1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5 
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/mutex.h"
11 #include "util/symbol.h"
12 #include "util/thread.h"
13 #include "util/header.h"
14 #include "util/session.h"
15 #include "util/tool.h"
16 #include "util/cloexec.h"
17 #include "util/thread_map.h"
18 #include "util/color.h"
19 #include "util/stat.h"
20 #include "util/string2.h"
21 #include "util/callchain.h"
22 #include "util/time-utils.h"
23 
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include "util/trace-event.h"
27 
28 #include "util/debug.h"
29 #include "util/event.h"
30 #include "util/util.h"
31 
32 #include <linux/kernel.h>
33 #include <linux/log2.h>
34 #include <linux/zalloc.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <inttypes.h>
38 
39 #include <errno.h>
40 #include <semaphore.h>
41 #include <pthread.h>
42 #include <math.h>
43 #include <api/fs/fs.h>
44 #include <perf/cpumap.h>
45 #include <linux/time64.h>
46 #include <linux/err.h>
47 
48 #include <linux/ctype.h>
49 
50 #define PR_SET_NAME		15               /* Set process name */
51 #define MAX_CPUS		4096
52 #define COMM_LEN		20
53 #define SYM_LEN			129
54 #define MAX_PID			1024000
55 #define MAX_PRIO		140
56 
57 static const char *cpu_list;
58 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
59 
60 struct sched_atom;
61 
62 struct task_desc {
63 	unsigned long		nr;
64 	unsigned long		pid;
65 	char			comm[COMM_LEN];
66 
67 	unsigned long		nr_events;
68 	unsigned long		curr_event;
69 	struct sched_atom	**atoms;
70 
71 	pthread_t		thread;
72 
73 	sem_t			ready_for_work;
74 	sem_t			work_done_sem;
75 
76 	u64			cpu_usage;
77 };
78 
79 enum sched_event_type {
80 	SCHED_EVENT_RUN,
81 	SCHED_EVENT_SLEEP,
82 	SCHED_EVENT_WAKEUP,
83 };
84 
85 struct sched_atom {
86 	enum sched_event_type	type;
87 	u64			timestamp;
88 	u64			duration;
89 	unsigned long		nr;
90 	sem_t			*wait_sem;
91 	struct task_desc	*wakee;
92 };
93 
94 enum thread_state {
95 	THREAD_SLEEPING = 0,
96 	THREAD_WAIT_CPU,
97 	THREAD_SCHED_IN,
98 	THREAD_IGNORE
99 };
100 
101 struct work_atom {
102 	struct list_head	list;
103 	enum thread_state	state;
104 	u64			sched_out_time;
105 	u64			wake_up_time;
106 	u64			sched_in_time;
107 	u64			runtime;
108 };
109 
110 struct work_atoms {
111 	struct list_head	work_list;
112 	struct thread		*thread;
113 	struct rb_node		node;
114 	u64			max_lat;
115 	u64			max_lat_start;
116 	u64			max_lat_end;
117 	u64			total_lat;
118 	u64			nb_atoms;
119 	u64			total_runtime;
120 	int			num_merged;
121 };
122 
123 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
124 
125 struct perf_sched;
126 
127 struct trace_sched_handler {
128 	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
129 			    struct perf_sample *sample, struct machine *machine);
130 
131 	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
132 			     struct perf_sample *sample, struct machine *machine);
133 
134 	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
135 			    struct perf_sample *sample, struct machine *machine);
136 
137 	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
138 	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
139 			  struct machine *machine);
140 
141 	int (*migrate_task_event)(struct perf_sched *sched,
142 				  struct evsel *evsel,
143 				  struct perf_sample *sample,
144 				  struct machine *machine);
145 };
146 
147 #define COLOR_PIDS PERF_COLOR_BLUE
148 #define COLOR_CPUS PERF_COLOR_BG_RED
149 
150 struct perf_sched_map {
151 	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
152 	struct perf_cpu		*comp_cpus;
153 	bool			 comp;
154 	struct perf_thread_map *color_pids;
155 	const char		*color_pids_str;
156 	struct perf_cpu_map	*color_cpus;
157 	const char		*color_cpus_str;
158 	const char		*task_name;
159 	struct strlist		*task_names;
160 	bool			fuzzy;
161 	struct perf_cpu_map	*cpus;
162 	const char		*cpus_str;
163 };
164 
165 struct perf_sched {
166 	struct perf_tool tool;
167 	const char	 *sort_order;
168 	unsigned long	 nr_tasks;
169 	struct task_desc **pid_to_task;
170 	struct task_desc **tasks;
171 	const struct trace_sched_handler *tp_handler;
172 	struct mutex	 start_work_mutex;
173 	struct mutex	 work_done_wait_mutex;
174 	int		 profile_cpu;
175 /*
176  * Track the current task - that way we can know whether there's any
177  * weird events, such as a task being switched away that is not current.
178  */
179 	struct perf_cpu	 max_cpu;
180 	u32		 *curr_pid;
181 	struct thread	 **curr_thread;
182 	struct thread	 **curr_out_thread;
183 	char		 next_shortname1;
184 	char		 next_shortname2;
185 	unsigned int	 replay_repeat;
186 	unsigned long	 nr_run_events;
187 	unsigned long	 nr_sleep_events;
188 	unsigned long	 nr_wakeup_events;
189 	unsigned long	 nr_sleep_corrections;
190 	unsigned long	 nr_run_events_optimized;
191 	unsigned long	 targetless_wakeups;
192 	unsigned long	 multitarget_wakeups;
193 	unsigned long	 nr_runs;
194 	unsigned long	 nr_timestamps;
195 	unsigned long	 nr_unordered_timestamps;
196 	unsigned long	 nr_context_switch_bugs;
197 	unsigned long	 nr_events;
198 	unsigned long	 nr_lost_chunks;
199 	unsigned long	 nr_lost_events;
200 	u64		 run_measurement_overhead;
201 	u64		 sleep_measurement_overhead;
202 	u64		 start_time;
203 	u64		 cpu_usage;
204 	u64		 runavg_cpu_usage;
205 	u64		 parent_cpu_usage;
206 	u64		 runavg_parent_cpu_usage;
207 	u64		 sum_runtime;
208 	u64		 sum_fluct;
209 	u64		 run_avg;
210 	u64		 all_runtime;
211 	u64		 all_count;
212 	u64		 *cpu_last_switched;
213 	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
214 	struct list_head sort_list, cmp_pid;
215 	bool force;
216 	bool skip_merge;
217 	struct perf_sched_map map;
218 
219 	/* options for timehist command */
220 	bool		summary;
221 	bool		summary_only;
222 	bool		idle_hist;
223 	bool		show_callchain;
224 	unsigned int	max_stack;
225 	bool		show_cpu_visual;
226 	bool		show_wakeups;
227 	bool		show_next;
228 	bool		show_migrations;
229 	bool		pre_migrations;
230 	bool		show_state;
231 	bool		show_prio;
232 	u64		skipped_samples;
233 	const char	*time_str;
234 	struct perf_time_interval ptime;
235 	struct perf_time_interval hist_time;
236 	volatile bool   thread_funcs_exit;
237 	const char	*prio_str;
238 	DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
239 };
240 
241 /* per thread run time data */
242 struct thread_runtime {
243 	u64 last_time;      /* time of previous sched in/out event */
244 	u64 dt_run;         /* run time */
245 	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
246 	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
247 	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
248 	u64 dt_delay;       /* time between wakeup and sched-in */
249 	u64 dt_pre_mig;     /* time between migration and wakeup */
250 	u64 ready_to_run;   /* time of wakeup */
251 	u64 migrated;	    /* time when a thread is migrated */
252 
253 	struct stats run_stats;
254 	u64 total_run_time;
255 	u64 total_sleep_time;
256 	u64 total_iowait_time;
257 	u64 total_preempt_time;
258 	u64 total_delay_time;
259 	u64 total_pre_mig_time;
260 
261 	char last_state;
262 
263 	char shortname[3];
264 	bool comm_changed;
265 
266 	u64 migrations;
267 
268 	int prio;
269 };
270 
271 /* per event run time data */
272 struct evsel_runtime {
273 	u64 *last_time; /* time this event was last seen per cpu */
274 	u32 ncpu;       /* highest cpu slot allocated */
275 };
276 
277 /* per cpu idle time data */
278 struct idle_thread_runtime {
279 	struct thread_runtime	tr;
280 	struct thread		*last_thread;
281 	struct rb_root_cached	sorted_root;
282 	struct callchain_root	callchain;
283 	struct callchain_cursor	cursor;
284 };
285 
286 /* track idle times per cpu */
287 static struct thread **idle_threads;
288 static int idle_max_cpu;
289 static char idle_comm[] = "<idle>";
290 
get_nsecs(void)291 static u64 get_nsecs(void)
292 {
293 	struct timespec ts;
294 
295 	clock_gettime(CLOCK_MONOTONIC, &ts);
296 
297 	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298 }
299 
burn_nsecs(struct perf_sched * sched,u64 nsecs)300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301 {
302 	u64 T0 = get_nsecs(), T1;
303 
304 	do {
305 		T1 = get_nsecs();
306 	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307 }
308 
sleep_nsecs(u64 nsecs)309 static void sleep_nsecs(u64 nsecs)
310 {
311 	struct timespec ts;
312 
313 	ts.tv_nsec = nsecs % 999999999;
314 	ts.tv_sec = nsecs / 999999999;
315 
316 	nanosleep(&ts, NULL);
317 }
318 
calibrate_run_measurement_overhead(struct perf_sched * sched)319 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320 {
321 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322 	int i;
323 
324 	for (i = 0; i < 10; i++) {
325 		T0 = get_nsecs();
326 		burn_nsecs(sched, 0);
327 		T1 = get_nsecs();
328 		delta = T1-T0;
329 		min_delta = min(min_delta, delta);
330 	}
331 	sched->run_measurement_overhead = min_delta;
332 
333 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334 }
335 
calibrate_sleep_measurement_overhead(struct perf_sched * sched)336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337 {
