1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 #include "ice_trace.h"
7
8 #define ICE_ETH_DA_OFFSET 0
9 #define ICE_ETH_ETHTYPE_OFFSET 12
10 #define ICE_ETH_VLAN_TCI_OFFSET 14
11 #define ICE_MAX_VLAN_ID 0xFFF
12 #define ICE_IPV6_ETHER_ID 0x86DD
13
14 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
15 * struct to configure any switch filter rules.
16 * {DA (6 bytes), SA(6 bytes),
17 * Ether type (2 bytes for header without VLAN tag) OR
18 * VLAN tag (4 bytes for header with VLAN tag) }
19 *
20 * Word on Hardcoded values
21 * byte 0 = 0x2: to identify it as locally administered DA MAC
22 * byte 6 = 0x2: to identify it as locally administered SA MAC
23 * byte 12 = 0x81 & byte 13 = 0x00:
24 * In case of VLAN filter first two bytes defines ether type (0x8100)
25 * and remaining two bytes are placeholder for programming a given VLAN ID
26 * In case of Ether type filter it is treated as header without VLAN tag
27 * and byte 12 and 13 is used to program a given Ether type instead
28 */
29 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 0x2, 0, 0, 0, 0, 0,
31 0x81, 0, 0, 0};
32
33 enum {
34 ICE_PKT_OUTER_IPV6 = BIT(0),
35 ICE_PKT_TUN_GTPC = BIT(1),
36 ICE_PKT_TUN_GTPU = BIT(2),
37 ICE_PKT_TUN_NVGRE = BIT(3),
38 ICE_PKT_TUN_UDP = BIT(4),
39 ICE_PKT_INNER_IPV6 = BIT(5),
40 ICE_PKT_INNER_TCP = BIT(6),
41 ICE_PKT_INNER_UDP = BIT(7),
42 ICE_PKT_GTP_NOPAY = BIT(8),
43 ICE_PKT_KMALLOC = BIT(9),
44 ICE_PKT_PPPOE = BIT(10),
45 ICE_PKT_L2TPV3 = BIT(11),
46 ICE_PKT_PFCP = BIT(12),
47 };
48
49 struct ice_dummy_pkt_offsets {
50 enum ice_protocol_type type;
51 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
52 };
53
54 struct ice_dummy_pkt_profile {
55 const struct ice_dummy_pkt_offsets *offsets;
56 const u8 *pkt;
57 u32 match;
58 u16 pkt_len;
59 u16 offsets_len;
60 };
61
62 #define ICE_DECLARE_PKT_OFFSETS(type) \
63 static const struct ice_dummy_pkt_offsets \
64 ice_dummy_##type##_packet_offsets[]
65
66 #define ICE_DECLARE_PKT_TEMPLATE(type) \
67 static const u8 ice_dummy_##type##_packet[]
68
69 #define ICE_PKT_PROFILE(type, m) { \
70 .match = (m), \
71 .pkt = ice_dummy_##type##_packet, \
72 .pkt_len = sizeof(ice_dummy_##type##_packet), \
73 .offsets = ice_dummy_##type##_packet_offsets, \
74 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \
75 }
76
77 ICE_DECLARE_PKT_OFFSETS(vlan) = {
78 { ICE_VLAN_OFOS, 12 },
79 };
80
81 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
82 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
83 };
84
85 ICE_DECLARE_PKT_OFFSETS(qinq) = {
86 { ICE_VLAN_EX, 12 },
87 { ICE_VLAN_IN, 16 },
88 };
89
90 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
91 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
92 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
93 };
94
95 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
96 { ICE_MAC_OFOS, 0 },
97 { ICE_ETYPE_OL, 12 },
98 { ICE_IPV4_OFOS, 14 },
99 { ICE_NVGRE, 34 },
100 { ICE_MAC_IL, 42 },
101 { ICE_ETYPE_IL, 54 },
102 { ICE_IPV4_IL, 56 },
103 { ICE_TCP_IL, 76 },
104 { ICE_PROTOCOL_LAST, 0 },
105 };
106
107 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
108 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
109 0x00, 0x00, 0x00, 0x00,
110 0x00, 0x00, 0x00, 0x00,
111
112 0x08, 0x00, /* ICE_ETYPE_OL 12 */
113
114 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
115 0x00, 0x00, 0x00, 0x00,
116 0x00, 0x2F, 0x00, 0x00,
117 0x00, 0x00, 0x00, 0x00,
118 0x00, 0x00, 0x00, 0x00,
119
120 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
121 0x00, 0x00, 0x00, 0x00,
122
123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
124 0x00, 0x00, 0x00, 0x00,
125 0x00, 0x00, 0x00, 0x00,
126
127 0x08, 0x00, /* ICE_ETYPE_IL 54 */
128
129 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x06, 0x00, 0x00,
132 0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0x00, 0x00,
134
135 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
136 0x00, 0x00, 0x00, 0x00,
137 0x00, 0x00, 0x00, 0x00,
138 0x50, 0x02, 0x20, 0x00,
139 0x00, 0x00, 0x00, 0x00
140 };
141
142 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
143 { ICE_MAC_OFOS, 0 },
144 { ICE_ETYPE_OL, 12 },
145 { ICE_IPV4_OFOS, 14 },
146 { ICE_NVGRE, 34 },
147 { ICE_MAC_IL, 42 },
148 { ICE_ETYPE_IL, 54 },
149 { ICE_IPV4_IL, 56 },
150 { ICE_UDP_ILOS, 76 },
151 { ICE_PROTOCOL_LAST, 0 },
152 };
153
154 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
155 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
156 0x00, 0x00, 0x00, 0x00,
157 0x00, 0x00, 0x00, 0x00,
158
159 0x08, 0x00, /* ICE_ETYPE_OL 12 */
160
161 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
162 0x00, 0x00, 0x00, 0x00,
163 0x00, 0x2F, 0x00, 0x00,
164 0x00, 0x00, 0x00, 0x00,
165 0x00, 0x00, 0x00, 0x00,
166
167 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
168 0x00, 0x00, 0x00, 0x00,
169
170 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
171 0x00, 0x00, 0x00, 0x00,
172 0x00, 0x00, 0x00, 0x00,
173
174 0x08, 0x00, /* ICE_ETYPE_IL 54 */
175
176 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
177 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x11, 0x00, 0x00,
179 0x00, 0x00, 0x00, 0x00,
180 0x00, 0x00, 0x00, 0x00,
181
182 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
183 0x00, 0x08, 0x00, 0x00,
184 };
185
186 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
187 { ICE_MAC_OFOS, 0 },
188 { ICE_ETYPE_OL, 12 },
189 { ICE_IPV4_OFOS, 14 },
190 { ICE_UDP_OF, 34 },
191 { ICE_VXLAN, 42 },
192 { ICE_GENEVE, 42 },
193 { ICE_VXLAN_GPE, 42 },
194 { ICE_MAC_IL, 50 },
195 { ICE_ETYPE_IL, 62 },
196 { ICE_IPV4_IL, 64 },
197 { ICE_TCP_IL, 84 },
198 { ICE_PROTOCOL_LAST, 0 },
199 };
200
201 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
202 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
203 0x00, 0x00, 0x00, 0x00,
204 0x00, 0x00, 0x00, 0x00,
205
206 0x08, 0x00, /* ICE_ETYPE_OL 12 */
207
208 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
209 0x00, 0x01, 0x00, 0x00,
210 0x40, 0x11, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00,
212 0x00, 0x00, 0x00, 0x00,
213
214 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
215 0x00, 0x46, 0x00, 0x00,
216
217 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
218 0x00, 0x00, 0x00, 0x00,
219
220 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
221 0x00, 0x00, 0x00, 0x00,
222 0x00, 0x00, 0x00, 0x00,
223
224 0x08, 0x00, /* ICE_ETYPE_IL 62 */
225
226 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
227 0x00, 0x01, 0x00, 0x00,
228 0x40, 0x06, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00,
230 0x00, 0x00, 0x00, 0x00,
231
232 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
233 0x00, 0x00, 0x00, 0x00,
234 0x00, 0x00, 0x00, 0x00,
235 0x50, 0x02, 0x20, 0x00,
236 0x00, 0x00, 0x00, 0x00
237 };
238
239 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
240 { ICE_MAC_OFOS, 0 },
241 { ICE_ETYPE_OL, 12 },
242 { ICE_IPV4_OFOS, 14 },
243 { ICE_UDP_OF, 34 },
244 { ICE_VXLAN, 42 },
245 { ICE_GENEVE, 42 },
246 { ICE_VXLAN_GPE, 42 },
247 { ICE_MAC_IL, 50 },
248 { ICE_ETYPE_IL, 62 },
249 { ICE_IPV4_IL, 64 },
250 { ICE_UDP_ILOS, 84 },
251 { ICE_PROTOCOL_LAST, 0 },
252 };
253
254 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
255 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
256 0x00, 0x00, 0x00, 0x00,
257 0x00, 0x00, 0x00, 0x00,
258
259 0x08, 0x00, /* ICE_ETYPE_OL 12 */
260
261 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
262 0x00, 0x01, 0x00, 0x00,
263 0x00, 0x11, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00,
265 0x00, 0x00, 0x00, 0x00,
266
267 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
268 0x00, 0x3a, 0x00, 0x00,
269
270 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
271 0x00, 0x00, 0x00, 0x00,
272
273 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
274 0x00, 0x00, 0x00, 0x00,
275 0x00, 0x00, 0x00, 0x00,
276
277 0x08, 0x00, /* ICE_ETYPE_IL 62 */
278
279 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
280 0x00, 0x01, 0x00, 0x00,
281 0x00, 0x11, 0x00, 0x00,
282 0x00, 0x00, 0x00, 0x00,
283 0x00, 0x00, 0x00, 0x00,
284
285 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
286 0x00, 0x08, 0x00, 0x00,
287 };
288
289 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
290 { ICE_MAC_OFOS, 0 },
291 { ICE_ETYPE_OL, 12 },
292 { ICE_IPV4_OFOS, 14 },
293 { ICE_NVGRE, 34 },
294 { ICE_MAC_IL, 42 },
295 { ICE_ETYPE_IL, 54 },
296 { ICE_IPV6_IL, 56 },
297 { ICE_TCP_IL, 96 },
298 { ICE_PROTOCOL_LAST, 0 },
299 };
300
301 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
302 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
303 0x00, 0x00, 0x00, 0x00,
304 0x00, 0x00, 0x00, 0x00,
305
306 0x08, 0x00, /* ICE_ETYPE_OL 12 */
307
308 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
309 0x00, 0x00, 0x00, 0x00,
310 0x00, 0x2F, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00,
312 0x00, 0x00, 0x00, 0x00,
313
314 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
315 0x00, 0x00, 0x00, 0x00,
316
317 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
318 0x00, 0x00, 0x00, 0x00,
319 0x00, 0x00, 0x00, 0x00,
320
321 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
322
323 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
324 0x00, 0x08, 0x06, 0x40,
325 0x00, 0x00, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00,
328 0x00, 0x00, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00,
331 0x00, 0x00, 0x00, 0x00,
332 0x00, 0x00, 0x00, 0x00,
333
334 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
335 0x00, 0x00, 0x00, 0x00,
336 0x00, 0x00, 0x00, 0x00,
337 0x50, 0x02, 0x20, 0x00,
338 0x00, 0x00, 0x00, 0x00
339 };
340
341 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
342 { ICE_MAC_OFOS, 0 },
343 { ICE_ETYPE_OL, 12 },
344 { ICE_IPV4_OFOS, 14 },
345 { ICE_NVGRE, 34 },
346 { ICE_MAC_IL, 42 },
347 { ICE_ETYPE_IL, 54 },
348 { ICE_IPV6_IL, 56 },
349 { ICE_UDP_ILOS, 96 },
350 { ICE_PROTOCOL_LAST, 0 },
351 };
352
353 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
354 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
355 0x00, 0x00, 0x00, 0x00,
356 0x00, 0x00, 0x00, 0x00,
357
358 0x08, 0x00, /* ICE_ETYPE_OL 12 */
359
360 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
361 0x00, 0x00, 0x00, 0x00,
362 0x00, 0x2F, 0x00, 0x00,
363 0x00, 0x00, 0x00, 0x00,
364 0x00, 0x00, 0x00, 0x00,
365
366 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
367 0x00, 0x00, 0x00, 0x00,
368
369 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
370 0x00, 0x00, 0x00, 0x00,
371 0x00, 0x00, 0x00, 0x00,
372
373 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
374
375 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
376 0x00, 0x08, 0x11, 0x40,
377 0x00, 0x00, 0x00, 0x00,
378 0x00, 0x00, 0x00, 0x00,
379 0x00, 0x00, 0x00, 0x00,
380 0x00, 0x00, 0x00, 0x00,
381 0x00, 0x00, 0x00, 0x00,
382 0x00, 0x00, 0x00, 0x00,
383 0x00, 0x00, 0x00, 0x00,
384 0x00, 0x00, 0x00, 0x00,
385
386 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
387 0x00, 0x08, 0x00, 0x00,
388 };
389
390 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
391 { ICE_MAC_OFOS, 0 },
392 { ICE_ETYPE_OL, 12 },
393 { ICE_IPV4_OFOS, 14 },
394 { ICE_UDP_OF, 34 },
395 { ICE_VXLAN, 42 },
396 { ICE_GENEVE, 42 },
397 { ICE_VXLAN_GPE, 42 },
398 { ICE_MAC_IL, 50 },
399 { ICE_ETYPE_IL, 62 },
400 { ICE_IPV6_IL, 64 },
401 { ICE_TCP_IL, 104 },
402 { ICE_PROTOCOL_LAST, 0 },
403 };
404
405 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
406 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
407 0x00, 0x00, 0x00, 0x00,
408 0x00, 0x00, 0x00, 0x00,
409
410 0x08, 0x00, /* ICE_ETYPE_OL 12 */
411
412 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
413 0x00, 0x01, 0x00, 0x00,
414 0x40, 0x11, 0x00, 0x00,
415 0x00, 0x00, 0x00, 0x00,
416 0x00, 0x00, 0x00, 0x00,
417
418 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
419 0x00, 0x5a, 0x00, 0x00,
420
421 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
422 0x00, 0x00, 0x00, 0x00,
423
424 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
425 0x00, 0x00, 0x00, 0x00,
426 0x00, 0x00, 0x00, 0x00,
427
428 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
429
430 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
431 0x00, 0x08, 0x06, 0x40,
432 0x00, 0x00, 0x00, 0x00,
433 0x00, 0x00, 0x00, 0x00,
434 0x00, 0x00, 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x00,
436 0x00, 0x00, 0x00, 0x00,
437 0x00, 0x00, 0x00, 0x00,
438 0x00, 0x00, 0x00, 0x00,
439 0x00, 0x00, 0x00, 0x00,
440
441 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
442 0x00, 0x00, 0x00, 0x00,
443 0x00, 0x00, 0x00, 0x00,
444 0x50, 0x02, 0x20, 0x00,
445 0x00, 0x00, 0x00, 0x00
446 };
447
448 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
449 { ICE_MAC_OFOS, 0 },
450 { ICE_ETYPE_OL, 12 },
451 { ICE_IPV4_OFOS, 14 },
452 { ICE_UDP_OF, 34 },
453 { ICE_VXLAN, 42 },
454 { ICE_GENEVE, 42 },
455 { ICE_VXLAN_GPE, 42 },
456 { ICE_MAC_IL, 50 },
457 { ICE_ETYPE_IL, 62 },
458 { ICE_IPV6_IL, 64 },
459 { ICE_UDP_ILOS, 104 },
460 { ICE_PROTOCOL_LAST, 0 },
461 };
462
463 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
464 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
465 0x00, 0x00, 0x00, 0x00,
466 0x00, 0x00, 0x00, 0x00,
467
468 0x08, 0x00, /* ICE_ETYPE_OL 12 */
469
470 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
471 0x00, 0x01, 0x00, 0x00,
472 0x00, 0x11, 0x00, 0x00,
473 0x00, 0x00, 0x00, 0x00,
474 0x00, 0x00, 0x00, 0x00,
475
476 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
477 0x00, 0x4e, 0x00, 0x00,
478
479 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
480 0x00, 0x00, 0x00, 0x00,
481
482 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
483 0x00, 0x00, 0x00, 0x00,
484 0x00, 0x00, 0x00, 0x00,
485
486 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
487
488 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
489 0x00, 0x08, 0x11, 0x40,
490 0x00, 0x00, 0x00, 0x00,
491 0x00, 0x00, 0x00, 0x00,
492 0x00, 0x00, 0x00, 0x00,
493 0x00, 0x00, 0x00, 0x00,
494 0x00, 0x00, 0x00, 0x00,
495 0x00, 0x00, 0x00, 0x00,
496 0x00, 0x00, 0x00, 0x00,
497 0x00, 0x00, 0x00, 0x00,
498
499 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
500 0x00, 0x08, 0x00, 0x00,
501 };
502
503 /* offset info for MAC + IPv4 + UDP dummy packet */
504 ICE_DECLARE_PKT_OFFSETS(udp) = {
505 { ICE_MAC_OFOS, 0 },
506 { ICE_ETYPE_OL, 12 },
507 { ICE_IPV4_OFOS, 14 },
508 { ICE_UDP_ILOS, 34 },
509 { ICE_PROTOCOL_LAST, 0 },
510 };
511
512 /* Dummy packet for MAC + IPv4 + UDP */
513 ICE_DECLARE_PKT_TEMPLATE(udp) = {
514 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
515 0x00, 0x00, 0x00, 0x00,
516 0x00, 0x00, 0x00, 0x00,
517
518 0x08, 0x00, /* ICE_ETYPE_OL 12 */
519
520 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
521 0x00, 0x01, 0x00, 0x00,
522 0x00, 0x11, 0x00, 0x00,
523 0x00, 0x00, 0x00, 0x00,
524 0x00, 0x00, 0x00, 0x00,
525
526 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
527 0x00, 0x08, 0x00, 0x00,
528
529 0x00, 0x00, /* 2 bytes for 4 byte alignment */
530 };
531
532 /* offset info for MAC + IPv4 + TCP dummy packet */
533 ICE_DECLARE_PKT_OFFSETS(tcp) = {
534 { ICE_MAC_OFOS, 0 },
535 { ICE_ETYPE_OL, 12 },
536 { ICE_IPV4_OFOS, 14 },
537 { ICE_TCP_IL, 34 },
538 { ICE_PROTOCOL_LAST, 0 },
539 };
540
541 /* Dummy packet for MAC + IPv4 + TCP */
542 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
543 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
544 0x00, 0x00, 0x00, 0x00,
545 0x00, 0x00, 0x00, 0x00,
546
547 0x08, 0x00, /* ICE_ETYPE_OL 12 */
548
549 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
550 0x00, 0x01, 0x00, 0x00,
551 0x00, 0x06, 0x00, 0x00,
552 0x00, 0x00, 0x00, 0x00,
553 0x00, 0x00, 0x00, 0x00,
554
555 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
556 0x00, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00,
558 0x50, 0x00, 0x00, 0x00,
559 0x00, 0x00, 0x00, 0x00,
560
561 0x00, 0x00, /* 2 bytes for 4 byte alignment */
562 };
563
564 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
565 { ICE_MAC_OFOS, 0 },
566 { ICE_ETYPE_OL, 12 },
567 { ICE_IPV6_OFOS, 14 },
568 { ICE_TCP_IL, 54 },
569 { ICE_PROTOCOL_LAST, 0 },
570 };
571
572 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
573 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
574 0x00, 0x00, 0x00, 0x00,
575 0x00, 0x00, 0x00, 0x00,
576
577 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
578
579 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
580 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
581 0x00, 0x00, 0x00, 0x00,
582 0x00, 0x00, 0x00, 0x00,
583 0x00, 0x00, 0x00, 0x00,
584 0x00, 0x00, 0x00, 0x00,
585 0x00, 0x00, 0x00, 0x00,
586 0x00, 0x00, 0x00, 0x00,
587 0x00, 0x00, 0x00, 0x00,
588 0x00, 0x00, 0x00, 0x00,
589
590 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
591 0x00, 0x00, 0x00, 0x00,
592 0x00, 0x00, 0x00, 0x00,
593 0x50, 0x00, 0x00, 0x00,
594 0x00, 0x00, 0x00, 0x00,
595
596 0x00, 0x00, /* 2 bytes for 4 byte alignment */
597 };
598
599 /* IPv6 + UDP */
600 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
601 { ICE_MAC_OFOS, 0 },
602 { ICE_ETYPE_OL, 12 },
603 { ICE_IPV6_OFOS, 14 },
604 { ICE_UDP_ILOS, 54 },
605 { ICE_PROTOCOL_LAST, 0 },
606 };
607
608 /* IPv6 + UDP dummy packet */
609 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
610 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
611 0x00, 0x00, 0x00, 0x00,
612 0x00, 0x00, 0x00, 0x00,
613
614 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
615
616 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
617 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
618 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00,
620 0x00, 0x00, 0x00, 0x00,
621 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00,
623 0x00, 0x00, 0x00, 0x00,
624 0x00, 0x00, 0x00, 0x00,
625 0x00, 0x00, 0x00, 0x00,
626
627 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
628 0x00, 0x10, 0x00, 0x00,
629
630 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
631 0x00, 0x00, 0x00, 0x00,
632
633 0x00, 0x00, /* 2 bytes for 4 byte alignment */
634 };
635
636 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
637 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
638 { ICE_MAC_OFOS, 0 },
639 { ICE_IPV4_OFOS, 14 },
640 { ICE_UDP_OF, 34 },
641 { ICE_GTP, 42 },
642 { ICE_IPV4_IL, 62 },
643 { ICE_TCP_IL, 82 },
644 { ICE_PROTOCOL_LAST, 0 },
645 };
646
647 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
648 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
649 0x00, 0x00, 0x00, 0x00,
650 0x00, 0x00, 0x00, 0x00,
651 0x08, 0x00,
652
653 0x45, 0x00, 0x00, 0x58, /* IP 14 */
654 0x00, 0x00, 0x00, 0x00,
655 0x00, 0x11, 0x00, 0x00,
656 0x00, 0x00, 0x00, 0x00,
657 0x00, 0x00, 0x00, 0x00,
658
659 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
660 0x00, 0x44, 0x00, 0x00,
661
662 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
663 0x00, 0x00, 0x00, 0x00,
664 0x00, 0x00, 0x00, 0x85,
665
666 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
667 0x00, 0x00, 0x00, 0x00,
668
669 0x45, 0x00, 0x00, 0x28, /* IP 62 */
670 0x00, 0x00, 0x00, 0x00,
671 0x00, 0x06, 0x00, 0x00,
672 0x00, 0x00, 0x00, 0x00,
673 0x00, 0x00, 0x00, 0x00,
674
675 0x00, 0x00, 0x00, 0x00, /* TCP 82 */
676 0x00, 0x00, 0x00, 0x00,
677 0x00, 0x00, 0x00, 0x00,
678 0x50, 0x00, 0x00, 0x00,
679 0x00, 0x00, 0x00, 0x00,
680
681 0x00, 0x00, /* 2 bytes for 4 byte alignment */
682 };
683
684 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
685 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
686 { ICE_MAC_OFOS, 0 },
687 { ICE_IPV4_OFOS, 14 },
688 { ICE_UDP_OF, 34 },
689 { ICE_GTP, 42 },
690 { ICE_IPV4_IL, 62 },
691 { ICE_UDP_ILOS, 82 },
692 { ICE_PROTOCOL_LAST, 0 },
693 };
694
695 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
696 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
697 0x00, 0x00, 0x00, 0x00,
698 0x00, 0x00, 0x00, 0x00,
699 0x08, 0x00,
700
701 0x45, 0x00, 0x00, 0x4c, /* IP 14 */
702 0x00, 0x00, 0x00, 0x00,
703 0x00, 0x11, 0x00, 0x00,
704 0x00, 0x00, 0x00, 0x00,
705 0x00, 0x00, 0x00, 0x00,
706
707 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
708 0x00, 0x38, 0x00, 0x00,
709
710 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
711 0x00, 0x00, 0x00, 0x00,
712 0x00, 0x00, 0x00, 0x85,
713
714 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
715 0x00, 0x00, 0x00, 0x00,
716
717 0x45, 0x00, 0x00, 0x1c, /* IP 62 */
718 0x00, 0x00, 0x00, 0x00,
719 0x00, 0x11, 0x00, 0x00,
720 0x00, 0x00, 0x00, 0x00,
721 0x00, 0x00, 0x00, 0x00,
722
723 0x00, 0x00, 0x00, 0x00, /* UDP 82 */
724 0x00, 0x08, 0x00, 0x00,
725
726 0x00, 0x00, /* 2 bytes for 4 byte alignment */
727 };
728
729 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
730 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
731 { ICE_MAC_OFOS, 0 },
732 { ICE_IPV4_OFOS, 14 },
733 { ICE_UDP_OF, 34 },
734 { ICE_GTP, 42 },
735 { ICE_IPV6_IL, 62 },
736 { ICE_TCP_IL, 102 },
737 { ICE_PROTOCOL_LAST, 0 },
738 };
739
740 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
741 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
742 0x00, 0x00, 0x00, 0x00,
743 0x00, 0x00, 0x00, 0x00,
744 0x08, 0x00,
745
746 0x45, 0x00, 0x00, 0x6c, /* IP 14 */
747 0x00, 0x00, 0x00, 0x00,
748 0x00, 0x11, 0x00, 0x00,
749 0x00, 0x00, 0x00, 0x00,
750 0x00, 0x00, 0x00, 0x00,
751
