for later use.
2851  * Return:
2852  * * true - cgu is present
2853  * * false - cgu is not present
2854  */
ice_is_cgu_in_netlist(struct ice_hw * hw)2855 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2856 {
2857 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2858 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2859 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2860 				   NULL)) {
2861 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2862 		return true;
2863 	} else if (!ice_find_netlist_node(hw,
2864 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2865 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2866 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2867 					  NULL)) {
2868 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2869 		return true;
2870 	}
2871 
2872 	return false;
2873 }
2874 
2875 /**
2876  * ice_is_gps_in_netlist
2877  * @hw: pointer to the hw struct
2878  *
2879  * Check if the GPS generic device is present in the netlist
2880  */
ice_is_gps_in_netlist(struct ice_hw * hw)2881 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2882 {
2883 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2884 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2885 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2886 		return false;
2887 
2888 	return true;
2889 }
2890 
2891 /**
2892  * ice_aq_list_caps - query function/device capabilities
2893  * @hw: pointer to the HW struct
2894  * @buf: a buffer to hold the capabilities
2895  * @buf_size: size of the buffer
2896  * @cap_count: if not NULL, set to the number of capabilities reported
2897  * @opc: capabilities type to discover, device or function
2898  * @cd: pointer to command details structure or NULL
2899  *
2900  * Get the function (0x000A) or device (0x000B) capabilities description from
2901  * firmware and store it in the buffer.
2902  *
2903  * If the cap_count pointer is not NULL, then it is set to the number of
2904  * capabilities firmware will report. Note that if the buffer size is too
2905  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2906  * cap_count will still be updated in this case. It is recommended that the
2907  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2908  * firmware could return) to avoid this.
2909  */
2910 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2911 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2912 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2913 {
2914 	struct ice_aqc_list_caps *cmd;
2915 	struct ice_aq_desc desc;
2916 	int status;
2917 
2918 	cmd = &desc.params.get_cap;
2919 
2920 	if (opc != ice_aqc_opc_list_func_caps &&
2921 	    opc != ice_aqc_opc_list_dev_caps)
2922 		return -EINVAL;
2923 
2924 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2925 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2926 
2927 	if (cap_count)
2928 		*cap_count = le32_to_cpu(cmd->count);
2929 
2930 	return status;
2931 }
2932 
2933 /**
2934  * ice_discover_dev_caps - Read and extract device capabilities
2935  * @hw: pointer to the hardware structure
2936  * @dev_caps: pointer to device capabilities structure
2937  *
2938  * Read the device capabilities and extract them into the dev_caps structure
2939  * for later use.
2940  */
2941 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2942 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2943 {
2944 	u32 cap_count = 0;
2945 	void *cbuf;
2946 	int status;
2947 
2948 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2949 	if (!cbuf)
2950 		return -ENOMEM;
2951 
2952 	/* Although the driver doesn't know the number of capabilities the
2953 	 * device will return, we can simply send a 4KB buffer, the maximum
2954 	 * possible size that firmware can return.
2955 	 */
2956 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2957 
2958 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2959 				  ice_aqc_opc_list_dev_caps, NULL);
2960 	if (!status)
2961 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2962 	kfree(cbuf);
2963 
2964 	return status;
2965 }
2966 
2967 /**
2968  * ice_discover_func_caps - Read and extract function capabilities
2969  * @hw: pointer to the hardware structure
2970  * @func_caps: pointer to function capabilities structure
2971  *
2972  * Read the function capabilities and extract them into the func_caps structure
2973  * for later use.
2974  */
2975 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2976 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2977 {
2978 	u32 cap_count = 0;
2979 	void *cbuf;
2980 	int status;
2981 
2982 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2983 	if (!cbuf)
2984 		return -ENOMEM;
2985 
2986 	/* Although the driver doesn't know the number of capabilities the
2987 	 * device will return, we can simply send a 4KB buffer, the maximum
2988 	 * possible size that firmware can return.
2989 	 */
2990 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2991 
2992 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2993 				  ice_aqc_opc_list_func_caps, NULL);
2994 	if (!status)
2995 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2996 	kfree(cbuf);
2997 
2998 	return status;
2999 }
3000 
3001 /**
3002  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3003  * @hw: pointer to the hardware structure
3004  */
ice_set_safe_mode_caps(struct ice_hw * hw)3005 void ice_set_safe_mode_caps(struct ice_hw *hw)
3006 {
3007 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
3008 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3009 	struct ice_hw_common_caps cached_caps;
3010 	u32 num_funcs;
3011 
3012 	/* cache some func_caps values that should be restored after memset */
3013 	cached_caps = func_caps->common_cap;
3014 
3015 	/* unset func capabilities */
3016 	memset(func_caps, 0, sizeof(*func_caps));
3017 
3018 #define ICE_RESTORE_FUNC_CAP(name) \
3019 	func_caps->common_cap.name = cached_caps.name
3020 
3021 	/* restore cached values */
3022 	ICE_RESTORE_FUNC_CAP(valid_functions);
3023 	ICE_RESTORE_FUNC_CAP(txq_first_id);
3024 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
3025 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3026 	ICE_RESTORE_FUNC_CAP(max_mtu);
3027 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3028 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3029 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3030 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3031 
3032 	/* one Tx and one Rx queue in safe mode */
3033 	func_caps->common_cap.num_rxq = 1;
3034 	func_caps->common_cap.num_txq = 1;
3035 
3036 	/* two MSIX vectors, one for traffic and one for misc causes */
3037 	func_caps->common_cap.num_msix_vectors = 2;
3038 	func_caps->guar_num_vsi = 1;
3039 
3040 	/* cache some dev_caps values that should be restored after memset */
3041 	cached_caps = dev_caps->common_cap;
3042 	num_funcs = dev_caps->num_funcs;
3043 
3044 	/* unset dev capabilities */
3045 	memset(dev_caps, 0, sizeof(*dev_caps));
3046 
3047 #define ICE_RESTORE_DEV_CAP(name) \
3048 	dev_caps->common_cap.name = cached_caps.name
3049 
3050 	/* restore cached values */
3051 	ICE_RESTORE_DEV_CAP(valid_functions);
3052 	ICE_RESTORE_DEV_CAP(txq_first_id);
3053 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3054 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3055 	ICE_RESTORE_DEV_CAP(max_mtu);
3056 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3057 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3058 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3059 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3060 	dev_caps->num_funcs = num_funcs;
3061 
3062 	/* one Tx and one Rx queue per function in safe mode */
3063 	dev_caps->common_cap.num_rxq = num_funcs;
3064 	dev_caps->common_cap.num_txq = num_funcs;
3065 
3066 	/* two MSIX vectors per function */
3067 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3068 }
3069 
3070 /**
3071  * ice_get_caps - get info about the HW
3072  * @hw: pointer to the hardware structure
3073  */
ice_get_caps(struct ice_hw * hw)3074 int ice_get_caps(struct ice_hw *hw)
3075 {
3076 	int status;
3077 
3078 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3079 	if (status)
3080 		return status;
3081 
3082 	return ice_discover_func_caps(hw, &hw->func_caps);
3083 }
3084 
3085 /**
3086  * ice_aq_manage_mac_write - manage MAC address write command
3087  * @hw: pointer to the HW struct
3088  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3089  * @flags: flags to control write behavior
3090  * @cd: pointer to command details structure or NULL
3091  *
3092  * This function is used to write MAC address to the NVM (0x0108).
3093  */
3094 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)3095 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3096 			struct ice_sq_cd *cd)
3097 {
3098 	struct ice_aqc_manage_mac_write *cmd;
3099 	struct ice_aq_desc desc;
3100 
3101 	cmd = &desc.params.mac_write;
3102 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3103 
3104 	cmd->flags = flags;
3105 	ether_addr_copy(cmd->mac_addr, mac_addr);
3106 
3107 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3108 }
3109 
3110 /**
3111  * ice_aq_clear_pxe_mode
3112  * @hw: pointer to the HW struct
3113  *
3114  * Tell the firmware that the driver is taking over from PXE (0x0110).
3115  */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3116 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3117 {
3118 	struct ice_aq_desc desc;
3119 
3120 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3121 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3122 
3123 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3124 }
3125 
3126 /**
3127  * ice_clear_pxe_mode - clear pxe operations mode
3128  * @hw: pointer to the HW struct
3129  *
3130  * Make sure all PXE mode settings are cleared, including things
3131  * like descriptor fetch/write-back mode.
3132  */
ice_clear_pxe_mode(struct ice_hw * hw)3133 void ice_clear_pxe_mode(struct ice_hw *hw)
3134 {
3135 	if (ice_check_sq_alive(hw, &hw->adminq))
3136 		ice_aq_clear_pxe_mode(hw);
3137 }
3138 
3139 /**
3140  * ice_aq_set_port_params - set physical port parameters.
3141  * @pi: pointer to the port info struct
3142  * @double_vlan: if set double VLAN is enabled
3143  * @cd: pointer to command details structure or NULL
3144  *
3145  * Set Physical port parameters (0x0203)
3146  */
3147 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3148 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3149 		       struct ice_sq_cd *cd)
3150 
3151 {
3152 	struct ice_aqc_set_port_params *cmd;
3153 	struct ice_hw *hw = pi->hw;
3154 	struct ice_aq_desc desc;
3155 	u16 cmd_flags = 0;
3156 
3157 	cmd = &desc.params.set_port_params;
3158 
3159 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3160 	if (double_vlan)
3161 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3162 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3163 
3164 	cmd->local_fwd_mode = pi->local_fwd_mode |
3165 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3166 
3167 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3168 }
3169 
3170 /**
3171  * ice_is_100m_speed_supported
3172  * @hw: pointer to the HW struct
3173  *
3174  * returns true if 100M speeds are supported by the device,
3175  * false otherwise.
3176  */
ice_is_100m_speed_supported(struct ice_hw * hw)3177 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3178 {
3179 	switch (hw->device_id) {
3180 	case ICE_DEV_ID_E822C_SGMII:
3181 	case ICE_DEV_ID_E822L_SGMII:
3182 	case ICE_DEV_ID_E823L_1GBE:
3183 	case ICE_DEV_ID_E823C_SGMII:
3184 		return true;
3185 	default:
3186 		return false;
3187 	}
3188 }
3189 
3190 /**
3191  * ice_get_link_speed_based_on_phy_type - returns link speed
3192  * @phy_type_low: lower part of phy_type
3193  * @phy_type_high: higher part of phy_type
3194  *
3195  * This helper function will convert an entry in PHY type structure
3196  * [phy_type_low, phy_type_high] to its corresponding link speed.
3197  * Note: In the structure of [phy_type_low, phy_type_high], there should
3198  * be one bit set, as this function will convert one PHY type to its
3199  * speed.