338 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339 	int i;
340 
341 	for (i = 0; i < 10; i++) {
342 		T0 = get_nsecs();
343 		sleep_nsecs(10000);
344 		T1 = get_nsecs();
345 		delta = T1-T0;
346 		min_delta = min(min_delta, delta);
347 	}
348 	min_delta -= 10000;
349 	sched->sleep_measurement_overhead = min_delta;
350 
351 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352 }
353 
354 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)355 get_new_event(struct task_desc *task, u64 timestamp)
356 {
357 	struct sched_atom *event = zalloc(sizeof(*event));
358 	unsigned long idx = task->nr_events;
359 	size_t size;
360 
361 	event->timestamp = timestamp;
362 	event->nr = idx;
363 
364 	task->nr_events++;
365 	size = sizeof(struct sched_atom *) * task->nr_events;
366 	task->atoms = realloc(task->atoms, size);
367 	BUG_ON(!task->atoms);
368 
369 	task->atoms[idx] = event;
370 
371 	return event;
372 }
373 
last_event(struct task_desc * task)374 static struct sched_atom *last_event(struct task_desc *task)
375 {
376 	if (!task->nr_events)
377 		return NULL;
378 
379 	return task->atoms[task->nr_events - 1];
380 }
381 
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383 				u64 timestamp, u64 duration)
384 {
385 	struct sched_atom *event, *curr_event = last_event(task);
386 
387 	/*
388 	 * optimize an existing RUN event by merging this one
389 	 * to it:
390 	 */
391 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392 		sched->nr_run_events_optimized++;
393 		curr_event->duration += duration;
394 		return;
395 	}
396 
397 	event = get_new_event(task, timestamp);
398 
399 	event->type = SCHED_EVENT_RUN;
400 	event->duration = duration;
401 
402 	sched->nr_run_events++;
403 }
404 
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406 				   u64 timestamp, struct task_desc *wakee)
407 {
408 	struct sched_atom *event, *wakee_event;
409 
410 	event = get_new_event(task, timestamp);
411 	event->type = SCHED_EVENT_WAKEUP;
412 	event->wakee = wakee;
413 
414 	wakee_event = last_event(wakee);
415 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416 		sched->targetless_wakeups++;
417 		return;
418 	}
419 	if (wakee_event->wait_sem) {
420 		sched->multitarget_wakeups++;
421 		return;
422 	}
423 
424 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425 	sem_init(wakee_event->wait_sem, 0, 0);
426 	event->wait_sem = wakee_event->wait_sem;
427 
428 	sched->nr_wakeup_events++;
429 }
430 
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp)431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
432 				  u64 timestamp)
433 {
434 	struct sched_atom *event = get_new_event(task, timestamp);
435 
436 	event->type = SCHED_EVENT_SLEEP;
437 
438 	sched->nr_sleep_events++;
439 }
440 
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)441 static struct task_desc *register_pid(struct perf_sched *sched,
442 				      unsigned long pid, const char *comm)
443 {
444 	struct task_desc *task;
445 	static int pid_max;
446 
447 	if (sched->pid_to_task == NULL) {
448 		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
449 			pid_max = MAX_PID;
450 		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
451 	}
452 	if (pid >= (unsigned long)pid_max) {
453 		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
454 			sizeof(struct task_desc *))) == NULL);
455 		while (pid >= (unsigned long)pid_max)
456 			sched->pid_to_task[pid_max++] = NULL;
457 	}
458 
459 	task = sched->pid_to_task[pid];
460 
461 	if (task)
462 		return task;
463 
464 	task = zalloc(sizeof(*task));
465 	task->pid = pid;
466 	task->nr = sched->nr_tasks;
467 	strcpy(task->comm, comm);
468 	/*
469 	 * every task starts in sleeping state - this gets ignored
470 	 * if there's no wakeup pointing to this sleep state:
471 	 */
472 	add_sched_event_sleep(sched, task, 0);
473 
474 	sched->pid_to_task[pid] = task;
475 	sched->nr_tasks++;
476 	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
477 	BUG_ON(!sched->tasks);
478 	sched->tasks[task->nr] = task;
479 
480 	if (verbose > 0)
481 		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
482 
483 	return task;
484 }
485 
486 
print_task_traces(struct perf_sched * sched)487 static void print_task_traces(struct perf_sched *sched)
488 {
489 	struct task_desc *task;
490 	unsigned long i;
491 
492 	for (i = 0; i < sched->nr_tasks; i++) {
493 		task = sched->tasks[i];
494 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
495 			task->nr, task->comm, task->pid, task->nr_events);
496 	}
497 }
498 
add_cross_task_wakeups(struct perf_sched * sched)499 static void add_cross_task_wakeups(struct perf_sched *sched)
500 {
501 	struct task_desc *task1, *task2;
502 	unsigned long i, j;
503 
504 	for (i = 0; i < sched->nr_tasks; i++) {
505 		task1 = sched->tasks[i];
506 		j = i + 1;
507 		if (j == sched->nr_tasks)
508 			j = 0;
509 		task2 = sched->tasks[j];
510 		add_sched_event_wakeup(sched, task1, 0, task2);
511 	}
512 }
513 
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)514 static void perf_sched__process_event(struct perf_sched *sched,
515 				      struct sched_atom *atom)
516 {
517 	int ret = 0;
518 
519 	switch (atom->type) {
520 		case SCHED_EVENT_RUN:
521 			burn_nsecs(sched, atom->duration);
522 			break;
523 		case SCHED_EVENT_SLEEP:
524 			if (atom->wait_sem)
525 				ret = sem_wait(atom->wait_sem);
526 			BUG_ON(ret);
527 			break;
528 		case SCHED_EVENT_WAKEUP:
529 			if (atom->wait_sem)
530 				ret = sem_post(atom->wait_sem);
531 			BUG_ON(ret);
532 			break;
533 		default:
534 			BUG_ON(1);
535 	}
536 }
537 
get_cpu_usage_nsec_parent(void)538 static u64 get_cpu_usage_nsec_parent(void)
539 {
540 	struct rusage ru;
541 	u64 sum;
542 	int err;
543 
544 	err = getrusage(RUSAGE_SELF, &ru);
545 	BUG_ON(err);
546 
547 	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
548 	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
549 
550 	return sum;
551 }
552 
self_open_counters(struct perf_sched * sched,unsigned long cur_task)553 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
554 {
555 	struct perf_event_attr attr;
556 	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
557 	int fd;
558 	struct rlimit limit;
559 	bool need_privilege = false;
560 
561 	memset(&attr, 0, sizeof(attr));
562 
563 	attr.type = PERF_TYPE_SOFTWARE;
564 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
565 
566 force_again:
567 	fd = sys_perf_event_open(&attr, 0, -1, -1,
568 				 perf_event_open_cloexec_flag());
569 
570 	if (fd < 0) {
571 		if (errno == EMFILE) {
572 			if (sched->force) {
573 				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
574 				limit.rlim_cur += sched->nr_tasks - cur_task;
575 				if (limit.rlim_cur > limit.rlim_max) {
576 					limit.rlim_max = limit.rlim_cur;
577 					need_privilege = true;
578 				}
579 				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
580 					if (need_privilege && errno == EPERM)
581 						strcpy(info, "Need privilege\n");
582 				} else
583 					goto force_again;
584 			} else
585 				strcpy(info, "Have a try with -f option\n");
586 		}
587 		pr_err("Error: sys_perf_event_open() syscall returned "
588 		       "with %d (%s)\n%s", fd,
589 		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
590 		exit(EXIT_FAILURE);
591 	}
592 	return fd;
593 }
594 
get_cpu_usage_nsec_self(int fd)595 static u64 get_cpu_usage_nsec_self(int fd)
596 {
597 	u64 runtime;
598 	int ret;
599 
600 	ret = read(fd, &runtime, sizeof(runtime));
601 	BUG_ON(ret != sizeof(runtime));
602 
603 	return runtime;
604 }
605 
606 struct sched_thread_parms {
607 	struct task_desc  *task;
608 	struct perf_sched *sched;
609 	int fd;
610 };
611 
thread_func(void * ctx)612 static void *thread_func(void *ctx)
613 {
614 	struct sched_thread_parms *parms = ctx;
615 	struct task_desc *this_task = parms->task;
616 	struct perf_sched *sched = parms->sched;
617 	u64 cpu_usage_0, cpu_usage_1;
618 	unsigned long i, ret;
619 	char comm2[22];
620 	int fd = parms->fd;
621 
622 	zfree(&parms);
623 
624 	sprintf(comm2, ":%s", this_task->comm);
625 	prctl(PR_SET_NAME, comm2);
626 	if (fd < 0)
627 		return NULL;
628 
629 	while (!sched->thread_funcs_exit) {
630 		ret = sem_post(&this_task->ready_for_work);
631 		BUG_ON(ret);
632 		mutex_lock(&sched->start_work_mutex);
633 		mutex_unlock(&sched->start_work_mutex);
634 
635 		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
636 
637 		for (i = 0; i < this_task->nr_events; i++) {
638 			this_task->curr_event = i;
639 			perf_sched__process_event(sched, this_task->atoms[i]);
640 		}
641 
642 		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
643 		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
644 		ret = sem_post(&this_task->work_done_sem);
645 		BUG_ON(ret);
646 
647 		mutex_lock(&sched->work_done_wait_mutex);
648 		mutex_unlock(&sched->work_done_wait_mutex);
649 	}
650 	return NULL;
651 }
652 
create_tasks(struct perf_sched * sched)653 static void create_tasks(struct perf_sched *sched)
654 	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
655 	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
656 {