752 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
753 0x00, 0x58, 0x00, 0x00,
754
755 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
756 0x00, 0x00, 0x00, 0x00,
757 0x00, 0x00, 0x00, 0x85,
758
759 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
760 0x00, 0x00, 0x00, 0x00,
761
762 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
763 0x00, 0x14, 0x06, 0x00,
764 0x00, 0x00, 0x00, 0x00,
765 0x00, 0x00, 0x00, 0x00,
766 0x00, 0x00, 0x00, 0x00,
767 0x00, 0x00, 0x00, 0x00,
768 0x00, 0x00, 0x00, 0x00,
769 0x00, 0x00, 0x00, 0x00,
770 0x00, 0x00, 0x00, 0x00,
771 0x00, 0x00, 0x00, 0x00,
772
773 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
774 0x00, 0x00, 0x00, 0x00,
775 0x00, 0x00, 0x00, 0x00,
776 0x50, 0x00, 0x00, 0x00,
777 0x00, 0x00, 0x00, 0x00,
778
779 0x00, 0x00, /* 2 bytes for 4 byte alignment */
780 };
781
782 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
783 { ICE_MAC_OFOS, 0 },
784 { ICE_IPV4_OFOS, 14 },
785 { ICE_UDP_OF, 34 },
786 { ICE_GTP, 42 },
787 { ICE_IPV6_IL, 62 },
788 { ICE_UDP_ILOS, 102 },
789 { ICE_PROTOCOL_LAST, 0 },
790 };
791
792 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
793 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
794 0x00, 0x00, 0x00, 0x00,
795 0x00, 0x00, 0x00, 0x00,
796 0x08, 0x00,
797
798 0x45, 0x00, 0x00, 0x60, /* IP 14 */
799 0x00, 0x00, 0x00, 0x00,
800 0x00, 0x11, 0x00, 0x00,
801 0x00, 0x00, 0x00, 0x00,
802 0x00, 0x00, 0x00, 0x00,
803
804 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
805 0x00, 0x4c, 0x00, 0x00,
806
807 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
808 0x00, 0x00, 0x00, 0x00,
809 0x00, 0x00, 0x00, 0x85,
810
811 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
812 0x00, 0x00, 0x00, 0x00,
813
814 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
815 0x00, 0x08, 0x11, 0x00,
816 0x00, 0x00, 0x00, 0x00,
817 0x00, 0x00, 0x00, 0x00,
818 0x00, 0x00, 0x00, 0x00,
819 0x00, 0x00, 0x00, 0x00,
820 0x00, 0x00, 0x00, 0x00,
821 0x00, 0x00, 0x00, 0x00,
822 0x00, 0x00, 0x00, 0x00,
823 0x00, 0x00, 0x00, 0x00,
824
825 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
826 0x00, 0x08, 0x00, 0x00,
827
828 0x00, 0x00, /* 2 bytes for 4 byte alignment */
829 };
830
831 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
832 { ICE_MAC_OFOS, 0 },
833 { ICE_IPV6_OFOS, 14 },
834 { ICE_UDP_OF, 54 },
835 { ICE_GTP, 62 },
836 { ICE_IPV4_IL, 82 },
837 { ICE_TCP_IL, 102 },
838 { ICE_PROTOCOL_LAST, 0 },
839 };
840
841 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
842 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
843 0x00, 0x00, 0x00, 0x00,
844 0x00, 0x00, 0x00, 0x00,
845 0x86, 0xdd,
846
847 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
848 0x00, 0x44, 0x11, 0x00,
849 0x00, 0x00, 0x00, 0x00,
850 0x00, 0x00, 0x00, 0x00,
851 0x00, 0x00, 0x00, 0x00,
852 0x00, 0x00, 0x00, 0x00,
853 0x00, 0x00, 0x00, 0x00,
854 0x00, 0x00, 0x00, 0x00,
855 0x00, 0x00, 0x00, 0x00,
856 0x00, 0x00, 0x00, 0x00,
857
858 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
859 0x00, 0x44, 0x00, 0x00,
860
861 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
862 0x00, 0x00, 0x00, 0x00,
863 0x00, 0x00, 0x00, 0x85,
864
865 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
866 0x00, 0x00, 0x00, 0x00,
867
868 0x45, 0x00, 0x00, 0x28, /* IP 82 */
869 0x00, 0x00, 0x00, 0x00,
870 0x00, 0x06, 0x00, 0x00,
871 0x00, 0x00, 0x00, 0x00,
872 0x00, 0x00, 0x00, 0x00,
873
874 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
875 0x00, 0x00, 0x00, 0x00,
876 0x00, 0x00, 0x00, 0x00,
877 0x50, 0x00, 0x00, 0x00,
878 0x00, 0x00, 0x00, 0x00,
879
880 0x00, 0x00, /* 2 bytes for 4 byte alignment */
881 };
882
883 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
884 { ICE_MAC_OFOS, 0 },
885 { ICE_IPV6_OFOS, 14 },
886 { ICE_UDP_OF, 54 },
887 { ICE_GTP, 62 },
888 { ICE_IPV4_IL, 82 },
889 { ICE_UDP_ILOS, 102 },
890 { ICE_PROTOCOL_LAST, 0 },
891 };
892
893 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
894 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
895 0x00, 0x00, 0x00, 0x00,
896 0x00, 0x00, 0x00, 0x00,
897 0x86, 0xdd,
898
899 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
900 0x00, 0x38, 0x11, 0x00,
901 0x00, 0x00, 0x00, 0x00,
902 0x00, 0x00, 0x00, 0x00,
903 0x00, 0x00, 0x00, 0x00,
904 0x00, 0x00, 0x00, 0x00,
905 0x00, 0x00, 0x00, 0x00,
906 0x00, 0x00, 0x00, 0x00,
907 0x00, 0x00, 0x00, 0x00,
908 0x00, 0x00, 0x00, 0x00,
909
910 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
911 0x00, 0x38, 0x00, 0x00,
912
913 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
914 0x00, 0x00, 0x00, 0x00,
915 0x00, 0x00, 0x00, 0x85,
916
917 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
918 0x00, 0x00, 0x00, 0x00,
919
920 0x45, 0x00, 0x00, 0x1c, /* IP 82 */
921 0x00, 0x00, 0x00, 0x00,
922 0x00, 0x11, 0x00, 0x00,
923 0x00, 0x00, 0x00, 0x00,
924 0x00, 0x00, 0x00, 0x00,
925
926 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
927 0x00, 0x08, 0x00, 0x00,
928
929 0x00, 0x00, /* 2 bytes for 4 byte alignment */
930 };
931
932 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
933 { ICE_MAC_OFOS, 0 },
934 { ICE_IPV6_OFOS, 14 },
935 { ICE_UDP_OF, 54 },
936 { ICE_GTP, 62 },
937 { ICE_IPV6_IL, 82 },
938 { ICE_TCP_IL, 122 },
939 { ICE_PROTOCOL_LAST, 0 },
940 };
941
942 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
943 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
944 0x00, 0x00, 0x00, 0x00,
945 0x00, 0x00, 0x00, 0x00,
946 0x86, 0xdd,
947
948 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
949 0x00, 0x58, 0x11, 0x00,
950 0x00, 0x00, 0x00, 0x00,
951 0x00, 0x00, 0x00, 0x00,
952 0x00, 0x00, 0x00, 0x00,
953 0x00, 0x00, 0x00, 0x00,
954 0x00, 0x00, 0x00, 0x00,
955 0x00, 0x00, 0x00, 0x00,
956 0x00, 0x00, 0x00, 0x00,
957 0x00, 0x00, 0x00, 0x00,
958
959 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
960 0x00, 0x58, 0x00, 0x00,
961
962 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
963 0x00, 0x00, 0x00, 0x00,
964 0x00, 0x00, 0x00, 0x85,
965
966 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
967 0x00, 0x00, 0x00, 0x00,
968
969 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
970 0x00, 0x14, 0x06, 0x00,
971 0x00, 0x00, 0x00, 0x00,
972 0x00, 0x00, 0x00, 0x00,
973 0x00, 0x00, 0x00, 0x00,
974 0x00, 0x00, 0x00, 0x00,
975 0x00, 0x00, 0x00, 0x00,
976 0x00, 0x00, 0x00, 0x00,
977 0x00, 0x00, 0x00, 0x00,
978 0x00, 0x00, 0x00, 0x00,
979
980 0x00, 0x00, 0x00, 0x00, /* TCP 122 */
981 0x00, 0x00, 0x00, 0x00,
982 0x00, 0x00, 0x00, 0x00,
983 0x50, 0x00, 0x00, 0x00,
984 0x00, 0x00, 0x00, 0x00,
985
986 0x00, 0x00, /* 2 bytes for 4 byte alignment */
987 };
988
989 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
990 { ICE_MAC_OFOS, 0 },
991 { ICE_IPV6_OFOS, 14 },
992 { ICE_UDP_OF, 54 },
993 { ICE_GTP, 62 },
994 { ICE_IPV6_IL, 82 },
995 { ICE_UDP_ILOS, 122 },
996 { ICE_PROTOCOL_LAST, 0 },
997 };
998
999 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001 0x00, 0x00, 0x00, 0x00,
1002 0x00, 0x00, 0x00, 0x00,
1003 0x86, 0xdd,
1004
1005 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006 0x00, 0x4c, 0x11, 0x00,
1007 0x00, 0x00, 0x00, 0x00,
1008 0x00, 0x00, 0x00, 0x00,
1009 0x00, 0x00, 0x00, 0x00,
1010 0x00, 0x00, 0x00, 0x00,
1011 0x00, 0x00, 0x00, 0x00,
1012 0x00, 0x00, 0x00, 0x00,
1013 0x00, 0x00, 0x00, 0x00,
1014 0x00, 0x00, 0x00, 0x00,
1015
1016 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017 0x00, 0x4c, 0x00, 0x00,
1018
1019 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020 0x00, 0x00, 0x00, 0x00,
1021 0x00, 0x00, 0x00, 0x85,
1022
1023 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024 0x00, 0x00, 0x00, 0x00,
1025
1026 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027 0x00, 0x08, 0x11, 0x00,
1028 0x00, 0x00, 0x00, 0x00,
1029 0x00, 0x00, 0x00, 0x00,
1030 0x00, 0x00, 0x00, 0x00,
1031 0x00, 0x00, 0x00, 0x00,
1032 0x00, 0x00, 0x00, 0x00,
1033 0x00, 0x00, 0x00, 0x00,
1034 0x00, 0x00, 0x00, 0x00,
1035 0x00, 0x00, 0x00, 0x00,
1036
1037 0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038 0x00, 0x08, 0x00, 0x00,
1039
1040 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1041 };
1042
1043 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044 { ICE_MAC_OFOS, 0 },
1045 { ICE_IPV4_OFOS, 14 },
1046 { ICE_UDP_OF, 34 },
1047 { ICE_GTP_NO_PAY, 42 },
1048 { ICE_PROTOCOL_LAST, 0 },
1049 };
1050
1051 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053 0x00, 0x00, 0x00, 0x00,
1054 0x00, 0x00, 0x00, 0x00,
1055 0x08, 0x00,
1056
1057 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058 0x00, 0x00, 0x40, 0x00,
1059 0x40, 0x11, 0x00, 0x00,
1060 0x00, 0x00, 0x00, 0x00,
1061 0x00, 0x00, 0x00, 0x00,
1062
1063 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064 0x00, 0x00, 0x00, 0x00,
1065
1066 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067 0x00, 0x00, 0x00, 0x00,
1068 0x00, 0x00, 0x00, 0x85,
1069
1070 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071 0x00, 0x00, 0x00, 0x00,
1072
1073 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074 0x00, 0x00, 0x40, 0x00,
1075 0x40, 0x00, 0x00, 0x00,
1076 0x00, 0x00, 0x00, 0x00,
1077 0x00, 0x00, 0x00, 0x00,
1078 0x00, 0x00,
1079 };
1080
1081 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082 { ICE_MAC_OFOS, 0 },
1083 { ICE_IPV6_OFOS, 14 },
1084 { ICE_UDP_OF, 54 },
1085 { ICE_GTP_NO_PAY, 62 },
1086 { ICE_PROTOCOL_LAST, 0 },
1087 };
1088
1089 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091 0x00, 0x00, 0x00, 0x00,
1092 0x00, 0x00, 0x00, 0x00,
1093 0x86, 0xdd,
1094
1095 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097 0x00, 0x00, 0x00, 0x00,
1098 0x00, 0x00, 0x00, 0x00,
1099 0x00, 0x00, 0x00, 0x00,
1100 0x00, 0x00, 0x00, 0x00,
1101 0x00, 0x00, 0x00, 0x00,
1102 0x00, 0x00, 0x00, 0x00,
1103 0x00, 0x00, 0x00, 0x00,
1104 0x00, 0x00, 0x00, 0x00,
1105
1106 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107 0x00, 0x00, 0x00, 0x00,
1108
1109 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110 0x00, 0x00, 0x00, 0x00,
1111
1112 0x00, 0x00,
1113 };
1114
1115 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116 { ICE_MAC_OFOS, 0 },
1117 { ICE_ETYPE_OL, 12 },
1118 { ICE_IPV4_OFOS, 14 },
1119 { ICE_UDP_ILOS, 34 },
1120 { ICE_PFCP, 42 },
1121 { ICE_PROTOCOL_LAST, 0 },
1122 };
1123
1124 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126 0x00, 0x00, 0x00, 0x00,
1127 0x00, 0x00, 0x00, 0x00,
1128
1129 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1130
1131 0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132 0x00, 0x01, 0x00, 0x00,
1133 0x00, 0x11, 0x00, 0x00,
1134 0x00, 0x00, 0x00, 0x00,
1135 0x00, 0x00, 0x00, 0x00,
1136
1137 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138 0x00, 0x18, 0x00, 0x00,
1139
1140 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141 0x00, 0x00, 0x00, 0x00,
1142 0x00, 0x00, 0x00, 0x00,
1143 0x00, 0x00, 0x00, 0x00,
1144
1145 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1146 };
1147
1148 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149 { ICE_MAC_OFOS, 0 },
1150 { ICE_ETYPE_OL, 12 },
1151 { ICE_IPV6_OFOS, 14 },
1152 { ICE_UDP_ILOS, 54 },
1153 { ICE_PFCP, 62 },
1154 { ICE_PROTOCOL_LAST, 0 },
1155 };
1156
1157 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159 0x00, 0x00, 0x00, 0x00,
1160 0x00, 0x00, 0x00, 0x00,
1161
1162 0x86, 0xdd, /* ICE_ETYPE_OL 12 */
1163
1164 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166 0x00, 0x00, 0x00, 0x00,
1167 0x00, 0x00, 0x00, 0x00,
1168 0x00, 0x00, 0x00, 0x00,
1169 0x00, 0x00, 0x00, 0x00,
1170 0x00, 0x00, 0x00, 0x00,
1171 0x00, 0x00, 0x00, 0x00,
1172 0x00, 0x00, 0x00, 0x00,
1173 0x00, 0x00, 0x00, 0x00,
1174
1175 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176 0x00, 0x18, 0x00, 0x00,
1177
1178 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179 0x00, 0x00, 0x00, 0x00,
1180 0x00, 0x00, 0x00, 0x00,
1181 0x00, 0x00, 0x00, 0x00,
1182
1183 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1184 };
1185
1186 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187 { ICE_MAC_OFOS, 0 },
1188 { ICE_ETYPE_OL, 12 },
1189 { ICE_PPPOE, 14 },
1190 { ICE_IPV4_OFOS, 22 },
1191 { ICE_TCP_IL, 42 },
1192 { ICE_PROTOCOL_LAST, 0 },
1193 };
1194
1195 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197 0x00, 0x00, 0x00, 0x00,
1198 0x00, 0x00, 0x00, 0x00,
1199
1200 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1201
1202 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1203 0x00, 0x16,
1204
1205 0x00, 0x21, /* PPP Link Layer 20 */
1206
1207 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208 0x00, 0x01, 0x00, 0x00,
1209 0x00, 0x06, 0x00, 0x00,
1210 0x00, 0x00, 0x00, 0x00,
1211 0x00, 0x00, 0x00, 0x00,
1212
1213 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214 0x00, 0x00, 0x00, 0x00,
1215 0x00, 0x00, 0x00, 0x00,
1216 0x50, 0x00, 0x00, 0x00,
1217 0x00, 0x00, 0x00, 0x00,
1218
1219 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1220 };
1221
1222 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223 { ICE_MAC_OFOS, 0 },
1224 { ICE_ETYPE_OL, 12 },
1225 { ICE_PPPOE, 14 },
1226 { ICE_IPV4_OFOS, 22 },
1227 { ICE_UDP_ILOS, 42 },
1228 { ICE_PROTOCOL_LAST, 0 },
1229 };
1230
1231 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233 0x00, 0x00, 0x00, 0x00,
1234 0x00, 0x00, 0x00, 0x00,
1235
1236 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1237
1238 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1239 0x00, 0x16,
1240
1241 0x00, 0x21, /* PPP Link Layer 20 */
1242
1243 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244 0x00, 0x01, 0x00, 0x00,
1245 0x00, 0x11, 0x00, 0x00,
1246 0x00, 0x00, 0x00, 0x00,
1247 0x00, 0x00, 0x00, 0x00,
1248
1249 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250 0x00, 0x08, 0x00, 0x00,
1251
1252 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1253 };
1254
1255 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256 { ICE_MAC_OFOS, 0 },
1257 { ICE_ETYPE_OL, 12 },
1258 { ICE_PPPOE, 14 },
1259 { ICE_IPV6_OFOS, 22 },
1260 { ICE_TCP_IL, 62 },
1261 { ICE_PROTOCOL_LAST, 0 },
1262 };
1263
1264 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266 0x00, 0x00, 0x00, 0x00,
1267 0x00, 0x00, 0x00, 0x00,
1268
1269 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1270
1271 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1272 0x00, 0x2a,
1273
1274 0x00, 0x57, /* PPP Link Layer 20 */
1275
1276 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278 0x00, 0x00, 0x00, 0x00,
1279 0x00, 0x00, 0x00, 0x00,
1280 0x00, 0x00, 0x00, 0x00,
1281 0x00, 0x00, 0x00, 0x00,
1282 0x00, 0x00, 0x00, 0x00,
1283 0x00, 0x00, 0x00, 0x00,
1284 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, 0x00, 0x00,
1286
1287 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288 0x00, 0x00, 0x00, 0x00,
1289 0x00, 0x00, 0x00, 0x00,
1290 0x50, 0x00, 0x00, 0x00,
1291 0x00, 0x00, 0x00, 0x00,
1292
1293 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1294 };
1295
1296 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297 { ICE_MAC_OFOS, 0 },
1298 { ICE_ETYPE_OL, 12 },
1299 { ICE_PPPOE, 14 },
1300 { ICE_IPV6_OFOS, 22 },
1301 { ICE_UDP_ILOS, 62 },
1302 { ICE_PROTOCOL_LAST, 0 },
1303 };
1304
1305 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307 0x00, 0x00, 0x00, 0x00,
1308 0x00, 0x00, 0x00, 0x00,
1309
1310 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1311
1312 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1313 0x00, 0x2a,
1314
1315 0x00, 0x57, /* PPP Link Layer 20 */
1316
1317 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319 0x00, 0x00, 0x00, 0x00,
1320 0x00, 0x00, 0x00, 0x00,
1321 0x00, 0x00, 0x00, 0x00,
1322 0x00, 0x00, 0x00, 0x00,
1323 0x00, 0x00, 0x00, 0x00,
1324 0x00, 0x00, 0x00, 0x00,
1325 0x00, 0x00, 0x00, 0x00,
1326 0x00, 0x00, 0x00, 0x00,
1327
1328 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329 0x00, 0x08, 0x00, 0x00,
1330
1331 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1332 };
1333
1334 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335 { ICE_MAC_OFOS, 0 },
1336 { ICE_ETYPE_OL, 12 },
1337 { ICE_IPV4_OFOS, 14 },
1338 { ICE_L2TPV3, 34 },
1339 { ICE_PROTOCOL_LAST, 0 },
1340 };
1341
1342 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344 0x00, 0x00, 0x00, 0x00,
1345 0x00, 0x00, 0x00, 0x00,
1346
1347 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1348
1349 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350 0x00, 0x00, 0x40, 0x00,
1351 0x40, 0x73, 0x00, 0x00,
1352 0x00, 0x00, 0x00, 0x00,
1353 0x00, 0x00, 0x00, 0x00,
1354
1355 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356 0x00, 0x00, 0x00, 0x00,
1357 0x00, 0x00, 0x00, 0x00,
1358 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1359 };
1360
1361 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362 { ICE_MAC_OFOS, 0 },
1363 { ICE_ETYPE_OL, 12 },
1364 { ICE_IPV6_OFOS, 14 },
1365 { ICE_L2TPV3, 54 },
1366 { ICE_PROTOCOL_LAST, 0 },
1367 };
1368
1369 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371 0x00, 0x00, 0x00, 0x00,
1372 0x00, 0x00, 0x00, 0x00,
1373
1374 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
1375
1376 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377 0x00, 0x0c, 0x73, 0x40,
1378 0x00, 0x00, 0x00, 0x00,
1379 0x00, 0x00, 0x00, 0x00,
1380 0x00, 0x00, 0x00, 0x00,
1381 0x00, 0x00, 0x00, 0x00,
1382 0x00, 0x00, 0x00, 0x00,
1383 0x00, 0x00, 0x00, 0x00,
1384 0x00, 0x00, 0x00, 0x00,
1385 0x00, 0x00, 0x00, 0x00,
1386
1387 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388 0x00, 0x00, 0x00, 0x00,
1389 0x00, 0x00, 0x00, 0x00,
1390 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1391 };
1392
1393 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1395 ICE_PKT_GTP_NOPAY),
1396 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397 ICE_PKT_OUTER_IPV6 |
1398 ICE_PKT_INNER_IPV6 |
1399 ICE_PKT_INNER_UDP),
1400 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401 ICE_PKT_OUTER_IPV6 |
1402 ICE_PKT_INNER_IPV6),
1403 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404 ICE_PKT_OUTER_IPV6 |
1405 ICE_PKT_INNER_UDP),
1406 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407 ICE_PKT_OUTER_IPV6),
1408 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410 ICE_PKT_INNER_IPV6 |
1411 ICE_PKT_INNER_UDP),
1412 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413 ICE_PKT_INNER_IPV6),
1414 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1415 ICE_PKT_INNER_UDP),
1416 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419 ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420 ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1422 ICE_PKT_INNER_UDP),
1423 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1427 ICE_PKT_INNER_TCP),
1428 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432 ICE_PKT_INNER_IPV6 |
1433 ICE_PKT_INNER_TCP),
1434 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438 ICE_PKT_INNER_IPV6),
1439 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443 ICE_PKT_PROFILE(tcp, 0),
1444 };
1445
1446 /* this is a recipe to profile association bitmap */
1447 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448 ICE_MAX_NUM_PROFILES);
1449
1450 /* this is a profile to recipe association bitmap */
1451 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452 ICE_MAX_NUM_RECIPES);
1453
1454 /**
1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456 * @hw: pointer to the HW struct
1457 *
1458 * Allocate memory for the entire recipe table and initialize the structures/
1459 * entries corresponding to basic recipes.
1460 */
ice_init_def_sw_recp(struct ice_hw * hw)1461 int ice_init_def_sw_recp(struct ice_hw *hw)
1462 {
1463 struct ice_sw_recipe *recps;
1464 u8 i;
1465
1466 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467 sizeof(*recps), GFP_KERNEL);
1468 if (!recps)
1469 return -ENOMEM;
1470
1471 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472 recps[i].root_rid = i;
1473 INIT_LIST_HEAD(&recps[i].filt_rules);
1474 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1475 mutex_init(&recps[i].filt_rule_lock);
1476 }
1477
1478 hw->switch_info->recp_list = recps;
1479
1480 return 0;
1481 }
1482
1483 /**
1484 * ice_aq_get_sw_cfg - get switch configuration
1485 * @hw: pointer to the hardware structure
1486 * @buf: pointer to the result buffer
1487 * @buf_size: length of the buffer available for response
1488 * @req_desc: pointer to requested descriptor
1489 * @num_elems: pointer to number of elements
1490 * @cd: pointer to command details structure or NULL
1491 *
1492 * Get switch configuration (0x0200) to be placed in buf.
1493 * This admin command returns information such as initial VSI/port number
1494 * and switch ID it belongs to.
1495 *
1496 * NOTE: *req_desc is both an input/output parameter.
1497 * The caller of this function first calls this function with *request_desc set
1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499 * configuration information has been returned; if non-zero (meaning not all
1500 * the information was returned), the caller should call this function again
1501 * with *req_desc set to the previous value returned by f/w to get the
1502 * next block of switch configuration information.
1503 *
1504 * *num_elems is output only parameter. This reflects the number of elements
1505 * in response buffer. The caller of this function to use *num_elems while
1506 * parsing the response buffer.