3200  *
3201  * Return:
3202  * * PHY speed for recognized PHY type
3203  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3204  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3205  */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3206 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3207 {
3208 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3209 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3210 
3211 	switch (phy_type_low) {
3212 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3213 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3214 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3215 		break;
3216 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3217 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3218 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3219 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3220 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3221 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3222 		break;
3223 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3224 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3225 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3226 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3227 		break;
3228 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3229 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3230 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3231 		break;
3232 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3233 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3234 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3235 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3236 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3237 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3238 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3239 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3240 		break;
3241 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3242 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3243 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3244 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3245 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3246 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3247 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3248 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3249 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3250 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3251 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3252 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3253 		break;
3254 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3255 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3256 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3257 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3258 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3259 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3260 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3261 		break;
3262 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3263 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3264 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3265 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3266 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3267 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3268 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3269 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3270 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3271 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3272 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3273 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3274 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3275 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3276 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3277 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3278 		break;
3279 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3280 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3281 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3282 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3283 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3284 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3285 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3286 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3287 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3288 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3289 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3290 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3291 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3292 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3293 		break;
3294 	default:
3295 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3296 		break;
3297 	}
3298 
3299 	switch (phy_type_high) {
3300 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3301 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3302 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3303 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3304 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3305 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3306 		break;
3307 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3308 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3309 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3310 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3311 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3312 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3313 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3314 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3315 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3316 		break;
3317 	default:
3318 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3319 		break;
3320 	}
3321 
3322 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3323 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3324 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3325 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3326 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3327 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3328 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3329 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3330 		return speed_phy_type_low;
3331 	else
3332 		return speed_phy_type_high;
3333 }
3334 
3335 /**
3336  * ice_update_phy_type
3337  * @phy_type_low: pointer to the lower part of phy_type
3338  * @phy_type_high: pointer to the higher part of phy_type
3339  * @link_speeds_bitmap: targeted link speeds bitmap
3340  *
3341  * Note: For the link_speeds_bitmap structure, you can check it at
3342  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3343  * link_speeds_bitmap include multiple speeds.
3344  *
3345  * Each entry in this [phy_type_low, phy_type_high] structure will
3346  * present a certain link speed. This helper function will turn on bits
3347  * in [phy_type_low, phy_type_high] structure based on the value of
3348  * link_speeds_bitmap input parameter.
3349  */
3350 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3351 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3352 		    u16 link_speeds_bitmap)
3353 {
3354 	u64 pt_high;
3355 	u64 pt_low;
3356 	int index;
3357 	u16 speed;
3358 
3359 	/* We first check with low part of phy_type */
3360 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3361 		pt_low = BIT_ULL(index);
3362 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3363 
3364 		if (link_speeds_bitmap & speed)
3365 			*phy_type_low |= BIT_ULL(index);
3366 	}
3367 
3368 	/* We then check with high part of phy_type */
3369 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3370 		pt_high = BIT_ULL(index);
3371 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3372 
3373 		if (link_speeds_bitmap & speed)
3374 			*phy_type_high |= BIT_ULL(index);
3375 	}
3376 }
3377 
3378 /**
3379  * ice_aq_set_phy_cfg
3380  * @hw: pointer to the HW struct
3381  * @pi: port info structure of the interested logical port
3382  * @cfg: structure with PHY configuration data to be set
3383  * @cd: pointer to command details structure or NULL
3384  *
3385  * Set the various PHY configuration parameters supported on the Port.
3386  * One or more of the Set PHY config parameters may be ignored in an MFP
3387  * mode as the PF may not have the privilege to set some of the PHY Config
3388  * parameters. This status will be indicated by the command response (0x0601).
3389  */
3390 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3391 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3392 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3393 {
3394 	struct ice_aq_desc desc;
3395 	int status;
3396 
3397 	if (!cfg)
3398 		return -EINVAL;
3399 
3400 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3401 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3402 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3403 			  cfg->caps);
3404 
3405 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3406 	}
3407 
3408 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3409 	desc.params.set_phy.lport_num = pi->lport;
3410 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3411 
3412 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3413 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3414 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3415 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3416 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3417 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3418 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3419 		  cfg->low_power_ctrl_an);
3420 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3421 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3422 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3423 		  cfg->link_fec_opt);
3424 
3425 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3426 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3427 		status = 0;
3428 
3429 	if (!status)
3430 		pi->phy.curr_user_phy_cfg = *cfg;
3431 
3432 	return status;
3433 }
3434 
3435 /**
3436  * ice_update_link_info - update status of the HW network link
3437  * @pi: port info structure of the interested logical port
3438  */
ice_update_link_info(struct ice_port_info * pi)3439 int ice_update_link_info(struct ice_port_info *pi)
3440 {
3441 	struct ice_link_status *li;
3442 	int status;
3443 
3444 	if (!pi)
3445 		return -EINVAL;
3446 
3447 	li = &pi->phy.link_info;
3448 
3449 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3450 	if (status)
3451 		return status;
3452 
3453 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3454 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3455 
3456 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3457 		if (!pcaps)
3458 			return -ENOMEM;
3459 
3460 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3461 					     pcaps, NULL);
3462 	}
3463 
3464 	return status;
3465 }
3466 
3467 /**
3468  * ice_aq_get_phy_equalization - function to read serdes equaliser
3469  * value from firmware using admin queue command.
3470  * @hw: pointer to the HW struct
3471  * @data_in: represents the serdes equalization parameter requested
3472  * @op_code: represents the serdes number and flag to represent tx or rx
3473  * @serdes_num: represents the serdes number
3474  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3475  *
3476  * Return: non-zero status on error and 0 on success.
3477  */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3478 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3479 				u8 serdes_num, int *output)
3480 {
3481 	struct ice_aqc_dnl_call_command *cmd;
3482 	struct ice_aqc_dnl_call buf = {};
3483 	struct ice_aq_desc desc;
3484 	int err;
3485 
3486 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3487 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3488 		cpu_to_le16(op_code | (serdes_num & 0xF));
3489 	cmd = &desc.params.dnl_call;
3490 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3491 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3492 				  ICE_AQ_FLAG_RD |
3493 				  ICE_AQ_FLAG_SI);
3494 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3495 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3496 
3497 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3498 			      NULL);
3499 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3500 
3501 	return err;
3502 }
3503 
3504 #define FEC_REG_PORT(port) {	\
3505 	FEC_CORR_LOW_REG_PORT##port,		\
3506 	FEC_CORR_HIGH_REG_PORT##port,	\
3507 	FEC_UNCORR_LOW_REG_PORT##port,	\
3508 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3509 }
3510 
3511 static const u32 fec_reg[][ICE_FEC_MAX] = {
3512 	FEC_REG_PORT(0),
3513 	FEC_REG_PORT(1),
3514 	FEC_REG_PORT(2),
3515 	FEC_REG_PORT(3)
3516 };
3517 
3518 /**
3519  * ice_aq_get_fec_stats - reads fec stats from phy
3520  * @hw: pointer to the HW struct
3521  * @pcs_quad: represents pcsquad of user input serdes
3522  * @pcs_port: represents the pcs port number part of above pcs quad
3523  * @fec_type: represents FEC stats type
3524  * @output: pointer to the caller-supplied buffer to return requested fec stats
3525  *
3526  * Return: non-zero status on error and 0 on success.
3527  */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3528 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3529 			 enum ice_fec_stats_types fec_type, u32 *output)
3530 {
3531 	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3532 	struct ice_sbq_msg_input msg = {};
3533 	u32 receiver_id, reg_offset;
3534 	int err;
3535 
3536 	if (pcs_port > 3)
3537 		return -EINVAL;
3538 
3539 	reg_offset = fec_reg[pcs_port][fec_type];
3540 
3541 	if (pcs_quad == 0)
3542 		receiver_id = FEC_RECEIVER_ID_PCS0;
3543 	else if (pcs_quad == 1)
3544 		receiver_id = FEC_RECEIVER_ID_PCS1;
3545 	else
3546 		return -EINVAL;
3547 
3548 	msg.msg_addr_low = lower_16_bits(reg_offset);
3549 	msg.msg_addr_high = receiver_id;
3550 	msg.opcode = ice_sbq_msg_rd;
3551 	msg.dest_dev = rmn_0;
3552 
3553 	err = ice_sbq_rw_reg(hw, &msg, flag);
3554 	if (err)
3555 		return err;
3556 
3557 	*output = msg.data;
3558 	return 0;
3559 }
3560 
3561 /**
3562  * ice_cache_phy_user_req
3563  * @pi: port information structure
3564  * @cache_data: PHY logging data
3565  * @cache_mode: PHY logging mode
3566  *
3567  * Log the user request on (FC, FEC, SPEED) for later use.
3568  */
3569 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3570 ice_cache_phy_user_req(struct ice_port_info *pi,
3571 		       struct ice_phy_cache_mode_data cache_data,
3572 		       enum ice_phy_cache_mode cache_mode)
3573 {
3574 	if (!pi)
3575 		return;
3576 
3577 	switch (cache_mode) {
3578 	case ICE_FC_MODE:
3579 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3580 		break;
3581 	case ICE_SPEED_MODE:
3582 		pi->phy.curr_user_speed_req =
3583 			cache_data.data.curr_user_speed_req;
3584 		break;
3585 	case ICE_FEC_MODE:
3586 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3587 		break;
3588 	default:
3589 		break;
3590 	}
3591 }
3592 
3593 /**
3594  * ice_caps_to_fc_mode
3595  * @caps: PHY capabilities
3596  *
3597  * Convert PHY FC capabilities to ice FC mode
3598  */
ice_caps_to_fc_mode(u8 caps)3599 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3600 {
3601 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3602 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3603 		return ICE_FC_FULL;
3604 
3605 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3606 		return ICE_FC_TX_PAUSE;
3607 
3608 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3609 		return ICE_FC_RX_PAUSE;
3610 
3611 	return ICE_FC_NONE;
3612 }
3613 
3614 /**
3615  * ice_caps_to_fec_mode
3616  * @caps: PHY capabilities
3617  * @fec_options: Link FEC options
3618  *
3619  * Convert PHY FEC capabilities to ice FEC mode
3620  */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3621 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3622 {
3623 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3624 		return ICE_FEC_AUTO;
3625 
3626 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3627 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3628 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3629 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3630 		return ICE_FEC_BASER;
3631 
3632 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3633 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3634 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3635 		return ICE_FEC_RS;
3636 
3637 	return ICE_FEC_NONE;
3638 }
3639 
3640 /**
3641  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3642  * @pi: port information structure
3643  * @cfg: PHY configuration data to set FC mode
3644  * @req_mode: FC mode to configure
3645  */
3646 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3647 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3648 	       enum ice_fc_mode req_mode)
3649 {
3650 	struct ice_phy_cache_mode_data cache_data;
3651 	u8 pause_mask = 0x0;
3652 
3653 	if (!pi || !cfg)
3654 		return -EINVAL;
3655 
3656 	switch (req_mode) {
3657 	case ICE_FC_FULL:
3658 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3659 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3660 		break;
3661 	case ICE_FC_RX_PAUSE:
3662 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3663 		break;
3664 	case ICE_FC_TX_PAUSE:
3665 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3666 		break;
3667 	default:
3668 		break;
3669 	}
3670 
3671 	/* clear the old pause settings */
3672 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3673 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3674 
3675 	/* set the new capabilities */
3676 	cfg->caps |= pause_mask;
3677 
3678 	/* Cache user FC request */
3679 	cache_data.data.curr_user_fc_req = req_mode;
3680 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3681 
3682 	return 0;
3683 }
3684 
3685 /**
3686  * ice_set_fc
3687  * @pi: port information structure
3688  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3689  * @ena_auto_link_update: enable automatic link update
3690  *
3691  * Set the requested flow control mode.