657 	struct task_desc *task;
658 	pthread_attr_t attr;
659 	unsigned long i;
660 	int err;
661 
662 	err = pthread_attr_init(&attr);
663 	BUG_ON(err);
664 	err = pthread_attr_setstacksize(&attr,
665 			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
666 	BUG_ON(err);
667 	mutex_lock(&sched->start_work_mutex);
668 	mutex_lock(&sched->work_done_wait_mutex);
669 	for (i = 0; i < sched->nr_tasks; i++) {
670 		struct sched_thread_parms *parms = malloc(sizeof(*parms));
671 		BUG_ON(parms == NULL);
672 		parms->task = task = sched->tasks[i];
673 		parms->sched = sched;
674 		parms->fd = self_open_counters(sched, i);
675 		sem_init(&task->ready_for_work, 0, 0);
676 		sem_init(&task->work_done_sem, 0, 0);
677 		task->curr_event = 0;
678 		err = pthread_create(&task->thread, &attr, thread_func, parms);
679 		BUG_ON(err);
680 	}
681 }
682 
destroy_tasks(struct perf_sched * sched)683 static void destroy_tasks(struct perf_sched *sched)
684 	UNLOCK_FUNCTION(sched->start_work_mutex)
685 	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
686 {
687 	struct task_desc *task;
688 	unsigned long i;
689 	int err;
690 
691 	mutex_unlock(&sched->start_work_mutex);
692 	mutex_unlock(&sched->work_done_wait_mutex);
693 	/* Get rid of threads so they won't be upset by mutex destrunction */
694 	for (i = 0; i < sched->nr_tasks; i++) {
695 		task = sched->tasks[i];
696 		err = pthread_join(task->thread, NULL);
697 		BUG_ON(err);
698 		sem_destroy(&task->ready_for_work);
699 		sem_destroy(&task->work_done_sem);
700 	}
701 }
702 
wait_for_tasks(struct perf_sched * sched)703 static void wait_for_tasks(struct perf_sched *sched)
704 	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
705 	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
706 {
707 	u64 cpu_usage_0, cpu_usage_1;
708 	struct task_desc *task;
709 	unsigned long i, ret;
710 
711 	sched->start_time = get_nsecs();
712 	sched->cpu_usage = 0;
713 	mutex_unlock(&sched->work_done_wait_mutex);
714 
715 	for (i = 0; i < sched->nr_tasks; i++) {
716 		task = sched->tasks[i];
717 		ret = sem_wait(&task->ready_for_work);
718 		BUG_ON(ret);
719 		sem_init(&task->ready_for_work, 0, 0);
720 	}
721 	mutex_lock(&sched->work_done_wait_mutex);
722 
723 	cpu_usage_0 = get_cpu_usage_nsec_parent();
724 
725 	mutex_unlock(&sched->start_work_mutex);
726 
727 	for (i = 0; i < sched->nr_tasks; i++) {
728 		task = sched->tasks[i];
729 		ret = sem_wait(&task->work_done_sem);
730 		BUG_ON(ret);
731 		sem_init(&task->work_done_sem, 0, 0);
732 		sched->cpu_usage += task->cpu_usage;
733 		task->cpu_usage = 0;
734 	}
735 
736 	cpu_usage_1 = get_cpu_usage_nsec_parent();
737 	if (!sched->runavg_cpu_usage)
738 		sched->runavg_cpu_usage = sched->cpu_usage;
739 	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
740 
741 	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
742 	if (!sched->runavg_parent_cpu_usage)
743 		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
744 	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
745 					 sched->parent_cpu_usage)/sched->replay_repeat;
746 
747 	mutex_lock(&sched->start_work_mutex);
748 
749 	for (i = 0; i < sched->nr_tasks; i++) {
750 		task = sched->tasks[i];
751 		task->curr_event = 0;
752 	}
753 }
754 
run_one_test(struct perf_sched * sched)755 static void run_one_test(struct perf_sched *sched)
756 	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
757 	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
758 {
759 	u64 T0, T1, delta, avg_delta, fluct;
760 
761 	T0 = get_nsecs();
762 	wait_for_tasks(sched);
763 	T1 = get_nsecs();
764 
765 	delta = T1 - T0;
766 	sched->sum_runtime += delta;
767 	sched->nr_runs++;
768 
769 	avg_delta = sched->sum_runtime / sched->nr_runs;
770 	if (delta < avg_delta)
771 		fluct = avg_delta - delta;
772 	else
773 		fluct = delta - avg_delta;
774 	sched->sum_fluct += fluct;
775 	if (!sched->run_avg)
776 		sched->run_avg = delta;
777 	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
778 
779 	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
780 
781 	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
782 
783 	printf("cpu: %0.2f / %0.2f",
784 		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
785 
786 #if 0
787 	/*
788 	 * rusage statistics done by the parent, these are less
789 	 * accurate than the sched->sum_exec_runtime based statistics:
790 	 */
791 	printf(" [%0.2f / %0.2f]",
792 		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
793 		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
794 #endif
795 
796 	printf("\n");
797 
798 	if (sched->nr_sleep_corrections)
799 		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
800 	sched->nr_sleep_corrections = 0;
801 }
802 
test_calibrations(struct perf_sched * sched)803 static void test_calibrations(struct perf_sched *sched)
804 {
805 	u64 T0, T1;
806 
807 	T0 = get_nsecs();
808 	burn_nsecs(sched, NSEC_PER_MSEC);
809 	T1 = get_nsecs();
810 
811 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
812 
813 	T0 = get_nsecs();
814 	sleep_nsecs(NSEC_PER_MSEC);
815 	T1 = get_nsecs();
816 
817 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
818 }
819 
820 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)821 replay_wakeup_event(struct perf_sched *sched,
822 		    struct evsel *evsel, struct perf_sample *sample,
823 		    struct machine *machine __maybe_unused)
824 {
825 	const char *comm = evsel__strval(evsel, sample, "comm");
826 	const u32 pid	 = evsel__intval(evsel, sample, "pid");
827 	struct task_desc *waker, *wakee;
828 
829 	if (verbose > 0) {
830 		printf("sched_wakeup event %p\n", evsel);
831 
832 		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
833 	}
834 
835 	waker = register_pid(sched, sample->tid, "<unknown>");
836 	wakee = register_pid(sched, pid, comm);
837 
838 	add_sched_event_wakeup(sched, waker, sample->time, wakee);
839 	return 0;
840 }
841 
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)842 static int replay_switch_event(struct perf_sched *sched,
843 			       struct evsel *evsel,
844 			       struct perf_sample *sample,
845 			       struct machine *machine __maybe_unused)
846 {
847 	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
848 		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
849 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
850 		  next_pid = evsel__intval(evsel, sample, "next_pid");
851 	struct task_desc *prev, __maybe_unused *next;
852 	u64 timestamp0, timestamp = sample->time;
853 	int cpu = sample->cpu;
854 	s64 delta;
855 
856 	if (verbose > 0)
857 		printf("sched_switch event %p\n", evsel);
858 
859 	if (cpu >= MAX_CPUS || cpu < 0)
860 		return 0;
861 
862 	timestamp0 = sched->cpu_last_switched[cpu];
863 	if (timestamp0)
864 		delta = timestamp - timestamp0;
865 	else
866 		delta = 0;
867 
868 	if (delta < 0) {
869 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
870 		return -1;
871 	}
872 
873 	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
874 		 prev_comm, prev_pid, next_comm, next_pid, delta);
875 
876 	prev = register_pid(sched, prev_pid, prev_comm);
877 	next = register_pid(sched, next_pid, next_comm);
878 
879 	sched->cpu_last_switched[cpu] = timestamp;
880 
881 	add_sched_event_run(sched, prev, timestamp, delta);
882 	add_sched_event_sleep(sched, prev, timestamp);
883 
884 	return 0;
885 }
886 
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)887 static int replay_fork_event(struct perf_sched *sched,
888 			     union perf_event *event,
889 			     struct machine *machine)
890 {
891 	struct thread *child, *parent;
892 
893 	child = machine__findnew_thread(machine, event->fork.pid,
894 					event->fork.tid);
895 	parent = machine__findnew_thread(machine, event->fork.ppid,
896 					 event->fork.ptid);
897 
898 	if (child == NULL || parent == NULL) {
899 		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
900 				 child, parent);
901 		goto out_put;
902 	}
903 
904 	if (verbose > 0) {
905 		printf("fork event\n");
906 		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
907 		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
908 	}
909 
910 	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
911 	register_pid(sched, thread__tid(child), thread__comm_str(child));
912 out_put:
913 	thread__put(child);
914 	thread__put(parent);
915 	return 0;
916 }
917 
918 struct sort_dimension {
919 	const char		*name;
920 	sort_fn_t		cmp;
921 	struct list_head	list;
922 };
923 
init_prio(struct thread_runtime * r)924 static inline void init_prio(struct thread_runtime *r)
925 {
926 	r->prio = -1;
927 }
928 
929 /*
930  * handle runtime stats saved per thread
931  */
thread__init_runtime(struct thread * thread)932 static struct thread_runtime *thread__init_runtime(struct thread *thread)
933 {
934 	struct thread_runtime *r;
935 
936 	r = zalloc(sizeof(struct thread_runtime));
937 	if (!r)
938 		return NULL;
939 
940 	init_stats(&r->run_stats);
941 	init_prio(r);
942 	thread__set_priv(thread, r);
943 
944 	return r;
945 }
946 
thread__get_runtime(struct thread * thread)947 static struct thread_runtime *thread__get_runtime(struct thread *thread)
948 {