1507 */
1508 static int
ice_aq_get_sw_cfg(struct ice_hw * hw,struct ice_aqc_get_sw_cfg_resp_elem * buf,u16 buf_size,u16 * req_desc,u16 * num_elems,struct ice_sq_cd * cd)1509 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510 u16 buf_size, u16 *req_desc, u16 *num_elems,
1511 struct ice_sq_cd *cd)
1512 {
1513 struct ice_aqc_get_sw_cfg *cmd;
1514 struct ice_aq_desc desc;
1515 int status;
1516
1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518 cmd = &desc.params.get_sw_conf;
1519 cmd->element = cpu_to_le16(*req_desc);
1520
1521 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1522 if (!status) {
1523 *req_desc = le16_to_cpu(cmd->element);
1524 *num_elems = le16_to_cpu(cmd->num_elems);
1525 }
1526
1527 return status;
1528 }
1529
1530 /**
1531 * ice_aq_add_vsi
1532 * @hw: pointer to the HW struct
1533 * @vsi_ctx: pointer to a VSI context struct
1534 * @cd: pointer to command details structure or NULL
1535 *
1536 * Add a VSI context to the hardware (0x0210)
1537 */
1538 static int
ice_aq_add_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)1539 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540 struct ice_sq_cd *cd)
1541 {
1542 struct ice_aqc_add_update_free_vsi_resp *res;
1543 struct ice_aqc_add_get_update_free_vsi *cmd;
1544 struct ice_aq_desc desc;
1545 int status;
1546
1547 cmd = &desc.params.vsi_cmd;
1548 res = &desc.params.add_update_free_vsi_res;
1549
1550 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1551
1552 if (!vsi_ctx->alloc_from_pool)
1553 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554 ICE_AQ_VSI_IS_VALID);
1555 cmd->vf_id = vsi_ctx->vf_num;
1556
1557 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1558
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 sizeof(vsi_ctx->info), cd);
1563
1564 if (!status) {
1565 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1568 }
1569
1570 return status;
1571 }
1572
1573 /**
1574 * ice_aq_free_vsi
1575 * @hw: pointer to the HW struct
1576 * @vsi_ctx: pointer to a VSI context struct
1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578 * @cd: pointer to command details structure or NULL
1579 *
1580 * Free VSI context info from hardware (0x0213)
1581 */
1582 static int
ice_aq_free_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,bool keep_vsi_alloc,struct ice_sq_cd * cd)1583 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1585 {
1586 struct ice_aqc_add_update_free_vsi_resp *resp;
1587 struct ice_aqc_add_get_update_free_vsi *cmd;
1588 struct ice_aq_desc desc;
1589 int status;
1590
1591 cmd = &desc.params.vsi_cmd;
1592 resp = &desc.params.add_update_free_vsi_res;
1593
1594 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1595
1596 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1597 if (keep_vsi_alloc)
1598 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1599
1600 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1601 if (!status) {
1602 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1604 }
1605
1606 return status;
1607 }
1608
1609 /**
1610 * ice_aq_update_vsi
1611 * @hw: pointer to the HW struct
1612 * @vsi_ctx: pointer to a VSI context struct
1613 * @cd: pointer to command details structure or NULL
1614 *
1615 * Update VSI context in the hardware (0x0211)
1616 */
1617 static int
ice_aq_update_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)1618 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619 struct ice_sq_cd *cd)
1620 {
1621 struct ice_aqc_add_update_free_vsi_resp *resp;
1622 struct ice_aqc_add_get_update_free_vsi *cmd;
1623 struct ice_aq_desc desc;
1624 int status;
1625
1626 cmd = &desc.params.vsi_cmd;
1627 resp = &desc.params.add_update_free_vsi_res;
1628
1629 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1630
1631 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1632
1633 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1634
1635 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636 sizeof(vsi_ctx->info), cd);
1637
1638 if (!status) {
1639 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1641 }
1642
1643 return status;
1644 }
1645
1646 /**
1647 * ice_is_vsi_valid - check whether the VSI is valid or not
1648 * @hw: pointer to the HW struct
1649 * @vsi_handle: VSI handle
1650 *
1651 * check whether the VSI is valid or not
1652 */
ice_is_vsi_valid(struct ice_hw * hw,u16 vsi_handle)1653 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1654 {
1655 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1656 }
1657
1658 /**
1659 * ice_get_hw_vsi_num - return the HW VSI number
1660 * @hw: pointer to the HW struct
1661 * @vsi_handle: VSI handle
1662 *
1663 * return the HW VSI number
1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1665 */
ice_get_hw_vsi_num(struct ice_hw * hw,u16 vsi_handle)1666 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1667 {
1668 return hw->vsi_ctx[vsi_handle]->vsi_num;
1669 }
1670
1671 /**
1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673 * @hw: pointer to the HW struct
1674 * @vsi_handle: VSI handle
1675 *
1676 * return the VSI context entry for a given VSI handle
1677 */
ice_get_vsi_ctx(struct ice_hw * hw,u16 vsi_handle)1678 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1679 {
1680 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1681 }
1682
1683 /**
1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685 * @hw: pointer to the HW struct
1686 * @vsi_handle: VSI handle
1687 * @vsi: VSI context pointer
1688 *
1689 * save the VSI context entry for a given VSI handle
1690 */
1691 static void
ice_save_vsi_ctx(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi)1692 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1693 {
1694 hw->vsi_ctx[vsi_handle] = vsi;
1695 }
1696
1697 /**
1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699 * @hw: pointer to the HW struct
1700 * @vsi_handle: VSI handle
1701 */
ice_clear_vsi_q_ctx(struct ice_hw * hw,u16 vsi_handle)1702 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1703 {
1704 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1705 u8 i;
1706
1707 if (!vsi)
1708 return;
1709 ice_for_each_traffic_class(i) {
1710 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711 vsi->lan_q_ctx[i] = NULL;
1712 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713 vsi->rdma_q_ctx[i] = NULL;
1714 }
1715 }
1716
1717 /**
1718 * ice_clear_vsi_ctx - clear the VSI context entry
1719 * @hw: pointer to the HW struct
1720 * @vsi_handle: VSI handle
1721 *
1722 * clear the VSI context entry
1723 */
ice_clear_vsi_ctx(struct ice_hw * hw,u16 vsi_handle)1724 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1725 {
1726 struct ice_vsi_ctx *vsi;
1727
1728 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1729 if (vsi) {
1730 ice_clear_vsi_q_ctx(hw, vsi_handle);
1731 devm_kfree(ice_hw_to_dev(hw), vsi);
1732 hw->vsi_ctx[vsi_handle] = NULL;
1733 }
1734 }
1735
1736 /**
1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738 * @hw: pointer to the HW struct
1739 */
ice_clear_all_vsi_ctx(struct ice_hw * hw)1740 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1741 {
1742 u16 i;
1743
1744 for (i = 0; i < ICE_MAX_VSI; i++)
1745 ice_clear_vsi_ctx(hw, i);
1746 }
1747
1748 /**
1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750 * @hw: pointer to the HW struct
1751 * @vsi_handle: unique VSI handle provided by drivers
1752 * @vsi_ctx: pointer to a VSI context struct
1753 * @cd: pointer to command details structure or NULL
1754 *
1755 * Add a VSI context to the hardware also add it into the VSI handle list.
1756 * If this function gets called after reset for existing VSIs then update
1757 * with the new HW VSI number in the corresponding VSI handle list entry.
1758 */
1759 int
ice_add_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)1760 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761 struct ice_sq_cd *cd)
1762 {
1763 struct ice_vsi_ctx *tmp_vsi_ctx;
1764 int status;
1765
1766 if (vsi_handle >= ICE_MAX_VSI)
1767 return -EINVAL;
1768 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1769 if (status)
1770 return status;
1771 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1772 if (!tmp_vsi_ctx) {
1773 /* Create a new VSI context */
1774 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775 sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1776 if (!tmp_vsi_ctx) {
1777 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1778 return -ENOMEM;
1779 }
1780 *tmp_vsi_ctx = *vsi_ctx;
1781 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1782 } else {
1783 /* update with new HW VSI num */
1784 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1785 }
1786
1787 return 0;
1788 }
1789
1790 /**
1791 * ice_free_vsi- free VSI context from hardware and VSI handle list
1792 * @hw: pointer to the HW struct
1793 * @vsi_handle: unique VSI handle
1794 * @vsi_ctx: pointer to a VSI context struct
1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796 * @cd: pointer to command details structure or NULL
1797 *
1798 * Free VSI context info from hardware as well as from VSI handle list
1799 */
1800 int
ice_free_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,bool keep_vsi_alloc,struct ice_sq_cd * cd)1801 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1803 {
1804 int status;
1805
1806 if (!ice_is_vsi_valid(hw, vsi_handle))
1807 return -EINVAL;
1808 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1810 if (!status)
1811 ice_clear_vsi_ctx(hw, vsi_handle);
1812 return status;
1813 }
1814
1815 /**
1816 * ice_update_vsi
1817 * @hw: pointer to the HW struct
1818 * @vsi_handle: unique VSI handle
1819 * @vsi_ctx: pointer to a VSI context struct
1820 * @cd: pointer to command details structure or NULL
1821 *
1822 * Update VSI context in the hardware
1823 */
1824 int
ice_update_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)1825 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826 struct ice_sq_cd *cd)
1827 {
1828 if (!ice_is_vsi_valid(hw, vsi_handle))
1829 return -EINVAL;
1830 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831 return ice_aq_update_vsi(hw, vsi_ctx, cd);
1832 }
1833
1834 /**
1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836 * @hw: pointer to HW struct
1837 * @vsi_handle: VSI SW index
1838 * @enable: boolean for enable/disable
1839 */
1840 int
ice_cfg_rdma_fltr(struct ice_hw * hw,u16 vsi_handle,bool enable)1841 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1842 {
1843 struct ice_vsi_ctx *ctx, *cached_ctx;
1844 int status;
1845
1846 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1847 if (!cached_ctx)
1848 return -ENOENT;
1849
1850 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1851 if (!ctx)
1852 return -ENOMEM;
1853
1854 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1857
1858 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1859
1860 if (enable)
1861 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1862 else
1863 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1864
1865 status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1866 if (!status) {
1867 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868 cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1869 }
1870
1871 kfree(ctx);
1872 return status;
1873 }
1874
1875 /**
1876 * ice_aq_alloc_free_vsi_list
1877 * @hw: pointer to the HW struct
1878 * @vsi_list_id: VSI list ID returned or used for lookup
1879 * @lkup_type: switch rule filter lookup type
1880 * @opc: switch rules population command type - pass in the command opcode
1881 *
1882 * allocates or free a VSI list resource
1883 */
1884 static int
ice_aq_alloc_free_vsi_list(struct ice_hw * hw,u16 * vsi_list_id,enum ice_sw_lkup_type lkup_type,enum ice_adminq_opc opc)1885 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886 enum ice_sw_lkup_type lkup_type,
1887 enum ice_adminq_opc opc)
1888 {
1889 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890 u16 buf_len = __struct_size(sw_buf);
1891 struct ice_aqc_res_elem *vsi_ele;
1892 int status;
1893
1894 sw_buf->num_elems = cpu_to_le16(1);
1895
1896 if (lkup_type == ICE_SW_LKUP_MAC ||
1897 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900 lkup_type == ICE_SW_LKUP_PROMISC ||
1901 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902 lkup_type == ICE_SW_LKUP_DFLT ||
1903 lkup_type == ICE_SW_LKUP_LAST) {
1904 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906 if (opc == ice_aqc_opc_alloc_res)
1907 sw_buf->res_type =
1908 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909 ICE_AQC_RES_TYPE_FLAG_SHARED);
1910 else
1911 sw_buf->res_type =
1912 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1913 } else {
1914 return -EINVAL;
1915 }
1916
1917 if (opc == ice_aqc_opc_free_res)
1918 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1919
1920 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1921 if (status)
1922 return status;
1923
1924 if (opc == ice_aqc_opc_alloc_res) {
1925 vsi_ele = &sw_buf->elem[0];
1926 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1927 }
1928
1929 return 0;
1930 }
1931
1932 /**
1933 * ice_aq_sw_rules - add/update/remove switch rules
1934 * @hw: pointer to the HW struct
1935 * @rule_list: pointer to switch rule population list
1936 * @rule_list_sz: total size of the rule list in bytes
1937 * @num_rules: number of switch rules in the rule_list
1938 * @opc: switch rules population command type - pass in the command opcode
1939 * @cd: pointer to command details structure or NULL
1940 *
1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1942 */
1943 int
ice_aq_sw_rules(struct ice_hw * hw,void * rule_list,u16 rule_list_sz,u8 num_rules,enum ice_adminq_opc opc,struct ice_sq_cd * cd)1944 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1946 {
1947 struct ice_aq_desc desc;
1948 int status;
1949
1950 if (opc != ice_aqc_opc_add_sw_rules &&
1951 opc != ice_aqc_opc_update_sw_rules &&
1952 opc != ice_aqc_opc_remove_sw_rules)
1953 return -EINVAL;
1954
1955 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1956
1957 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958 desc.params.sw_rules.num_rules_fltr_entry_index =
1959 cpu_to_le16(num_rules);
1960 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961 if (opc != ice_aqc_opc_add_sw_rules &&
1962 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1963 status = -ENOENT;
1964
1965 if (!status) {
1966 if (opc == ice_aqc_opc_add_sw_rules)
1967 hw->switch_info->rule_cnt += num_rules;
1968 else if (opc == ice_aqc_opc_remove_sw_rules)
1969 hw->switch_info->rule_cnt -= num_rules;
1970 }
1971
1972 trace_ice_aq_sw_rules(hw->switch_info);
1973
1974 return status;
1975 }
1976
1977 /**
1978 * ice_aq_add_recipe - add switch recipe
1979 * @hw: pointer to the HW struct
1980 * @s_recipe_list: pointer to switch rule population list
1981 * @num_recipes: number of switch recipes in the list
1982 * @cd: pointer to command details structure or NULL
1983 *
1984 * Add(0x0290)
1985 */
1986 int
ice_aq_add_recipe(struct ice_hw * hw,struct ice_aqc_recipe_data_elem * s_recipe_list,u16 num_recipes,struct ice_sq_cd * cd)1987 ice_aq_add_recipe(struct ice_hw *hw,
1988 struct ice_aqc_recipe_data_elem *s_recipe_list,
1989 u16 num_recipes, struct ice_sq_cd *cd)
1990 {
1991 struct ice_aqc_add_get_recipe *cmd;
1992 struct ice_aq_desc desc;
1993 u16 buf_size;
1994
1995 cmd = &desc.params.add_get_recipe;
1996 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1997
1998 cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2000
2001 buf_size = num_recipes * sizeof(*s_recipe_list);
2002
2003 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2004 }
2005
2006 /**
2007 * ice_aq_get_recipe - get switch recipe
2008 * @hw: pointer to the HW struct
2009 * @s_recipe_list: pointer to switch rule population list
2010 * @num_recipes: pointer to the number of recipes (input and output)
2011 * @recipe_root: root recipe number of recipe(s) to retrieve
2012 * @cd: pointer to command details structure or NULL
2013 *
2014 * Get(0x0292)
2015 *
2016 * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017 * On output, *num_recipes will equal the number of entries returned in
2018 * s_recipe_list.
2019 *
2020 * The caller must supply enough space in s_recipe_list to hold all possible
2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2022 */
2023 int
ice_aq_get_recipe(struct ice_hw * hw,struct ice_aqc_recipe_data_elem * s_recipe_list,u16 * num_recipes,u16 recipe_root,struct ice_sq_cd * cd)2024 ice_aq_get_recipe(struct ice_hw *hw,
2025 struct ice_aqc_recipe_data_elem *s_recipe_list,
2026 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2027 {
2028 struct ice_aqc_add_get_recipe *cmd;
2029 struct ice_aq_desc desc;
2030 u16 buf_size;
2031 int status;
2032
2033 if (*num_recipes != ICE_MAX_NUM_RECIPES)
2034 return -EINVAL;
2035
2036 cmd = &desc.params.add_get_recipe;
2037 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2038
2039 cmd->return_index = cpu_to_le16(recipe_root);
2040 cmd->num_sub_recipes = 0;
2041
2042 buf_size = *num_recipes * sizeof(*s_recipe_list);
2043
2044 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045 *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2046
2047 return status;
2048 }
2049
2050 /**
2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052 * @hw: pointer to the HW struct
2053 * @params: parameters used to update the default recipe
2054 *
2055 * This function only supports updating default recipes and it only supports
2056 * updating a single recipe based on the lkup_idx at a time.
2057 *
2058 * This is done as a read-modify-write operation. First, get the current recipe
2059 * contents based on the recipe's ID. Then modify the field vector index and
2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061 * the pre-existing recipe with the modifications.
2062 */
2063 int
ice_update_recipe_lkup_idx(struct ice_hw * hw,struct ice_update_recipe_lkup_idx_params * params)2064 ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065 struct ice_update_recipe_lkup_idx_params *params)
2066 {
2067 struct ice_aqc_recipe_data_elem *rcp_list;
2068 u16 num_recps = ICE_MAX_NUM_RECIPES;
2069 int status;
2070
2071 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2072 if (!rcp_list)
2073 return -ENOMEM;
2074
2075 /* read current recipe list from firmware */
2076 rcp_list->recipe_indx = params->rid;
2077 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2078 if (status) {
2079 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080 params->rid, status);
2081 goto error_out;
2082 }
2083
2084 /* only modify existing recipe's lkup_idx and mask if valid, while
2085 * leaving all other fields the same, then update the recipe firmware
2086 */
2087 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088 if (params->mask_valid)
2089 rcp_list->content.mask[params->lkup_idx] =
2090 cpu_to_le16(params->mask);
2091
2092 if (params->ignore_valid)
2093 rcp_list->content.lkup_indx[params->lkup_idx] |=
2094 ICE_AQ_RECIPE_LKUP_IGNORE;
2095
2096 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2097 if (status)
2098 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099 params->rid, params->lkup_idx, params->fv_idx,
2100 params->mask, params->mask_valid ? "true" : "false",
2101 status);
2102
2103 error_out:
2104 kfree(rcp_list);
2105 return status;
2106 }
2107
2108 /**
2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110 * @hw: pointer to the HW struct
2111 * @profile_id: package profile ID to associate the recipe with
2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113 * @cd: pointer to command details structure or NULL
2114 * Recipe to profile association (0x0291)
2115 */
2116 int
ice_aq_map_recipe_to_profile(struct ice_hw * hw,u32 profile_id,u64 r_assoc,struct ice_sq_cd * cd)2117 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118 struct ice_sq_cd *cd)
2119 {
2120 struct ice_aqc_recipe_to_profile *cmd;
2121 struct ice_aq_desc desc;
2122
2123 cmd = &desc.params.recipe_to_profile;
2124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125 cmd->profile_id = cpu_to_le16(profile_id);
2126 /* Set the recipe ID bit in the bitmask to let the device know which
2127 * profile we are associating the recipe to
2128 */
2129 cmd->recipe_assoc = cpu_to_le64(r_assoc);
2130
2131 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2132 }
2133
2134 /**
2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136 * @hw: pointer to the HW struct
2137 * @profile_id: package profile ID to associate the recipe with
2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139 * @cd: pointer to command details structure or NULL
2140 * Associate profile ID with given recipe (0x0293)
2141 */
2142 int
ice_aq_get_recipe_to_profile(struct ice_hw * hw,u32 profile_id,u64 * r_assoc,struct ice_sq_cd * cd)2143 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144 struct ice_sq_cd *cd)
2145 {
2146 struct ice_aqc_recipe_to_profile *cmd;
2147 struct ice_aq_desc desc;
2148 int status;
2149
2150 cmd = &desc.params.recipe_to_profile;
2151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152 cmd->profile_id = cpu_to_le16(profile_id);
2153
2154 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2155 if (!status)
2156 *r_assoc = le64_to_cpu(cmd->recipe_assoc);
2157
2158 return status;
2159 }
2160
2161 /**
2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163 * @hw: pointer to the hardware structure
2164 */
ice_init_chk_recipe_reuse_support(struct ice_hw * hw)2165 void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2166 {
2167 struct ice_nvm_info *nvm = &hw->flash.nvm;
2168
2169 hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2170 nvm->major > 0x4;
2171 }
2172
2173 /**
2174 * ice_alloc_recipe - add recipe resource
2175 * @hw: pointer to the hardware structure
2176 * @rid: recipe ID returned as response to AQ call
2177 */
ice_alloc_recipe(struct ice_hw * hw,u16 * rid)2178 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2179 {
2180 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181 u16 buf_len = __struct_size(sw_buf);
2182 u16 res_type;
2183 int status;
2184
2185 sw_buf->num_elems = cpu_to_le16(1);
2186 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2187 if (hw->recp_reuse)
2188 res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2189 else
2190 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191 sw_buf->res_type = cpu_to_le16(res_type);
2192 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193 ice_aqc_opc_alloc_res);
2194 if (!status) {
2195 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196 hw->switch_info->recp_cnt++;
2197 }
2198
2199 return status;
2200 }
2201
2202 /**
2203 * ice_free_recipe_res - free recipe resource
2204 * @hw: pointer to the hardware structure
2205 * @rid: recipe ID to free
2206 *
2207 * Return: 0 on success, and others on error
2208 */
ice_free_recipe_res(struct ice_hw * hw,u16 rid)2209 static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2210 {
2211 int status;
2212
2213 status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
2214 if (!status)
2215 hw->switch_info->recp_cnt--;
2216
2217 return status;
2218 }
2219
2220 /**
2221 * ice_release_recipe_res - disassociate and free recipe resource
2222 * @hw: pointer to the hardware structure
2223 * @recp: the recipe struct resource to unassociate and free
2224 *
2225 * Return: 0 on success, and others on error
2226 */
ice_release_recipe_res(struct ice_hw * hw,struct ice_sw_recipe * recp)2227 static int ice_release_recipe_res(struct ice_hw *hw,
2228 struct ice_sw_recipe *recp)
2229 {
2230 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231 struct ice_switch_info *sw = hw->switch_info;
2232 u64 recp_assoc;
2233 u32 rid, prof;
2234 int status;
2235
2236 for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237 for_each_set_bit(prof, recipe_to_profile[rid],
2238 ICE_MAX_NUM_PROFILES) {
2239 status = ice_aq_get_recipe_to_profile(hw, prof,
2240 &recp_assoc,
2241 NULL);
2242 if (status)
2243 return status;
2244
2245 bitmap_from_arr64(r_bitmap, &recp_assoc,
2246 ICE_MAX_NUM_RECIPES);
2247 bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248 ICE_MAX_NUM_RECIPES);
2249 bitmap_to_arr64(&recp_assoc, r_bitmap,
2250 ICE_MAX_NUM_RECIPES);
2251 ice_aq_map_recipe_to_profile(hw, prof,
2252 recp_assoc, NULL);
2253
2254 clear_bit(rid, profile_to_recipe[prof]);
2255 clear_bit(prof, recipe_to_profile[rid]);
2256 }
2257
2258 status = ice_free_recipe_res(hw, rid);
2259 if (status)
2260 return status;
2261
2262 sw->recp_list[rid].recp_created = false;
2263 sw->recp_list[rid].adv_rule = false;
2264 memset(&sw->recp_list[rid].lkup_exts, 0,
2265 sizeof(sw->recp_list[rid].lkup_exts));
2266 clear_bit(rid, recp->r_bitmap);
2267 }
2268
2269 return 0;
2270 }
2271
2272 /**
2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274 * @hw: pointer to hardware structure
2275 *
2276 * This function is used to populate recipe_to_profile matrix where index to
2277 * this array is the recipe ID and the element is the mapping of which profiles
2278 * is this recipe mapped to.
2279 */
ice_get_recp_to_prof_map(struct ice_hw * hw)2280 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2281 {
2282 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2283 u64 recp_assoc;
2284 u16 i;
2285
2286 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2287 u16 j;
2288
2289 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291 if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2292 continue;
2293 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294 bitmap_copy(profile_to_recipe[i], r_bitmap,
2295 ICE_MAX_NUM_RECIPES);
2296 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297 set_bit(i, recipe_to_profile[j]);
2298 }
2299 }
2300
2301 /**
2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303 * @hw: pointer to hardware structure
2304 * @recps: struct that we need to populate
2305 * @rid: recipe ID that we are populating
2306 * @refresh_required: true if we should get recipe to profile mapping from FW
2307 * @is_add: flag of adding recipe
2308 *
2309 * This function is used to populate all the necessary entries into our
2310 * bookkeeping so that we have a current list of all the recipes that are
2311 * programmed in the firmware.
2312 */
2313 static int
ice_get_recp_frm_fw(struct ice_hw * hw,struct ice_sw_recipe * recps,u8 rid,bool * refresh_required,bool is_add)2314 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315 bool *refresh_required, bool is_add)
2316 {
2317 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318 struct ice_aqc_recipe_data_elem *tmp;
2319 u16 num_recps = ICE_MAX_NUM_RECIPES;
2320 struct ice_prot_lkup_ext *lkup_exts;
2321 u8 fv_word_idx = 0;
2322 u16 sub_recps;
2323 int status;
2324
2325 bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2326
2327 /* we need a buffer big enough to accommodate all the recipes */
2328 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2329 if (!tmp)
2330 return -ENOMEM;
2331
2332 tmp[0].recipe_indx = rid;
2333 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334 /* non-zero status meaning recipe doesn't exist */
2335 if (status)
2336 goto err_unroll;
2337
2338 /* Get recipe to profile map so that we can get the fv from lkups that
2339 * we read for a recipe from FW. Since we want to minimize the number of
2340 * times we make this FW call, just make one call and cache the copy
2341 * until a new recipe is added. This operation is only required the
2342 * first time to get the changes from FW. Then to search existing
2343 * entries we don't need to update the cache again until another recipe
2344 * gets added.
2345 */
2346 if (*refresh_required) {
2347 ice_get_recp_to_prof_map(hw);
2348 *refresh_required = false;
2349 }
2350
2351 /* Start populating all the entries for recps[rid] based on lkups from
2352 * firmware. Note that we are only creating the root recipe in our
2353 * database.
2354 */
2355 lkup_exts = &recps[rid].lkup_exts;
2356
2357 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2359 u8 i, prof, idx, prot = 0;
2360 bool is_root;
2361 u16 off = 0;
2362
2363 idx = root_bufs.recipe_indx;
2364 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2365
2366 /* Mark all result indices in this chain */
2367 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2369 result_bm);
2370
2371 /* get the first profile that is associated with rid */
2372 prof = find_first_bit(recipe_to_profile[idx],
2373 ICE_MAX_NUM_PROFILES);
2374 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375 u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376 u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
2377
2378 /* If the recipe is a chained recipe then all its
2379 * child recipe's result will have a result index.
2380 * To fill fv_words we should not use those result
2381 * index, we only need the protocol ids and offsets.
2382 * We will skip all the fv_idx which stores result
2383 * index in them. We also need to skip any fv_idx which
2384 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385 * valid offset value.