3692  */
3693 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3694 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3695 {
3696 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3697 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3698 	struct ice_hw *hw;
3699 	int status;
3700 
3701 	if (!pi || !aq_failures)
3702 		return -EINVAL;
3703 
3704 	*aq_failures = 0;
3705 	hw = pi->hw;
3706 
3707 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3708 	if (!pcaps)
3709 		return -ENOMEM;
3710 
3711 	/* Get the current PHY config */
3712 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3713 				     pcaps, NULL);
3714 	if (status) {
3715 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3716 		goto out;
3717 	}
3718 
3719 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3720 
3721 	/* Configure the set PHY data */
3722 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3723 	if (status)
3724 		goto out;
3725 
3726 	/* If the capabilities have changed, then set the new config */
3727 	if (cfg.caps != pcaps->caps) {
3728 		int retry_count, retry_max = 10;
3729 
3730 		/* Auto restart link so settings take effect */
3731 		if (ena_auto_link_update)
3732 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3733 
3734 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3735 		if (status) {
3736 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3737 			goto out;
3738 		}
3739 
3740 		/* Update the link info
3741 		 * It sometimes takes a really long time for link to
3742 		 * come back from the atomic reset. Thus, we wait a
3743 		 * little bit.
3744 		 */
3745 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3746 			status = ice_update_link_info(pi);
3747 
3748 			if (!status)
3749 				break;
3750 
3751 			mdelay(100);
3752 		}
3753 
3754 		if (status)
3755 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3756 	}
3757 
3758 out:
3759 	return status;
3760 }
3761 
3762 /**
3763  * ice_phy_caps_equals_cfg
3764  * @phy_caps: PHY capabilities
3765  * @phy_cfg: PHY configuration
3766  *
3767  * Helper function to determine if PHY capabilities matches PHY
3768  * configuration
3769  */
3770 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3771 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3772 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3773 {
3774 	u8 caps_mask, cfg_mask;
3775 
3776 	if (!phy_caps || !phy_cfg)
3777 		return false;
3778 
3779 	/* These bits are not common between capabilities and configuration.
3780 	 * Do not use them to determine equality.
3781 	 */
3782 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3783 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3784 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3785 
3786 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3787 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3788 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3789 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3790 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3791 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3792 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3793 		return false;
3794 
3795 	return true;
3796 }
3797 
3798 /**
3799  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3800  * @pi: port information structure
3801  * @caps: PHY ability structure to copy date from
3802  * @cfg: PHY configuration structure to copy data to
3803  *
3804  * Helper function to copy AQC PHY get ability data to PHY set configuration
3805  * data structure
3806  */
3807 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)3808 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3809 			 struct ice_aqc_get_phy_caps_data *caps,
3810 			 struct ice_aqc_set_phy_cfg_data *cfg)
3811 {
3812 	if (!pi || !caps || !cfg)
3813 		return;
3814 
3815 	memset(cfg, 0, sizeof(*cfg));
3816 	cfg->phy_type_low = caps->phy_type_low;
3817 	cfg->phy_type_high = caps->phy_type_high;
3818 	cfg->caps = caps->caps;
3819 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3820 	cfg->eee_cap = caps->eee_cap;
3821 	cfg->eeer_value = caps->eeer_value;
3822 	cfg->link_fec_opt = caps->link_fec_options;
3823 	cfg->module_compliance_enforcement =
3824 		caps->module_compliance_enforcement;
3825 }
3826 
3827 /**
3828  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3829  * @pi: port information structure
3830  * @cfg: PHY configuration data to set FEC mode
3831  * @fec: FEC mode to configure
3832  */
3833 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3834 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3835 		enum ice_fec_mode fec)
3836 {
3837 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3838 	struct ice_hw *hw;
3839 	int status;
3840 
3841 	if (!pi || !cfg)
3842 		return -EINVAL;
3843 
3844 	hw = pi->hw;
3845 
3846 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3847 	if (!pcaps)
3848 		return -ENOMEM;
3849 
3850 	status = ice_aq_get_phy_caps(pi, false,
3851 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3852 				      ICE_AQC_REPORT_DFLT_CFG :
3853 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3854 	if (status)
3855 		goto out;
3856 
3857 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3858 	cfg->link_fec_opt = pcaps->link_fec_options;
3859 
3860 	switch (fec) {
3861 	case ICE_FEC_BASER:
3862 		/* Clear RS bits, and AND BASE-R ability
3863 		 * bits and OR request bits.
3864 		 */
3865 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3866 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3867 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3868 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3869 		break;
3870 	case ICE_FEC_RS:
3871 		/* Clear BASE-R bits, and AND RS ability
3872 		 * bits and OR request bits.
3873 		 */
3874 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3875 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3876 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3877 		break;
3878 	case ICE_FEC_NONE:
3879 		/* Clear all FEC option bits. */
3880 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3881 		break;
3882 	case ICE_FEC_AUTO:
3883 		/* AND auto FEC bit, and all caps bits. */
3884 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3885 		cfg->link_fec_opt |= pcaps->link_fec_options;
3886 		break;
3887 	default:
3888 		status = -EINVAL;
3889 		break;
3890 	}
3891 
3892 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3893 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3894 		struct ice_link_default_override_tlv tlv = { 0 };
3895 
3896 		status = ice_get_link_default_override(&tlv, pi);
3897 		if (status)
3898 			goto out;
3899 
3900 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3901 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3902 			cfg->link_fec_opt = tlv.fec_options;
3903 	}
3904 
3905 out:
3906 	return status;
3907 }
3908 
3909 /**
3910  * ice_get_link_status - get status of the HW network link
3911  * @pi: port information structure
3912  * @link_up: pointer to bool (true/false = linkup/linkdown)
3913  *
3914  * Variable link_up is true if link is up, false if link is down.
3915  * The variable link_up is invalid if status is non zero. As a
3916  * result of this call, link status reporting becomes enabled
3917  */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3918 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3919 {
3920 	struct ice_phy_info *phy_info;
3921 	int status = 0;
3922 
3923 	if (!pi || !link_up)
3924 		return -EINVAL;
3925 
3926 	phy_info = &pi->phy;
3927 
3928 	if (phy_info->get_link_info) {
3929 		status = ice_update_link_info(pi);
3930 
3931 		if (status)
3932 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3933 				  status);
3934 	}
3935 
3936 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3937 
3938 	return status;
3939 }
3940 
3941 /**
3942  * ice_aq_set_link_restart_an
3943  * @pi: pointer to the port information structure
3944  * @ena_link: if true: enable link, if false: disable link
3945  * @cd: pointer to command details structure or NULL
3946  *
3947  * Sets up the link and restarts the Auto-Negotiation over the link.
3948  */
3949 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3950 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3951 			   struct ice_sq_cd *cd)
3952 {
3953 	struct ice_aqc_restart_an *cmd;
3954 	struct ice_aq_desc desc;
3955 
3956 	cmd = &desc.params.restart_an;
3957 
3958 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3959 
3960 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3961 	cmd->lport_num = pi->lport;
3962 	if (ena_link)
3963 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3964 	else
3965 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3966 
3967 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3968 }
3969 
3970 /**
3971  * ice_aq_set_event_mask
3972  * @hw: pointer to the HW struct
3973  * @port_num: port number of the physical function
3974  * @mask: event mask to be set
3975  * @cd: pointer to command details structure or NULL
3976  *
3977  * Set event mask (0x0613)
3978  */
3979 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3980 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3981 		      struct ice_sq_cd *cd)
3982 {
3983 	struct ice_aqc_set_event_mask *cmd;
3984 	struct ice_aq_desc desc;
3985 
3986 	cmd = &desc.params.set_event_mask;
3987 
3988 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3989 
3990 	cmd->lport_num = port_num;
3991 
3992 	cmd->event_mask = cpu_to_le16(mask);
3993 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3994 }
3995 
3996 /**
3997  * ice_aq_set_mac_loopback
3998  * @hw: pointer to the HW struct
3999  * @ena_lpbk: Enable or Disable loopback
4000  * @cd: pointer to command details structure or NULL
4001  *
4002  * Enable/disable loopback on a given port
4003  */
4004 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)4005 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4006 {
4007 	struct ice_aqc_set_mac_lb *cmd;
4008 	struct ice_aq_desc desc;
4009 
4010 	cmd = &desc.params.set_mac_lb;
4011 
4012 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4013 	if (ena_lpbk)
4014 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4015 
4016 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4017 }
4018 
4019 /**
4020  * ice_aq_set_port_id_led
4021  * @pi: pointer to the port information
4022  * @is_orig_mode: is this LED set to original mode (by the net-list)
4023  * @cd: pointer to command details structure or NULL
4024  *
4025  * Set LED value for the given port (0x06e9)
4026  */
4027 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)4028 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4029 		       struct ice_sq_cd *cd)
4030 {
4031 	struct ice_aqc_set_port_id_led *cmd;
4032 	struct ice_hw *hw = pi->hw;
4033 	struct ice_aq_desc desc;
4034 
4035 	cmd = &desc.params.set_port_id_led;
4036 
4037 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4038 
4039 	if (is_orig_mode)
4040 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4041 	else
4042 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4043 
4044 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4045 }
4046 
4047 /**
4048  * ice_aq_get_port_options
4049  * @hw: pointer to the HW struct
4050  * @options: buffer for the resultant port options
4051  * @option_count: input - size of the buffer in port options structures,
4052  *                output - number of returned port options
4053  * @lport: logical port to call the command with (optional)
4054  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4055  *               when PF owns more than 1 port it must be true
4056  * @active_option_idx: index of active port option in returned buffer
4057  * @active_option_valid: active option in returned buffer is valid
4058  * @pending_option_idx: index of pending port option in returned buffer
4059  * @pending_option_valid: pending option in returned buffer is valid
4060  *
4061  * Calls Get Port Options AQC (0x06ea) and verifies result.
4062  */
4063 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)4064 ice_aq_get_port_options(struct ice_hw *hw,
4065 			struct ice_aqc_get_port_options_elem *options,
4066 			u8 *option_count, u8 lport, bool lport_valid,
4067 			u8 *active_option_idx, bool *active_option_valid,
4068 			u8 *pending_option_idx, bool *pending_option_valid)
4069 {
4070 	struct ice_aqc_get_port_options *cmd;
4071 	struct ice_aq_desc desc;
4072 	int status;
4073 	u8 i;
4074 
4075 	/* options buffer shall be able to hold max returned options */
4076 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4077 		return -EINVAL;
4078 
4079 	cmd = &desc.params.get_port_options;
4080 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4081 
4082 	if (lport_valid)
4083 		cmd->lport_num = lport;
4084 	cmd->lport_num_valid = lport_valid;
4085 
4086 	status = ice_aq_send_cmd(hw, &desc, options,
4087 				 *option_count * sizeof(*options), NULL);
4088 	if (status)
4089 		return status;
4090 
4091 	/* verify direct FW response & set output parameters */
4092 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4093 				  cmd->port_options_count);
4094 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4095 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4096 					 cmd->port_options);
4097 	if (*active_option_valid) {
4098 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4099 					       cmd->port_options);
4100 		if (*active_option_idx > (*option_count - 1))
4101 			return -EIO;
4102 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4103 			  *active_option_idx);
4104 	}
4105 
4106 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4107 					  cmd->pending_port_option_status);
4108 	if (*pending_option_valid) {
4109 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4110 						cmd->pending_port_option_status);
4111 		if (*pending_option_idx > (*option_count - 1))
4112 			return -EIO;
4113 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4114 			  *pending_option_idx);
4115 	}
4116 
4117 	/* mask output options fields */
4118 	for (i = 0; i < *option_count; i++) {
4119 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4120 					   options[i].pmd);
4121 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4122 						      options[i].max_lane_speed);
4123 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4124 			  options[i].pmd, options[i].max_lane_speed);
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 /**
4131  * ice_aq_set_port_option
4132  * @hw: pointer to the HW struct
4133  * @lport: logical port to call the command with
4134  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4135  *               when PF owns more than 1 port it must be true
4136  * @new_option: new port option to be written
4137  *
4138  * Calls Set Port Options AQC (0x06eb).