949 	struct thread_runtime *tr;
950 
951 	tr = thread__priv(thread);
952 	if (tr == NULL) {
953 		tr = thread__init_runtime(thread);
954 		if (tr == NULL)
955 			pr_debug("Failed to malloc memory for runtime data.\n");
956 	}
957 
958 	return tr;
959 }
960 
961 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)962 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
963 {
964 	struct sort_dimension *sort;
965 	int ret = 0;
966 
967 	BUG_ON(list_empty(list));
968 
969 	list_for_each_entry(sort, list, list) {
970 		ret = sort->cmp(l, r);
971 		if (ret)
972 			return ret;
973 	}
974 
975 	return ret;
976 }
977 
978 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)979 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
980 			 struct list_head *sort_list)
981 {
982 	struct rb_node *node = root->rb_root.rb_node;
983 	struct work_atoms key = { .thread = thread };
984 
985 	while (node) {
986 		struct work_atoms *atoms;
987 		int cmp;
988 
989 		atoms = container_of(node, struct work_atoms, node);
990 
991 		cmp = thread_lat_cmp(sort_list, &key, atoms);
992 		if (cmp > 0)
993 			node = node->rb_left;
994 		else if (cmp < 0)
995 			node = node->rb_right;
996 		else {
997 			BUG_ON(thread != atoms->thread);
998 			return atoms;
999 		}
1000 	}
1001 	return NULL;
1002 }
1003 
1004 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)1005 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1006 			 struct list_head *sort_list)
1007 {
1008 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1009 	bool leftmost = true;
1010 
1011 	while (*new) {
1012 		struct work_atoms *this;
1013 		int cmp;
1014 
1015 		this = container_of(*new, struct work_atoms, node);
1016 		parent = *new;
1017 
1018 		cmp = thread_lat_cmp(sort_list, data, this);
1019 
1020 		if (cmp > 0)
1021 			new = &((*new)->rb_left);
1022 		else {
1023 			new = &((*new)->rb_right);
1024 			leftmost = false;
1025 		}
1026 	}
1027 
1028 	rb_link_node(&data->node, parent, new);
1029 	rb_insert_color_cached(&data->node, root, leftmost);
1030 }
1031 
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1032 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1033 {
1034 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1035 	if (!atoms) {
1036 		pr_err("No memory at %s\n", __func__);
1037 		return -1;
1038 	}
1039 
1040 	atoms->thread = thread__get(thread);
1041 	INIT_LIST_HEAD(&atoms->work_list);
1042 	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1043 	return 0;
1044 }
1045 
1046 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1047 add_sched_out_event(struct work_atoms *atoms,
1048 		    char run_state,
1049 		    u64 timestamp)
1050 {
1051 	struct work_atom *atom = zalloc(sizeof(*atom));
1052 	if (!atom) {
1053 		pr_err("Non memory at %s", __func__);
1054 		return -1;
1055 	}
1056 
1057 	atom->sched_out_time = timestamp;
1058 
1059 	if (run_state == 'R') {
1060 		atom->state = THREAD_WAIT_CPU;
1061 		atom->wake_up_time = atom->sched_out_time;
1062 	}
1063 
1064 	list_add_tail(&atom->list, &atoms->work_list);
1065 	return 0;
1066 }
1067 
1068 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1069 add_runtime_event(struct work_atoms *atoms, u64 delta,
1070 		  u64 timestamp __maybe_unused)
1071 {
1072 	struct work_atom *atom;
1073 
1074 	BUG_ON(list_empty(&atoms->work_list));
1075 
1076 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1077 
1078 	atom->runtime += delta;
1079 	atoms->total_runtime += delta;
1080 }
1081 
1082 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1083 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1084 {
1085 	struct work_atom *atom;
1086 	u64 delta;
1087 
1088 	if (list_empty(&atoms->work_list))
1089 		return;
1090 
1091 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092 
1093 	if (atom->state != THREAD_WAIT_CPU)
1094 		return;
1095 
1096 	if (timestamp < atom->wake_up_time) {
1097 		atom->state = THREAD_IGNORE;
1098 		return;
1099 	}
1100 
1101 	atom->state = THREAD_SCHED_IN;
1102 	atom->sched_in_time = timestamp;
1103 
1104 	delta = atom->sched_in_time - atom->wake_up_time;
1105 	atoms->total_lat += delta;
1106 	if (delta > atoms->max_lat) {
1107 		atoms->max_lat = delta;
1108 		atoms->max_lat_start = atom->wake_up_time;
1109 		atoms->max_lat_end = timestamp;
1110 	}
1111 	atoms->nb_atoms++;
1112 }
1113 
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1114 static int latency_switch_event(struct perf_sched *sched,
1115 				struct evsel *evsel,
1116 				struct perf_sample *sample,
1117 				struct machine *machine)
1118 {
1119 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1120 		  next_pid = evsel__intval(evsel, sample, "next_pid");
1121 	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1122 	struct work_atoms *out_events, *in_events;
1123 	struct thread *sched_out, *sched_in;
1124 	u64 timestamp0, timestamp = sample->time;
1125 	int cpu = sample->cpu, err = -1;
1126 	s64 delta;
1127 
1128 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1129 
1130 	timestamp0 = sched->cpu_last_switched[cpu];
1131 	sched->cpu_last_switched[cpu] = timestamp;
1132 	if (timestamp0)
1133 		delta = timestamp - timestamp0;
1134 	else
1135 		delta = 0;
1136 
1137 	if (delta < 0) {
1138 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1139 		return -1;
1140 	}
1141 
1142 	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1143 	sched_in = machine__findnew_thread(machine, -1, next_pid);
1144 	if (sched_out == NULL || sched_in == NULL)
1145 		goto out_put;
1146 
1147 	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1148 	if (!out_events) {
1149 		if (thread_atoms_insert(sched, sched_out))
1150 			goto out_put;
1151 		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1152 		if (!out_events) {
1153 			pr_err("out-event: Internal tree error");
1154 			goto out_put;
1155 		}
1156 	}
1157 	if (add_sched_out_event(out_events, prev_state, timestamp))
1158 		return -1;
1159 
1160 	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1161 	if (!in_events) {
1162 		if (thread_atoms_insert(sched, sched_in))
1163 			goto out_put;
1164 		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1165 		if (!in_events) {
1166 			pr_err("in-event: Internal tree error");
1167 			goto out_put;
1168 		}
1169 		/*
1170 		 * Take came in we have not heard about yet,
1171 		 * add in an initial atom in runnable state:
1172 		 */
1173 		if (add_sched_out_event(in_events, 'R', timestamp))
1174 			goto out_put;
1175 	}
1176 	add_sched_in_event(in_events, timestamp);
1177 	err = 0;
1178 out_put:
1179 	thread__put(sched_out);
1180 	thread__put(sched_in);
1181 	return err;
1182 }
1183 
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1184 static int latency_runtime_event(struct perf_sched *sched,
1185 				 struct evsel *evsel,
1186 				 struct perf_sample *sample,
1187 				 struct machine *machine)
1188 {
1189 	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1190 	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1191 	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1192 	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193 	u64 timestamp = sample->time;
1194 	int cpu = sample->cpu, err = -1;
1195 
1196 	if (thread == NULL)
1197 		return -1;
1198 
1199 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1200 	if (!atoms) {
1201 		if (thread_atoms_insert(sched, thread))
1202 			goto out_put;
1203 		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1204 		if (!atoms) {
1205 			pr_err("in-event: Internal tree error");
1206 			goto out_put;
1207 		}
1208 		if (add_sched_out_event(atoms, 'R', timestamp))
1209 			goto out_put;
1210 	}
1211 
1212 	add_runtime_event(atoms, runtime, timestamp);
1213 	err = 0;
1214 out_put:
1215 	thread__put(thread);
1216 	return err;
1217 }
1218 
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1219 static int latency_wakeup_event(struct perf_sched *sched,
1220 				struct evsel *evsel,
1221 				struct perf_sample *sample,
1222 				struct machine *machine)
1223 {
1224 	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1225 	struct work_atoms *atoms;
1226 	struct work_atom *atom;
1227 	struct thread *wakee;
1228 	u64 timestamp = sample->time;
1229 	int err = -1;
1230 
1231 	wakee = machine__findnew_thread(machine, -1, pid);
1232 	if (wakee == NULL)
1233 		return -1;
1234 	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1235 	if (!atoms) {
1236 		if (thread_atoms_insert(sched, wakee))
1237 			goto out_put;
1238 		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1239 		if (!atoms) {
1240 			pr_err("wakeup-event: Internal tree error");
1241 			goto out_put;
1242 		}
1243 		if (add_sched_out_event(atoms, 'S', timestamp))
1244 			goto out_put;
1245 	}
1246 
1247 	BUG_ON(list_empty(&atoms->work_list));
1248 
1249 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1250 
1251 	/*
1252 	 * As we do not guarantee the wakeup event happens when
1253 	 * task is out of run queue, also may happen when task is
1254 	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1255 	 * then we should not set the ->wake_up_time when wake up a
1256 	 * task which is on run queue.