2386 */
2387 if (!lkup_indx ||
2388 (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2389 test_bit(lkup_indx,
2390 hw->switch_info->prof_res_bm[prof]))
2391 continue;
2392
2393 ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2394 &prot, &off);
2395 lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396 lkup_exts->fv_words[fv_word_idx].off = off;
2397 lkup_exts->field_mask[fv_word_idx] = lkup_mask;
2398 fv_word_idx++;
2399 }
2400
2401 /* Propagate some data to the recipe database */
2402 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403 recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404 ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405 recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409 set_bit(root_bufs.content.result_indx &
2410 ~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
2411 }
2412
2413 if (!is_root) {
2414 if (hw->recp_reuse && is_add)
2415 recps[idx].recp_created = true;
2416
2417 continue;
2418 }
2419
2420 /* Only do the following for root recipes entries */
2421 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422 sizeof(recps[idx].r_bitmap));
2423 recps[idx].root_rid = root_bufs.content.rid &
2424 ~ICE_AQ_RECIPE_ID_IS_ROOT;
2425 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2426 }
2427
2428 /* Complete initialization of the root recipe entry */
2429 lkup_exts->n_val_words = fv_word_idx;
2430
2431 /* Copy result indexes */
2432 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2433 if (is_add)
2434 recps[rid].recp_created = true;
2435
2436 err_unroll:
2437 kfree(tmp);
2438 return status;
2439 }
2440
2441 /* ice_init_port_info - Initialize port_info with switch configuration data
2442 * @pi: pointer to port_info
2443 * @vsi_port_num: VSI number or port number
2444 * @type: Type of switch element (port or VSI)
2445 * @swid: switch ID of the switch the element is attached to
2446 * @pf_vf_num: PF or VF number
2447 * @is_vf: true if the element is a VF, false otherwise
2448 */
2449 static void
ice_init_port_info(struct ice_port_info * pi,u16 vsi_port_num,u8 type,u16 swid,u16 pf_vf_num,bool is_vf)2450 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451 u16 swid, u16 pf_vf_num, bool is_vf)
2452 {
2453 switch (type) {
2454 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2456 pi->sw_id = swid;
2457 pi->pf_vf_num = pf_vf_num;
2458 pi->is_vf = is_vf;
2459 break;
2460 default:
2461 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2462 break;
2463 }
2464 }
2465
2466 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467 * @hw: pointer to the hardware structure
2468 */
ice_get_initial_sw_cfg(struct ice_hw * hw)2469 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2470 {
2471 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2472 u16 req_desc = 0;
2473 u16 num_elems;
2474 int status;
2475 u16 i;
2476
2477 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2478 if (!rbuf)
2479 return -ENOMEM;
2480
2481 /* Multiple calls to ice_aq_get_sw_cfg may be required
2482 * to get all the switch configuration information. The need
2483 * for additional calls is indicated by ice_aq_get_sw_cfg
2484 * writing a non-zero value in req_desc
2485 */
2486 do {
2487 struct ice_aqc_get_sw_cfg_resp_elem *ele;
2488
2489 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490 &req_desc, &num_elems, NULL);
2491
2492 if (status)
2493 break;
2494
2495 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496 u16 pf_vf_num, swid, vsi_port_num;
2497 bool is_vf = false;
2498 u8 res_type;
2499
2500 vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2502
2503 pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2505
2506 swid = le16_to_cpu(ele->swid);
2507
2508 if (le16_to_cpu(ele->pf_vf_num) &
2509 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2510 is_vf = true;
2511
2512 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2514
2515 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516 /* FW VSI is not needed. Just continue. */
2517 continue;
2518 }
2519
2520 ice_init_port_info(hw->port_info, vsi_port_num,
2521 res_type, swid, pf_vf_num, is_vf);
2522 }
2523 } while (req_desc && !status);
2524
2525 kfree(rbuf);
2526 return status;
2527 }
2528
2529 /**
2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531 * @hw: pointer to the hardware structure
2532 * @fi: filter info structure to fill/update
2533 *
2534 * This helper function populates the lb_en and lan_en elements of the provided
2535 * ice_fltr_info struct using the switch's type and characteristics of the
2536 * switch rule being configured.
2537 */
ice_fill_sw_info(struct ice_hw * hw,struct ice_fltr_info * fi)2538 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2539 {
2540 fi->lb_en = false;
2541 fi->lan_en = false;
2542 if ((fi->flag & ICE_FLTR_TX) &&
2543 (fi->fltr_act == ICE_FWD_TO_VSI ||
2544 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545 fi->fltr_act == ICE_FWD_TO_Q ||
2546 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547 /* Setting LB for prune actions will result in replicated
2548 * packets to the internal switch that will be dropped.
2549 */
2550 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2551 fi->lb_en = true;
2552
2553 /* Set lan_en to TRUE if
2554 * 1. The switch is a VEB AND
2555 * 2
2556 * 2.1 The lookup is a directional lookup like ethertype,
2557 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558 * and default-port OR
2559 * 2.2 The lookup is VLAN, OR
2560 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2562 *
2563 * OR
2564 *
2565 * The switch is a VEPA.
2566 *
2567 * In all other cases, the LAN enable has to be set to false.
2568 */
2569 if (hw->evb_veb) {
2570 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2580 fi->lan_en = true;
2581 } else {
2582 fi->lan_en = true;
2583 }
2584 }
2585
2586 if (fi->flag & ICE_FLTR_TX_ONLY)
2587 fi->lan_en = false;
2588 }
2589
2590 /**
2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592 * @eth_hdr: pointer to buffer to populate
2593 */
ice_fill_eth_hdr(u8 * eth_hdr)2594 void ice_fill_eth_hdr(u8 *eth_hdr)
2595 {
2596 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2597 }
2598
2599 /**
2600 * ice_fill_sw_rule - Helper function to fill switch rule structure
2601 * @hw: pointer to the hardware structure
2602 * @f_info: entry containing packet forwarding information
2603 * @s_rule: switch rule structure to be filled in based on mac_entry
2604 * @opc: switch rules population command type - pass in the command opcode
2605 */
2606 static void
ice_fill_sw_rule(struct ice_hw * hw,struct ice_fltr_info * f_info,struct ice_sw_rule_lkup_rx_tx * s_rule,enum ice_adminq_opc opc)2607 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609 enum ice_adminq_opc opc)
2610 {
2611 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612 u16 vlan_tpid = ETH_P_8021Q;
2613 void *daddr = NULL;
2614 u16 eth_hdr_sz;
2615 u8 *eth_hdr;
2616 u32 act = 0;
2617 __be16 *off;
2618 u8 q_rgn;
2619
2620 if (opc == ice_aqc_opc_remove_sw_rules) {
2621 s_rule->act = 0;
2622 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623 s_rule->hdr_len = 0;
2624 return;
2625 }
2626
2627 eth_hdr_sz = sizeof(dummy_eth_header);
2628 eth_hdr = s_rule->hdr_data;
2629
2630 /* initialize the ether header with a dummy header */
2631 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632 ice_fill_sw_info(hw, f_info);
2633
2634 switch (f_info->fltr_act) {
2635 case ICE_FWD_TO_VSI:
2636 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637 f_info->fwd_id.hw_vsi_id);
2638 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640 ICE_SINGLE_ACT_VALID_BIT;
2641 break;
2642 case ICE_FWD_TO_VSI_LIST:
2643 act |= ICE_SINGLE_ACT_VSI_LIST;
2644 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645 f_info->fwd_id.vsi_list_id);
2646 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648 ICE_SINGLE_ACT_VALID_BIT;
2649 break;
2650 case ICE_FWD_TO_Q:
2651 act |= ICE_SINGLE_ACT_TO_Q;
2652 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653 f_info->fwd_id.q_id);
2654 break;
2655 case ICE_DROP_PACKET:
2656 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657 ICE_SINGLE_ACT_VALID_BIT;
2658 break;
2659 case ICE_FWD_TO_QGRP:
2660 q_rgn = f_info->qgrp_size > 0 ?
2661 (u8)ilog2(f_info->qgrp_size) : 0;
2662 act |= ICE_SINGLE_ACT_TO_Q;
2663 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664 f_info->fwd_id.q_id);
2665 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2666 break;
2667 default:
2668 return;
2669 }
2670
2671 if (f_info->lb_en)
2672 act |= ICE_SINGLE_ACT_LB_ENABLE;
2673 if (f_info->lan_en)
2674 act |= ICE_SINGLE_ACT_LAN_ENABLE;
2675
2676 switch (f_info->lkup_type) {
2677 case ICE_SW_LKUP_MAC:
2678 daddr = f_info->l_data.mac.mac_addr;
2679 break;
2680 case ICE_SW_LKUP_VLAN:
2681 vlan_id = f_info->l_data.vlan.vlan_id;
2682 if (f_info->l_data.vlan.tpid_valid)
2683 vlan_tpid = f_info->l_data.vlan.tpid;
2684 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686 act |= ICE_SINGLE_ACT_PRUNE;
2687 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2688 }
2689 break;
2690 case ICE_SW_LKUP_ETHERTYPE_MAC:
2691 daddr = f_info->l_data.ethertype_mac.mac_addr;
2692 fallthrough;
2693 case ICE_SW_LKUP_ETHERTYPE:
2694 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2696 break;
2697 case ICE_SW_LKUP_MAC_VLAN:
2698 daddr = f_info->l_data.mac_vlan.mac_addr;
2699 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2700 break;
2701 case ICE_SW_LKUP_PROMISC_VLAN:
2702 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2703 fallthrough;
2704 case ICE_SW_LKUP_PROMISC:
2705 daddr = f_info->l_data.mac_vlan.mac_addr;
2706 break;
2707 default:
2708 break;
2709 }
2710
2711 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2714
2715 /* Recipe set depending on lookup type */
2716 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717 s_rule->src = cpu_to_le16(f_info->src);
2718 s_rule->act = cpu_to_le32(act);
2719
2720 if (daddr)
2721 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2722
2723 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725 *off = cpu_to_be16(vlan_id);
2726 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727 *off = cpu_to_be16(vlan_tpid);
2728 }
2729
2730 /* Create the switch rule with the final dummy Ethernet header */
2731 if (opc != ice_aqc_opc_update_sw_rules)
2732 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2733 }
2734
2735 /**
2736 * ice_add_marker_act
2737 * @hw: pointer to the hardware structure
2738 * @m_ent: the management entry for which sw marker needs to be added
2739 * @sw_marker: sw marker to tag the Rx descriptor with
2740 * @l_id: large action resource ID
2741 *
2742 * Create a large action to hold software marker and update the switch rule
2743 * entry pointed by m_ent with newly created large action
2744 */
2745 static int
ice_add_marker_act(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_ent,u16 sw_marker,u16 l_id)2746 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747 u16 sw_marker, u16 l_id)
2748 {
2749 struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750 struct ice_sw_rule_lg_act *lg_act;
2751 /* For software marker we need 3 large actions
2752 * 1. FWD action: FWD TO VSI or VSI LIST
2753 * 2. GENERIC VALUE action to hold the profile ID
2754 * 3. GENERIC VALUE action to hold the software marker ID
2755 */
2756 const u16 num_lg_acts = 3;
2757 u16 lg_act_size;
2758 u16 rules_size;
2759 int status;
2760 u32 act;
2761 u16 id;
2762
2763 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2764 return -EINVAL;
2765
2766 /* Create two back-to-back switch rules and submit them to the HW using
2767 * one memory buffer:
2768 * 1. Large Action
2769 * 2. Look up Tx Rx
2770 */
2771 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2774 if (!lg_act)
2775 return -ENOMEM;
2776
2777 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2778
2779 /* Fill in the first switch rule i.e. large action */
2780 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781 lg_act->index = cpu_to_le16(l_id);
2782 lg_act->size = cpu_to_le16(num_lg_acts);
2783
2784 /* First action VSI forwarding or VSI list forwarding depending on how
2785 * many VSIs
2786 */
2787 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788 m_ent->fltr_info.fwd_id.hw_vsi_id;
2789
2790 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792 if (m_ent->vsi_count > 1)
2793 act |= ICE_LG_ACT_VSI_LIST;
2794 lg_act->act[0] = cpu_to_le32(act);
2795
2796 /* Second action descriptor type */
2797 act = ICE_LG_ACT_GENERIC;
2798
2799 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800 lg_act->act[1] = cpu_to_le32(act);
2801
2802 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2804
2805 /* Third action Marker value */
2806 act |= ICE_LG_ACT_GENERIC;
2807 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2808
2809 lg_act->act[2] = cpu_to_le32(act);
2810
2811 /* call the fill switch rule to fill the lookup Tx Rx structure */
2812 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813 ice_aqc_opc_update_sw_rules);
2814
2815 /* Update the action to point to the large action ID */
2816 act = ICE_SINGLE_ACT_PTR;
2817 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818 rx_tx->act = cpu_to_le32(act);
2819
2820 /* Use the filter rule ID of the previously created rule with single
2821 * act. Once the update happens, hardware will treat this as large
2822 * action
2823 */
2824 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2825
2826 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827 ice_aqc_opc_update_sw_rules, NULL);
2828 if (!status) {
2829 m_ent->lg_act_idx = l_id;
2830 m_ent->sw_marker_id = sw_marker;
2831 }
2832
2833 devm_kfree(ice_hw_to_dev(hw), lg_act);
2834 return status;
2835 }
2836
2837 /**
2838 * ice_create_vsi_list_map
2839 * @hw: pointer to the hardware structure
2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841 * @num_vsi: number of VSI handles in the array
2842 * @vsi_list_id: VSI list ID generated as part of allocate resource
2843 *
2844 * Helper function to create a new entry of VSI list ID to VSI mapping
2845 * using the given VSI list ID
2846 */
2847 static struct ice_vsi_list_map_info *
ice_create_vsi_list_map(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 vsi_list_id)2848 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2849 u16 vsi_list_id)
2850 {
2851 struct ice_switch_info *sw = hw->switch_info;
2852 struct ice_vsi_list_map_info *v_map;
2853 int i;
2854
2855 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2856 if (!v_map)
2857 return NULL;
2858
2859 v_map->vsi_list_id = vsi_list_id;
2860 v_map->ref_cnt = 1;
2861 for (i = 0; i < num_vsi; i++)
2862 set_bit(vsi_handle_arr[i], v_map->vsi_map);
2863
2864 list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2865 return v_map;
2866 }
2867
2868 /**
2869 * ice_update_vsi_list_rule
2870 * @hw: pointer to the hardware structure
2871 * @vsi_handle_arr: array of VSI handles to form a VSI list
2872 * @num_vsi: number of VSI handles in the array
2873 * @vsi_list_id: VSI list ID generated as part of allocate resource
2874 * @remove: Boolean value to indicate if this is a remove action
2875 * @opc: switch rules population command type - pass in the command opcode
2876 * @lkup_type: lookup type of the filter
2877 *
2878 * Call AQ command to add a new switch rule or update existing switch rule
2879 * using the given VSI list ID
2880 */
2881 static int
ice_update_vsi_list_rule(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 vsi_list_id,bool remove,enum ice_adminq_opc opc,enum ice_sw_lkup_type lkup_type)2882 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884 enum ice_sw_lkup_type lkup_type)
2885 {
2886 struct ice_sw_rule_vsi_list *s_rule;
2887 u16 s_rule_size;
2888 u16 rule_type;
2889 int status;
2890 int i;
2891
2892 if (!num_vsi)
2893 return -EINVAL;
2894
2895 if (lkup_type == ICE_SW_LKUP_MAC ||
2896 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899 lkup_type == ICE_SW_LKUP_PROMISC ||
2900 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901 lkup_type == ICE_SW_LKUP_DFLT ||
2902 lkup_type == ICE_SW_LKUP_LAST)
2903 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905 else if (lkup_type == ICE_SW_LKUP_VLAN)
2906 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2908 else
2909 return -EINVAL;
2910
2911 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2913 if (!s_rule)
2914 return -ENOMEM;
2915 for (i = 0; i < num_vsi; i++) {
2916 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2917 status = -EINVAL;
2918 goto exit;
2919 }
2920 /* AQ call requires hw_vsi_id(s) */
2921 s_rule->vsi[i] =
2922 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2923 }
2924
2925 s_rule->hdr.type = cpu_to_le16(rule_type);
2926 s_rule->number_vsi = cpu_to_le16(num_vsi);
2927 s_rule->index = cpu_to_le16(vsi_list_id);
2928
2929 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2930
2931 exit:
2932 devm_kfree(ice_hw_to_dev(hw), s_rule);
2933 return status;
2934 }
2935
2936 /**
2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938 * @hw: pointer to the HW struct
2939 * @vsi_handle_arr: array of VSI handles to form a VSI list
2940 * @num_vsi: number of VSI handles in the array
2941 * @vsi_list_id: stores the ID of the VSI list to be created
2942 * @lkup_type: switch rule filter's lookup type
2943 */
2944 static int
ice_create_vsi_list_rule(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 * vsi_list_id,enum ice_sw_lkup_type lkup_type)2945 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2947 {
2948 int status;
2949
2950 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951 ice_aqc_opc_alloc_res);
2952 if (status)
2953 return status;
2954
2955 /* Update the newly created VSI list to include the specified VSIs */
2956 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957 *vsi_list_id, false,
2958 ice_aqc_opc_add_sw_rules, lkup_type);
2959 }
2960
2961 /**
2962 * ice_create_pkt_fwd_rule
2963 * @hw: pointer to the hardware structure
2964 * @f_entry: entry containing packet forwarding information
2965 *
2966 * Create switch rule with given filter information and add an entry
2967 * to the corresponding filter management list to track this switch rule
2968 * and VSI mapping
2969 */
2970 static int
ice_create_pkt_fwd_rule(struct ice_hw * hw,struct ice_fltr_list_entry * f_entry)2971 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972 struct ice_fltr_list_entry *f_entry)
2973 {
2974 struct ice_fltr_mgmt_list_entry *fm_entry;
2975 struct ice_sw_rule_lkup_rx_tx *s_rule;
2976 enum ice_sw_lkup_type l_type;
2977 struct ice_sw_recipe *recp;
2978 int status;
2979
2980 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2982 GFP_KERNEL);
2983 if (!s_rule)
2984 return -ENOMEM;
2985 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2986 GFP_KERNEL);
2987 if (!fm_entry) {
2988 status = -ENOMEM;
2989 goto ice_create_pkt_fwd_rule_exit;
2990 }
2991
2992 fm_entry->fltr_info = f_entry->fltr_info;
2993
2994 /* Initialize all the fields for the management entry */
2995 fm_entry->vsi_count = 1;
2996 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2999
3000 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001 ice_aqc_opc_add_sw_rules);
3002
3003 status = ice_aq_sw_rules(hw, s_rule,
3004 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005 ice_aqc_opc_add_sw_rules, NULL);
3006 if (status) {
3007 devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008 goto ice_create_pkt_fwd_rule_exit;
3009 }
3010
3011 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3013
3014 /* The book keeping entries will get removed when base driver
3015 * calls remove filter AQ command
3016 */
3017 l_type = fm_entry->fltr_info.lkup_type;
3018 recp = &hw->switch_info->recp_list[l_type];
3019 list_add(&fm_entry->list_entry, &recp->filt_rules);
3020
3021 ice_create_pkt_fwd_rule_exit:
3022 devm_kfree(ice_hw_to_dev(hw), s_rule);
3023 return status;
3024 }
3025
3026 /**
3027 * ice_update_pkt_fwd_rule
3028 * @hw: pointer to the hardware structure
3029 * @f_info: filter information for switch rule
3030 *
3031 * Call AQ command to update a previously created switch rule with a
3032 * VSI list ID
3033 */
3034 static int
ice_update_pkt_fwd_rule(struct ice_hw * hw,struct ice_fltr_info * f_info)3035 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3036 {
3037 struct ice_sw_rule_lkup_rx_tx *s_rule;
3038 int status;
3039
3040 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3042 GFP_KERNEL);
3043 if (!s_rule)
3044 return -ENOMEM;
3045
3046 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3047
3048 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3049
3050 /* Update switch rule with new rule set to forward VSI list */
3051 status = ice_aq_sw_rules(hw, s_rule,
3052 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053 ice_aqc_opc_update_sw_rules, NULL);
3054
3055 devm_kfree(ice_hw_to_dev(hw), s_rule);
3056 return status;
3057 }
3058
3059 /**
3060 * ice_update_sw_rule_bridge_mode
3061 * @hw: pointer to the HW struct
3062 *
3063 * Updates unicast switch filter rules based on VEB/VEPA mode
3064 */
ice_update_sw_rule_bridge_mode(struct ice_hw * hw)3065 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3066 {
3067 struct ice_switch_info *sw = hw->switch_info;
3068 struct ice_fltr_mgmt_list_entry *fm_entry;
3069 struct list_head *rule_head;
3070 struct mutex *rule_lock; /* Lock to protect filter rule list */
3071 int status = 0;
3072
3073 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3075
3076 mutex_lock(rule_lock);
3077 list_for_each_entry(fm_entry, rule_head, list_entry) {
3078 struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079 u8 *addr = fi->l_data.mac.mac_addr;
3080
3081 /* Update unicast Tx rules to reflect the selected
3082 * VEB/VEPA mode
3083 */
3084 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085 (fi->fltr_act == ICE_FWD_TO_VSI ||
3086 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087 fi->fltr_act == ICE_FWD_TO_Q ||
3088 fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089 status = ice_update_pkt_fwd_rule(hw, fi);
3090 if (status)
3091 break;
3092 }
3093 }
3094
3095 mutex_unlock(rule_lock);
3096
3097 return status;
3098 }
3099
3100 /**
3101 * ice_add_update_vsi_list
3102 * @hw: pointer to the hardware structure
3103 * @m_entry: pointer to current filter management list entry
3104 * @cur_fltr: filter information from the book keeping entry
3105 * @new_fltr: filter information with the new VSI to be added
3106 *
3107 * Call AQ command to add or update previously created VSI list with new VSI.
3108 *
3109 * Helper function to do book keeping associated with adding filter information
3110 * The algorithm to do the book keeping is described below :
3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112 * if only one VSI has been added till now
3113 * Allocate a new VSI list and add two VSIs
3114 * to this list using switch rule command
3115 * Update the previously created switch rule with the
3116 * newly created VSI list ID
3117 * if a VSI list was previously created
3118 * Add the new VSI to the previously created VSI list set
3119 * using the update switch rule command
3120 */
3121 static int
ice_add_update_vsi_list(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_entry,struct ice_fltr_info * cur_fltr,struct ice_fltr_info * new_fltr)3122 ice_add_update_vsi_list(struct ice_hw *hw,
3123 struct ice_fltr_mgmt_list_entry *m_entry,
3124 struct ice_fltr_info *cur_fltr,
3125 struct ice_fltr_info *new_fltr)
3126 {
3127 u16 vsi_list_id = 0;
3128 int status = 0;
3129
3130 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3132 return -EOPNOTSUPP;
3133
3134 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3138 return -EOPNOTSUPP;
3139
3140 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141 /* Only one entry existed in the mapping and it was not already
3142 * a part of a VSI list. So, create a VSI list with the old and
3143 * new VSIs.
3144 */
3145 struct ice_fltr_info tmp_fltr;
3146 u16 vsi_handle_arr[2];
3147
3148 /* A rule already exists with the new VSI being added */
3149 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3150 return -EEXIST;
3151
3152 vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153 vsi_handle_arr[1] = new_fltr->vsi_handle;
3154 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3155 &vsi_list_id,
3156 new_fltr->lkup_type);
3157 if (status)
3158 return status;
3159
3160 tmp_fltr = *new_fltr;
3161 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164 /* Update the previous switch rule of "MAC forward to VSI" to
3165 * "MAC fwd to VSI list"
3166 */
3167 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3168 if (status)
3169 return status;
3170
3171 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173 m_entry->vsi_list_info =
3174 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3175 vsi_list_id);
3176
3177 if (!m_entry->vsi_list_info)
3178 return -ENOMEM;
3179
3180 /* If this entry was large action then the large action needs
3181 * to be updated to point to FWD to VSI list
3182 */
3183 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3184 status =
3185 ice_add_marker_act(hw, m_entry,
3186 m_entry->sw_marker_id,
3187 m_entry->lg_act_idx);
3188 } else {
3189 u16 vsi_handle = new_fltr->vsi_handle;
3190 enum ice_adminq_opc opcode;
3191
3192 if (!m_entry->vsi_list_info)
3193 return -EIO;
3194
3195 /* A rule already exists with the new VSI being added */
3196 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3197 return -EEXIST;
3198
3199 /* Update the previously created VSI list set with
3200 * the new VSI ID passed in
3201 */
3202 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203 opcode = ice_aqc_opc_update_sw_rules;
3204
3205 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206 vsi_list_id, false, opcode,
3207 new_fltr->lkup_type);
3208 /* update VSI list mapping info with new VSI ID */
3209 if (!status)
3210 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3211 }
3212 if (!status)
3213 m_entry->vsi_count++;
3214 return status;
3215 }
3216
3217 /**
3218 * ice_find_rule_entry - Search a rule entry
3219 * @hw: pointer to the hardware structure
3220 * @recp_id: lookup type for which the specified rule needs to be searched
3221 * @f_info: rule information
3222 *
3223 * Helper function to search for a given rule entry
3224 * Returns pointer to entry storing the rule if found
3225 */
3226 static struct ice_fltr_mgmt_list_entry *
ice_find_rule_entry(struct ice_hw * hw,u8 recp_id,struct ice_fltr_info * f_info)3227 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3228 {
3229 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230 struct ice_switch_info *sw = hw->switch_info;
3231 struct list_head *list_head;
3232
3233 list_head = &sw->recp_list[recp_id].filt_rules;
3234 list_for_each_entry(list_itr, list_head, list_entry) {
3235 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236 sizeof(f_info->l_data)) &&
3237 f_info->flag == list_itr->fltr_info.flag) {
3238 ret = list_itr;
3239 break;
3240 }
3241 }
3242 return ret;
3243 }
3244
3245 /**
3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247 * @hw: pointer to the hardware structure
3248 * @recp_id: lookup type for which VSI lists needs to be searched
3249 * @vsi_handle: VSI handle to be found in VSI list
3250 * @vsi_list_id: VSI list ID found containing vsi_handle
3251 *
3252 * Helper function to search a VSI list with single entry containing given VSI
3253 * handle element. This can be extended further to search VSI list with more
3254 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3255 */
3256 struct ice_vsi_list_map_info *
ice_find_vsi_list_entry(struct ice_hw * hw,u8 recp_id,u16 vsi_handle,u16 * vsi_list_id)3257 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3258 u16 *vsi_list_id)
3259 {
3260 struct ice_vsi_list_map_info *map_info = NULL;
3261 struct ice_switch_info *sw = hw->switch_info;
3262 struct ice_fltr_mgmt_list_entry *list_itr;
3263 struct list_head *list_head;
3264
3265 list_head = &sw->recp_list[recp_id].filt_rules;
3266 list_for_each_entry(list_itr, list_head, list_entry) {
3267 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268 map_info = list_itr->vsi_list_info;
3269 if (test_bit(vsi_handle, map_info->vsi_map)) {
3270 *vsi_list_id = map_info->vsi_list_id;
3271 return map_info;
3272 }
3273 }
3274 }
3275 return NULL;
3276 }
3277
3278 /**
3279 * ice_add_rule_internal - add rule for a given lookup type
3280 * @hw: pointer to the hardware structure
3281 * @recp_id: lookup type (recipe ID) for which rule has to be added
3282 * @f_entry: structure containing MAC forwarding information
3283 *
3284 * Adds or updates the rule lists for a given recipe
3285 */
3286 static int
ice_add_rule_internal(struct ice_hw * hw,u8 recp_id,struct ice_fltr_list_entry * f_entry)3287 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288 struct ice_fltr_list_entry *f_entry)
3289 {
3290 struct ice_switch_info *sw = hw->switch_info;
3291 struct ice_fltr_info *new_fltr, *cur_fltr;
3292 struct ice_fltr_mgmt_list_entry *m_entry;
3293 struct mutex *rule_lock; /* Lock to protect filter rule list */
3294 int status = 0;
3295
3296 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3297 return -EINVAL;
3298 f_entry->fltr_info.fwd_id.hw_vsi_id =
3299 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3300
3301 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3302
3303 mutex_lock(rule_lock);
3304 new_fltr = &f_entry->fltr_info;
3305 if (new_fltr->flag & ICE_FLTR_RX)
3306 new_fltr->src = hw->port_info->lport;
3307 else if (new_fltr->flag & ICE_FLTR_TX)
3308 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3309
3310 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3311 if (!m_entry) {
3312 mutex_unlock(rule_lock);
3313 return ice_create_pkt_fwd_rule(hw, f_entry);
3314 }
3315
3316 cur_fltr = &m_entry->fltr_info;
3317 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318 mutex_unlock(rule_lock);
3319
3320 return status;
3321 }
3322
3323 /**
3324 * ice_remove_vsi_list_rule
3325 * @hw: pointer to the hardware structure
3326 * @vsi_list_id: VSI list ID generated as part of allocate resource
3327 * @lkup_type: switch rule filter lookup type
3328 *
3329 * The VSI list should be emptied before this function is called to remove the
3330 * VSI list.