4139  */
4140 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4141 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4142 		       u8 new_option)
4143 {
4144 	struct ice_aqc_set_port_option *cmd;
4145 	struct ice_aq_desc desc;
4146 
4147 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4148 		return -EINVAL;
4149 
4150 	cmd = &desc.params.set_port_option;
4151 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4152 
4153 	if (lport_valid)
4154 		cmd->lport_num = lport;
4155 
4156 	cmd->lport_num_valid = lport_valid;
4157 	cmd->selected_port_option = new_option;
4158 
4159 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4160 }
4161 
4162 /**
4163  * ice_get_phy_lane_number - Get PHY lane number for current adapter
4164  * @hw: pointer to the hw struct
4165  *
4166  * Return: PHY lane number on success, negative error code otherwise.
4167  */
ice_get_phy_lane_number(struct ice_hw * hw)4168 int ice_get_phy_lane_number(struct ice_hw *hw)
4169 {
4170 	struct ice_aqc_get_port_options_elem *options;
4171 	unsigned int lport = 0;
4172 	unsigned int lane;
4173 	int err;
4174 
4175 	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4176 	if (!options)
4177 		return -ENOMEM;
4178 
4179 	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4180 		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4181 		u8 speed, active_idx, pending_idx;
4182 		bool active_valid, pending_valid;
4183 
4184 		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4185 					      true, &active_idx, &active_valid,
4186 					      &pending_idx, &pending_valid);
4187 		if (err)
4188 			goto err;
4189 
4190 		if (!active_valid)
4191 			continue;
4192 
4193 		speed = options[active_idx].max_lane_speed;
4194 		/* If we don't get speed for this lane, it's unoccupied */
4195 		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G)
4196 			continue;
4197 
4198 		if (hw->pf_id == lport) {
4199 			kfree(options);
4200 			return lane;
4201 		}
4202 
4203 		lport++;
4204 	}
4205 
4206 	/* PHY lane not found */
4207 	err = -ENXIO;
4208 err:
4209 	kfree(options);
4210 	return err;
4211 }
4212 
4213 /**
4214  * ice_aq_sff_eeprom
4215  * @hw: pointer to the HW struct
4216  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4217  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4218  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4219  * @page: QSFP page
4220  * @set_page: set or ignore the page
4221  * @data: pointer to data buffer to be read/written to the I2C device.
4222  * @length: 1-16 for read, 1 for write.
4223  * @write: 0 read, 1 for write.
4224  * @cd: pointer to command details structure or NULL
4225  *
4226  * Read/Write SFF EEPROM (0x06EE)
4227  */
4228 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4229 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4230 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4231 		  bool write, struct ice_sq_cd *cd)
4232 {
4233 	struct ice_aqc_sff_eeprom *cmd;
4234 	struct ice_aq_desc desc;
4235 	u16 i2c_bus_addr;
4236 	int status;
4237 
4238 	if (!data || (mem_addr & 0xff00))
4239 		return -EINVAL;
4240 
4241 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4242 	cmd = &desc.params.read_write_sff_param;
4243 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4244 	cmd->lport_num = (u8)(lport & 0xff);
4245 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4246 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4247 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4248 	if (write)
4249 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4250 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4251 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4252 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4253 
4254 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4255 	return status;
4256 }
4257 
ice_lut_type_to_size(enum ice_lut_type type)4258 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4259 {
4260 	switch (type) {
4261 	case ICE_LUT_VSI:
4262 		return ICE_LUT_VSI_SIZE;
4263 	case ICE_LUT_GLOBAL:
4264 		return ICE_LUT_GLOBAL_SIZE;
4265 	case ICE_LUT_PF:
4266 		return ICE_LUT_PF_SIZE;
4267 	}
4268 	WARN_ONCE(1, "incorrect type passed");
4269 	return ICE_LUT_VSI_SIZE;
4270 }
4271 
ice_lut_size_to_flag(enum ice_lut_size size)4272 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4273 {
4274 	switch (size) {
4275 	case ICE_LUT_VSI_SIZE:
4276 		return ICE_AQC_LUT_SIZE_SMALL;
4277 	case ICE_LUT_GLOBAL_SIZE:
4278 		return ICE_AQC_LUT_SIZE_512;
4279 	case ICE_LUT_PF_SIZE:
4280 		return ICE_AQC_LUT_SIZE_2K;
4281 	}
4282 	WARN_ONCE(1, "incorrect size passed");
4283 	return 0;
4284 }
4285 
4286 /**
4287  * __ice_aq_get_set_rss_lut
4288  * @hw: pointer to the hardware structure
4289  * @params: RSS LUT parameters
4290  * @set: set true to set the table, false to get the table
4291  *
4292  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4293  */
4294 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4295 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4296 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4297 {
4298 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4299 	enum ice_lut_type lut_type = params->lut_type;
4300 	struct ice_aqc_get_set_rss_lut *desc_params;
4301 	enum ice_aqc_lut_flags flags;
4302 	enum ice_lut_size lut_size;
4303 	struct ice_aq_desc desc;
4304 	u8 *lut = params->lut;
4305 
4306 
4307 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4308 		return -EINVAL;
4309 
4310 	lut_size = ice_lut_type_to_size(lut_type);
4311 	if (lut_size > params->lut_size)
4312 		return -EINVAL;
4313 	else if (set && lut_size != params->lut_size)
4314 		return -EINVAL;
4315 
4316 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4317 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4318 	if (set)
4319 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4320 
4321 	desc_params = &desc.params.get_set_rss_lut;
4322 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4323 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4324 
4325 	if (lut_type == ICE_LUT_GLOBAL)
4326 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4327 					  params->global_lut_id);
4328 
4329 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4330 	desc_params->flags = cpu_to_le16(flags);
4331 
4332 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4333 }
4334 
4335 /**
4336  * ice_aq_get_rss_lut
4337  * @hw: pointer to the hardware structure
4338  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4339  *
4340  * get the RSS lookup table, PF or VSI type
4341  */
4342 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4343 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4344 {
4345 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4346 }
4347 
4348 /**
4349  * ice_aq_set_rss_lut
4350  * @hw: pointer to the hardware structure
4351  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4352  *
4353  * set the RSS lookup table, PF or VSI type
4354  */
4355 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4356 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4357 {
4358 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4359 }
4360 
4361 /**
4362  * __ice_aq_get_set_rss_key
4363  * @hw: pointer to the HW struct
4364  * @vsi_id: VSI FW index
4365  * @key: pointer to key info struct
4366  * @set: set true to set the key, false to get the key
4367  *
4368  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4369  */
4370 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4371 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4372 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4373 {
4374 	struct ice_aqc_get_set_rss_key *desc_params;
4375 	u16 key_size = sizeof(*key);
4376 	struct ice_aq_desc desc;
4377 
4378 	if (set) {
4379 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4380 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4381 	} else {
4382 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4383 	}
4384 
4385 	desc_params = &desc.params.get_set_rss_key;
4386 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4387 
4388 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4389 }
4390 
4391 /**
4392  * ice_aq_get_rss_key
4393  * @hw: pointer to the HW struct
4394  * @vsi_handle: software VSI handle
4395  * @key: pointer to key info struct
4396  *
4397  * get the RSS key per VSI
4398  */
4399 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4400 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4401 		   struct ice_aqc_get_set_rss_keys *key)
4402 {
4403 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4404 		return -EINVAL;
4405 
4406 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4407 					key, false);
4408 }
4409 
4410 /**
4411  * ice_aq_set_rss_key
4412  * @hw: pointer to the HW struct
4413  * @vsi_handle: software VSI handle
4414  * @keys: pointer to key info struct
4415  *
4416  * set the RSS key per VSI
4417  */
4418 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4419 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4420 		   struct ice_aqc_get_set_rss_keys *keys)
4421 {
4422 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4423 		return -EINVAL;
4424 
4425 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4426 					keys, true);
4427 }
4428 
4429 /**
4430  * ice_aq_add_lan_txq
4431  * @hw: pointer to the hardware structure
4432  * @num_qgrps: Number of added queue groups
4433  * @qg_list: list of queue groups to be added
4434  * @buf_size: size of buffer for indirect command
4435  * @cd: pointer to command details structure or NULL
4436  *
4437  * Add Tx LAN queue (0x0C30)
4438  *
4439  * NOTE:
4440  * Prior to calling add Tx LAN queue:
4441  * Initialize the following as part of the Tx queue context:
4442  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4443  * Cache profile and Packet shaper profile.
4444  *
4445  * After add Tx LAN queue AQ command is completed:
4446  * Interrupts should be associated with specific queues,
4447  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4448  * flow.
4449  */
4450 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4451 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4452 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4453 		   struct ice_sq_cd *cd)
4454 {
4455 	struct ice_aqc_add_tx_qgrp *list;
4456 	struct ice_aqc_add_txqs *cmd;
4457 	struct ice_aq_desc desc;
4458 	u16 i, sum_size = 0;
4459 
4460 	cmd = &desc.params.add_txqs;
4461 
4462 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4463 
4464 	if (!qg_list)
4465 		return -EINVAL;
4466 
4467 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4468 		return -EINVAL;
4469 
4470 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4471 		sum_size += struct_size(list, txqs, list->num_txqs);
4472 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4473 						      list->num_txqs);
4474 	}
4475 
4476 	if (buf_size != sum_size)
4477 		return -EINVAL;
4478 
4479 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4480 
4481 	cmd->num_qgrps = num_qgrps;
4482 
4483 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4484 }
4485 
4486 /**
4487  * ice_aq_dis_lan_txq
4488  * @hw: pointer to the hardware structure
4489  * @num_qgrps: number of groups in the list
4490  * @qg_list: the list of groups to disable
4491  * @buf_size: the total size of the qg_list buffer in bytes
4492  * @rst_src: if called due to reset, specifies the reset source
4493  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4494  * @cd: pointer to command details structure or NULL
4495  *
4496  * Disable LAN Tx queue (0x0C31)
4497  */
4498 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4499 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4500 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4501 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4502 		   struct ice_sq_cd *cd)
4503 {
4504 	struct ice_aqc_dis_txq_item *item;
4505 	struct ice_aqc_dis_txqs *cmd;
4506 	struct ice_aq_desc desc;
4507 	u16 vmvf_and_timeout;
4508 	u16 i, sz = 0;
4509 	int status;
4510 
4511 	cmd = &desc.params.dis_txqs;
4512 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4513 
4514 	/* qg_list can be NULL only in VM/VF reset flow */
4515 	if (!qg_list && !rst_src)
4516 		return -EINVAL;
4517 
4518 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4519 		return -EINVAL;
4520 
4521 	cmd->num_entries = num_qgrps;
4522 
4523 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4524 
4525 	switch (rst_src) {
4526 	case ICE_VM_RESET:
4527 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4528 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4529 		break;
4530 	case ICE_VF_RESET:
4531 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4532 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4533 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4534 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4535 		break;
4536 	case ICE_NO_RESET:
4537 	default:
4538 		break;
4539 	}
4540 
4541 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4542 
4543 	/* flush pipe on time out */
4544 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4545 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4546 	if (!qg_list)
4547 		goto do_aq;
4548 
4549 	/* set RD bit to indicate that command buffer is provided by the driver
4550 	 * and it needs to be read by the firmware
4551 	 */
4552 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4553 
4554 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4555 		u16 item_size = struct_size(item, q_id, item->num_qs);
4556 
4557 		/* If the num of queues is even, add 2 bytes of padding */
4558 		if ((item->num_qs % 2) == 0)
4559 			item_size += 2;
4560 
4561 		sz += item_size;
4562 
4563 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4564 	}
4565 
4566 	if (buf_size != sz)
4567 		return -EINVAL;
4568 
4569 do_aq:
4570 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4571 	if (status) {
4572 		if (!qg_list)
4573 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4574 				  vmvf_num, hw->adminq.sq_last_status);
4575 		else
4576 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4577 				  le16_to_cpu(qg_list[0].q_id[0]),
4578 				  hw->adminq.sq_last_status);
4579 	}
4580 	return status;
4581 }
4582 
4583 /**
4584  * ice_aq_cfg_lan_txq
4585  * @hw: pointer to the hardware structure
4586  * @buf: buffer for command
4587  * @buf_size: size of buffer in bytes
4588  * @num_qs: number of queues being configured
4589  * @oldport: origination lport
4590  * @newport: destination lport
4591  * @cd: pointer to command details structure or NULL
4592  *
4593  * Move/Configure LAN Tx queue (0x0C32)
4594  *
4595  * There is a better AQ command to use for moving nodes, so only coding
4596  * this one for configuring the node.