1257 	 *
1258 	 * You WILL be missing events if you've recorded only
1259 	 * one CPU, or are only looking at only one, so don't
1260 	 * skip in this case.
1261 	 */
1262 	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1263 		goto out_ok;
1264 
1265 	sched->nr_timestamps++;
1266 	if (atom->sched_out_time > timestamp) {
1267 		sched->nr_unordered_timestamps++;
1268 		goto out_ok;
1269 	}
1270 
1271 	atom->state = THREAD_WAIT_CPU;
1272 	atom->wake_up_time = timestamp;
1273 out_ok:
1274 	err = 0;
1275 out_put:
1276 	thread__put(wakee);
1277 	return err;
1278 }
1279 
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1280 static int latency_migrate_task_event(struct perf_sched *sched,
1281 				      struct evsel *evsel,
1282 				      struct perf_sample *sample,
1283 				      struct machine *machine)
1284 {
1285 	const u32 pid = evsel__intval(evsel, sample, "pid");
1286 	u64 timestamp = sample->time;
1287 	struct work_atoms *atoms;
1288 	struct work_atom *atom;
1289 	struct thread *migrant;
1290 	int err = -1;
1291 
1292 	/*
1293 	 * Only need to worry about migration when profiling one CPU.
1294 	 */
1295 	if (sched->profile_cpu == -1)
1296 		return 0;
1297 
1298 	migrant = machine__findnew_thread(machine, -1, pid);
1299 	if (migrant == NULL)
1300 		return -1;
1301 	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1302 	if (!atoms) {
1303 		if (thread_atoms_insert(sched, migrant))
1304 			goto out_put;
1305 		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1306 		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1307 		if (!atoms) {
1308 			pr_err("migration-event: Internal tree error");
1309 			goto out_put;
1310 		}
1311 		if (add_sched_out_event(atoms, 'R', timestamp))
1312 			goto out_put;
1313 	}
1314 
1315 	BUG_ON(list_empty(&atoms->work_list));
1316 
1317 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1318 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1319 
1320 	sched->nr_timestamps++;
1321 
1322 	if (atom->sched_out_time > timestamp)
1323 		sched->nr_unordered_timestamps++;
1324 	err = 0;
1325 out_put:
1326 	thread__put(migrant);
1327 	return err;
1328 }
1329 
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1330 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1331 {
1332 	int i;
1333 	int ret;
1334 	u64 avg;
1335 	char max_lat_start[32], max_lat_end[32];
1336 
1337 	if (!work_list->nb_atoms)
1338 		return;
1339 	/*
1340 	 * Ignore idle threads:
1341 	 */
1342 	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1343 		return;
1344 
1345 	sched->all_runtime += work_list->total_runtime;
1346 	sched->all_count   += work_list->nb_atoms;
1347 
1348 	if (work_list->num_merged > 1) {
1349 		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1350 			     work_list->num_merged);
1351 	} else {
1352 		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1353 			     thread__tid(work_list->thread));
1354 	}
1355 
1356 	for (i = 0; i < 24 - ret; i++)
1357 		printf(" ");
1358 
1359 	avg = work_list->total_lat / work_list->nb_atoms;
1360 	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1361 	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1362 
1363 	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1364 	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1365 		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1366 		 (double)work_list->max_lat / NSEC_PER_MSEC,
1367 		 max_lat_start, max_lat_end);
1368 }
1369 
pid_cmp(struct work_atoms * l,struct work_atoms * r)1370 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1371 {
1372 	pid_t l_tid, r_tid;
1373 
1374 	if (RC_CHK_EQUAL(l->thread, r->thread))
1375 		return 0;
1376 	l_tid = thread__tid(l->thread);
1377 	r_tid = thread__tid(r->thread);
1378 	if (l_tid < r_tid)
1379 		return -1;
1380 	if (l_tid > r_tid)
1381 		return 1;
1382 	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1383 }
1384 
avg_cmp(struct work_atoms * l,struct work_atoms * r)1385 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387 	u64 avgl, avgr;
1388 
1389 	if (!l->nb_atoms)
1390 		return -1;
1391 
1392 	if (!r->nb_atoms)
1393 		return 1;
1394 
1395 	avgl = l->total_lat / l->nb_atoms;
1396 	avgr = r->total_lat / r->nb_atoms;
1397 
1398 	if (avgl < avgr)
1399 		return -1;
1400 	if (avgl > avgr)
1401 		return 1;
1402 
1403 	return 0;
1404 }
1405 
max_cmp(struct work_atoms * l,struct work_atoms * r)1406 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1407 {
1408 	if (l->max_lat < r->max_lat)
1409 		return -1;
1410 	if (l->max_lat > r->max_lat)
1411 		return 1;
1412 
1413 	return 0;
1414 }
1415 
switch_cmp(struct work_atoms * l,struct work_atoms * r)1416 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1417 {
1418 	if (l->nb_atoms < r->nb_atoms)
1419 		return -1;
1420 	if (l->nb_atoms > r->nb_atoms)
1421 		return 1;
1422 
1423 	return 0;
1424 }
1425 
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1426 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1427 {
1428 	if (l->total_runtime < r->total_runtime)
1429 		return -1;
1430 	if (l->total_runtime > r->total_runtime)
1431 		return 1;
1432 
1433 	return 0;
1434 }
1435 
sort_dimension__add(const char * tok,struct list_head * list)1436 static int sort_dimension__add(const char *tok, struct list_head *list)
1437 {
1438 	size_t i;
1439 	static struct sort_dimension avg_sort_dimension = {
1440 		.name = "avg",
1441 		.cmp  = avg_cmp,
1442 	};
1443 	static struct sort_dimension max_sort_dimension = {
1444 		.name = "max",
1445 		.cmp  = max_cmp,
1446 	};
1447 	static struct sort_dimension pid_sort_dimension = {
1448 		.name = "pid",
1449 		.cmp  = pid_cmp,
1450 	};
1451 	static struct sort_dimension runtime_sort_dimension = {
1452 		.name = "runtime",
1453 		.cmp  = runtime_cmp,
1454 	};
1455 	static struct sort_dimension switch_sort_dimension = {
1456 		.name = "switch",
1457 		.cmp  = switch_cmp,
1458 	};
1459 	struct sort_dimension *available_sorts[] = {
1460 		&pid_sort_dimension,
1461 		&avg_sort_dimension,
1462 		&max_sort_dimension,
1463 		&switch_sort_dimension,
1464 		&runtime_sort_dimension,
1465 	};
1466 
1467 	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1468 		if (!strcmp(available_sorts[i]->name, tok)) {
1469 			list_add_tail(&available_sorts[i]->list, list);
1470 
1471 			return 0;
1472 		}
1473 	}
1474 
1475 	return -1;
1476 }
1477 
perf_sched__sort_lat(struct perf_sched * sched)1478 static void perf_sched__sort_lat(struct perf_sched *sched)
1479 {
1480 	struct rb_node *node;
1481 	struct rb_root_cached *root = &sched->atom_root;
1482 again:
1483 	for (;;) {
1484 		struct work_atoms *data;
1485 		node = rb_first_cached(root);
1486 		if (!node)
1487 			break;
1488 
1489 		rb_erase_cached(node, root);
1490 		data = rb_entry(node, struct work_atoms, node);
1491 		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1492 	}
1493 	if (root == &sched->atom_root) {
1494 		root = &sched->merged_atom_root;
1495 		goto again;
1496 	}
1497 }
1498 
process_sched_wakeup_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1499 static int process_sched_wakeup_event(const struct perf_tool *tool,
1500 				      struct evsel *evsel,
1501 				      struct perf_sample *sample,
1502 				      struct machine *machine)
1503 {
1504 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1505 
1506 	if (sched->tp_handler->wakeup_event)
1507 		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1508 
1509 	return 0;
1510 }
1511 
process_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1512 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1513 				      struct evsel *evsel __maybe_unused,
1514 				      struct perf_sample *sample __maybe_unused,
1515 				      struct machine *machine __maybe_unused)
1516 {
1517 	return 0;
1518 }
1519 
1520 union map_priv {
1521 	void	*ptr;
1522 	bool	 color;
1523 };
1524 
thread__has_color(struct thread * thread)1525 static bool thread__has_color(struct thread *thread)
1526 {
1527 	union map_priv priv = {
1528 		.ptr = thread__priv(thread),
1529 	};
1530 
1531 	return priv.color;
1532 }
1533 
1534 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1535 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1536 {
1537 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1538 	union map_priv priv = {