3331 */
3332 static int
ice_remove_vsi_list_rule(struct ice_hw * hw,u16 vsi_list_id,enum ice_sw_lkup_type lkup_type)3333 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334 enum ice_sw_lkup_type lkup_type)
3335 {
3336 struct ice_sw_rule_vsi_list *s_rule;
3337 u16 s_rule_size;
3338 int status;
3339
3340 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3342 if (!s_rule)
3343 return -ENOMEM;
3344
3345 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346 s_rule->index = cpu_to_le16(vsi_list_id);
3347
3348 /* Free the vsi_list resource that we allocated. It is assumed that the
3349 * list is empty at this point.
3350 */
3351 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352 ice_aqc_opc_free_res);
3353
3354 devm_kfree(ice_hw_to_dev(hw), s_rule);
3355 return status;
3356 }
3357
3358 /**
3359 * ice_rem_update_vsi_list
3360 * @hw: pointer to the hardware structure
3361 * @vsi_handle: VSI handle of the VSI to remove
3362 * @fm_list: filter management entry for which the VSI list management needs to
3363 * be done
3364 */
3365 static int
ice_rem_update_vsi_list(struct ice_hw * hw,u16 vsi_handle,struct ice_fltr_mgmt_list_entry * fm_list)3366 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367 struct ice_fltr_mgmt_list_entry *fm_list)
3368 {
3369 enum ice_sw_lkup_type lkup_type;
3370 u16 vsi_list_id;
3371 int status = 0;
3372
3373 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374 fm_list->vsi_count == 0)
3375 return -EINVAL;
3376
3377 /* A rule with the VSI being removed does not exist */
3378 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3379 return -ENOENT;
3380
3381 lkup_type = fm_list->fltr_info.lkup_type;
3382 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384 ice_aqc_opc_update_sw_rules,
3385 lkup_type);
3386 if (status)
3387 return status;
3388
3389 fm_list->vsi_count--;
3390 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3391
3392 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394 struct ice_vsi_list_map_info *vsi_list_info =
3395 fm_list->vsi_list_info;
3396 u16 rem_vsi_handle;
3397
3398 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3399 ICE_MAX_VSI);
3400 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3401 return -EIO;
3402
3403 /* Make sure VSI list is empty before removing it below */
3404 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3405 vsi_list_id, true,
3406 ice_aqc_opc_update_sw_rules,
3407 lkup_type);
3408 if (status)
3409 return status;
3410
3411 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412 tmp_fltr_info.fwd_id.hw_vsi_id =
3413 ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414 tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3416 if (status) {
3417 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418 tmp_fltr_info.fwd_id.hw_vsi_id, status);
3419 return status;
3420 }
3421
3422 fm_list->fltr_info = tmp_fltr_info;
3423 }
3424
3425 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427 struct ice_vsi_list_map_info *vsi_list_info =
3428 fm_list->vsi_list_info;
3429
3430 /* Remove the VSI list since it is no longer used */
3431 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3432 if (status) {
3433 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434 vsi_list_id, status);
3435 return status;
3436 }
3437
3438 list_del(&vsi_list_info->list_entry);
3439 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440 fm_list->vsi_list_info = NULL;
3441 }
3442
3443 return status;
3444 }
3445
3446 /**
3447 * ice_remove_rule_internal - Remove a filter rule of a given type
3448 * @hw: pointer to the hardware structure
3449 * @recp_id: recipe ID for which the rule needs to removed
3450 * @f_entry: rule entry containing filter information
3451 */
3452 static int
ice_remove_rule_internal(struct ice_hw * hw,u8 recp_id,struct ice_fltr_list_entry * f_entry)3453 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454 struct ice_fltr_list_entry *f_entry)
3455 {
3456 struct ice_switch_info *sw = hw->switch_info;
3457 struct ice_fltr_mgmt_list_entry *list_elem;
3458 struct mutex *rule_lock; /* Lock to protect filter rule list */
3459 bool remove_rule = false;
3460 u16 vsi_handle;
3461 int status = 0;
3462
3463 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3464 return -EINVAL;
3465 f_entry->fltr_info.fwd_id.hw_vsi_id =
3466 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3467
3468 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469 mutex_lock(rule_lock);
3470 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3471 if (!list_elem) {
3472 status = -ENOENT;
3473 goto exit;
3474 }
3475
3476 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3477 remove_rule = true;
3478 } else if (!list_elem->vsi_list_info) {
3479 status = -ENOENT;
3480 goto exit;
3481 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482 /* a ref_cnt > 1 indicates that the vsi_list is being
3483 * shared by multiple rules. Decrement the ref_cnt and
3484 * remove this rule, but do not modify the list, as it
3485 * is in-use by other rules.
3486 */
3487 list_elem->vsi_list_info->ref_cnt--;
3488 remove_rule = true;
3489 } else {
3490 /* a ref_cnt of 1 indicates the vsi_list is only used
3491 * by one rule. However, the original removal request is only
3492 * for a single VSI. Update the vsi_list first, and only
3493 * remove the rule if there are no further VSIs in this list.
3494 */
3495 vsi_handle = f_entry->fltr_info.vsi_handle;
3496 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3497 if (status)
3498 goto exit;
3499 /* if VSI count goes to zero after updating the VSI list */
3500 if (list_elem->vsi_count == 0)
3501 remove_rule = true;
3502 }
3503
3504 if (remove_rule) {
3505 /* Remove the lookup rule */
3506 struct ice_sw_rule_lkup_rx_tx *s_rule;
3507
3508 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3510 GFP_KERNEL);
3511 if (!s_rule) {
3512 status = -ENOMEM;
3513 goto exit;
3514 }
3515
3516 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517 ice_aqc_opc_remove_sw_rules);
3518
3519 status = ice_aq_sw_rules(hw, s_rule,
3520 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521 1, ice_aqc_opc_remove_sw_rules, NULL);
3522
3523 /* Remove a book keeping from the list */
3524 devm_kfree(ice_hw_to_dev(hw), s_rule);
3525
3526 if (status)
3527 goto exit;
3528
3529 list_del(&list_elem->list_entry);
3530 devm_kfree(ice_hw_to_dev(hw), list_elem);
3531 }
3532 exit:
3533 mutex_unlock(rule_lock);
3534 return status;
3535 }
3536
3537 /**
3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539 * @hw: pointer to the hardware structure
3540 * @vlan_id: VLAN ID
3541 * @vsi_handle: check MAC filter for this VSI
3542 */
ice_vlan_fltr_exist(struct ice_hw * hw,u16 vlan_id,u16 vsi_handle)3543 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3544 {
3545 struct ice_fltr_mgmt_list_entry *entry;
3546 struct list_head *rule_head;
3547 struct ice_switch_info *sw;
3548 struct mutex *rule_lock; /* Lock to protect filter rule list */
3549 u16 hw_vsi_id;
3550
3551 if (vlan_id > ICE_MAX_VLAN_ID)
3552 return false;
3553
3554 if (!ice_is_vsi_valid(hw, vsi_handle))
3555 return false;
3556
3557 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558 sw = hw->switch_info;
3559 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3560 if (!rule_head)
3561 return false;
3562
3563 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564 mutex_lock(rule_lock);
3565 list_for_each_entry(entry, rule_head, list_entry) {
3566 struct ice_fltr_info *f_info = &entry->fltr_info;
3567 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568 struct ice_vsi_list_map_info *map_info;
3569
3570 if (entry_vlan_id > ICE_MAX_VLAN_ID)
3571 continue;
3572
3573 if (f_info->flag != ICE_FLTR_TX ||
3574 f_info->src_id != ICE_SRC_ID_VSI ||
3575 f_info->lkup_type != ICE_SW_LKUP_VLAN)
3576 continue;
3577
3578 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579 if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580 f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3581 continue;
3582
3583 if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3585 continue;
3586 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587 /* If filter_action is FWD_TO_VSI_LIST, make sure
3588 * that VSI being checked is part of VSI list
3589 */
3590 if (entry->vsi_count == 1 &&
3591 entry->vsi_list_info) {
3592 map_info = entry->vsi_list_info;
3593 if (!test_bit(vsi_handle, map_info->vsi_map))
3594 continue;
3595 }
3596 }
3597
3598 if (vlan_id == entry_vlan_id) {
3599 mutex_unlock(rule_lock);
3600 return true;
3601 }
3602 }
3603 mutex_unlock(rule_lock);
3604
3605 return false;
3606 }
3607
3608 /**
3609 * ice_add_mac - Add a MAC address based filter rule
3610 * @hw: pointer to the hardware structure
3611 * @m_list: list of MAC addresses and forwarding information
3612 */
ice_add_mac(struct ice_hw * hw,struct list_head * m_list)3613 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3614 {
3615 struct ice_fltr_list_entry *m_list_itr;
3616 int status = 0;
3617
3618 if (!m_list || !hw)
3619 return -EINVAL;
3620
3621 list_for_each_entry(m_list_itr, m_list, list_entry) {
3622 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3623 u16 vsi_handle;
3624 u16 hw_vsi_id;
3625
3626 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627 vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628 if (!ice_is_vsi_valid(hw, vsi_handle))
3629 return -EINVAL;
3630 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632 /* update the src in case it is VSI num */
3633 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3634 return -EINVAL;
3635 m_list_itr->fltr_info.src = hw_vsi_id;
3636 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637 is_zero_ether_addr(add))
3638 return -EINVAL;
3639
3640 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3641 m_list_itr);
3642 if (m_list_itr->status)
3643 return m_list_itr->status;
3644 }
3645
3646 return status;
3647 }
3648
3649 /**
3650 * ice_add_vlan_internal - Add one VLAN based filter rule
3651 * @hw: pointer to the hardware structure
3652 * @f_entry: filter entry containing one VLAN information
3653 */
3654 static int
ice_add_vlan_internal(struct ice_hw * hw,struct ice_fltr_list_entry * f_entry)3655 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3656 {
3657 struct ice_switch_info *sw = hw->switch_info;
3658 struct ice_fltr_mgmt_list_entry *v_list_itr;
3659 struct ice_fltr_info *new_fltr, *cur_fltr;
3660 enum ice_sw_lkup_type lkup_type;
3661 u16 vsi_list_id = 0, vsi_handle;
3662 struct mutex *rule_lock; /* Lock to protect filter rule list */
3663 int status = 0;
3664
3665 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3666 return -EINVAL;
3667
3668 f_entry->fltr_info.fwd_id.hw_vsi_id =
3669 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670 new_fltr = &f_entry->fltr_info;
3671
3672 /* VLAN ID should only be 12 bits */
3673 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3674 return -EINVAL;
3675
3676 if (new_fltr->src_id != ICE_SRC_ID_VSI)
3677 return -EINVAL;
3678
3679 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680 lkup_type = new_fltr->lkup_type;
3681 vsi_handle = new_fltr->vsi_handle;
3682 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683 mutex_lock(rule_lock);
3684 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3685 if (!v_list_itr) {
3686 struct ice_vsi_list_map_info *map_info = NULL;
3687
3688 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689 /* All VLAN pruning rules use a VSI list. Check if
3690 * there is already a VSI list containing VSI that we
3691 * want to add. If found, use the same vsi_list_id for
3692 * this new VLAN rule or else create a new list.
3693 */
3694 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3695 vsi_handle,
3696 &vsi_list_id);
3697 if (!map_info) {
3698 status = ice_create_vsi_list_rule(hw,
3699 &vsi_handle,
3700 1,
3701 &vsi_list_id,
3702 lkup_type);
3703 if (status)
3704 goto exit;
3705 }
3706 /* Convert the action to forwarding to a VSI list. */
3707 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3709 }
3710
3711 status = ice_create_pkt_fwd_rule(hw, f_entry);
3712 if (!status) {
3713 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3714 new_fltr);
3715 if (!v_list_itr) {
3716 status = -ENOENT;
3717 goto exit;
3718 }
3719 /* reuse VSI list for new rule and increment ref_cnt */
3720 if (map_info) {
3721 v_list_itr->vsi_list_info = map_info;
3722 map_info->ref_cnt++;
3723 } else {
3724 v_list_itr->vsi_list_info =
3725 ice_create_vsi_list_map(hw, &vsi_handle,
3726 1, vsi_list_id);
3727 }
3728 }
3729 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730 /* Update existing VSI list to add new VSI ID only if it used
3731 * by one VLAN rule.
3732 */
3733 cur_fltr = &v_list_itr->fltr_info;
3734 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3735 new_fltr);
3736 } else {
3737 /* If VLAN rule exists and VSI list being used by this rule is
3738 * referenced by more than 1 VLAN rule. Then create a new VSI
3739 * list appending previous VSI with new VSI and update existing
3740 * VLAN rule to point to new VSI list ID
3741 */
3742 struct ice_fltr_info tmp_fltr;
3743 u16 vsi_handle_arr[2];
3744 u16 cur_handle;
3745
3746 /* Current implementation only supports reusing VSI list with
3747 * one VSI count. We should never hit below condition
3748 */
3749 if (v_list_itr->vsi_count > 1 &&
3750 v_list_itr->vsi_list_info->ref_cnt > 1) {
3751 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3752 status = -EIO;
3753 goto exit;
3754 }
3755
3756 cur_handle =
3757 find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3758 ICE_MAX_VSI);
3759
3760 /* A rule already exists with the new VSI being added */
3761 if (cur_handle == vsi_handle) {
3762 status = -EEXIST;
3763 goto exit;
3764 }
3765
3766 vsi_handle_arr[0] = cur_handle;
3767 vsi_handle_arr[1] = vsi_handle;
3768 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769 &vsi_list_id, lkup_type);
3770 if (status)
3771 goto exit;
3772
3773 tmp_fltr = v_list_itr->fltr_info;
3774 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777 /* Update the previous switch rule to a new VSI list which
3778 * includes current VSI that is requested
3779 */
3780 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3781 if (status)
3782 goto exit;
3783
3784 /* before overriding VSI list map info. decrement ref_cnt of
3785 * previous VSI list
3786 */
3787 v_list_itr->vsi_list_info->ref_cnt--;
3788
3789 /* now update to newly created list */
3790 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791 v_list_itr->vsi_list_info =
3792 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3793 vsi_list_id);
3794 v_list_itr->vsi_count++;
3795 }
3796
3797 exit:
3798 mutex_unlock(rule_lock);
3799 return status;
3800 }
3801
3802 /**
3803 * ice_add_vlan - Add VLAN based filter rule
3804 * @hw: pointer to the hardware structure
3805 * @v_list: list of VLAN entries and forwarding information
3806 */
ice_add_vlan(struct ice_hw * hw,struct list_head * v_list)3807 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3808 {
3809 struct ice_fltr_list_entry *v_list_itr;
3810
3811 if (!v_list || !hw)
3812 return -EINVAL;
3813
3814 list_for_each_entry(v_list_itr, v_list, list_entry) {
3815 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3816 return -EINVAL;
3817 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819 if (v_list_itr->status)
3820 return v_list_itr->status;
3821 }
3822 return 0;
3823 }
3824
3825 /**
3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827 * @hw: pointer to the hardware structure
3828 * @em_list: list of ether type MAC filter, MAC is optional
3829 *
3830 * This function requires the caller to populate the entries in
3831 * the filter list with the necessary fields (including flags to
3832 * indicate Tx or Rx rules).
3833 */
ice_add_eth_mac(struct ice_hw * hw,struct list_head * em_list)3834 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3835 {
3836 struct ice_fltr_list_entry *em_list_itr;
3837
3838 if (!em_list || !hw)
3839 return -EINVAL;
3840
3841 list_for_each_entry(em_list_itr, em_list, list_entry) {
3842 enum ice_sw_lkup_type l_type =
3843 em_list_itr->fltr_info.lkup_type;
3844
3845 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846 l_type != ICE_SW_LKUP_ETHERTYPE)
3847 return -EINVAL;
3848
3849 em_list_itr->status = ice_add_rule_internal(hw, l_type,
3850 em_list_itr);
3851 if (em_list_itr->status)
3852 return em_list_itr->status;
3853 }
3854 return 0;
3855 }
3856
3857 /**
3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859 * @hw: pointer to the hardware structure
3860 * @em_list: list of ethertype or ethertype MAC entries
3861 */
ice_remove_eth_mac(struct ice_hw * hw,struct list_head * em_list)3862 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3863 {
3864 struct ice_fltr_list_entry *em_list_itr, *tmp;
3865
3866 if (!em_list || !hw)
3867 return -EINVAL;
3868
3869 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870 enum ice_sw_lkup_type l_type =
3871 em_list_itr->fltr_info.lkup_type;
3872
3873 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874 l_type != ICE_SW_LKUP_ETHERTYPE)
3875 return -EINVAL;
3876
3877 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3878 em_list_itr);
3879 if (em_list_itr->status)
3880 return em_list_itr->status;
3881 }
3882 return 0;
3883 }
3884
3885 /**
3886 * ice_rem_sw_rule_info
3887 * @hw: pointer to the hardware structure
3888 * @rule_head: pointer to the switch list structure that we want to delete
3889 */
3890 static void
ice_rem_sw_rule_info(struct ice_hw * hw,struct list_head * rule_head)3891 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3892 {
3893 if (!list_empty(rule_head)) {
3894 struct ice_fltr_mgmt_list_entry *entry;
3895 struct ice_fltr_mgmt_list_entry *tmp;
3896
3897 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898 list_del(&entry->list_entry);
3899 devm_kfree(ice_hw_to_dev(hw), entry);
3900 }
3901 }
3902 }
3903
3904 /**
3905 * ice_rem_adv_rule_info
3906 * @hw: pointer to the hardware structure
3907 * @rule_head: pointer to the switch list structure that we want to delete
3908 */
3909 static void
ice_rem_adv_rule_info(struct ice_hw * hw,struct list_head * rule_head)3910 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3911 {
3912 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3914
3915 if (list_empty(rule_head))
3916 return;
3917
3918 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919 list_del(&lst_itr->list_entry);
3920 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921 devm_kfree(ice_hw_to_dev(hw), lst_itr);
3922 }
3923 }
3924
3925 /**
3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927 * @pi: pointer to the port_info structure
3928 * @vsi_handle: VSI handle to set as default
3929 * @set: true to add the above mentioned switch rule, false to remove it
3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3931 *
3932 * add filter rule to set/unset given VSI as default VSI for the switch
3933 * (represented by swid)
3934 */
3935 int
ice_cfg_dflt_vsi(struct ice_port_info * pi,u16 vsi_handle,bool set,u8 direction)3936 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3937 u8 direction)
3938 {
3939 struct ice_fltr_list_entry f_list_entry;
3940 struct ice_fltr_info f_info;
3941 struct ice_hw *hw = pi->hw;
3942 u16 hw_vsi_id;
3943 int status;
3944
3945 if (!ice_is_vsi_valid(hw, vsi_handle))
3946 return -EINVAL;
3947
3948 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3949
3950 memset(&f_info, 0, sizeof(f_info));
3951
3952 f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953 f_info.flag = direction;
3954 f_info.fltr_act = ICE_FWD_TO_VSI;
3955 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956 f_info.vsi_handle = vsi_handle;
3957
3958 if (f_info.flag & ICE_FLTR_RX) {
3959 f_info.src = hw->port_info->lport;
3960 f_info.src_id = ICE_SRC_ID_LPORT;
3961 } else if (f_info.flag & ICE_FLTR_TX) {
3962 f_info.src_id = ICE_SRC_ID_VSI;
3963 f_info.src = hw_vsi_id;
3964 f_info.flag |= ICE_FLTR_TX_ONLY;
3965 }
3966 f_list_entry.fltr_info = f_info;
3967
3968 if (set)
3969 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3970 &f_list_entry);
3971 else
3972 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3973 &f_list_entry);
3974
3975 return status;
3976 }
3977
3978 /**
3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980 * @fm_entry: filter entry to inspect
3981 * @vsi_handle: VSI handle to compare with filter info
3982 */
3983 static bool
ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry * fm_entry,u16 vsi_handle)3984 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3985 {
3986 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989 fm_entry->vsi_list_info &&
3990 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3991 }
3992
3993 /**
3994 * ice_check_if_dflt_vsi - check if VSI is default VSI
3995 * @pi: pointer to the port_info structure
3996 * @vsi_handle: vsi handle to check for in filter list
3997 * @rule_exists: indicates if there are any VSI's in the rule list
3998 *
3999 * checks if the VSI is in a default VSI list, and also indicates
4000 * if the default VSI list is empty
4001 */
4002 bool
ice_check_if_dflt_vsi(struct ice_port_info * pi,u16 vsi_handle,bool * rule_exists)4003 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4004 bool *rule_exists)
4005 {
4006 struct ice_fltr_mgmt_list_entry *fm_entry;
4007 struct ice_sw_recipe *recp_list;
4008 struct list_head *rule_head;
4009 struct mutex *rule_lock; /* Lock to protect filter rule list */
4010 bool ret = false;
4011
4012 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013 rule_lock = &recp_list->filt_rule_lock;
4014 rule_head = &recp_list->filt_rules;
4015
4016 mutex_lock(rule_lock);
4017
4018 if (rule_exists && !list_empty(rule_head))
4019 *rule_exists = true;
4020
4021 list_for_each_entry(fm_entry, rule_head, list_entry) {
4022 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4023 ret = true;
4024 break;
4025 }
4026 }
4027
4028 mutex_unlock(rule_lock);
4029
4030 return ret;
4031 }
4032
4033 /**
4034 * ice_remove_mac - remove a MAC address based filter rule
4035 * @hw: pointer to the hardware structure
4036 * @m_list: list of MAC addresses and forwarding information
4037 *
4038 * This function removes either a MAC filter rule or a specific VSI from a
4039 * VSI list for a multicast MAC address.
4040 *
4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042 * be aware that this call will only work if all the entries passed into m_list
4043 * were added previously. It will not attempt to do a partial remove of entries
4044 * that were found.
4045 */
ice_remove_mac(struct ice_hw * hw,struct list_head * m_list)4046 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4047 {
4048 struct ice_fltr_list_entry *list_itr, *tmp;
4049
4050 if (!m_list)
4051 return -EINVAL;
4052
4053 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4055 u16 vsi_handle;
4056
4057 if (l_type != ICE_SW_LKUP_MAC)
4058 return -EINVAL;
4059
4060 vsi_handle = list_itr->fltr_info.vsi_handle;
4061 if (!ice_is_vsi_valid(hw, vsi_handle))
4062 return -EINVAL;
4063
4064 list_itr->fltr_info.fwd_id.hw_vsi_id =
4065 ice_get_hw_vsi_num(hw, vsi_handle);
4066
4067 list_itr->status = ice_remove_rule_internal(hw,
4068 ICE_SW_LKUP_MAC,
4069 list_itr);
4070 if (list_itr->status)
4071 return list_itr->status;
4072 }
4073 return 0;
4074 }
4075
4076 /**
4077 * ice_remove_vlan - Remove VLAN based filter rule
4078 * @hw: pointer to the hardware structure
4079 * @v_list: list of VLAN entries and forwarding information
4080 */
ice_remove_vlan(struct ice_hw * hw,struct list_head * v_list)4081 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4082 {
4083 struct ice_fltr_list_entry *v_list_itr, *tmp;
4084
4085 if (!v_list || !hw)
4086 return -EINVAL;
4087
4088 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4090
4091 if (l_type != ICE_SW_LKUP_VLAN)
4092 return -EINVAL;
4093 v_list_itr->status = ice_remove_rule_internal(hw,
4094 ICE_SW_LKUP_VLAN,
4095 v_list_itr);
4096 if (v_list_itr->status)
4097 return v_list_itr->status;
4098 }
4099 return 0;
4100 }
4101
4102 /**
4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104 * @hw: pointer to the hardware structure
4105 * @vsi_handle: VSI handle to remove filters from
4106 * @vsi_list_head: pointer to the list to add entry to
4107 * @fi: pointer to fltr_info of filter entry to copy & add
4108 *
4109 * Helper function, used when creating a list of filters to remove from
4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111 * original filter entry, with the exception of fltr_info.fltr_act and
4112 * fltr_info.fwd_id fields. These are set such that later logic can
4113 * extract which VSI to remove the fltr from, and pass on that information.
4114 */
4115 static int
ice_add_entry_to_vsi_fltr_list(struct ice_hw * hw,u16 vsi_handle,struct list_head * vsi_list_head,struct ice_fltr_info * fi)4116 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117 struct list_head *vsi_list_head,
4118 struct ice_fltr_info *fi)
4119 {
4120 struct ice_fltr_list_entry *tmp;
4121
4122 /* this memory is freed up in the caller function
4123 * once filters for this VSI are removed
4124 */
4125 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4126 if (!tmp)
4127 return -ENOMEM;
4128
4129 tmp->fltr_info = *fi;
4130
4131 /* Overwrite these fields to indicate which VSI to remove filter from,
4132 * so find and remove logic can extract the information from the
4133 * list entries. Note that original entries will still have proper
4134 * values.
4135 */
4136 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137 tmp->fltr_info.vsi_handle = vsi_handle;
4138 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4139
4140 list_add(&tmp->list_entry, vsi_list_head);
4141
4142 return 0;
4143 }
4144
4145 /**
4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147 * @hw: pointer to the hardware structure
4148 * @vsi_handle: VSI handle to remove filters from
4149 * @lkup_list_head: pointer to the list that has certain lookup type filters
4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4151 *
4152 * Locates all filters in lkup_list_head that are used by the given VSI,
4153 * and adds COPIES of those entries to vsi_list_head (intended to be used
4154 * to remove the listed filters).