4597  */
4598 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,struct ice_sq_cd * cd)4599 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4600 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4601 		   struct ice_sq_cd *cd)
4602 {
4603 	struct ice_aqc_cfg_txqs *cmd;
4604 	struct ice_aq_desc desc;
4605 	int status;
4606 
4607 	cmd = &desc.params.cfg_txqs;
4608 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4609 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4610 
4611 	if (!buf)
4612 		return -EINVAL;
4613 
4614 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4615 	cmd->num_qs = num_qs;
4616 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4617 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4618 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4619 	cmd->blocked_cgds = 0;
4620 
4621 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4622 	if (status)
4623 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4624 			  hw->adminq.sq_last_status);
4625 	return status;
4626 }
4627 
4628 /**
4629  * ice_aq_add_rdma_qsets
4630  * @hw: pointer to the hardware structure
4631  * @num_qset_grps: Number of RDMA Qset groups
4632  * @qset_list: list of Qset groups to be added
4633  * @buf_size: size of buffer for indirect command
4634  * @cd: pointer to command details structure or NULL
4635  *
4636  * Add Tx RDMA Qsets (0x0C33)
4637  */
4638 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4639 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4640 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4641 		      u16 buf_size, struct ice_sq_cd *cd)
4642 {
4643 	struct ice_aqc_add_rdma_qset_data *list;
4644 	struct ice_aqc_add_rdma_qset *cmd;
4645 	struct ice_aq_desc desc;
4646 	u16 i, sum_size = 0;
4647 
4648 	cmd = &desc.params.add_rdma_qset;
4649 
4650 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4651 
4652 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4653 		return -EINVAL;
4654 
4655 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4656 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4657 
4658 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4659 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4660 							     num_qsets);
4661 	}
4662 
4663 	if (buf_size != sum_size)
4664 		return -EINVAL;
4665 
4666 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4667 
4668 	cmd->num_qset_grps = num_qset_grps;
4669 
4670 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4671 }
4672 
4673 /* End of FW Admin Queue command wrappers */
4674 
4675 /**
4676  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4677  * @hw: pointer to the HW struct
4678  * @vsi_handle: software VSI handle
4679  * @tc: TC number
4680  * @q_handle: software queue handle
4681  */
4682 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4683 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4684 {
4685 	struct ice_vsi_ctx *vsi;
4686 	struct ice_q_ctx *q_ctx;
4687 
4688 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4689 	if (!vsi)
4690 		return NULL;
4691 	if (q_handle >= vsi->num_lan_q_entries[tc])
4692 		return NULL;
4693 	if (!vsi->lan_q_ctx[tc])
4694 		return NULL;
4695 	q_ctx = vsi->lan_q_ctx[tc];
4696 	return &q_ctx[q_handle];
4697 }
4698 
4699 /**
4700  * ice_ena_vsi_txq
4701  * @pi: port information structure
4702  * @vsi_handle: software VSI handle
4703  * @tc: TC number
4704  * @q_handle: software queue handle
4705  * @num_qgrps: Number of added queue groups
4706  * @buf: list of queue groups to be added
4707  * @buf_size: size of buffer for indirect command
4708  * @cd: pointer to command details structure or NULL
4709  *
4710  * This function adds one LAN queue
4711  */
4712 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4713 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4714 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4715 		struct ice_sq_cd *cd)
4716 {
4717 	struct ice_aqc_txsched_elem_data node = { 0 };
4718 	struct ice_sched_node *parent;
4719 	struct ice_q_ctx *q_ctx;
4720 	struct ice_hw *hw;
4721 	int status;
4722 
4723 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4724 		return -EIO;
4725 
4726 	if (num_qgrps > 1 || buf->num_txqs > 1)
4727 		return -ENOSPC;
4728 
4729 	hw = pi->hw;
4730 
4731 	if (!ice_is_vsi_valid(hw, vsi_handle))
4732 		return -EINVAL;
4733 
4734 	mutex_lock(&pi->sched_lock);
4735 
4736 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4737 	if (!q_ctx) {
4738 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4739 			  q_handle);
4740 		status = -EINVAL;
4741 		goto ena_txq_exit;
4742 	}
4743 
4744 	/* find a parent node */
4745 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4746 					    ICE_SCHED_NODE_OWNER_LAN);
4747 	if (!parent) {
4748 		status = -EINVAL;
4749 		goto ena_txq_exit;
4750 	}
4751 
4752 	buf->parent_teid = parent->info.node_teid;
4753 	node.parent_teid = parent->info.node_teid;
4754 	/* Mark that the values in the "generic" section as valid. The default
4755 	 * value in the "generic" section is zero. This means that :
4756 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4757 	 * - 0 priority among siblings, indicated by Bit 1-3.
4758 	 * - WFQ, indicated by Bit 4.
4759 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4760 	 * Bit 5-6.
4761 	 * - Bit 7 is reserved.
4762 	 * Without setting the generic section as valid in valid_sections, the
4763 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4764 	 */
4765 	buf->txqs[0].info.valid_sections =
4766 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4767 		ICE_AQC_ELEM_VALID_EIR;
4768 	buf->txqs[0].info.generic = 0;
4769 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4770 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4771 	buf->txqs[0].info.cir_bw.bw_alloc =
4772 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4773 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4774 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4775 	buf->txqs[0].info.eir_bw.bw_alloc =
4776 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4777 
4778 	/* add the LAN queue */
4779 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4780 	if (status) {
4781 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4782 			  le16_to_cpu(buf->txqs[0].txq_id),
4783 			  hw->adminq.sq_last_status);
4784 		goto ena_txq_exit;
4785 	}
4786 
4787 	node.node_teid = buf->txqs[0].q_teid;
4788 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4789 	q_ctx->q_handle = q_handle;
4790 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4791 
4792 	/* add a leaf node into scheduler tree queue layer */
4793 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4794 	if (!status)
4795 		status = ice_sched_replay_q_bw(pi, q_ctx);
4796 
4797 ena_txq_exit:
4798 	mutex_unlock(&pi->sched_lock);
4799 	return status;
4800 }
4801 
4802 /**
4803  * ice_dis_vsi_txq
4804  * @pi: port information structure
4805  * @vsi_handle: software VSI handle
4806  * @tc: TC number
4807  * @num_queues: number of queues
4808  * @q_handles: pointer to software queue handle array
4809  * @q_ids: pointer to the q_id array
4810  * @q_teids: pointer to queue node teids
4811  * @rst_src: if called due to reset, specifies the reset source
4812  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4813  * @cd: pointer to command details structure or NULL
4814  *
4815  * This function removes queues and their corresponding nodes in SW DB
4816  */
4817 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4818 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4819 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4820 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4821 		struct ice_sq_cd *cd)
4822 {
4823 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4824 	u16 i, buf_size = __struct_size(qg_list);
4825 	struct ice_q_ctx *q_ctx;
4826 	int status = -ENOENT;
4827 	struct ice_hw *hw;
4828 
4829 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4830 		return -EIO;
4831 
4832 	hw = pi->hw;
4833 
4834 	if (!num_queues) {
4835 		/* if queue is disabled already yet the disable queue command
4836 		 * has to be sent to complete the VF reset, then call
4837 		 * ice_aq_dis_lan_txq without any queue information
4838 		 */
4839 		if (rst_src)
4840 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4841 						  vmvf_num, NULL);
4842 		return -EIO;
4843 	}
4844 
4845 	mutex_lock(&pi->sched_lock);
4846 
4847 	for (i = 0; i < num_queues; i++) {
4848 		struct ice_sched_node *node;
4849 
4850 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4851 		if (!node)
4852 			continue;
4853 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4854 		if (!q_ctx) {
4855 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4856 				  q_handles[i]);
4857 			continue;
4858 		}
4859 		if (q_ctx->q_handle != q_handles[i]) {
4860 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4861 				  q_ctx->q_handle, q_handles[i]);
4862 			continue;
4863 		}
4864 		qg_list->parent_teid = node->info.parent_teid;
4865 		qg_list->num_qs = 1;
4866 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4867 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4868 					    vmvf_num, cd);
4869 
4870 		if (status)
4871 			break;
4872 		ice_free_sched_node(pi, node);
4873 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4874 		q_ctx->q_teid = ICE_INVAL_TEID;
4875 	}
4876 	mutex_unlock(&pi->sched_lock);
4877 	return status;
4878 }
4879 
4880 /**
4881  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4882  * @pi: port information structure
4883  * @vsi_handle: software VSI handle
4884  * @tc_bitmap: TC bitmap
4885  * @maxqs: max queues array per TC
4886  * @owner: LAN or RDMA
4887  *
4888  * This function adds/updates the VSI queues per TC.
4889  */
4890 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4891 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4892 	       u16 *maxqs, u8 owner)
4893 {
4894 	int status = 0;
4895 	u8 i;
4896 
4897 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4898 		return -EIO;
4899 
4900 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4901 		return -EINVAL;
4902 
4903 	mutex_lock(&pi->sched_lock);
4904 
4905 	ice_for_each_traffic_class(i) {
4906 		/* configuration is possible only if TC node is present */
4907 		if (!ice_sched_get_tc_node(pi, i))
4908 			continue;
4909 
4910 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4911 					   ice_is_tc_ena(tc_bitmap, i));
4912 		if (status)
4913 			break;
4914 	}
4915 
4916 	mutex_unlock(&pi->sched_lock);
4917 	return status;
4918 }
4919 
4920 /**
4921  * ice_cfg_vsi_lan - configure VSI LAN queues
4922  * @pi: port information structure
4923  * @vsi_handle: software VSI handle
4924  * @tc_bitmap: TC bitmap
4925  * @max_lanqs: max LAN queues array per TC
4926  *
4927  * This function adds/updates the VSI LAN queues per TC.
4928  */
4929 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4930 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4931 		u16 *max_lanqs)
4932 {
4933 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4934 			      ICE_SCHED_NODE_OWNER_LAN);
4935 }
4936 
4937 /**
4938  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4939  * @pi: port information structure
4940  * @vsi_handle: software VSI handle
4941  * @tc_bitmap: TC bitmap
4942  * @max_rdmaqs: max RDMA queues array per TC
4943  *
4944  * This function adds/updates the VSI RDMA queues per TC.