1539 		.color = false,
1540 	};
1541 
1542 	if (!sched->map.color_pids || !thread || thread__priv(thread))
1543 		return thread;
1544 
1545 	if (thread_map__has(sched->map.color_pids, tid))
1546 		priv.color = true;
1547 
1548 	thread__set_priv(thread, priv.ptr);
1549 	return thread;
1550 }
1551 
sched_match_task(struct perf_sched * sched,const char * comm_str)1552 static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1553 {
1554 	bool fuzzy_match = sched->map.fuzzy;
1555 	struct strlist *task_names = sched->map.task_names;
1556 	struct str_node *node;
1557 
1558 	strlist__for_each_entry(node, task_names) {
1559 		bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1560 							!strcmp(comm_str, node->s);
1561 		if (match_found)
1562 			return true;
1563 	}
1564 
1565 	return false;
1566 }
1567 
print_sched_map(struct perf_sched * sched,struct perf_cpu this_cpu,int cpus_nr,const char * color,bool sched_out)1568 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1569 								const char *color, bool sched_out)
1570 {
1571 	for (int i = 0; i < cpus_nr; i++) {
1572 		struct perf_cpu cpu = {
1573 			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1574 		};
1575 		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1576 		struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1577 		struct thread_runtime *curr_tr;
1578 		const char *pid_color = color;
1579 		const char *cpu_color = color;
1580 		char symbol = ' ';
1581 		struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1582 
1583 		if (thread_to_check && thread__has_color(thread_to_check))
1584 			pid_color = COLOR_PIDS;
1585 
1586 		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1587 			cpu_color = COLOR_CPUS;
1588 
1589 		if (cpu.cpu == this_cpu.cpu)
1590 			symbol = '*';
1591 
1592 		color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1593 
1594 		thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1595 								sched->curr_thread[cpu.cpu];
1596 
1597 		if (thread_to_check) {
1598 			curr_tr = thread__get_runtime(thread_to_check);
1599 			if (curr_tr == NULL)
1600 				return;
1601 
1602 			if (sched_out) {
1603 				if (cpu.cpu == this_cpu.cpu)
1604 					color_fprintf(stdout, color, "-  ");
1605 				else {
1606 					curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1607 					if (curr_tr != NULL)
1608 						color_fprintf(stdout, pid_color, "%2s ",
1609 										curr_tr->shortname);
1610 				}
1611 			} else
1612 				color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1613 		} else
1614 			color_fprintf(stdout, color, "   ");
1615 	}
1616 }
1617 
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1618 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1619 			    struct perf_sample *sample, struct machine *machine)
1620 {
1621 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1622 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1623 	struct thread *sched_in, *sched_out;
1624 	struct thread_runtime *tr;
1625 	int new_shortname;
1626 	u64 timestamp0, timestamp = sample->time;
1627 	s64 delta;
1628 	struct perf_cpu this_cpu = {
1629 		.cpu = sample->cpu,
1630 	};
1631 	int cpus_nr;
1632 	int proceed;
1633 	bool new_cpu = false;
1634 	const char *color = PERF_COLOR_NORMAL;
1635 	char stimestamp[32];
1636 	const char *str;
1637 
1638 	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1639 
1640 	if (this_cpu.cpu > sched->max_cpu.cpu)
1641 		sched->max_cpu = this_cpu;
1642 
1643 	if (sched->map.comp) {
1644 		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1645 		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1646 			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1647 			new_cpu = true;
1648 		}
1649 	} else
1650 		cpus_nr = sched->max_cpu.cpu;
1651 
1652 	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1653 	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1654 	if (timestamp0)
1655 		delta = timestamp - timestamp0;
1656 	else
1657 		delta = 0;
1658 
1659 	if (delta < 0) {
1660 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1661 		return -1;
1662 	}
1663 
1664 	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1665 	sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1666 	if (sched_in == NULL || sched_out == NULL)
1667 		return -1;
1668 
1669 	tr = thread__get_runtime(sched_in);
1670 	if (tr == NULL) {
1671 		thread__put(sched_in);
1672 		return -1;
1673 	}
1674 
1675 	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1676 	sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1677 
1678 	str = thread__comm_str(sched_in);
1679 	new_shortname = 0;
1680 	if (!tr->shortname[0]) {
1681 		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1682 			/*
1683 			 * Don't allocate a letter-number for swapper:0
1684 			 * as a shortname. Instead, we use '.' for it.
1685 			 */
1686 			tr->shortname[0] = '.';
1687 			tr->shortname[1] = ' ';
1688 		} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1689 			tr->shortname[0] = sched->next_shortname1;
1690 			tr->shortname[1] = sched->next_shortname2;
1691 
1692 			if (sched->next_shortname1 < 'Z') {
1693 				sched->next_shortname1++;
1694 			} else {
1695 				sched->next_shortname1 = 'A';
1696 				if (sched->next_shortname2 < '9')
1697 					sched->next_shortname2++;
1698 				else
1699 					sched->next_shortname2 = '0';
1700 			}
1701 		} else {
1702 			tr->shortname[0] = '-';
1703 			tr->shortname[1] = ' ';
1704 		}
1705 		new_shortname = 1;
1706 	}
1707 
1708 	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1709 		goto out;
1710 
1711 	proceed = 0;
1712 	str = thread__comm_str(sched_in);
1713 	/*
1714 	 * Check which of sched_in and sched_out matches the passed --task-name
1715 	 * arguments and call the corresponding print_sched_map.
1716 	 */
1717 	if (sched->map.task_name && !sched_match_task(sched, str)) {
1718 		if (!sched_match_task(sched, thread__comm_str(sched_out)))
1719 			goto out;
1720 		else
1721 			goto sched_out;
1722 
1723 	} else {
1724 		str = thread__comm_str(sched_out);
1725 		if (!(sched->map.task_name && !sched_match_task(sched, str)))
1726 			proceed = 1;
1727 	}
1728 
1729 	printf("  ");
1730 
1731 	print_sched_map(sched, this_cpu, cpus_nr, color, false);
1732 
1733 	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1734 	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1735 	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1736 		const char *pid_color = color;
1737 
1738 		if (thread__has_color(sched_in))
1739 			pid_color = COLOR_PIDS;
1740 
1741 		color_fprintf(stdout, pid_color, "%s => %s:%d",
1742 			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1743 		tr->comm_changed = false;
1744 	}
1745 
1746 	if (sched->map.comp && new_cpu)
1747 		color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1748 
1749 	if (proceed != 1) {
1750 		color_fprintf(stdout, color, "\n");
1751 		goto out;
1752 	}
1753 
1754 sched_out:
1755 	if (sched->map.task_name) {
1756 		tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1757 		if (strcmp(tr->shortname, "") == 0)
1758 			goto out;
1759 
1760 		if (proceed == 1)
1761 			color_fprintf(stdout, color, "\n");
1762 
1763 		printf("  ");
1764 		print_sched_map(sched, this_cpu, cpus_nr, color, true);
1765 		timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1766 		color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1767 	}
1768 
1769 	color_fprintf(stdout, color, "\n");
1770 
1771 out:
1772 	if (sched->map.task_name)
1773 		thread__put(sched_out);
1774 
1775 	thread__put(sched_in);
1776 
1777 	return 0;
1778 }
1779 
process_sched_switch_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1780 static int process_sched_switch_event(const struct perf_tool *tool,
1781 				      struct evsel *evsel,
1782 				      struct perf_sample *sample,
1783 				      struct machine *machine)
1784 {
1785 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1786 	int this_cpu = sample->cpu, err = 0;
1787 	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1788 	    next_pid = evsel__intval(evsel, sample, "next_pid");
1789 
1790 	if (sched->curr_pid[this_cpu] != (u32)-1) {
1791 		/*
1792 		 * Are we trying to switch away a PID that is
1793 		 * not current?