4155 * Note that this means all entries in vsi_list_head must be explicitly
4156 * deallocated by the caller when done with list.
4157 */
4158 static int
ice_add_to_vsi_fltr_list(struct ice_hw * hw,u16 vsi_handle,struct list_head * lkup_list_head,struct list_head * vsi_list_head)4159 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160 struct list_head *lkup_list_head,
4161 struct list_head *vsi_list_head)
4162 {
4163 struct ice_fltr_mgmt_list_entry *fm_entry;
4164 int status = 0;
4165
4166 /* check to make sure VSI ID is valid and within boundary */
4167 if (!ice_is_vsi_valid(hw, vsi_handle))
4168 return -EINVAL;
4169
4170 list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4172 continue;
4173
4174 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4175 vsi_list_head,
4176 &fm_entry->fltr_info);
4177 if (status)
4178 return status;
4179 }
4180 return status;
4181 }
4182
4183 /**
4184 * ice_determine_promisc_mask
4185 * @fi: filter info to parse
4186 *
4187 * Helper function to determine which ICE_PROMISC_ mask corresponds
4188 * to given filter into.
4189 */
ice_determine_promisc_mask(struct ice_fltr_info * fi)4190 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4191 {
4192 u16 vid = fi->l_data.mac_vlan.vlan_id;
4193 u8 *macaddr = fi->l_data.mac.mac_addr;
4194 bool is_tx_fltr = false;
4195 u8 promisc_mask = 0;
4196
4197 if (fi->flag == ICE_FLTR_TX)
4198 is_tx_fltr = true;
4199
4200 if (is_broadcast_ether_addr(macaddr))
4201 promisc_mask |= is_tx_fltr ?
4202 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203 else if (is_multicast_ether_addr(macaddr))
4204 promisc_mask |= is_tx_fltr ?
4205 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206 else if (is_unicast_ether_addr(macaddr))
4207 promisc_mask |= is_tx_fltr ?
4208 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4209 if (vid)
4210 promisc_mask |= is_tx_fltr ?
4211 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4212
4213 return promisc_mask;
4214 }
4215
4216 /**
4217 * ice_remove_promisc - Remove promisc based filter rules
4218 * @hw: pointer to the hardware structure
4219 * @recp_id: recipe ID for which the rule needs to removed
4220 * @v_list: list of promisc entries
4221 */
4222 static int
ice_remove_promisc(struct ice_hw * hw,u8 recp_id,struct list_head * v_list)4223 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4224 {
4225 struct ice_fltr_list_entry *v_list_itr, *tmp;
4226
4227 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228 v_list_itr->status =
4229 ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230 if (v_list_itr->status)
4231 return v_list_itr->status;
4232 }
4233 return 0;
4234 }
4235
4236 /**
4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238 * @hw: pointer to the hardware structure
4239 * @vsi_handle: VSI handle to clear mode
4240 * @promisc_mask: mask of promiscuous config bits to clear
4241 * @vid: VLAN ID to clear VLAN promiscuous
4242 */
4243 int
ice_clear_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,u16 vid)4244 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4245 u16 vid)
4246 {
4247 struct ice_switch_info *sw = hw->switch_info;
4248 struct ice_fltr_list_entry *fm_entry, *tmp;
4249 struct list_head remove_list_head;
4250 struct ice_fltr_mgmt_list_entry *itr;
4251 struct list_head *rule_head;
4252 struct mutex *rule_lock; /* Lock to protect filter rule list */
4253 int status = 0;
4254 u8 recipe_id;
4255
4256 if (!ice_is_vsi_valid(hw, vsi_handle))
4257 return -EINVAL;
4258
4259 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4261 else
4262 recipe_id = ICE_SW_LKUP_PROMISC;
4263
4264 rule_head = &sw->recp_list[recipe_id].filt_rules;
4265 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4266
4267 INIT_LIST_HEAD(&remove_list_head);
4268
4269 mutex_lock(rule_lock);
4270 list_for_each_entry(itr, rule_head, list_entry) {
4271 struct ice_fltr_info *fltr_info;
4272 u8 fltr_promisc_mask = 0;
4273
4274 if (!ice_vsi_uses_fltr(itr, vsi_handle))
4275 continue;
4276 fltr_info = &itr->fltr_info;
4277
4278 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279 vid != fltr_info->l_data.mac_vlan.vlan_id)
4280 continue;
4281
4282 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4283
4284 /* Skip if filter is not completely specified by given mask */
4285 if (fltr_promisc_mask & ~promisc_mask)
4286 continue;
4287
4288 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4289 &remove_list_head,
4290 fltr_info);
4291 if (status) {
4292 mutex_unlock(rule_lock);
4293 goto free_fltr_list;
4294 }
4295 }
4296 mutex_unlock(rule_lock);
4297
4298 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4299
4300 free_fltr_list:
4301 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302 list_del(&fm_entry->list_entry);
4303 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4304 }
4305
4306 return status;
4307 }
4308
4309 /**
4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311 * @hw: pointer to the hardware structure
4312 * @vsi_handle: VSI handle to configure
4313 * @promisc_mask: mask of promiscuous config bits
4314 * @vid: VLAN ID to set VLAN promiscuous
4315 */
4316 int
ice_set_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,u16 vid)4317 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4318 {
4319 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320 struct ice_fltr_list_entry f_list_entry;
4321 struct ice_fltr_info new_fltr;
4322 bool is_tx_fltr;
4323 int status = 0;
4324 u16 hw_vsi_id;
4325 int pkt_type;
4326 u8 recipe_id;
4327
4328 if (!ice_is_vsi_valid(hw, vsi_handle))
4329 return -EINVAL;
4330 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4331
4332 memset(&new_fltr, 0, sizeof(new_fltr));
4333
4334 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336 new_fltr.l_data.mac_vlan.vlan_id = vid;
4337 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4338 } else {
4339 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340 recipe_id = ICE_SW_LKUP_PROMISC;
4341 }
4342
4343 /* Separate filters must be set for each direction/packet type
4344 * combination, so we will loop over the mask value, store the
4345 * individual type, and clear it out in the input mask as it
4346 * is found.
4347 */
4348 while (promisc_mask) {
4349 u8 *mac_addr;
4350
4351 pkt_type = 0;
4352 is_tx_fltr = false;
4353
4354 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356 pkt_type = UCAST_FLTR;
4357 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359 pkt_type = UCAST_FLTR;
4360 is_tx_fltr = true;
4361 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363 pkt_type = MCAST_FLTR;
4364 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366 pkt_type = MCAST_FLTR;
4367 is_tx_fltr = true;
4368 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370 pkt_type = BCAST_FLTR;
4371 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373 pkt_type = BCAST_FLTR;
4374 is_tx_fltr = true;
4375 }
4376
4377 /* Check for VLAN promiscuous flag */
4378 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4382 is_tx_fltr = true;
4383 }
4384
4385 /* Set filter DA based on packet type */
4386 mac_addr = new_fltr.l_data.mac.mac_addr;
4387 if (pkt_type == BCAST_FLTR) {
4388 eth_broadcast_addr(mac_addr);
4389 } else if (pkt_type == MCAST_FLTR ||
4390 pkt_type == UCAST_FLTR) {
4391 /* Use the dummy ether header DA */
4392 ether_addr_copy(mac_addr, dummy_eth_header);
4393 if (pkt_type == MCAST_FLTR)
4394 mac_addr[0] |= 0x1; /* Set multicast bit */
4395 }
4396
4397 /* Need to reset this to zero for all iterations */
4398 new_fltr.flag = 0;
4399 if (is_tx_fltr) {
4400 new_fltr.flag |= ICE_FLTR_TX;
4401 new_fltr.src = hw_vsi_id;
4402 } else {
4403 new_fltr.flag |= ICE_FLTR_RX;
4404 new_fltr.src = hw->port_info->lport;
4405 }
4406
4407 new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408 new_fltr.vsi_handle = vsi_handle;
4409 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410 f_list_entry.fltr_info = new_fltr;
4411
4412 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4413 if (status)
4414 goto set_promisc_exit;
4415 }
4416
4417 set_promisc_exit:
4418 return status;
4419 }
4420
4421 /**
4422 * ice_set_vlan_vsi_promisc
4423 * @hw: pointer to the hardware structure
4424 * @vsi_handle: VSI handle to configure
4425 * @promisc_mask: mask of promiscuous config bits
4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4427 *
4428 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4429 */
4430 int
ice_set_vlan_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,bool rm_vlan_promisc)4431 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432 bool rm_vlan_promisc)
4433 {
4434 struct ice_switch_info *sw = hw->switch_info;
4435 struct ice_fltr_list_entry *list_itr, *tmp;
4436 struct list_head vsi_list_head;
4437 struct list_head *vlan_head;
4438 struct mutex *vlan_lock; /* Lock to protect filter rule list */
4439 u16 vlan_id;
4440 int status;
4441
4442 INIT_LIST_HEAD(&vsi_list_head);
4443 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445 mutex_lock(vlan_lock);
4446 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4447 &vsi_list_head);
4448 mutex_unlock(vlan_lock);
4449 if (status)
4450 goto free_fltr_list;
4451
4452 list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453 /* Avoid enabling or disabling VLAN zero twice when in double
4454 * VLAN mode
4455 */
4456 if (ice_is_dvm_ena(hw) &&
4457 list_itr->fltr_info.l_data.vlan.tpid == 0)
4458 continue;
4459
4460 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461 if (rm_vlan_promisc)
4462 status = ice_clear_vsi_promisc(hw, vsi_handle,
4463 promisc_mask, vlan_id);
4464 else
4465 status = ice_set_vsi_promisc(hw, vsi_handle,
4466 promisc_mask, vlan_id);
4467 if (status && status != -EEXIST)
4468 break;
4469 }
4470
4471 free_fltr_list:
4472 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473 list_del(&list_itr->list_entry);
4474 devm_kfree(ice_hw_to_dev(hw), list_itr);
4475 }
4476 return status;
4477 }
4478
4479 /**
4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481 * @hw: pointer to the hardware structure
4482 * @vsi_handle: VSI handle to remove filters from
4483 * @lkup: switch rule filter lookup type
4484 */
4485 static void
ice_remove_vsi_lkup_fltr(struct ice_hw * hw,u16 vsi_handle,enum ice_sw_lkup_type lkup)4486 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487 enum ice_sw_lkup_type lkup)
4488 {
4489 struct ice_switch_info *sw = hw->switch_info;
4490 struct ice_fltr_list_entry *fm_entry;
4491 struct list_head remove_list_head;
4492 struct list_head *rule_head;
4493 struct ice_fltr_list_entry *tmp;
4494 struct mutex *rule_lock; /* Lock to protect filter rule list */
4495 int status;
4496
4497 INIT_LIST_HEAD(&remove_list_head);
4498 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499 rule_head = &sw->recp_list[lkup].filt_rules;
4500 mutex_lock(rule_lock);
4501 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4502 &remove_list_head);
4503 mutex_unlock(rule_lock);
4504 if (status)
4505 goto free_fltr_list;
4506
4507 switch (lkup) {
4508 case ICE_SW_LKUP_MAC:
4509 ice_remove_mac(hw, &remove_list_head);
4510 break;
4511 case ICE_SW_LKUP_VLAN:
4512 ice_remove_vlan(hw, &remove_list_head);
4513 break;
4514 case ICE_SW_LKUP_PROMISC:
4515 case ICE_SW_LKUP_PROMISC_VLAN:
4516 ice_remove_promisc(hw, lkup, &remove_list_head);
4517 break;
4518 case ICE_SW_LKUP_MAC_VLAN:
4519 case ICE_SW_LKUP_ETHERTYPE:
4520 case ICE_SW_LKUP_ETHERTYPE_MAC:
4521 case ICE_SW_LKUP_DFLT:
4522 case ICE_SW_LKUP_LAST:
4523 default:
4524 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4525 break;
4526 }
4527
4528 free_fltr_list:
4529 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530 list_del(&fm_entry->list_entry);
4531 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4532 }
4533 }
4534
4535 /**
4536 * ice_remove_vsi_fltr - Remove all filters for a VSI
4537 * @hw: pointer to the hardware structure
4538 * @vsi_handle: VSI handle to remove filters from
4539 */
ice_remove_vsi_fltr(struct ice_hw * hw,u16 vsi_handle)4540 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4541 {
4542 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4550 }
4551
4552 /**
4553 * ice_alloc_res_cntr - allocating resource counter
4554 * @hw: pointer to the hardware structure
4555 * @type: type of resource
4556 * @alloc_shared: if set it is shared else dedicated
4557 * @num_items: number of entries requested for FD resource type
4558 * @counter_id: counter index returned by AQ call
4559 */
4560 int
ice_alloc_res_cntr(struct ice_hw * hw,u8 type,u8 alloc_shared,u16 num_items,u16 * counter_id)4561 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4562 u16 *counter_id)
4563 {
4564 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565 u16 buf_len = __struct_size(buf);
4566 int status;
4567
4568 buf->num_elems = cpu_to_le16(num_items);
4569 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4570 alloc_shared);
4571
4572 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4573 if (status)
4574 return status;
4575
4576 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4577 return status;
4578 }
4579
4580 /**
4581 * ice_free_res_cntr - free resource counter
4582 * @hw: pointer to the hardware structure
4583 * @type: type of resource
4584 * @alloc_shared: if set it is shared else dedicated
4585 * @num_items: number of entries to be freed for FD resource type
4586 * @counter_id: counter ID resource which needs to be freed
4587 */
4588 int
ice_free_res_cntr(struct ice_hw * hw,u8 type,u8 alloc_shared,u16 num_items,u16 counter_id)4589 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4590 u16 counter_id)
4591 {
4592 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593 u16 buf_len = __struct_size(buf);
4594 int status;
4595
4596 buf->num_elems = cpu_to_le16(num_items);
4597 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4598 alloc_shared);
4599 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4600
4601 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4602 if (status)
4603 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4604
4605 return status;
4606 }
4607
4608 #define ICE_PROTOCOL_ENTRY(id, ...) { \
4609 .prot_type = id, \
4610 .offs = {__VA_ARGS__}, \
4611 }
4612
4613 /**
4614 * ice_share_res - set a resource as shared or dedicated
4615 * @hw: hw struct of original owner of resource
4616 * @type: resource type
4617 * @shared: is the resource being set to shared
4618 * @res_id: resource id (descriptor)
4619 */
ice_share_res(struct ice_hw * hw,u16 type,u8 shared,u16 res_id)4620 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4621 {
4622 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623 u16 buf_len = __struct_size(buf);
4624 u16 res_type;
4625 int status;
4626
4627 buf->num_elems = cpu_to_le16(1);
4628 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4629 if (shared)
4630 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4631
4632 buf->res_type = cpu_to_le16(res_type);
4633 buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634 status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635 ice_aqc_opc_share_res);
4636 if (status)
4637 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638 type, res_id, shared ? "SHARED" : "DEDICATED");
4639
4640 return status;
4641 }
4642
4643 /* This is mapping table entry that maps every word within a given protocol
4644 * structure to the real byte offset as per the specification of that
4645 * protocol header.
4646 * for example dst address is 3 words in ethertype header and corresponding
4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649 * matching entry describing its field. This needs to be updated if new
4650 * structure is added to that union.
4651 */
4652 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661 20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663 22, 24, 26, 28, 30, 32, 34, 36, 38),
4664 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672 ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678 ICE_SOURCE_PORT_MDID_OFFSET,
4679 ICE_PTYPE_MDID_OFFSET,
4680 ICE_PACKET_LENGTH_MDID_OFFSET,
4681 ICE_SOURCE_VSI_MDID_OFFSET,
4682 ICE_PKT_VLAN_MDID_OFFSET,
4683 ICE_PKT_TUNNEL_MDID_OFFSET,
4684 ICE_PKT_TCP_MDID_OFFSET,
4685 ICE_PKT_ERROR_MDID_OFFSET),
4686 };
4687
4688 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
4690 { ICE_MAC_IL, ICE_MAC_IL_HW },
4691 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
4692 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW },
4693 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
4694 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
4695 { ICE_IPV4_IL, ICE_IPV4_IL_HW },
4696 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
4697 { ICE_IPV6_IL, ICE_IPV6_IL_HW },
4698 { ICE_TCP_IL, ICE_TCP_IL_HW },
4699 { ICE_UDP_OF, ICE_UDP_OF_HW },
4700 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
4701 { ICE_VXLAN, ICE_UDP_OF_HW },
4702 { ICE_GENEVE, ICE_UDP_OF_HW },
4703 { ICE_NVGRE, ICE_GRE_OF_HW },
4704 { ICE_GTP, ICE_UDP_OF_HW },
4705 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
4706 { ICE_PFCP, ICE_UDP_ILOS_HW },
4707 { ICE_PPPOE, ICE_PPPOE_HW },
4708 { ICE_L2TPV3, ICE_L2TPV3_HW },
4709 { ICE_VLAN_EX, ICE_VLAN_OF_HW },
4710 { ICE_VLAN_IN, ICE_VLAN_OL_HW },
4711 { ICE_HW_METADATA, ICE_META_DATA_ID_HW },
4712 };
4713
4714 /**
4715 * ice_find_recp - find a recipe
4716 * @hw: pointer to the hardware structure
4717 * @lkup_exts: extension sequence to match
4718 * @rinfo: information regarding the rule e.g. priority and action info
4719 * @is_add: flag of adding recipe
4720 *
4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4722 */
4723 static u16
ice_find_recp(struct ice_hw * hw,struct ice_prot_lkup_ext * lkup_exts,const struct ice_adv_rule_info * rinfo,bool is_add)4724 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725 const struct ice_adv_rule_info *rinfo, bool is_add)
4726 {
4727 bool refresh_required = true;
4728 struct ice_sw_recipe *recp;
4729 u8 i;
4730
4731 /* Walk through existing recipes to find a match */
4732 recp = hw->switch_info->recp_list;
4733 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734 /* If recipe was not created for this ID, in SW bookkeeping,
4735 * check if FW has an entry for this recipe. If the FW has an
4736 * entry update it in our SW bookkeeping and continue with the
4737 * matching.
4738 */
4739 if (hw->recp_reuse) {
4740 if (ice_get_recp_frm_fw(hw,
4741 hw->switch_info->recp_list, i,
4742 &refresh_required, is_add))
4743 continue;
4744 }
4745
4746 /* if number of words we are looking for match */
4747 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749 struct ice_fv_word *be = lkup_exts->fv_words;
4750 u16 *cr = recp[i].lkup_exts.field_mask;
4751 u16 *de = lkup_exts->field_mask;
4752 bool found = true;
4753 u8 pe, qr;
4754
4755 /* ar, cr, and qr are related to the recipe words, while
4756 * be, de, and pe are related to the lookup words
4757 */
4758 for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4760 qr++) {
4761 if (ar[qr].off == be[pe].off &&
4762 ar[qr].prot_id == be[pe].prot_id &&
4763 cr[qr] == de[pe])
4764 /* Found the "pe"th word in the
4765 * given recipe
4766 */
4767 break;
4768 }
4769 /* After walking through all the words in the
4770 * "i"th recipe if "p"th word was not found then
4771 * this recipe is not what we are looking for.
4772 * So break out from this loop and try the next
4773 * recipe
4774 */
4775 if (qr >= recp[i].lkup_exts.n_val_words) {
4776 found = false;
4777 break;
4778 }
4779 }
4780 /* If for "i"th recipe the found was never set to false
4781 * then it means we found our match
4782 * Also tun type and *_pass_l2 of recipe needs to be
4783 * checked
4784 */
4785 if (found && recp[i].tun_type == rinfo->tun_type &&
4786 recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787 recp[i].allow_pass_l2 == rinfo->allow_pass_l2 &&
4788 recp[i].priority == rinfo->priority)
4789 return i; /* Return the recipe ID */
4790 }
4791 }
4792 return ICE_MAX_NUM_RECIPES;
4793 }
4794
4795 /**
4796 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4797 *
4798 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4799 * supported protocol array record for outer vlan has to be modified to
4800 * reflect the value proper for DVM.
4801 */
ice_change_proto_id_to_dvm(void)4802 void ice_change_proto_id_to_dvm(void)
4803 {
4804 u8 i;
4805
4806 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4807 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4808 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4809 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4810 }
4811
4812 /**
4813 * ice_prot_type_to_id - get protocol ID from protocol type
4814 * @type: protocol type
4815 * @id: pointer to variable that will receive the ID
4816 *
4817 * Returns true if found, false otherwise
4818 */
ice_prot_type_to_id(enum ice_protocol_type type,u8 * id)4819 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4820 {
4821 u8 i;
4822
4823 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4824 if (ice_prot_id_tbl[i].type == type) {
4825 *id = ice_prot_id_tbl[i].protocol_id;
4826 return true;
4827 }
4828 return false;
4829 }
4830
4831 /**
4832 * ice_fill_valid_words - count valid words
4833 * @rule: advanced rule with lookup information
4834 * @lkup_exts: byte offset extractions of the words that are valid
4835 *
4836 * calculate valid words in a lookup rule using mask value
4837 */
4838 static u8
ice_fill_valid_words(struct ice_adv_lkup_elem * rule,struct ice_prot_lkup_ext * lkup_exts)4839 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4840 struct ice_prot_lkup_ext *lkup_exts)
4841 {
4842 u8 j, word, prot_id, ret_val;
4843
4844 if (!ice_prot_type_to_id(rule->type, &prot_id))
4845 return 0;
4846
4847 word = lkup_exts->n_val_words;
4848
4849 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4850 if (((u16 *)&rule->m_u)[j] &&
4851 rule->type < ARRAY_SIZE(ice_prot_ext)) {
4852 /* No more space to accommodate */
4853 if (word >= ICE_MAX_CHAIN_WORDS)
4854 return 0;
4855 lkup_exts->fv_words[word].off =
4856 ice_prot_ext[rule->type].offs[j];
4857 lkup_exts->fv_words[word].prot_id =
4858 ice_prot_id_tbl[rule->type].protocol_id;
4859 lkup_exts->field_mask[word] =
4860 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4861 word++;
4862 }
4863
4864 ret_val = word - lkup_exts->n_val_words;
4865 lkup_exts->n_val_words = word;
4866
4867 return ret_val;
4868 }
4869
4870 /**
4871 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4872 * @hw: pointer to the hardware structure
4873 * @rm: recipe management list entry
4874 *
4875 * Helper function to fill in the field vector indices for protocol-offset
4876 * pairs. These indexes are then ultimately programmed into a recipe.
4877 */
4878 static int
ice_fill_fv_word_index(struct ice_hw * hw,struct ice_sw_recipe * rm)4879 ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
4880 {
4881 struct ice_sw_fv_list_entry *fv;
4882 struct ice_fv_word *fv_ext;
4883 u8 i;
4884
4885 if (list_empty(&rm->fv_list))
4886 return -EINVAL;
4887
4888 fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4889 list_entry);
4890 fv_ext = fv->fv_ptr->ew;
4891
4892 /* Add switch id as the first word. */
4893 rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4894 rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4895 rm->n_ext_words++;
4896
4897 for (i = 1; i < rm->n_ext_words; i++) {
4898 struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4899 u16 fv_mask = rm->word_masks[i - 1];
4900 bool found = false;
4901 u8 j;
4902
4903 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4904 if (fv_ext[j].prot_id == fv_word->prot_id &&
4905 fv_ext[j].off == fv_word->off) {
4906 found = true;
4907
4908 /* Store index of field vector */
4909 rm->fv_idx[i] = j;
4910 rm->fv_mask[i] = fv_mask;
4911 break;
4912 }
4913 }
4914
4915 /* Protocol/offset could not be found, caller gave an invalid
4916 * pair.
4917 */
4918 if (!found)
4919 return -EINVAL;
4920 }
4921
4922 return 0;
4923 }
4924
4925 /**
4926 * ice_find_free_recp_res_idx - find free result indexes for recipe
4927 * @hw: pointer to hardware structure
4928 * @profiles: bitmap of profiles that will be associated with the new recipe
4929 * @free_idx: pointer to variable to receive the free index bitmap
4930 *
4931 * The algorithm used here is:
4932 * 1. When creating a new recipe, create a set P which contains all
4933 * Profiles that will be associated with our new recipe
4934 *
4935 * 2. For each Profile p in set P:
4936 * a. Add all recipes associated with Profile p into set R
4937 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4938 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4939 * i. Or just assume they all have the same possible indexes:
4940 * 44, 45, 46, 47
4941 * i.e., PossibleIndexes = 0x0000F00000000000
4942 *
4943 * 3. For each Recipe r in set R:
4944 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4945 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4946 *
4947 * FreeIndexes will contain the bits indicating the indexes free for use,
4948 * then the code needs to update the recipe[r].used_result_idx_bits to
4949 * indicate which indexes were selected for use by this recipe.
4950 */
4951 static u16
ice_find_free_recp_res_idx(struct ice_hw * hw,const unsigned long * profiles,unsigned long * free_idx)4952 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4953 unsigned long *free_idx)
4954 {
4955 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4956 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4957 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4958 u16 bit;
4959
4960 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4961 bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4962
4963 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4964
4965 /* For each profile we are going to associate the recipe with, add the
4966 * recipes that are associated with that profile. This will give us
4967 * the set of recipes that our recipe may collide with. Also, determine
4968 * what possible result indexes are usable given this set of profiles.
4969 */
4970 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4971 bitmap_or(recipes, recipes, profile_to_recipe[bit],
4972 ICE_MAX_NUM_RECIPES);
4973 bitmap_and(possible_idx, possible_idx,
4974 hw->switch_info->prof_res_bm[bit],
4975 ICE_MAX_FV_WORDS);
4976 }
4977
4978 /* For each recipe that our new recipe may collide with, determine
4979 * which indexes have been used.
4980 */
4981 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4982 bitmap_or(used_idx, used_idx,
4983 hw->switch_info->recp_list[bit].res_idxs,
4984 ICE_MAX_FV_WORDS);
4985
4986 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4987
4988 /* return number of free indexes */
4989 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4990 }
4991
4992 /**
4993 * ice_calc_recp_cnt - calculate number of recipes based on word count
4994 * @word_cnt: number of lookup words
4995 *
4996 * Word count should include switch ID word and regular lookup words.
4997 * Returns: number of recipes required to fit @word_cnt, including extra recipes
4998 * needed for recipe chaining (if needed).