4945  */
4946 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)4947 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4948 		 u16 *max_rdmaqs)
4949 {
4950 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4951 			      ICE_SCHED_NODE_OWNER_RDMA);
4952 }
4953 
4954 /**
4955  * ice_ena_vsi_rdma_qset
4956  * @pi: port information structure
4957  * @vsi_handle: software VSI handle
4958  * @tc: TC number
4959  * @rdma_qset: pointer to RDMA Qset
4960  * @num_qsets: number of RDMA Qsets
4961  * @qset_teid: pointer to Qset node TEIDs
4962  *
4963  * This function adds RDMA Qset
4964  */
4965 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)4966 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4967 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4968 {
4969 	struct ice_aqc_txsched_elem_data node = { 0 };
4970 	struct ice_aqc_add_rdma_qset_data *buf;
4971 	struct ice_sched_node *parent;
4972 	struct ice_hw *hw;
4973 	u16 i, buf_size;
4974 	int ret;
4975 
4976 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4977 		return -EIO;
4978 	hw = pi->hw;
4979 
4980 	if (!ice_is_vsi_valid(hw, vsi_handle))
4981 		return -EINVAL;
4982 
4983 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4984 	buf = kzalloc(buf_size, GFP_KERNEL);
4985 	if (!buf)
4986 		return -ENOMEM;
4987 	mutex_lock(&pi->sched_lock);
4988 
4989 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4990 					    ICE_SCHED_NODE_OWNER_RDMA);
4991 	if (!parent) {
4992 		ret = -EINVAL;
4993 		goto rdma_error_exit;
4994 	}
4995 	buf->parent_teid = parent->info.node_teid;
4996 	node.parent_teid = parent->info.node_teid;
4997 
4998 	buf->num_qsets = cpu_to_le16(num_qsets);
4999 	for (i = 0; i < num_qsets; i++) {
5000 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5001 		buf->rdma_qsets[i].info.valid_sections =
5002 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5003 			ICE_AQC_ELEM_VALID_EIR;
5004 		buf->rdma_qsets[i].info.generic = 0;
5005 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5006 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5007 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5008 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5009 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5010 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5011 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5012 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5013 	}
5014 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5015 	if (ret) {
5016 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5017 		goto rdma_error_exit;
5018 	}
5019 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5020 	for (i = 0; i < num_qsets; i++) {
5021 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5022 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5023 					 &node, NULL);
5024 		if (ret)
5025 			break;
5026 		qset_teid[i] = le32_to_cpu(node.node_teid);
5027 	}
5028 rdma_error_exit:
5029 	mutex_unlock(&pi->sched_lock);
5030 	kfree(buf);
5031 	return ret;
5032 }
5033 
5034 /**
5035  * ice_dis_vsi_rdma_qset - free RDMA resources
5036  * @pi: port_info struct
5037  * @count: number of RDMA Qsets to free
5038  * @qset_teid: TEID of Qset node
5039  * @q_id: list of queue IDs being disabled
5040  */
5041 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)5042 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5043 		      u16 *q_id)
5044 {
5045 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5046 	u16 qg_size = __struct_size(qg_list);
5047 	struct ice_hw *hw;
5048 	int status = 0;
5049 	int i;
5050 
5051 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5052 		return -EIO;
5053 
5054 	hw = pi->hw;
5055 
5056 	mutex_lock(&pi->sched_lock);
5057 
5058 	for (i = 0; i < count; i++) {
5059 		struct ice_sched_node *node;
5060 
5061 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5062 		if (!node)
5063 			continue;
5064 
5065 		qg_list->parent_teid = node->info.parent_teid;
5066 		qg_list->num_qs = 1;
5067 		qg_list->q_id[0] =
5068 			cpu_to_le16(q_id[i] |
5069 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5070 
5071 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5072 					    ICE_NO_RESET, 0, NULL);
5073 		if (status)
5074 			break;
5075 
5076 		ice_free_sched_node(pi, node);
5077 	}
5078 
5079 	mutex_unlock(&pi->sched_lock);
5080 	return status;
5081 }
5082 
5083 /**
5084  * ice_aq_get_cgu_abilities - get cgu abilities
5085  * @hw: pointer to the HW struct
5086  * @abilities: CGU abilities
5087  *
5088  * Get CGU abilities (0x0C61)
5089  * Return: 0 on success or negative value on failure.
5090  */
5091 int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)5092 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5093 			 struct ice_aqc_get_cgu_abilities *abilities)
5094 {
5095 	struct ice_aq_desc desc;
5096 
5097 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5098 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5099 }
5100 
5101 /**
5102  * ice_aq_set_input_pin_cfg - set input pin config
5103  * @hw: pointer to the HW struct
5104  * @input_idx: Input index
5105  * @flags1: Input flags
5106  * @flags2: Input flags
5107  * @freq: Frequency in Hz
5108  * @phase_delay: Delay in ps
5109  *
5110  * Set CGU input config (0x0C62)
5111  * Return: 0 on success or negative value on failure.
5112  */
5113 int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5114 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5115 			 u32 freq, s32 phase_delay)
5116 {
5117 	struct ice_aqc_set_cgu_input_config *cmd;
5118 	struct ice_aq_desc desc;
5119 
5120 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5121 	cmd = &desc.params.set_cgu_input_config;
5122 	cmd->input_idx = input_idx;
5123 	cmd->flags1 = flags1;
5124 	cmd->flags2 = flags2;
5125 	cmd->freq = cpu_to_le32(freq);
5126 	cmd->phase_delay = cpu_to_le32(phase_delay);
5127 
5128 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5129 }
5130 
5131 /**
5132  * ice_aq_get_input_pin_cfg - get input pin config
5133  * @hw: pointer to the HW struct
5134  * @input_idx: Input index
5135  * @status: Pin status
5136  * @type: Pin type
5137  * @flags1: Input flags
5138  * @flags2: Input flags
5139  * @freq: Frequency in Hz
5140  * @phase_delay: Delay in ps
5141  *
5142  * Get CGU input config (0x0C63)
5143  * Return: 0 on success or negative value on failure.
5144  */
5145 int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5146 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5147 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5148 {
5149 	struct ice_aqc_get_cgu_input_config *cmd;
5150 	struct ice_aq_desc desc;
5151 	int ret;
5152 
5153 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5154 	cmd = &desc.params.get_cgu_input_config;
5155 	cmd->input_idx = input_idx;
5156 
5157 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5158 	if (!ret) {
5159 		if (status)
5160 			*status = cmd->status;
5161 		if (type)
5162 			*type = cmd->type;
5163 		if (flags1)
5164 			*flags1 = cmd->flags1;
5165 		if (flags2)
5166 			*flags2 = cmd->flags2;
5167 		if (freq)
5168 			*freq = le32_to_cpu(cmd->freq);
5169 		if (phase_delay)
5170 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5171 	}
5172 
5173 	return ret;
5174 }
5175 
5176 /**
5177  * ice_aq_set_output_pin_cfg - set output pin config
5178  * @hw: pointer to the HW struct
5179  * @output_idx: Output index
5180  * @flags: Output flags
5181  * @src_sel: Index of DPLL block
5182  * @freq: Output frequency
5183  * @phase_delay: Output phase compensation
5184  *
5185  * Set CGU output config (0x0C64)
5186  * Return: 0 on success or negative value on failure.
5187  */
5188 int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5189 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5190 			  u8 src_sel, u32 freq, s32 phase_delay)
5191 {
5192 	struct ice_aqc_set_cgu_output_config *cmd;
5193 	struct ice_aq_desc desc;
5194 
5195 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5196 	cmd = &desc.params.set_cgu_output_config;
5197 	cmd->output_idx = output_idx;
5198 	cmd->flags = flags;
5199 	cmd->src_sel = src_sel;
5200 	cmd->freq = cpu_to_le32(freq);
5201 	cmd->phase_delay = cpu_to_le32(phase_delay);
5202 
5203 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5204 }
5205 
5206 /**
5207  * ice_aq_get_output_pin_cfg - get output pin config
5208  * @hw: pointer to the HW struct
5209  * @output_idx: Output index
5210  * @flags: Output flags
5211  * @src_sel: Internal DPLL source
5212  * @freq: Output frequency
5213  * @src_freq: Source frequency
5214  *
5215  * Get CGU output config (0x0C65)
5216  * Return: 0 on success or negative value on failure.
5217  */
5218 int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5219 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5220 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5221 {
5222 	struct ice_aqc_get_cgu_output_config *cmd;
5223 	struct ice_aq_desc desc;
5224 	int ret;
5225 
5226 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5227 	cmd = &desc.params.get_cgu_output_config;
5228 	cmd->output_idx = output_idx;
5229 
5230 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5231 	if (!ret) {
5232 		if (flags)
5233 			*flags = cmd->flags;
5234 		if (src_sel)
5235 			*src_sel = cmd->src_sel;
5236 		if (freq)
5237 			*freq = le32_to_cpu(cmd->freq);
5238 		if (src_freq)
5239 			*src_freq = le32_to_cpu(cmd->src_freq);
5240 	}
5241 
5242 	return ret;
5243 }
5244 
5245 /**
5246  * ice_aq_get_cgu_dpll_status - get dpll status
5247  * @hw: pointer to the HW struct
5248  * @dpll_num: DPLL index
5249  * @ref_state: Reference clock state
5250  * @config: current DPLL config
5251  * @dpll_state: current DPLL state
5252  * @phase_offset: Phase offset in ns
5253  * @eec_mode: EEC_mode
5254  *
5255  * Get CGU DPLL status (0x0C66)
5256  * Return: 0 on success or negative value on failure.
5257  */
5258 int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5259 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5260 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5261 			   u8 *eec_mode)
5262 {
5263 	struct ice_aqc_get_cgu_dpll_status *cmd;
5264 	struct ice_aq_desc desc;
5265 	int status;
5266 
5267 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5268 	cmd = &desc.params.get_cgu_dpll_status;
5269 	cmd->dpll_num = dpll_num;
5270 
5271 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5272 	if (!status) {
5273 		*ref_state = cmd->ref_state;
5274 		*dpll_state = cmd->dpll_state;
5275 		*config = cmd->config;
5276 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5277 		*phase_offset <<= 32;
5278 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5279 		*phase_offset = sign_extend64(*phase_offset, 47);
5280 		*eec_mode = cmd->eec_mode;
5281 	}
5282 
5283 	return status;
5284 }
5285 
5286 /**
5287  * ice_aq_set_cgu_dpll_config - set dpll config
5288  * @hw: pointer to the HW struct
5289  * @dpll_num: DPLL index
5290  * @ref_state: Reference clock state
5291  * @config: DPLL config
5292  * @eec_mode: EEC mode
5293  *
5294  * Set CGU DPLL config (0x0C67)
5295  * Return: 0 on success or negative value on failure.
5296  */
5297 int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5298 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5299 			   u8 config, u8 eec_mode)
5300 {
5301 	struct ice_aqc_set_cgu_dpll_config *cmd;
5302 	struct ice_aq_desc desc;
5303 
5304 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5305 	cmd = &desc.params.set_cgu_dpll_config;
5306 	cmd->dpll_num = dpll_num;
5307 	cmd->ref_state = ref_state;
5308 	cmd->config = config;
5309 	cmd->eec_mode = eec_mode;
5310 
5311 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5312 }
5313 
5314 /**
5315  * ice_aq_set_cgu_ref_prio - set input reference priority
5316  * @hw: pointer to the HW struct
5317  * @dpll_num: DPLL index
5318  * @ref_idx: Reference pin index
5319  * @ref_priority: Reference input priority
5320  *
5321  * Set CGU reference priority (0x0C68)
5322  * Return: 0 on success or negative value on failure.