1794 		 */
1795 		if (sched->curr_pid[this_cpu] != prev_pid)
1796 			sched->nr_context_switch_bugs++;
1797 	}
1798 
1799 	if (sched->tp_handler->switch_event)
1800 		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1801 
1802 	sched->curr_pid[this_cpu] = next_pid;
1803 	return err;
1804 }
1805 
process_sched_runtime_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1806 static int process_sched_runtime_event(const struct perf_tool *tool,
1807 				       struct evsel *evsel,
1808 				       struct perf_sample *sample,
1809 				       struct machine *machine)
1810 {
1811 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1812 
1813 	if (sched->tp_handler->runtime_event)
1814 		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1815 
1816 	return 0;
1817 }
1818 
perf_sched__process_fork_event(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1819 static int perf_sched__process_fork_event(const struct perf_tool *tool,
1820 					  union perf_event *event,
1821 					  struct perf_sample *sample,
1822 					  struct machine *machine)
1823 {
1824 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1825 
1826 	/* run the fork event through the perf machinery */
1827 	perf_event__process_fork(tool, event, sample, machine);
1828 
1829 	/* and then run additional processing needed for this command */
1830 	if (sched->tp_handler->fork_event)
1831 		return sched->tp_handler->fork_event(sched, event, machine);
1832 
1833 	return 0;
1834 }
1835 
process_sched_migrate_task_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1836 static int process_sched_migrate_task_event(const struct perf_tool *tool,
1837 					    struct evsel *evsel,
1838 					    struct perf_sample *sample,
1839 					    struct machine *machine)
1840 {
1841 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1842 
1843 	if (sched->tp_handler->migrate_task_event)
1844 		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1845 
1846 	return 0;
1847 }
1848 
1849 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1850 				  struct evsel *evsel,
1851 				  struct perf_sample *sample,
1852 				  struct machine *machine);
1853 
perf_sched__process_tracepoint_sample(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1854 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1855 						 union perf_event *event __maybe_unused,
1856 						 struct perf_sample *sample,
1857 						 struct evsel *evsel,
1858 						 struct machine *machine)
1859 {
1860 	int err = 0;
1861 
1862 	if (evsel->handler != NULL) {
1863 		tracepoint_handler f = evsel->handler;
1864 		err = f(tool, evsel, sample, machine);
1865 	}
1866 
1867 	return err;
1868 }
1869 
perf_sched__process_comm(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1870 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1871 				    union perf_event *event,
1872 				    struct perf_sample *sample,
1873 				    struct machine *machine)
1874 {
1875 	struct thread *thread;
1876 	struct thread_runtime *tr;
1877 	int err;
1878 
1879 	err = perf_event__process_comm(tool, event, sample, machine);
1880 	if (err)
1881 		return err;
1882 
1883 	thread = machine__find_thread(machine, sample->pid, sample->tid);
1884 	if (!thread) {
1885 		pr_err("Internal error: can't find thread\n");
1886 		return -1;
1887 	}
1888 
1889 	tr = thread__get_runtime(thread);
1890 	if (tr == NULL) {
1891 		thread__put(thread);
1892 		return -1;
1893 	}
1894 
1895 	tr->comm_changed = true;
1896 	thread__put(thread);
1897 
1898 	return 0;
1899 }
1900 
perf_sched__read_events(struct perf_sched * sched)1901 static int perf_sched__read_events(struct perf_sched *sched)
1902 {
1903 	struct evsel_str_handler handlers[] = {
1904 		{ "sched:sched_switch",	      process_sched_switch_event, },
1905 		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1906 		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1907 		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1908 		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1909 		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1910 	};
1911 	struct perf_session *session;
1912 	struct perf_data data = {
1913 		.path  = input_name,
1914 		.mode  = PERF_DATA_MODE_READ,
1915 		.force = sched->force,
1916 	};
1917 	int rc = -1;
1918 
1919 	session = perf_session__new(&data, &sched->tool);
1920 	if (IS_ERR(session)) {
1921 		pr_debug("Error creating perf session");
1922 		return PTR_ERR(session);
1923 	}
1924 
1925 	symbol__init(&session->header.env);
1926 
1927 	/* prefer sched_waking if it is captured */
1928 	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1929 		handlers[2].handler = process_sched_wakeup_ignore;
1930 
1931 	if (perf_session__set_tracepoints_handlers(session, handlers))
1932 		goto out_delete;
1933 
1934 	if (perf_session__has_traces(session, "record -R")) {
1935 		int err = perf_session__process_events(session);
1936 		if (err) {
1937 			pr_err("Failed to process events, error %d", err);
1938 			goto out_delete;
1939 		}
1940 
1941 		sched->nr_events      = session->evlist->stats.nr_events[0];
1942 		sched->nr_lost_events = session->evlist->stats.total_lost;
1943 		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1944 	}
1945 
1946 	rc = 0;
1947 out_delete:
1948 	perf_session__delete(session);
1949 	return rc;
1950 }
1951 
1952 /*
1953  * scheduling times are printed as msec.usec
1954  */
print_sched_time(unsigned long long nsecs,int width)1955 static inline void print_sched_time(unsigned long long nsecs, int width)
1956 {
1957 	unsigned long msecs;
1958 	unsigned long usecs;
1959 
1960 	msecs  = nsecs / NSEC_PER_MSEC;
1961 	nsecs -= msecs * NSEC_PER_MSEC;
1962 	usecs  = nsecs / NSEC_PER_USEC;
1963 	printf("%*lu.%03lu ", width, msecs, usecs);
1964 }
1965 
1966 /*
1967  * returns runtime data for event, allocating memory for it the
1968  * first time it is used.
1969  */
evsel__get_runtime(struct evsel * evsel)1970 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1971 {
1972 	struct evsel_runtime *r = evsel->priv;
1973 
1974 	if (r == NULL) {
1975 		r = zalloc(sizeof(struct evsel_runtime));
1976 		evsel->priv = r;
1977 	}
1978 
1979 	return r;
1980 }
1981 
1982 /*
1983  * save last time event was seen per cpu
1984  */
evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)1985 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1986 {
1987 	struct evsel_runtime *r = evsel__get_runtime(evsel);
1988 
1989 	if (r == NULL)
1990 		return;
1991 
1992 	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1993 		int i, n = __roundup_pow_of_two(cpu+1);
1994 		void *p = r->last_time;
1995 
1996 		p = realloc(r->last_time, n * sizeof(u64));
1997 		if (!p)
1998 			return;
1999 
2000 		r->last_time = p;
2001 		for (i = r->ncpu; i < n; ++i)
2002 			r->last_time[i] = (u64) 0;
2003 
2004 		r->ncpu = n;
2005 	}
2006 
2007 	r->last_time[cpu] = timestamp;
2008 }
2009 
2010 /* returns last time this event was seen on the given cpu */
evsel__get_time(struct evsel * evsel,u32 cpu)2011 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2012 {
2013 	struct evsel_runtime *r = evsel__get_runtime(evsel);
2014 
2015 	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2016 		return 0;
2017 
2018 	return r->last_time[cpu];
2019 }
2020 
2021 static int comm_width = 30;
2022 
timehist_get_commstr(struct thread * thread)2023 static char *timehist_get_commstr(struct thread *thread)
2024 {
2025 	static char str[32];
2026 	const char *comm = thread__comm_str(thread);
2027 	pid_t tid = thread__tid(thread);
2028 	pid_t pid = thread__pid(thread);
2029 	int n;
2030 
2031 	if (pid == 0)
2032 		n = scnprintf(str, sizeof(str), "%s", comm);
2033 
2034 	else if (tid != pid)
2035 		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2036 
2037 	else
2038 		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2039 
2040 	if (n > comm_width)
2041 		comm_width = n;
2042 
2043 	return str;
2044 }
2045 
2046 /* prio field format: xxx or xxx->yyy */
2047 #define MAX_PRIO_STR_LEN 8
timehist_get_priostr(struct evsel * evsel,struct thread * thread,struct perf_sample * sample)2048 static char *timehist_get_priostr(struct evsel *evsel,
2049 				  struct thread *thread,
2050 				  struct perf_sample *sample)
2051 {
2052 	static char prio_str[16];
2053 	int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2054 	struct thread_runtime *tr = thread__priv(thread);
2055 
2056 	if (tr->prio != prev_prio && tr->prio != -1)
2057 		scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2058 	else
2059 		scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2060 
2061 	return prio_str;
2062 }
2063 
timehist_header(struct perf_sched * sched)2064 static void timehist_header(struct perf_sched *sched)
2065 {
2066 	u32 ncpus = sched->max_cpu.cpu + 1;
2067 	u32 i, j;
2068 
2069 	printf("%15s %6s ", "time", "cpu");
2070 
2071 	if (sched->show_cpu_visual) {
2072 		printf(" ");
2073 		for (i = 0, j = 0; i < ncpus; ++i) {
2074 			printf("%x", j++);
2075 			if (j > 15)
2076 				j = 0;
2077 		}
2078 		printf(" ");
2079 	}
2080 
2081 	printf(" %-*s", comm_width, "task name");
2082 
2083 	if (sched->show_prio)
2084 		printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2085 
2086 	printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2087 
2088 	if (sched->pre_migrations)
2089 		printf("  %9s", "pre-mig time");
2090 
2091 	if (sched->show_state)
2092 		printf("  %s", "state");
2093 
2094 	printf("\n");
2095 
2096 	/*
2097 	 * units row
2098 	 */
2099 	printf("%15s %-6s ", "", "");
2100 
2101 	if (sched->show_cpu_visual)
2102 		printf(" %*s ", ncpus, "");
2103 
2104 	printf(" %-*s", comm_width, "[tid/pid]");
2105 
2106 	if (sched->show_prio)