4999 */
ice_calc_recp_cnt(u8 word_cnt)5000 static int ice_calc_recp_cnt(u8 word_cnt)
5001 {
5002 /* All words fit in a single recipe, no need for chaining. */
5003 if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5004 return 1;
5005
5006 /* Recipe chaining required. Result indexes are fitted right after
5007 * regular lookup words. In some cases a new recipe must be added in
5008 * order to fit result indexes.
5009 *
5010 * While the word count increases, every 5 words an extra recipe needs
5011 * to be added. However, by adding a recipe, one word for its result
5012 * index must also be added, therefore every 4 words recipe count
5013 * increases by 1. This calculation does not apply to word count == 1,
5014 * which is handled above.
5015 */
5016 return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5017 }
5018
fill_recipe_template(struct ice_aqc_recipe_data_elem * recp,u16 rid,const struct ice_sw_recipe * rm)5019 static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5020 const struct ice_sw_recipe *rm)
5021 {
5022 int i;
5023
5024 recp->recipe_indx = rid;
5025 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5026
5027 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5028 recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5029 recp->content.mask[i] = cpu_to_le16(0);
5030 }
5031
5032 set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5033 recp->content.act_ctrl_fwd_priority = rm->priority;
5034
5035 if (rm->need_pass_l2)
5036 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5037
5038 if (rm->allow_pass_l2)
5039 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5040 }
5041
bookkeep_recipe(struct ice_sw_recipe * recipe,struct ice_aqc_recipe_data_elem * r,const struct ice_sw_recipe * rm)5042 static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5043 struct ice_aqc_recipe_data_elem *r,
5044 const struct ice_sw_recipe *rm)
5045 {
5046 memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5047
5048 recipe->priority = r->content.act_ctrl_fwd_priority;
5049 recipe->tun_type = rm->tun_type;
5050 recipe->need_pass_l2 = rm->need_pass_l2;
5051 recipe->allow_pass_l2 = rm->allow_pass_l2;
5052 recipe->recp_created = true;
5053 }
5054
5055 /* For memcpy in ice_add_sw_recipe. */
5056 static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5057 sizeof_field(struct ice_sw_recipe, r_bitmap));
5058
5059 /**
5060 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5061 * @hw: pointer to hardware structure
5062 * @rm: recipe management list entry
5063 * @profiles: bitmap of profiles that will be associated.
5064 */
5065 static int
ice_add_sw_recipe(struct ice_hw * hw,struct ice_sw_recipe * rm,unsigned long * profiles)5066 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5067 unsigned long *profiles)
5068 {
5069 struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5070 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5071 struct ice_aqc_recipe_data_elem *root;
5072 struct ice_sw_recipe *recipe;
5073 u16 free_res_idx, rid;
5074 int lookup = 0;
5075 int recp_cnt;
5076 int status;
5077 int word;
5078 int i;
5079
5080 recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5081
5082 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5083 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5084
5085 /* Check number of free result indices */
5086 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5087
5088 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5089 free_res_idx, recp_cnt);
5090
5091 /* Last recipe doesn't need result index */
5092 if (recp_cnt - 1 > free_res_idx)
5093 return -ENOSPC;
5094
5095 if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5096 return -E2BIG;
5097
5098 buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5099 if (!buf)
5100 return -ENOMEM;
5101
5102 /* Setup the non-root subrecipes. These do not contain lookups for other
5103 * subrecipes results. Set associated recipe only to own recipe index.
5104 * Each non-root subrecipe needs a free result index from FV.
5105 *
5106 * Note: only done if there is more than one recipe.
5107 */
5108 for (i = 0; i < recp_cnt - 1; i++) {
5109 struct ice_aqc_recipe_content *content;
5110 u8 result_idx;
5111
5112 status = ice_alloc_recipe(hw, &rid);
5113 if (status)
5114 return status;
5115
5116 fill_recipe_template(&buf[i], rid, rm);
5117
5118 result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5119 /* Check if there really is a valid result index that can be
5120 * used.
5121 */
5122 if (result_idx >= ICE_MAX_FV_WORDS) {
5123 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5124 return -ENOSPC;
5125 }
5126 clear_bit(result_idx, result_idx_bm);
5127
5128 content = &buf[i].content;
5129 content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5130 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5131 result_idx);
5132
5133 /* Set recipe association to be used for root recipe */
5134 set_bit(rid, rm->r_bitmap);
5135
5136 word = 0;
5137 while (lookup < rm->n_ext_words &&
5138 word < ICE_NUM_WORDS_RECIPE) {
5139 content->lkup_indx[word] = rm->fv_idx[lookup];
5140 content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5141
5142 lookup++;
5143 word++;
5144 }
5145
5146 recipe = &hw->switch_info->recp_list[rid];
5147 set_bit(result_idx, recipe->res_idxs);
5148 bookkeep_recipe(recipe, &buf[i], rm);
5149 }
5150
5151 /* Setup the root recipe */
5152 status = ice_alloc_recipe(hw, &rid);
5153 if (status)
5154 return status;
5155
5156 recipe = &hw->switch_info->recp_list[rid];
5157 root = &buf[recp_cnt - 1];
5158 fill_recipe_template(root, rid, rm);
5159
5160 /* Set recipe association, use previously set bitmap and own rid */
5161 set_bit(rid, rm->r_bitmap);
5162 memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5163
5164 /* For non-root recipes rid should be 0, for root it should be correct
5165 * rid value ored with 0x80 (is root bit).
5166 */
5167 root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5168
5169 /* Fill remaining lookups in root recipe */
5170 word = 0;
5171 while (lookup < rm->n_ext_words &&
5172 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5173 root->content.lkup_indx[word] = rm->fv_idx[lookup];
5174 root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5175
5176 lookup++;
5177 word++;
5178 }
5179
5180 /* Fill result indexes as lookups */
5181 i = 0;
5182 while (i < recp_cnt - 1 &&
5183 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5184 root->content.lkup_indx[word] = buf[i].content.result_indx &
5185 ~ICE_AQ_RECIPE_RESULT_EN;
5186 root->content.mask[word] = cpu_to_le16(0xffff);
5187 /* For bookkeeping, it is needed to mark FV index as used for
5188 * intermediate result.
5189 */
5190 set_bit(root->content.lkup_indx[word], recipe->res_idxs);
5191
5192 i++;
5193 word++;
5194 }
5195
5196 rm->root_rid = rid;
5197 bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
5198
5199 /* Program the recipe */
5200 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5201 if (status)
5202 return status;
5203
5204 status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5205 ice_release_change_lock(hw);
5206 if (status)
5207 return status;
5208
5209 return 0;
5210 }
5211
5212 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5213 * @hw: pointer to hardware structure
5214 * @rinfo: other information regarding the rule e.g. priority and action info
5215 * @bm: pointer to memory for returning the bitmap of field vectors
5216 */
5217 static void
ice_get_compat_fv_bitmap(struct ice_hw * hw,struct ice_adv_rule_info * rinfo,unsigned long * bm)5218 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5219 unsigned long *bm)
5220 {
5221 enum ice_prof_type prof_type;
5222
5223 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5224
5225 switch (rinfo->tun_type) {
5226 case ICE_NON_TUN:
5227 prof_type = ICE_PROF_NON_TUN;
5228 break;
5229 case ICE_ALL_TUNNELS:
5230 prof_type = ICE_PROF_TUN_ALL;
5231 break;
5232 case ICE_SW_TUN_GENEVE:
5233 case ICE_SW_TUN_VXLAN:
5234 prof_type = ICE_PROF_TUN_UDP;
5235 break;
5236 case ICE_SW_TUN_NVGRE:
5237 prof_type = ICE_PROF_TUN_GRE;
5238 break;
5239 case ICE_SW_TUN_GTPU:
5240 prof_type = ICE_PROF_TUN_GTPU;
5241 break;
5242 case ICE_SW_TUN_GTPC:
5243 prof_type = ICE_PROF_TUN_GTPC;
5244 break;
5245 case ICE_SW_TUN_PFCP:
5246 prof_type = ICE_PROF_TUN_PFCP;
5247 break;
5248 case ICE_SW_TUN_AND_NON_TUN:
5249 default:
5250 prof_type = ICE_PROF_ALL;
5251 break;
5252 }
5253
5254 ice_get_sw_fv_bitmap(hw, prof_type, bm);
5255 }
5256
5257 /**
5258 * ice_subscribe_recipe - subscribe to an existing recipe
5259 * @hw: pointer to the hardware structure
5260 * @rid: recipe ID to subscribe to
5261 *
5262 * Return: 0 on success, and others on error
5263 */
ice_subscribe_recipe(struct ice_hw * hw,u16 rid)5264 static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5265 {
5266 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5267 u16 buf_len = __struct_size(sw_buf);
5268 u16 res_type;
5269 int status;
5270
5271 /* Prepare buffer to allocate resource */
5272 sw_buf->num_elems = cpu_to_le16(1);
5273 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5274 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5275 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5276 sw_buf->res_type = cpu_to_le16(res_type);
5277
5278 sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5279
5280 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5281 ice_aqc_opc_alloc_res);
5282
5283 return status;
5284 }
5285
5286 /**
5287 * ice_subscribable_recp_shared - share an existing subscribable recipe
5288 * @hw: pointer to the hardware structure
5289 * @rid: recipe ID to subscribe to
5290 */
ice_subscribable_recp_shared(struct ice_hw * hw,u16 rid)5291 static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5292 {
5293 struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5294 u16 sub_rid;
5295
5296 for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5297 ice_subscribe_recipe(hw, sub_rid);
5298 }
5299
5300 /**
5301 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5302 * @hw: pointer to hardware structure
5303 * @lkups: lookup elements or match criteria for the advanced recipe, one
5304 * structure per protocol header
5305 * @lkups_cnt: number of protocols
5306 * @rinfo: other information regarding the rule e.g. priority and action info
5307 * @rid: return the recipe ID of the recipe created
5308 */
5309 static int
ice_add_adv_recipe(struct ice_hw * hw,struct ice_adv_lkup_elem * lkups,u16 lkups_cnt,struct ice_adv_rule_info * rinfo,u16 * rid)5310 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5311 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5312 {
5313 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5314 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5315 struct ice_prot_lkup_ext *lkup_exts;
5316 struct ice_sw_fv_list_entry *fvit;
5317 struct ice_sw_fv_list_entry *tmp;
5318 struct ice_sw_recipe *rm;
5319 int status = 0;
5320 u16 rid_tmp;
5321 u8 i;
5322
5323 if (!lkups_cnt)
5324 return -EINVAL;
5325
5326 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5327 if (!lkup_exts)
5328 return -ENOMEM;
5329
5330 /* Determine the number of words to be matched and if it exceeds a
5331 * recipe's restrictions
5332 */
5333 for (i = 0; i < lkups_cnt; i++) {
5334 u16 count;
5335
5336 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5337 status = -EIO;
5338 goto err_free_lkup_exts;
5339 }
5340
5341 count = ice_fill_valid_words(&lkups[i], lkup_exts);
5342 if (!count) {
5343 status = -EIO;
5344 goto err_free_lkup_exts;
5345 }
5346 }
5347
5348 rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5349 if (!rm) {
5350 status = -ENOMEM;
5351 goto err_free_lkup_exts;
5352 }
5353
5354 /* Get field vectors that contain fields extracted from all the protocol
5355 * headers being programmed.
5356 */
5357 INIT_LIST_HEAD(&rm->fv_list);
5358
5359 /* Get bitmap of field vectors (profiles) that are compatible with the
5360 * rule request; only these will be searched in the subsequent call to
5361 * ice_get_sw_fv_list.
5362 */
5363 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5364
5365 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5366 if (status)
5367 goto err_unroll;
5368
5369 /* Copy FV words and masks from lkup_exts to recipe struct. */
5370 rm->n_ext_words = lkup_exts->n_val_words;
5371 memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5372 memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
5373
5374 /* set the recipe priority if specified */
5375 rm->priority = (u8)rinfo->priority;
5376
5377 rm->need_pass_l2 = rinfo->need_pass_l2;
5378 rm->allow_pass_l2 = rinfo->allow_pass_l2;
5379
5380 /* Find offsets from the field vector. Pick the first one for all the
5381 * recipes.
5382 */
5383 status = ice_fill_fv_word_index(hw, rm);
5384 if (status)
5385 goto err_unroll;
5386
5387 /* get bitmap of all profiles the recipe will be associated with */
5388 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5389 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5390 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5391 set_bit((u16)fvit->profile_id, profiles);
5392 }
5393
5394 /* Look for a recipe which matches our requested fv / mask list */
5395 *rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5396 if (*rid < ICE_MAX_NUM_RECIPES) {
5397 /* Success if found a recipe that match the existing criteria */
5398 if (hw->recp_reuse)
5399 ice_subscribable_recp_shared(hw, *rid);
5400
5401 goto err_unroll;
5402 }
5403
5404 rm->tun_type = rinfo->tun_type;
5405 /* Recipe we need does not exist, add a recipe */
5406 status = ice_add_sw_recipe(hw, rm, profiles);
5407 if (status)
5408 goto err_unroll;
5409
5410 /* Associate all the recipes created with all the profiles in the
5411 * common field vector.
5412 */
5413 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5414 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5415 u64 recp_assoc;
5416 u16 j;
5417
5418 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5419 &recp_assoc, NULL);
5420 if (status)
5421 goto err_free_recipe;
5422
5423 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5424 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5425 ICE_MAX_NUM_RECIPES);
5426 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5427 if (status)
5428 goto err_free_recipe;
5429
5430 bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5431 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5432 recp_assoc, NULL);
5433 ice_release_change_lock(hw);
5434
5435 if (status)
5436 goto err_free_recipe;
5437
5438 /* Update profile to recipe bitmap array */
5439 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5440 ICE_MAX_NUM_RECIPES);
5441
5442 /* Update recipe to profile bitmap array */
5443 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5444 set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5445 }
5446
5447 *rid = rm->root_rid;
5448 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5449 sizeof(*lkup_exts));
5450 goto err_unroll;
5451
5452 err_free_recipe:
5453 if (hw->recp_reuse) {
5454 for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5455 if (!ice_free_recipe_res(hw, rid_tmp))
5456 clear_bit(rid_tmp, rm->r_bitmap);
5457 }
5458 }
5459
5460 err_unroll:
5461 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5462 list_del(&fvit->list_entry);
5463 devm_kfree(ice_hw_to_dev(hw), fvit);
5464 }
5465
5466 kfree(rm);
5467
5468 err_free_lkup_exts:
5469 kfree(lkup_exts);
5470
5471 return status;
5472 }
5473
5474 /**
5475 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5476 *
5477 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5478 * @num_vlan: number of VLAN tags
5479 */
5480 static struct ice_dummy_pkt_profile *
ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile * dummy_pkt,u32 num_vlan)5481 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5482 u32 num_vlan)
5483 {
5484 struct ice_dummy_pkt_profile *profile;
5485 struct ice_dummy_pkt_offsets *offsets;
5486 u32 buf_len, off, etype_off, i;
5487 u8 *pkt;
5488
5489 if (num_vlan < 1 || num_vlan > 2)
5490 return ERR_PTR(-EINVAL);
5491
5492 off = num_vlan * VLAN_HLEN;
5493
5494 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5495 dummy_pkt->offsets_len;
5496 offsets = kzalloc(buf_len, GFP_KERNEL);
5497 if (!offsets)
5498 return ERR_PTR(-ENOMEM);
5499
5500 offsets[0] = dummy_pkt->offsets[0];
5501 if (num_vlan == 2) {
5502 offsets[1] = ice_dummy_qinq_packet_offsets[0];
5503 offsets[2] = ice_dummy_qinq_packet_offsets[1];
5504 } else if (num_vlan == 1) {
5505 offsets[1] = ice_dummy_vlan_packet_offsets[0];
5506 }
5507
5508 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5509 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5510 offsets[i + num_vlan].offset =
5511 dummy_pkt->offsets[i].offset + off;
5512 }
5513 offsets[i + num_vlan] = dummy_pkt->offsets[i];
5514
5515 etype_off = dummy_pkt->offsets[1].offset;
5516
5517 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5518 dummy_pkt->pkt_len;
5519 pkt = kzalloc(buf_len, GFP_KERNEL);
5520 if (!pkt) {
5521 kfree(offsets);
5522 return ERR_PTR(-ENOMEM);
5523 }
5524
5525 memcpy(pkt, dummy_pkt->pkt, etype_off);
5526 memcpy(pkt + etype_off,
5527 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5528 off);
5529 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5530 dummy_pkt->pkt_len - etype_off);
5531
5532 profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5533 if (!profile) {
5534 kfree(offsets);
5535 kfree(pkt);
5536 return ERR_PTR(-ENOMEM);
5537 }
5538
5539 profile->offsets = offsets;
5540 profile->pkt = pkt;
5541 profile->pkt_len = buf_len;
5542 profile->match |= ICE_PKT_KMALLOC;
5543
5544 return profile;
5545 }
5546
5547 /**
5548 * ice_find_dummy_packet - find dummy packet
5549 *
5550 * @lkups: lookup elements or match criteria for the advanced recipe, one
5551 * structure per protocol header
5552 * @lkups_cnt: number of protocols
5553 * @tun_type: tunnel type
5554 *
5555 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5556 */
5557 static const struct ice_dummy_pkt_profile *
ice_find_dummy_packet(struct ice_adv_lkup_elem * lkups,u16 lkups_cnt,enum ice_sw_tunnel_type tun_type)5558 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5559 enum ice_sw_tunnel_type tun_type)
5560 {
5561 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5562 u32 match = 0, vlan_count = 0;
5563 u16 i;
5564
5565 switch (tun_type) {
5566 case ICE_SW_TUN_GTPC:
5567 match |= ICE_PKT_TUN_GTPC;
5568 break;
5569 case ICE_SW_TUN_GTPU:
5570 match |= ICE_PKT_TUN_GTPU;
5571 break;
5572 case ICE_SW_TUN_NVGRE:
5573 match |= ICE_PKT_TUN_NVGRE;
5574 break;
5575 case ICE_SW_TUN_GENEVE:
5576 case ICE_SW_TUN_VXLAN:
5577 match |= ICE_PKT_TUN_UDP;
5578 break;
5579 case ICE_SW_TUN_PFCP:
5580 match |= ICE_PKT_PFCP;
5581 break;
5582 default:
5583 break;
5584 }
5585
5586 for (i = 0; i < lkups_cnt; i++) {
5587 if (lkups[i].type == ICE_UDP_ILOS)
5588 match |= ICE_PKT_INNER_UDP;
5589 else if (lkups[i].type == ICE_TCP_IL)
5590 match |= ICE_PKT_INNER_TCP;
5591 else if (lkups[i].type == ICE_IPV6_OFOS)
5592 match |= ICE_PKT_OUTER_IPV6;
5593 else if (lkups[i].type == ICE_VLAN_OFOS ||
5594 lkups[i].type == ICE_VLAN_EX)
5595 vlan_count++;
5596 else if (lkups[i].type == ICE_VLAN_IN)
5597 vlan_count++;
5598 else if (lkups[i].type == ICE_ETYPE_OL &&
5599 lkups[i].h_u.ethertype.ethtype_id ==
5600 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5601 lkups[i].m_u.ethertype.ethtype_id ==
5602 cpu_to_be16(0xFFFF))
5603 match |= ICE_PKT_OUTER_IPV6;
5604 else if (lkups[i].type == ICE_ETYPE_IL &&
5605 lkups[i].h_u.ethertype.ethtype_id ==
5606 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5607 lkups[i].m_u.ethertype.ethtype_id ==
5608 cpu_to_be16(0xFFFF))
5609 match |= ICE_PKT_INNER_IPV6;
5610 else if (lkups[i].type == ICE_IPV6_IL)
5611 match |= ICE_PKT_INNER_IPV6;
5612 else if (lkups[i].type == ICE_GTP_NO_PAY)
5613 match |= ICE_PKT_GTP_NOPAY;
5614 else if (lkups[i].type == ICE_PPPOE) {
5615 match |= ICE_PKT_PPPOE;
5616 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5617 htons(PPP_IPV6))
5618 match |= ICE_PKT_OUTER_IPV6;
5619 } else if (lkups[i].type == ICE_L2TPV3)
5620 match |= ICE_PKT_L2TPV3;
5621 }
5622
5623 while (ret->match && (match & ret->match) != ret->match)
5624 ret++;
5625
5626 if (vlan_count != 0)
5627 ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5628
5629 return ret;
5630 }
5631
5632 /**
5633 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5634 *
5635 * @lkups: lookup elements or match criteria for the advanced recipe, one
5636 * structure per protocol header
5637 * @lkups_cnt: number of protocols
5638 * @s_rule: stores rule information from the match criteria
5639 * @profile: dummy packet profile (the template, its size and header offsets)
5640 */
5641 static int
ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem * lkups,u16 lkups_cnt,struct ice_sw_rule_lkup_rx_tx * s_rule,const struct ice_dummy_pkt_profile * profile)5642 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5643 struct ice_sw_rule_lkup_rx_tx *s_rule,
5644 const struct ice_dummy_pkt_profile *profile)
5645 {
5646 u8 *pkt;
5647 u16 i;
5648
5649 /* Start with a packet with a pre-defined/dummy content. Then, fill
5650 * in the header values to be looked up or matched.
5651 */
5652 pkt = s_rule->hdr_data;
5653
5654 memcpy(pkt, profile->pkt, profile->pkt_len);
5655
5656 for (i = 0; i < lkups_cnt; i++) {
5657 const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5658 enum ice_protocol_type type;
5659 u16 offset = 0, len = 0, j;
5660 bool found = false;
5661
5662 /* find the start of this layer; it should be found since this
5663 * was already checked when search for the dummy packet
5664 */
5665 type = lkups[i].type;
5666 /* metadata isn't present in the packet */
5667 if (type == ICE_HW_METADATA)
5668 continue;
5669
5670 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5671 if (type == offsets[j].type) {
5672 offset = offsets[j].offset;
5673 found = true;
5674 break;
5675 }
5676 }
5677 /* this should never happen in a correct calling sequence */
5678 if (!found)
5679 return -EINVAL;
5680
5681 switch (lkups[i].type) {
5682 case ICE_MAC_OFOS:
5683 case ICE_MAC_IL:
5684 len = sizeof(struct ice_ether_hdr);
5685 break;
5686 case ICE_ETYPE_OL:
5687 case ICE_ETYPE_IL:
5688 len = sizeof(struct ice_ethtype_hdr);
5689 break;
5690 case ICE_VLAN_OFOS:
5691 case ICE_VLAN_EX:
5692 case ICE_VLAN_IN:
5693 len = sizeof(struct ice_vlan_hdr);
5694 break;
5695 case ICE_IPV4_OFOS:
5696 case ICE_IPV4_IL:
5697 len = sizeof(struct ice_ipv4_hdr);
5698 break;
5699 case ICE_IPV6_OFOS:
5700 case ICE_IPV6_IL:
5701 len = sizeof(struct ice_ipv6_hdr);
5702 break;
5703 case ICE_TCP_IL:
5704 case ICE_UDP_OF:
5705 case ICE_UDP_ILOS:
5706 len = sizeof(struct ice_l4_hdr);
5707 break;
5708 case ICE_SCTP_IL:
5709 len = sizeof(struct ice_sctp_hdr);
5710 break;
5711 case ICE_NVGRE:
5712 len = sizeof(struct ice_nvgre_hdr);
5713 break;
5714 case ICE_VXLAN:
5715 case ICE_GENEVE:
5716 len = sizeof(struct ice_udp_tnl_hdr);
5717 break;
5718 case ICE_GTP_NO_PAY:
5719 case ICE_GTP:
5720 len = sizeof(struct ice_udp_gtp_hdr);
5721 break;
5722 case ICE_PFCP:
5723 len = sizeof(struct ice_pfcp_hdr);
5724 break;
5725 case ICE_PPPOE:
5726 len = sizeof(struct ice_pppoe_hdr);
5727 break;
5728 case ICE_L2TPV3:
5729 len = sizeof(struct ice_l2tpv3_sess_hdr);
5730 break;
5731 default:
5732 return -EINVAL;
5733 }
5734
5735 /* the length should be a word multiple */
5736 if (len % ICE_BYTES_PER_WORD)
5737 return -EIO;
5738
5739 /* We have the offset to the header start, the length, the
5740 * caller's header values and mask. Use this information to
5741 * copy the data into the dummy packet appropriately based on
5742 * the mask. Note that we need to only write the bits as
5743 * indicated by the mask to make sure we don't improperly write
5744 * over any significant packet data.