5323  */
5324 int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5325 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5326 			u8 ref_priority)
5327 {
5328 	struct ice_aqc_set_cgu_ref_prio *cmd;
5329 	struct ice_aq_desc desc;
5330 
5331 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5332 	cmd = &desc.params.set_cgu_ref_prio;
5333 	cmd->dpll_num = dpll_num;
5334 	cmd->ref_idx = ref_idx;
5335 	cmd->ref_priority = ref_priority;
5336 
5337 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5338 }
5339 
5340 /**
5341  * ice_aq_get_cgu_ref_prio - get input reference priority
5342  * @hw: pointer to the HW struct
5343  * @dpll_num: DPLL index
5344  * @ref_idx: Reference pin index
5345  * @ref_prio: Reference input priority
5346  *
5347  * Get CGU reference priority (0x0C69)
5348  * Return: 0 on success or negative value on failure.
5349  */
5350 int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5351 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5352 			u8 *ref_prio)
5353 {
5354 	struct ice_aqc_get_cgu_ref_prio *cmd;
5355 	struct ice_aq_desc desc;
5356 	int status;
5357 
5358 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5359 	cmd = &desc.params.get_cgu_ref_prio;
5360 	cmd->dpll_num = dpll_num;
5361 	cmd->ref_idx = ref_idx;
5362 
5363 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5364 	if (!status)
5365 		*ref_prio = cmd->ref_priority;
5366 
5367 	return status;
5368 }
5369 
5370 /**
5371  * ice_aq_get_cgu_info - get cgu info
5372  * @hw: pointer to the HW struct
5373  * @cgu_id: CGU ID
5374  * @cgu_cfg_ver: CGU config version
5375  * @cgu_fw_ver: CGU firmware version
5376  *
5377  * Get CGU info (0x0C6A)
5378  * Return: 0 on success or negative value on failure.
5379  */
5380 int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5381 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5382 		    u32 *cgu_fw_ver)
5383 {
5384 	struct ice_aqc_get_cgu_info *cmd;
5385 	struct ice_aq_desc desc;
5386 	int status;
5387 
5388 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5389 	cmd = &desc.params.get_cgu_info;
5390 
5391 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5392 	if (!status) {
5393 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5394 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5395 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5396 	}
5397 
5398 	return status;
5399 }
5400 
5401 /**
5402  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5403  * @hw: pointer to the HW struct
5404  * @phy_output: PHY reference clock output pin
5405  * @enable: GPIO state to be applied
5406  * @freq: PHY output frequency
5407  *
5408  * Set phy recovered clock as reference (0x0630)
5409  * Return: 0 on success or negative value on failure.
5410  */
5411 int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5412 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5413 			   u32 *freq)
5414 {
5415 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5416 	struct ice_aq_desc desc;
5417 	int status;
5418 
5419 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5420 	cmd = &desc.params.set_phy_rec_clk_out;
5421 	cmd->phy_output = phy_output;
5422 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5423 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5424 	cmd->freq = cpu_to_le32(*freq);
5425 
5426 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5427 	if (!status)
5428 		*freq = le32_to_cpu(cmd->freq);
5429 
5430 	return status;
5431 }
5432 
5433 /**
5434  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5435  * @hw: pointer to the HW struct
5436  * @phy_output: PHY reference clock output pin
5437  * @port_num: Port number
5438  * @flags: PHY flags
5439  * @node_handle: PHY output frequency
5440  *
5441  * Get PHY recovered clock output info (0x0631)
5442  * Return: 0 on success or negative value on failure.
5443  */
5444 int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5445 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5446 			   u8 *flags, u16 *node_handle)
5447 {
5448 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5449 	struct ice_aq_desc desc;
5450 	int status;
5451 
5452 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5453 	cmd = &desc.params.get_phy_rec_clk_out;
5454 	cmd->phy_output = *phy_output;
5455 
5456 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5457 	if (!status) {
5458 		*phy_output = cmd->phy_output;
5459 		if (port_num)
5460 			*port_num = cmd->port_num;
5461 		if (flags)
5462 			*flags = cmd->flags;
5463 		if (node_handle)
5464 			*node_handle = le16_to_cpu(cmd->node_handle);
5465 	}
5466 
5467 	return status;
5468 }
5469 
5470 /**
5471  * ice_aq_get_sensor_reading
5472  * @hw: pointer to the HW struct
5473  * @data: pointer to data to be read from the sensor
5474  *
5475  * Get sensor reading (0x0632)
5476  */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5477 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5478 			      struct ice_aqc_get_sensor_reading_resp *data)
5479 {
5480 	struct ice_aqc_get_sensor_reading *cmd;
5481 	struct ice_aq_desc desc;
5482 	int status;
5483 
5484 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5485 	cmd = &desc.params.get_sensor_reading;
5486 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5487 #define ICE_INTERNAL_TEMP_SENSOR	0
5488 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5489 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5490 
5491 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5492 	if (!status)
5493 		memcpy(data, &desc.params.get_sensor_reading_resp,
5494 		       sizeof(*data));
5495 
5496 	return status;
5497 }
5498 
5499 /**
5500  * ice_replay_pre_init - replay pre initialization
5501  * @hw: pointer to the HW struct
5502  *
5503  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5504  */
ice_replay_pre_init(struct ice_hw * hw)5505 static int ice_replay_pre_init(struct ice_hw *hw)
5506 {
5507 	struct ice_switch_info *sw = hw->switch_info;
5508 	u8 i;
5509 
5510 	/* Delete old entries from replay filter list head if there is any */
5511 	ice_rm_all_sw_replay_rule_info(hw);
5512 	/* In start of replay, move entries into replay_rules list, it
5513 	 * will allow adding rules entries back to filt_rules list,
5514 	 * which is operational list.
5515 	 */
5516 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5517 		list_replace_init(&sw->recp_list[i].filt_rules,
5518 				  &sw->recp_list[i].filt_replay_rules);
5519 	ice_sched_replay_agg_vsi_preinit(hw);
5520 
5521 	return 0;
5522 }
5523 
5524 /**
5525  * ice_replay_vsi - replay VSI configuration
5526  * @hw: pointer to the HW struct
5527  * @vsi_handle: driver VSI handle
5528  *
5529  * Restore all VSI configuration after reset. It is required to call this
5530  * function with main VSI first.
5531  */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5532 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5533 {
5534 	int status;
5535 
5536 	if (!ice_is_vsi_valid(hw, vsi_handle))
5537 		return -EINVAL;
5538 
5539 	/* Replay pre-initialization if there is any */
5540 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5541 		status = ice_replay_pre_init(hw);
5542 		if (status)
5543 			return status;
5544 	}
5545 	/* Replay per VSI all RSS configurations */
5546 	status = ice_replay_rss_cfg(hw, vsi_handle);
5547 	if (status)
5548 		return status;
5549 	/* Replay per VSI all filters */
5550 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5551 	if (!status)
5552 		status = ice_replay_vsi_agg(hw, vsi_handle);
5553 	return status;
5554 }
5555 
5556 /**
5557  * ice_replay_post - post replay configuration cleanup
5558  * @hw: pointer to the HW struct
5559  *
5560  * Post replay cleanup.
5561  */
ice_replay_post(struct ice_hw * hw)5562 void ice_replay_post(struct ice_hw *hw)
5563 {
5564 	/* Delete old entries from replay filter list head */
5565 	ice_rm_all_sw_replay_rule_info(hw);
5566 	ice_sched_replay_agg(hw);
5567 }
5568 
5569 /**
5570  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5571  * @hw: ptr to the hardware info
5572  * @reg: offset of 64 bit HW register to read from
5573  * @prev_stat_loaded: bool to specify if previous stats are loaded
5574  * @prev_stat: ptr to previous loaded stat value
5575  * @cur_stat: ptr to current stat value
5576  */
5577 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5578 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5579 		  u64 *prev_stat, u64 *cur_stat)
5580 {
5581 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5582 
5583 	/* device stats are not reset at PFR, they likely will not be zeroed
5584 	 * when the driver starts. Thus, save the value from the first read
5585 	 * without adding to the statistic value so that we report stats which
5586 	 * count up from zero.
5587 	 */
5588 	if (!prev_stat_loaded) {
5589 		*prev_stat = new_data;
5590 		return;
5591 	}
5592 
5593 	/* Calculate the difference between the new and old values, and then
5594 	 * add it to the software stat value.
5595 	 */
5596 	if (new_data >= *prev_stat)
5597 		*cur_stat += new_data - *prev_stat;
5598 	else
5599 		/* to manage the potential roll-over */
5600 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5601 
5602 	/* Update the previously stored value to prepare for next read */
5603 	*prev_stat = new_data;
5604 }
5605 
5606 /**
5607  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5608  * @hw: ptr to the hardware info
5609  * @reg: offset of HW register to read from
5610  * @prev_stat_loaded: bool to specify if previous stats are loaded
5611  * @prev_stat: ptr to previous loaded stat value
5612  * @cur_stat: ptr to current stat value
5613  */
5614 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5615 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5616 		  u64 *prev_stat, u64 *cur_stat)
5617 {
5618 	u32 new_data;
5619 
5620 	new_data = rd32(hw, reg);
5621 
5622 	/* device stats are not reset at PFR, they likely will not be zeroed
5623 	 * when the driver starts. Thus, save the value from the first read
5624 	 * without adding to the statistic value so that we report stats which
5625 	 * count up from zero.
5626 	 */
5627 	if (!prev_stat_loaded) {
5628 		*prev_stat = new_data;
5629 		return;
5630 	}
5631 
5632 	/* Calculate the difference between the new and old values, and then
5633 	 * add it to the software stat value.