5745 */
5746 for (j = 0; j < len / sizeof(u16); j++) {
5747 u16 *ptr = (u16 *)(pkt + offset);
5748 u16 mask = lkups[i].m_raw[j];
5749
5750 if (!mask)
5751 continue;
5752
5753 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5754 }
5755 }
5756
5757 s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5758
5759 return 0;
5760 }
5761
5762 /**
5763 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5764 * @hw: pointer to the hardware structure
5765 * @tun_type: tunnel type
5766 * @pkt: dummy packet to fill in
5767 * @offsets: offset info for the dummy packet
5768 */
5769 static int
ice_fill_adv_packet_tun(struct ice_hw * hw,enum ice_sw_tunnel_type tun_type,u8 * pkt,const struct ice_dummy_pkt_offsets * offsets)5770 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5771 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5772 {
5773 u16 open_port, i;
5774
5775 switch (tun_type) {
5776 case ICE_SW_TUN_VXLAN:
5777 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5778 return -EIO;
5779 break;
5780 case ICE_SW_TUN_GENEVE:
5781 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5782 return -EIO;
5783 break;
5784 default:
5785 /* Nothing needs to be done for this tunnel type */
5786 return 0;
5787 }
5788
5789 /* Find the outer UDP protocol header and insert the port number */
5790 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5791 if (offsets[i].type == ICE_UDP_OF) {
5792 struct ice_l4_hdr *hdr;
5793 u16 offset;
5794
5795 offset = offsets[i].offset;
5796 hdr = (struct ice_l4_hdr *)&pkt[offset];
5797 hdr->dst_port = cpu_to_be16(open_port);
5798
5799 return 0;
5800 }
5801 }
5802
5803 return -EIO;
5804 }
5805
5806 /**
5807 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5808 * @hw: pointer to hw structure
5809 * @vlan_type: VLAN tag type
5810 * @pkt: dummy packet to fill in
5811 * @offsets: offset info for the dummy packet
5812 */
5813 static int
ice_fill_adv_packet_vlan(struct ice_hw * hw,u16 vlan_type,u8 * pkt,const struct ice_dummy_pkt_offsets * offsets)5814 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5815 const struct ice_dummy_pkt_offsets *offsets)
5816 {
5817 u16 i;
5818
5819 /* Check if there is something to do */
5820 if (!vlan_type || !ice_is_dvm_ena(hw))
5821 return 0;
5822
5823 /* Find VLAN header and insert VLAN TPID */
5824 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5825 if (offsets[i].type == ICE_VLAN_OFOS ||
5826 offsets[i].type == ICE_VLAN_EX) {
5827 struct ice_vlan_hdr *hdr;
5828 u16 offset;
5829
5830 offset = offsets[i].offset;
5831 hdr = (struct ice_vlan_hdr *)&pkt[offset];
5832 hdr->type = cpu_to_be16(vlan_type);
5833
5834 return 0;
5835 }
5836 }
5837
5838 return -EIO;
5839 }
5840
ice_rules_equal(const struct ice_adv_rule_info * first,const struct ice_adv_rule_info * second)5841 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5842 const struct ice_adv_rule_info *second)
5843 {
5844 return first->sw_act.flag == second->sw_act.flag &&
5845 first->tun_type == second->tun_type &&
5846 first->vlan_type == second->vlan_type &&
5847 first->src_vsi == second->src_vsi &&
5848 first->need_pass_l2 == second->need_pass_l2 &&
5849 first->allow_pass_l2 == second->allow_pass_l2;
5850 }
5851
5852 /**
5853 * ice_find_adv_rule_entry - Search a rule entry
5854 * @hw: pointer to the hardware structure
5855 * @lkups: lookup elements or match criteria for the advanced recipe, one
5856 * structure per protocol header
5857 * @lkups_cnt: number of protocols
5858 * @recp_id: recipe ID for which we are finding the rule
5859 * @rinfo: other information regarding the rule e.g. priority and action info
5860 *
5861 * Helper function to search for a given advance rule entry
5862 * Returns pointer to entry storing the rule if found
5863 */
5864 static struct ice_adv_fltr_mgmt_list_entry *
ice_find_adv_rule_entry(struct ice_hw * hw,struct ice_adv_lkup_elem * lkups,u16 lkups_cnt,u16 recp_id,struct ice_adv_rule_info * rinfo)5865 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5866 u16 lkups_cnt, u16 recp_id,
5867 struct ice_adv_rule_info *rinfo)
5868 {
5869 struct ice_adv_fltr_mgmt_list_entry *list_itr;
5870 struct ice_switch_info *sw = hw->switch_info;
5871 int i;
5872
5873 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5874 list_entry) {
5875 bool lkups_matched = true;
5876
5877 if (lkups_cnt != list_itr->lkups_cnt)
5878 continue;
5879 for (i = 0; i < list_itr->lkups_cnt; i++)
5880 if (memcmp(&list_itr->lkups[i], &lkups[i],
5881 sizeof(*lkups))) {
5882 lkups_matched = false;
5883 break;
5884 }
5885 if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5886 lkups_matched)
5887 return list_itr;
5888 }
5889 return NULL;
5890 }
5891
5892 /**
5893 * ice_adv_add_update_vsi_list
5894 * @hw: pointer to the hardware structure
5895 * @m_entry: pointer to current adv filter management list entry
5896 * @cur_fltr: filter information from the book keeping entry
5897 * @new_fltr: filter information with the new VSI to be added
5898 *
5899 * Call AQ command to add or update previously created VSI list with new VSI.
5900 *
5901 * Helper function to do book keeping associated with adding filter information
5902 * The algorithm to do the booking keeping is described below :
5903 * When a VSI needs to subscribe to a given advanced filter
5904 * if only one VSI has been added till now
5905 * Allocate a new VSI list and add two VSIs
5906 * to this list using switch rule command
5907 * Update the previously created switch rule with the
5908 * newly created VSI list ID
5909 * if a VSI list was previously created
5910 * Add the new VSI to the previously created VSI list set
5911 * using the update switch rule command
5912 */
5913 static int
ice_adv_add_update_vsi_list(struct ice_hw * hw,struct ice_adv_fltr_mgmt_list_entry * m_entry,struct ice_adv_rule_info * cur_fltr,struct ice_adv_rule_info * new_fltr)5914 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5915 struct ice_adv_fltr_mgmt_list_entry *m_entry,
5916 struct ice_adv_rule_info *cur_fltr,
5917 struct ice_adv_rule_info *new_fltr)
5918 {
5919 u16 vsi_list_id = 0;
5920 int status;
5921
5922 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5923 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5924 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5925 return -EOPNOTSUPP;
5926
5927 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5928 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5929 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5930 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5931 return -EOPNOTSUPP;
5932
5933 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5934 /* Only one entry existed in the mapping and it was not already
5935 * a part of a VSI list. So, create a VSI list with the old and
5936 * new VSIs.
5937 */
5938 struct ice_fltr_info tmp_fltr;
5939 u16 vsi_handle_arr[2];
5940
5941 /* A rule already exists with the new VSI being added */
5942 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5943 new_fltr->sw_act.fwd_id.hw_vsi_id)
5944 return -EEXIST;
5945
5946 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5947 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5948 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5949 &vsi_list_id,
5950 ICE_SW_LKUP_LAST);
5951 if (status)
5952 return status;
5953
5954 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5955 tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5956 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5957 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5958 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5959 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5960
5961 /* Update the previous switch rule of "forward to VSI" to
5962 * "fwd to VSI list"
5963 */
5964 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5965 if (status)
5966 return status;
5967
5968 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5969 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5970 m_entry->vsi_list_info =
5971 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5972 vsi_list_id);
5973 } else {
5974 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5975
5976 if (!m_entry->vsi_list_info)
5977 return -EIO;
5978
5979 /* A rule already exists with the new VSI being added */
5980 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5981 return 0;
5982
5983 /* Update the previously created VSI list set with
5984 * the new VSI ID passed in
5985 */
5986 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5987
5988 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5989 vsi_list_id, false,
5990 ice_aqc_opc_update_sw_rules,
5991 ICE_SW_LKUP_LAST);
5992 /* update VSI list mapping info with new VSI ID */
5993 if (!status)
5994 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5995 }
5996 if (!status)
5997 m_entry->vsi_count++;
5998 return status;
5999 }
6000
ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem * lkup)6001 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6002 {
6003 lkup->type = ICE_HW_METADATA;
6004 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6005 cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6006 }
6007
ice_rule_add_direction_metadata(struct ice_adv_lkup_elem * lkup)6008 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6009 {
6010 lkup->type = ICE_HW_METADATA;
6011 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6012 cpu_to_be16(ICE_PKT_FROM_NETWORK);
6013 }
6014
ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem * lkup)6015 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6016 {
6017 lkup->type = ICE_HW_METADATA;
6018 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6019 cpu_to_be16(ICE_PKT_VLAN_MASK);
6020 }
6021
ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem * lkup)6022 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6023 {
6024 lkup->type = ICE_HW_METADATA;
6025 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6026 }
6027
6028 /**
6029 * ice_add_adv_rule - helper function to create an advanced switch rule
6030 * @hw: pointer to the hardware structure
6031 * @lkups: information on the words that needs to be looked up. All words
6032 * together makes one recipe
6033 * @lkups_cnt: num of entries in the lkups array
6034 * @rinfo: other information related to the rule that needs to be programmed
6035 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6036 * ignored is case of error.
6037 *
6038 * This function can program only 1 rule at a time. The lkups is used to
6039 * describe the all the words that forms the "lookup" portion of the recipe.
6040 * These words can span multiple protocols. Callers to this function need to
6041 * pass in a list of protocol headers with lookup information along and mask
6042 * that determines which words are valid from the given protocol header.
6043 * rinfo describes other information related to this rule such as forwarding
6044 * IDs, priority of this rule, etc.
6045 */
6046 int
ice_add_adv_rule(struct ice_hw * hw,struct ice_adv_lkup_elem * lkups,u16 lkups_cnt,struct ice_adv_rule_info * rinfo,struct ice_rule_query_data * added_entry)6047 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6048 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6049 struct ice_rule_query_data *added_entry)
6050 {
6051 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6052 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6053 const struct ice_dummy_pkt_profile *profile;
6054 u16 rid = 0, i, rule_buf_sz, vsi_handle;
6055 struct list_head *rule_head;
6056 struct ice_switch_info *sw;
6057 u16 word_cnt;
6058 u32 act = 0;
6059 int status;
6060 u8 q_rgn;
6061
6062 /* Initialize profile to result index bitmap */
6063 if (!hw->switch_info->prof_res_bm_init) {
6064 hw->switch_info->prof_res_bm_init = 1;
6065 ice_init_prof_result_bm(hw);
6066 }
6067
6068 if (!lkups_cnt)
6069 return -EINVAL;
6070
6071 /* get # of words we need to match */
6072 word_cnt = 0;
6073 for (i = 0; i < lkups_cnt; i++) {
6074 u16 j;
6075
6076 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6077 if (lkups[i].m_raw[j])
6078 word_cnt++;
6079 }
6080
6081 if (!word_cnt)
6082 return -EINVAL;
6083
6084 if (word_cnt > ICE_MAX_CHAIN_WORDS)
6085 return -ENOSPC;
6086
6087 /* locate a dummy packet */
6088 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6089 if (IS_ERR(profile))
6090 return PTR_ERR(profile);
6091
6092 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6093 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6094 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6095 rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6096 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6097 rinfo->sw_act.fltr_act == ICE_NOP)) {
6098 status = -EIO;
6099 goto free_pkt_profile;
6100 }
6101
6102 vsi_handle = rinfo->sw_act.vsi_handle;
6103 if (!ice_is_vsi_valid(hw, vsi_handle)) {
6104 status = -EINVAL;
6105 goto free_pkt_profile;
6106 }
6107
6108 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6109 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6110 rinfo->sw_act.fltr_act == ICE_NOP) {
6111 rinfo->sw_act.fwd_id.hw_vsi_id =
6112 ice_get_hw_vsi_num(hw, vsi_handle);
6113 }
6114
6115 if (rinfo->src_vsi)
6116 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6117 else
6118 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6119
6120 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6121 if (status)
6122 goto free_pkt_profile;
6123 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6124 if (m_entry) {
6125 /* we have to add VSI to VSI_LIST and increment vsi_count.
6126 * Also Update VSI list so that we can change forwarding rule
6127 * if the rule already exists, we will check if it exists with
6128 * same vsi_id, if not then add it to the VSI list if it already
6129 * exists if not then create a VSI list and add the existing VSI
6130 * ID and the new VSI ID to the list
6131 * We will add that VSI to the list
6132 */
6133 status = ice_adv_add_update_vsi_list(hw, m_entry,
6134 &m_entry->rule_info,
6135 rinfo);
6136 if (added_entry) {
6137 added_entry->rid = rid;
6138 added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6139 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6140 }
6141 goto free_pkt_profile;
6142 }
6143 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6144 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6145 if (!s_rule) {
6146 status = -ENOMEM;
6147 goto free_pkt_profile;
6148 }
6149
6150 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6151 if (!rinfo->flags_info.act_valid) {
6152 act |= ICE_SINGLE_ACT_LAN_ENABLE;
6153 act |= ICE_SINGLE_ACT_LB_ENABLE;
6154 } else {
6155 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6156 ICE_SINGLE_ACT_LB_ENABLE);
6157 }
6158 }
6159
6160 switch (rinfo->sw_act.fltr_act) {
6161 case ICE_FWD_TO_VSI:
6162 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6163 rinfo->sw_act.fwd_id.hw_vsi_id);
6164 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6165 break;
6166 case ICE_FWD_TO_Q:
6167 act |= ICE_SINGLE_ACT_TO_Q;
6168 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6169 rinfo->sw_act.fwd_id.q_id);
6170 break;
6171 case ICE_FWD_TO_QGRP:
6172 q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6173 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6174 act |= ICE_SINGLE_ACT_TO_Q;
6175 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6176 rinfo->sw_act.fwd_id.q_id);
6177 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6178 break;
6179 case ICE_DROP_PACKET:
6180 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6181 ICE_SINGLE_ACT_VALID_BIT;
6182 break;
6183 case ICE_MIRROR_PACKET:
6184 act |= ICE_SINGLE_ACT_OTHER_ACTS;
6185 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6186 rinfo->sw_act.fwd_id.hw_vsi_id);
6187 break;
6188 case ICE_NOP:
6189 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6190 rinfo->sw_act.fwd_id.hw_vsi_id);
6191 act &= ~ICE_SINGLE_ACT_VALID_BIT;
6192 break;
6193 default:
6194 status = -EIO;
6195 goto err_ice_add_adv_rule;
6196 }
6197
6198 /* If there is no matching criteria for direction there
6199 * is only one difference between Rx and Tx:
6200 * - get switch id base on VSI number from source field (Tx)
6201 * - get switch id base on port number (Rx)
6202 *
6203 * If matching on direction metadata is chose rule direction is
6204 * extracted from type value set here.
6205 */
6206 if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6207 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6208 s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6209 } else {
6210 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6211 s_rule->src = cpu_to_le16(hw->port_info->lport);
6212 }
6213
6214 s_rule->recipe_id = cpu_to_le16(rid);
6215 s_rule->act = cpu_to_le32(act);
6216
6217 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6218 if (status)
6219 goto err_ice_add_adv_rule;
6220
6221 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6222 profile->offsets);
6223 if (status)
6224 goto err_ice_add_adv_rule;
6225
6226 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6227 s_rule->hdr_data,
6228 profile->offsets);
6229 if (status)
6230 goto err_ice_add_adv_rule;
6231
6232 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6233 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6234 NULL);
6235 if (status)
6236 goto err_ice_add_adv_rule;
6237 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6238 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6239 GFP_KERNEL);
6240 if (!adv_fltr) {
6241 status = -ENOMEM;
6242 goto err_ice_add_adv_rule;
6243 }
6244
6245 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6246 lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6247 if (!adv_fltr->lkups) {
6248 status = -ENOMEM;
6249 goto err_ice_add_adv_rule;
6250 }
6251
6252 adv_fltr->lkups_cnt = lkups_cnt;
6253 adv_fltr->rule_info = *rinfo;
6254 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6255 sw = hw->switch_info;
6256 sw->recp_list[rid].adv_rule = true;
6257 rule_head = &sw->recp_list[rid].filt_rules;
6258
6259 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6260 adv_fltr->vsi_count = 1;
6261
6262 /* Add rule entry to book keeping list */
6263 list_add(&adv_fltr->list_entry, rule_head);
6264 if (added_entry) {
6265 added_entry->rid = rid;
6266 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6267 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6268 }
6269 err_ice_add_adv_rule:
6270 if (status && adv_fltr) {
6271 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6272 devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6273 }
6274
6275 kfree(s_rule);
6276
6277 free_pkt_profile:
6278 if (profile->match & ICE_PKT_KMALLOC) {
6279 kfree(profile->offsets);
6280 kfree(profile->pkt);
6281 kfree(profile);
6282 }
6283
6284 return status;
6285 }
6286
6287 /**
6288 * ice_replay_vsi_fltr - Replay filters for requested VSI
6289 * @hw: pointer to the hardware structure
6290 * @vsi_handle: driver VSI handle
6291 * @recp_id: Recipe ID for which rules need to be replayed
6292 * @list_head: list for which filters need to be replayed
6293 *
6294 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6295 * It is required to pass valid VSI handle.
6296 */
6297 static int
ice_replay_vsi_fltr(struct ice_hw * hw,u16 vsi_handle,u8 recp_id,struct list_head * list_head)6298 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6299 struct list_head *list_head)
6300 {
6301 struct ice_fltr_mgmt_list_entry *itr;
6302 int status = 0;
6303 u16 hw_vsi_id;
6304
6305 if (list_empty(list_head))
6306 return status;
6307 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6308
6309 list_for_each_entry(itr, list_head, list_entry) {
6310 struct ice_fltr_list_entry f_entry;
6311
6312 f_entry.fltr_info = itr->fltr_info;
6313 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6314 itr->fltr_info.vsi_handle == vsi_handle) {
6315 /* update the src in case it is VSI num */
6316 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6317 f_entry.fltr_info.src = hw_vsi_id;
6318 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6319 if (status)
6320 goto end;
6321 continue;
6322 }
6323 if (!itr->vsi_list_info ||
6324 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6325 continue;
6326 f_entry.fltr_info.vsi_handle = vsi_handle;
6327 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6328 /* update the src in case it is VSI num */
6329 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6330 f_entry.fltr_info.src = hw_vsi_id;
6331 if (recp_id == ICE_SW_LKUP_VLAN)
6332 status = ice_add_vlan_internal(hw, &f_entry);
6333 else
6334 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6335 if (status)
6336 goto end;
6337 }
6338 end:
6339 return status;
6340 }
6341
6342 /**
6343 * ice_adv_rem_update_vsi_list
6344 * @hw: pointer to the hardware structure
6345 * @vsi_handle: VSI handle of the VSI to remove
6346 * @fm_list: filter management entry for which the VSI list management needs to
6347 * be done
6348 */
6349 static int
ice_adv_rem_update_vsi_list(struct ice_hw * hw,u16 vsi_handle,struct ice_adv_fltr_mgmt_list_entry * fm_list)6350 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6351 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6352 {
6353 struct ice_vsi_list_map_info *vsi_list_info;
6354 enum ice_sw_lkup_type lkup_type;
6355 u16 vsi_list_id;
6356 int status;
6357
6358 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6359 fm_list->vsi_count == 0)
6360 return -EINVAL;
6361
6362 /* A rule with the VSI being removed does not exist */
6363 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6364 return -ENOENT;
6365
6366 lkup_type = ICE_SW_LKUP_LAST;
6367 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6368 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6369 ice_aqc_opc_update_sw_rules,
6370 lkup_type);
6371 if (status)
6372 return status;
6373
6374 fm_list->vsi_count--;
6375 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6376 vsi_list_info = fm_list->vsi_list_info;
6377 if (fm_list->vsi_count == 1) {
6378 struct ice_fltr_info tmp_fltr;
6379 u16 rem_vsi_handle;
6380
6381 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6382 ICE_MAX_VSI);
6383 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6384 return -EIO;
6385
6386 /* Make sure VSI list is empty before removing it below */
6387 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6388 vsi_list_id, true,
6389 ice_aqc_opc_update_sw_rules,
6390 lkup_type);
6391 if (status)
6392 return status;
6393
6394 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6395 tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6396 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6397 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6398 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6399 tmp_fltr.fwd_id.hw_vsi_id =
6400 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6401 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6402 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6403 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6404
6405 /* Update the previous switch rule of "MAC forward to VSI" to
6406 * "MAC fwd to VSI list"
6407 */
6408 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6409 if (status) {
6410 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6411 tmp_fltr.fwd_id.hw_vsi_id, status);
6412 return status;
6413 }
6414 fm_list->vsi_list_info->ref_cnt--;
6415
6416 /* Remove the VSI list since it is no longer used */
6417 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6418 if (status) {
6419 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6420 vsi_list_id, status);
6421 return status;
6422 }
6423
6424 list_del(&vsi_list_info->list_entry);
6425 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6426 fm_list->vsi_list_info = NULL;
6427 }
6428
6429 return status;
6430 }
6431
6432 /**
6433 * ice_rem_adv_rule - removes existing advanced switch rule
6434 * @hw: pointer to the hardware structure
6435 * @lkups: information on the words that needs to be looked up. All words
6436 * together makes one recipe
6437 * @lkups_cnt: num of entries in the lkups array
6438 * @rinfo: Its the pointer to the rule information for the rule
6439 *
6440 * This function can be used to remove 1 rule at a time. The lkups is
6441 * used to describe all the words that forms the "lookup" portion of the
6442 * rule. These words can span multiple protocols. Callers to this function
6443 * need to pass in a list of protocol headers with lookup information along
6444 * and mask that determines which words are valid from the given protocol
6445 * header. rinfo describes other information related to this rule such as
6446 * forwarding IDs, priority of this rule, etc.
6447 */
6448 static int
ice_rem_adv_rule(struct ice_hw * hw,struct ice_adv_lkup_elem * lkups,u16 lkups_cnt,struct ice_adv_rule_info * rinfo)6449 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6450 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6451 {
6452 struct ice_adv_fltr_mgmt_list_entry *list_elem;
6453 struct ice_prot_lkup_ext lkup_exts;
6454 bool remove_rule = false;
6455 struct mutex *rule_lock; /* Lock to protect filter rule list */
6456 u16 i, rid, vsi_handle;
6457 int status = 0;
6458
6459 memset(&lkup_exts, 0, sizeof(lkup_exts));
6460 for (i = 0; i < lkups_cnt; i++) {
6461 u16 count;
6462
6463 if (lkups[i].type >= ICE_PROTOCOL_LAST)
6464 return -EIO;
6465
6466 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6467 if (!count)
6468 return -EIO;
6469 }
6470
6471 rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
6472 /* If did not find a recipe that match the existing criteria */
6473 if (rid == ICE_MAX_NUM_RECIPES)
6474 return -EINVAL;
6475
6476 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6477 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6478 /* the rule is already removed */
6479 if (!list_elem)
6480 return 0;
6481 mutex_lock(rule_lock);
6482 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6483 remove_rule = true;
6484 } else if (list_elem->vsi_count > 1) {
6485 remove_rule = false;
6486 vsi_handle = rinfo->sw_act.vsi_handle;
6487 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6488 } else {
6489 vsi_handle = rinfo->sw_act.vsi_handle;
6490 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6491 if (status) {
6492 mutex_unlock(rule_lock);
6493 return status;
6494 }
6495 if (list_elem->vsi_count == 0)
6496 remove_rule = true;
6497 }
6498 mutex_unlock(rule_lock);
6499 if (remove_rule) {
6500 struct ice_sw_rule_lkup_rx_tx *s_rule;
6501 u16 rule_buf_sz;
6502
6503 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6504 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6505 if (!s_rule)
6506 return -ENOMEM;
6507 s_rule->act = 0;
6508 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6509 s_rule->hdr_len = 0;
6510 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6511 rule_buf_sz, 1,
6512 ice_aqc_opc_remove_sw_rules, NULL);
6513 if (!status || status == -ENOENT) {
6514 struct ice_switch_info *sw = hw->switch_info;
6515 struct ice_sw_recipe *r_list = sw->recp_list;
6516
6517 mutex_lock(rule_lock);
6518 list_del(&list_elem->list_entry);
6519 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6520 devm_kfree(ice_hw_to_dev(hw), list_elem);
6521 mutex_unlock(rule_lock);
6522 if (list_empty(&r_list[rid].filt_rules)) {
6523 r_list[rid].adv_rule = false;
6524
6525 /* All rules for this recipe are now removed */
6526 if (hw->recp_reuse)
6527 ice_release_recipe_res(hw,
6528 &r_list[rid]);
6529 }
6530 }
6531 kfree(s_rule);
6532 }
6533 return status;
6534 }
6535
6536 /**
6537 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6538 * @hw: pointer to the hardware structure
6539 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6540 *
6541 * This function is used to remove 1 rule at a time. The removal is based on
6542 * the remove_entry parameter. This function will remove rule for a given
6543 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6544 */
6545 int
ice_rem_adv_rule_by_id(struct ice_hw * hw,struct ice_rule_query_data * remove_entry)6546 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6547 struct ice_rule_query_data *remove_entry)
6548 {
6549 struct ice_adv_fltr_mgmt_list_entry *list_itr;
6550 struct list_head *list_head;
6551 struct ice_adv_rule_info rinfo;
6552 struct ice_switch_info *sw;
6553
6554 sw = hw->switch_info;
6555 if (!sw->recp_list[remove_entry->rid].recp_created)
6556 return -EINVAL;
6557 list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6558 list_for_each_entry(list_itr, list_head, list_entry) {
6559 if (list_itr->rule_info.fltr_rule_id ==
6560 remove_entry->rule_id) {
6561 rinfo = list_itr->rule_info;
6562 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6563 return ice_rem_adv_rule(hw, list_itr->lkups,
6564 list_itr->lkups_cnt, &rinfo);
6565 }
6566 }
6567 /* either list is empty or unable to find rule */
6568 return -ENOENT;
6569 }
6570
6571 /**
6572 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6573 * @hw: pointer to the hardware structure
6574 * @vsi_handle: driver VSI handle
6575 * @list_head: list for which filters need to be replayed
6576 *
6577 * Replay the advanced rule for the given VSI.
6578 */
6579 static int
ice_replay_vsi_adv_rule(struct ice_hw * hw,u16 vsi_handle,struct list_head * list_head)6580 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6581 struct list_head *list_head)
6582 {
6583 struct ice_rule_query_data added_entry = { 0 };
6584 struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6585 int status = 0;
6586
6587 if (list_empty(list_head))
6588 return status;
6589 list_for_each_entry(adv_fltr, list_head, list_entry) {
6590 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6591 u16 lk_cnt = adv_fltr->lkups_cnt;
6592
6593 if (vsi_handle != rinfo->sw_act.vsi_handle)
6594 continue;
6595 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6596 &added_entry);
6597 if (status)
6598 break;
6599 }
6600 return status;
6601 }
6602
6603 /**
6604 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6605 * @hw: pointer to the hardware structure
6606 * @vsi_handle: driver VSI handle
6607 *
6608 * Replays filters for requested VSI via vsi_handle.
6609 */
ice_replay_vsi_all_fltr(struct ice_hw * hw,u16 vsi_handle)6610 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6611 {
6612 struct ice_switch_info *sw = hw->switch_info;
6613 int status;
6614 u8 i;
6615
6616 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6617 struct list_head *head;
6618
6619 head = &sw->recp_list[i].filt_replay_rules;
6620 if (!sw->recp_list[i].adv_rule)
6621 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6622 else
6623 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6624 if (status)
6625 return status;
6626 }
6627 return status;
6628 }
6629
6630 /**
6631 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6632 * @hw: pointer to the HW struct
6633 *
6634 * Deletes the filter replay rules.
6635 */
ice_rm_all_sw_replay_rule_info(struct ice_hw * hw)6636 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6637 {
6638 struct ice_switch_info *sw = hw->switch_info;
6639 u8 i;
6640
6641 if (!sw)
6642 return;
6643
6644 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6645 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6646 struct list_head *l_head;
6647
6648 l_head = &sw->recp_list[i].filt_replay_rules;
6649 if (!sw->recp_list[i].adv_rule)
6650 ice_rem_sw_rule_info(hw, l_head);
6651 else
6652 ice_rem_adv_rule_info(hw, l_head);
6653 }
6654 }
6655 }
6656