5634 	 */
5635 	if (new_data >= *prev_stat)
5636 		*cur_stat += new_data - *prev_stat;
5637 	else
5638 		/* to manage the potential roll-over */
5639 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5640 
5641 	/* Update the previously stored value to prepare for next read */
5642 	*prev_stat = new_data;
5643 }
5644 
5645 /**
5646  * ice_sched_query_elem - query element information from HW
5647  * @hw: pointer to the HW struct
5648  * @node_teid: node TEID to be queried
5649  * @buf: buffer to element information
5650  *
5651  * This function queries HW element information
5652  */
5653 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5654 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5655 		     struct ice_aqc_txsched_elem_data *buf)
5656 {
5657 	u16 buf_size, num_elem_ret = 0;
5658 	int status;
5659 
5660 	buf_size = sizeof(*buf);
5661 	memset(buf, 0, buf_size);
5662 	buf->node_teid = cpu_to_le32(node_teid);
5663 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5664 					  NULL);
5665 	if (status || num_elem_ret != 1)
5666 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5667 	return status;
5668 }
5669 
5670 /**
5671  * ice_aq_read_i2c
5672  * @hw: pointer to the hw struct
5673  * @topo_addr: topology address for a device to communicate with
5674  * @bus_addr: 7-bit I2C bus address
5675  * @addr: I2C memory address (I2C offset) with up to 16 bits
5676  * @params: I2C parameters: bit [7] - Repeated start,
5677  *			    bits [6:5] data offset size,
5678  *			    bit [4] - I2C address type,
5679  *			    bits [3:0] - data size to read (0-16 bytes)
5680  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5681  * @cd: pointer to command details structure or NULL
5682  *
5683  * Read I2C (0x06E2)
5684  */
5685 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5686 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5687 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5688 		struct ice_sq_cd *cd)
5689 {
5690 	struct ice_aq_desc desc = { 0 };
5691 	struct ice_aqc_i2c *cmd;
5692 	u8 data_size;
5693 	int status;
5694 
5695 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5696 	cmd = &desc.params.read_write_i2c;
5697 
5698 	if (!data)
5699 		return -EINVAL;
5700 
5701 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5702 
5703 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5704 	cmd->topo_addr = topo_addr;
5705 	cmd->i2c_params = params;
5706 	cmd->i2c_addr = addr;
5707 
5708 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5709 	if (!status) {
5710 		struct ice_aqc_read_i2c_resp *resp;
5711 		u8 i;
5712 
5713 		resp = &desc.params.read_i2c_resp;
5714 		for (i = 0; i < data_size; i++) {
5715 			*data = resp->i2c_data[i];
5716 			data++;
5717 		}
5718 	}
5719 
5720 	return status;
5721 }
5722 
5723 /**
5724  * ice_aq_write_i2c
5725  * @hw: pointer to the hw struct
5726  * @topo_addr: topology address for a device to communicate with
5727  * @bus_addr: 7-bit I2C bus address
5728  * @addr: I2C memory address (I2C offset) with up to 16 bits
5729  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5730  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5731  * @cd: pointer to command details structure or NULL
5732  *
5733  * Write I2C (0x06E3)
5734  *
5735  * * Return:
5736  * * 0             - Successful write to the i2c device
5737  * * -EINVAL       - Data size greater than 4 bytes
5738  * * -EIO          - FW error
5739  */
5740 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)5741 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5742 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5743 		 struct ice_sq_cd *cd)
5744 {
5745 	struct ice_aq_desc desc = { 0 };
5746 	struct ice_aqc_i2c *cmd;
5747 	u8 data_size;
5748 
5749 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5750 	cmd = &desc.params.read_write_i2c;
5751 
5752 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5753 
5754 	/* data_size limited to 4 */
5755 	if (data_size > 4)
5756 		return -EINVAL;
5757 
5758 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5759 	cmd->topo_addr = topo_addr;
5760 	cmd->i2c_params = params;
5761 	cmd->i2c_addr = addr;
5762 
5763 	memcpy(cmd->i2c_data, data, data_size);
5764 
5765 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5766 }
5767 
5768 /**
5769  * ice_aq_set_gpio
5770  * @hw: pointer to the hw struct
5771  * @gpio_ctrl_handle: GPIO controller node handle
5772  * @pin_idx: IO Number of the GPIO that needs to be set
5773  * @value: SW provide IO value to set in the LSB
5774  * @cd: pointer to command details structure or NULL
5775  *
5776  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5777  */
5778 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)5779 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5780 		struct ice_sq_cd *cd)
5781 {
5782 	struct ice_aqc_gpio *cmd;
5783 	struct ice_aq_desc desc;
5784 
5785 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5786 	cmd = &desc.params.read_write_gpio;
5787 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5788 	cmd->gpio_num = pin_idx;
5789 	cmd->gpio_val = value ? 1 : 0;
5790 
5791 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5792 }
5793 
5794 /**
5795  * ice_aq_get_gpio
5796  * @hw: pointer to the hw struct
5797  * @gpio_ctrl_handle: GPIO controller node handle
5798  * @pin_idx: IO Number of the GPIO that needs to be set
5799  * @value: IO value read
5800  * @cd: pointer to command details structure or NULL
5801  *
5802  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5803  * the topology
5804  */
5805 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)5806 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5807 		bool *value, struct ice_sq_cd *cd)
5808 {
5809 	struct ice_aqc_gpio *cmd;
5810 	struct ice_aq_desc desc;
5811 	int status;
5812 
5813 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5814 	cmd = &desc.params.read_write_gpio;
5815 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5816 	cmd->gpio_num = pin_idx;
5817 
5818 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5819 	if (status)
5820 		return status;
5821 
5822 	*value = !!cmd->gpio_val;
5823 	return 0;
5824 }
5825 
5826 /**
5827  * ice_is_fw_api_min_ver
5828  * @hw: pointer to the hardware structure
5829  * @maj: major version
5830  * @min: minor version
5831  * @patch: patch version
5832  *
5833  * Checks if the firmware API is minimum version
5834  */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)5835 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5836 {
5837 	if (hw->api_maj_ver == maj) {
5838 		if (hw->api_min_ver > min)
5839 			return true;
5840 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5841 			return true;
5842 	} else if (hw->api_maj_ver > maj) {
5843 		return true;
5844 	}
5845 
5846 	return false;
5847 }
5848 
5849 /**
5850  * ice_fw_supports_link_override
5851  * @hw: pointer to the hardware structure
5852  *
5853  * Checks if the firmware supports link override
5854  */
ice_fw_supports_link_override(struct ice_hw * hw)5855 bool ice_fw_supports_link_override(struct ice_hw *hw)
5856 {
5857 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5858 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5859 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5860 }
5861 
5862 /**
5863  * ice_get_link_default_override
5864  * @ldo: pointer to the link default override struct
5865  * @pi: pointer to the port info struct
5866  *
5867  * Gets the link default override for a port
5868  */
5869 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)5870 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5871 			      struct ice_port_info *pi)
5872 {
5873 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5874 	struct ice_hw *hw = pi->hw;
5875 	int status;
5876 
5877 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5878 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5879 	if (status) {
5880 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5881 		return status;
5882 	}
5883 
5884 	/* Each port has its own config; calculate for our port */
5885 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5886 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5887 
5888 	/* link options first */
5889 	status = ice_read_sr_word(hw, tlv_start, &buf);
5890 	if (status) {
5891 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5892 		return status;
5893 	}
5894 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5895 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5896 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5897 
5898 	/* link PHY config */
5899 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5900 	status = ice_read_sr_word(hw, offset, &buf);
5901 	if (status) {
5902 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5903 		return status;
5904 	}
5905 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5906 
5907 	/* PHY types low */
5908 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5909 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5910 		status = ice_read_sr_word(hw, (offset + i), &buf);
5911 		if (status) {
5912 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5913 			return status;
5914 		}
5915 		/* shift 16 bits at a time to fill 64 bits */
5916 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5917 	}
5918 
5919 	/* PHY types high */
5920 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5921 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5922 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5923 		status = ice_read_sr_word(hw, (offset + i), &buf);
5924 		if (status) {
5925 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5926 			return status;
5927 		}
5928 		/* shift 16 bits at a time to fill 64 bits */
5929 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5930 	}
5931 
5932 	return status;
5933 }
5934 
5935 /**
5936  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5937  * @caps: get PHY capability data
5938  */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)5939 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5940 {
5941 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5942 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5943 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5944 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5945 		return true;
5946 
5947 	return false;
5948 }
5949 
5950 /**
5951  * ice_is_fw_health_report_supported - checks if firmware supports health events
5952  * @hw: pointer to the hardware structure
5953  *
5954  * Return: true if firmware supports health status reports,
5955  * false otherwise
5956  */
ice_is_fw_health_report_supported(struct ice_hw * hw)5957 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
5958 {
5959 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
5960 				     ICE_FW_API_HEALTH_REPORT_MIN,
5961 				     ICE_FW_API_HEALTH_REPORT_PATCH);
5962 }
5963 
5964 /**
5965  * ice_aq_set_health_status_cfg - Configure FW health events
5966  * @hw: pointer to the HW struct
5967  * @event_source: type of diagnostic events to enable
5968  *
5969  * Configure the health status event types that the firmware will send to this
5970  * PF. The supported event types are: PF-specific, all PFs, and global.
5971  *
5972  * Return: 0 on success, negative error code otherwise.
5973  */
ice_aq_set_health_status_cfg(struct ice_hw * hw,u8 event_source)5974 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
5975 {
5976 	struct ice_aqc_set_health_status_cfg *cmd;
5977 	struct ice_aq_desc desc;
5978 
5979 	cmd = &desc.params.set_health_status_cfg;
5980 
5981 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
5982 
5983 	cmd->event_source = event_source;
5984 
5985 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5986 }
5987 
5988 /**
5989  * ice_aq_set_lldp_mib - Set the LLDP MIB
5990  * @hw: pointer to the HW struct
5991  * @mib_type: Local, Remote or both Local and Remote MIBs
5992  * @buf: pointer to the caller-supplied buffer to store the MIB block
5993  * @buf_size: size of the buffer (in bytes)
5994  * @cd: pointer to command details structure or NULL
5995  *
5996  * Set the LLDP MIB. (0x0A08)
5997  */
5998 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)5999 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6000 		    struct ice_sq_cd *cd)
6001 {
6002 	struct ice_aqc_lldp_set_local_mib *cmd;
6003 	struct ice_aq_desc desc;
6004 
6005 	cmd = &desc.params.lldp_set_mib;
6006 
6007 	if (buf_size == 0 || !buf)
6008 		return -EINVAL;
6009 
6010 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6011 
6012 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6013 	desc.datalen = cpu_to_le16(buf_size);
6014 
6015 	cmd->type = mib_type;
6016 	cmd->length = cpu_to_le16(buf_size);
6017 
6018 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6019 }
6020 
6021 /**
6022  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6023  * @hw: pointer to HW struct
6024  */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6025 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6026 {
6027 	if (hw->mac_type != ICE_MAC_E810)
6028 		return false;
6029 
6030 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6031 				     ICE_FW_API_LLDP_FLTR_MIN,
6032 				     ICE_FW_API_LLDP_FLTR_PATCH);
6033 }
6034 
6035 /**
6036  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6037  * @hw: pointer to HW struct
6038  * @vsi_num: absolute HW index for VSI
6039  * @add: boolean for if adding or removing a filter
6040  */
6041 int
ice_lldp_fltr_add_remove(struct ice_hw * hw,u16 vsi_num,bool add)6042 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6043 {
6044 	struct ice_aqc_lldp_filter_ctrl *cmd;
6045 	struct ice_aq_desc desc;
6046 
6047 	cmd = &desc.params.lldp_filter_ctrl;
6048 
6049 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6050 
6051 	if (add)
6052 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6053 	else
6054 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6055 
6056 	cmd->vsi_num = cpu_to_le16(vsi_num);
6057 
6058 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6059 }
6060 
6061 /**
6062  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6063  * @hw: pointer to HW struct
6064  */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6065 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6066 {
6067 	struct ice_aq_desc desc;
6068 
6069 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6070 
6071 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6072 }
6073 
6074 /**
6075  * ice_fw_supports_report_dflt_cfg
6076  * @hw: pointer to the hardware structure
6077  *
6078  * Checks if the firmware supports report default configuration
6079  */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6080 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6081 {
6082 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6083 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6084 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6085 }
6086 
6087 /* each of the indexes into the following array match the speed of a return
6088  * value from the list of AQ returned speeds like the range:
6089  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6090  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6091  * array. The array is defined as 15 elements long because the link_speed
6092  * returned by the firmware is a 16 bit * value, but is indexed
6093  * by [fls(speed) - 1]
6094  */
6095 static const u32 ice_aq_to_link_speed[] = {
6096 	SPEED_10,	/* BIT(0) */
6097 	SPEED_100,
6098 	SPEED_1000,
6099 	SPEED_2500,
6100 	SPEED_5000,
6101 	SPEED_10000,
6102 	SPEED_20000,
6103 	SPEED_25000,
6104 	SPEED_40000,
6105 	SPEED_50000,
6106 	SPEED_100000,	/* BIT(10) */
6107 	SPEED_200000,
6108 };
6109 
6110 /**
6111  * ice_get_link_speed - get integer speed from table
6112  * @index: array index from fls(aq speed) - 1
6113  *
6114  * Returns: u32 value containing integer speed
6115  */
ice_get_link_speed(u16 index)6116 u32 ice_get_link_speed(u16 index)
6117 {
6118 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6119 		return 0;
6120 
6121 	return ice_aq_to_link_speed[index];
6122 }
6123