2107 		printf("  %-*s", MAX_PRIO_STR_LEN, "");
2108 
2109 	printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2110 
2111 	if (sched->pre_migrations)
2112 		printf("  %9s", "(msec)");
2113 
2114 	printf("\n");
2115 
2116 	/*
2117 	 * separator
2118 	 */
2119 	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2120 
2121 	if (sched->show_cpu_visual)
2122 		printf(" %.*s ", ncpus, graph_dotted_line);
2123 
2124 	printf(" %.*s", comm_width, graph_dotted_line);
2125 
2126 	if (sched->show_prio)
2127 		printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2128 
2129 	printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2130 
2131 	if (sched->pre_migrations)
2132 		printf("  %.9s", graph_dotted_line);
2133 
2134 	if (sched->show_state)
2135 		printf("  %.5s", graph_dotted_line);
2136 
2137 	printf("\n");
2138 }
2139 
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,const char state)2140 static void timehist_print_sample(struct perf_sched *sched,
2141 				  struct evsel *evsel,
2142 				  struct perf_sample *sample,
2143 				  struct addr_location *al,
2144 				  struct thread *thread,
2145 				  u64 t, const char state)
2146 {
2147 	struct thread_runtime *tr = thread__priv(thread);
2148 	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2149 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2150 	u32 max_cpus = sched->max_cpu.cpu + 1;
2151 	char tstr[64];
2152 	char nstr[30];
2153 	u64 wait_time;
2154 
2155 	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2156 		return;
2157 
2158 	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2159 	printf("%15s [%04d] ", tstr, sample->cpu);
2160 
2161 	if (sched->show_cpu_visual) {
2162 		u32 i;
2163 		char c;
2164 
2165 		printf(" ");
2166 		for (i = 0; i < max_cpus; ++i) {
2167 			/* flag idle times with 'i'; others are sched events */
2168 			if (i == sample->cpu)
2169 				c = (thread__tid(thread) == 0) ? 'i' : 's';
2170 			else
2171 				c = ' ';
2172 			printf("%c", c);
2173 		}
2174 		printf(" ");
2175 	}
2176 
2177 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2178 
2179 	if (sched->show_prio)
2180 		printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2181 
2182 	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2183 	print_sched_time(wait_time, 6);
2184 
2185 	print_sched_time(tr->dt_delay, 6);
2186 	print_sched_time(tr->dt_run, 6);
2187 	if (sched->pre_migrations)
2188 		print_sched_time(tr->dt_pre_mig, 6);
2189 
2190 	if (sched->show_state)
2191 		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2192 
2193 	if (sched->show_next) {
2194 		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2195 		printf(" %-*s", comm_width, nstr);
2196 	}
2197 
2198 	if (sched->show_wakeups && !sched->show_next)
2199 		printf("  %-*s", comm_width, "");
2200 
2201 	if (thread__tid(thread) == 0)
2202 		goto out;
2203 
2204 	if (sched->show_callchain)
2205 		printf("  ");
2206 
2207 	sample__fprintf_sym(sample, al, 0,
2208 			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2209 			    EVSEL__PRINT_CALLCHAIN_ARROW |
2210 			    EVSEL__PRINT_SKIP_IGNORED,
2211 			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2212 
2213 out:
2214 	printf("\n");
2215 }
2216 
2217 /*
2218  * Explanation of delta-time stats:
2219  *
2220  *            t = time of current schedule out event
2221  *        tprev = time of previous sched out event
2222  *                also time of schedule-in event for current task
2223  *    last_time = time of last sched change event for current task
2224  *                (i.e, time process was last scheduled out)
2225  * ready_to_run = time of wakeup for current task
2226  *     migrated = time of task migration to another CPU
2227  *
2228  * -----|-------------|-------------|-------------|-------------|-----
2229  *    last         ready         migrated       tprev           t
2230  *    time         to run
2231  *
2232  *      |---------------- dt_wait ----------------|
2233  *                   |--------- dt_delay ---------|-- dt_run --|
2234  *                   |- dt_pre_mig -|
2235  *
2236  *     dt_run = run time of current task
2237  *    dt_wait = time between last schedule out event for task and tprev
2238  *              represents time spent off the cpu
2239  *   dt_delay = time between wakeup and schedule-in of task
2240  * dt_pre_mig = time between wakeup and migration to another CPU
2241  */
2242 
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2243 static void timehist_update_runtime_stats(struct thread_runtime *r,
2244 					 u64 t, u64 tprev)
2245 {
2246 	r->dt_delay   = 0;
2247 	r->dt_sleep   = 0;
2248 	r->dt_iowait  = 0;
2249 	r->dt_preempt = 0;
2250 	r->dt_run     = 0;
2251 	r->dt_pre_mig = 0;
2252 
2253 	if (tprev) {
2254 		r->dt_run = t - tprev;
2255 		if (r->ready_to_run) {
2256 			if (r->ready_to_run > tprev)
2257 				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2258 			else
2259 				r->dt_delay = tprev - r->ready_to_run;
2260 
2261 			if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2262 				r->dt_pre_mig = r->migrated - r->ready_to_run;
2263 		}
2264 
2265 		if (r->last_time > tprev)
2266 			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2267 		else if (r->last_time) {
2268 			u64 dt_wait = tprev - r->last_time;
2269 
2270 			if (r->last_state == 'R')
2271 				r->dt_preempt = dt_wait;
2272 			else if (r->last_state == 'D')
2273 				r->dt_iowait = dt_wait;
2274 			else
2275 				r->dt_sleep = dt_wait;
2276 		}
2277 	}
2278 
2279 	update_stats(&r->run_stats, r->dt_run);
2280 
2281 	r->total_run_time     += r->dt_run;
2282 	r->total_delay_time   += r->dt_delay;
2283 	r->total_sleep_time   += r->dt_sleep;
2284 	r->total_iowait_time  += r->dt_iowait;
2285 	r->total_preempt_time += r->dt_preempt;
2286 	r->total_pre_mig_time += r->dt_pre_mig;
2287 }
2288 
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2289 static bool is_idle_sample(struct perf_sample *sample,
2290 			   struct evsel *evsel)
2291 {
2292 	/* pid 0 == swapper == idle task */
2293 	if (evsel__name_is(evsel, "sched:sched_switch"))
2294 		return evsel__intval(evsel, sample, "prev_pid") == 0;
2295 
2296 	return sample->pid == 0;
2297 }
2298 
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2299 static void save_task_callchain(struct perf_sched *sched,
2300 				struct perf_sample *sample,
2301 				struct evsel *evsel,
2302 				struct machine *machine)
2303 {
2304 	struct callchain_cursor *cursor;
2305 	struct thread *thread;
2306 
2307 	/* want main thread for process - has maps */
2308 	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2309 	if (thread == NULL) {
2310 		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2311 		return;
2312 	}
2313 
2314 	if (!sched->show_callchain || sample->callchain == NULL)
2315 		return;
2316 
2317 	cursor = get_tls_callchain_cursor();
2318 
2319 	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2320 				      NULL, NULL, sched->max_stack + 2) != 0) {
2321 		if (verbose > 0)
2322 			pr_err("Failed to resolve callchain. Skipping\n");
2323 
2324 		return;
2325 	}
2326 
2327 	callchain_cursor_commit(cursor);
2328 
2329 	while (true) {
2330 		struct callchain_cursor_node *node;
2331 		struct symbol *sym;
2332 
2333 		node = callchain_cursor_current(cursor);
2334 		if (node == NULL)
2335 			break;
2336 
2337 		sym = node->ms.sym;
2338 		if (sym) {
2339 			if (!strcmp(sym->name, "schedule") ||
2340 			    !strcmp(sym->name, "__schedule") ||
2341 			    !strcmp(sym->name, "preempt_schedule"))
2342 				sym->ignore = 1;
2343 		}
2344 
2345 		callchain_cursor_advance(cursor);
2346 	}
2347 }
2348 
init_idle_thread(struct thread * thread)2349 static int init_idle_thread(struct thread *thread)
2350 {
2351 	struct idle_thread_runtime *itr;
2352 
2353 	thread__set_comm(thread, idle_comm, 0);
2354 
2355 	itr = zalloc(sizeof(*itr));
2356 	if (itr == NULL)
2357 		return -ENOMEM;
2358 
2359 	init_prio(&itr->tr);
2360 	init_stats(&itr->tr.run_stats);
2361 	callchain_init(&itr->callchain);
2362 	callchain_cursor_reset(&itr->cursor);
2363 	thread__set_priv(thread, itr);
2364 
2365 	return 0;
2366 }
2367 
2368 /*
2369  * Track idle stats per cpu by maintaining a local thread
2370  * struct for the idle task on each cpu.
2371  */
init_idle_threads(int ncpu)2372 static int init_idle_threads(int ncpu)
2373 {
2374 	int i, ret;
2375 
2376 	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2377 	if (!idle_threads)
2378 		return -ENOMEM;
2379 
2380 	idle_max_cpu = ncpu;
2381 
2382 	/* allocate the actual thread struct if needed */
2383 	for (i = 0; i < ncpu; ++i) {
2384 		idle_threads[i] = thread__new(0, 0);
2385 		if (idle_threads[i] == NULL)
2386 			return -ENOMEM;
2387 
2388 		ret = init_idle_thread(idle_threads[i]);
2389 		if (ret < 0)
2390 			return ret;
2391 	}
2392 
2393 	return 0;
2394 }
2395 
free_idle_threads(void)2396 static void free_idle_threads(void)
2397 {
2398 	int i;
2399 
2400 	if (idle_threads == NULL)
2401 		return;
2402 
2403 	for (i = 0; i < idle_max_cpu; ++i) {
2404 		if ((idle_threads[i]))
2405 			thread__delete(idle_threads[i]);
2406 	}
2407 
2408 	free(idle_threads);
2409 }
2410 
get_idle_thread(int cpu)2411 static struct thread *get_idle_thread(int cpu)
2412 {
2413 	/*
2414 	 * expand/allocate array of pointers to local thread
2415 	 * structs if needed
2416 	 */
2417 	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2418 		int i, j = __roundup_pow_of_two(cpu+1);
2419 		void *p;
2420 
2421 		p = realloc(idle_threads, j * sizeof(struct thread *));
2422 		if (!p)
2423 			return NULL;
2424 
2425 		idle_threads = (struct thread **) p;
2426 		for (i = idle_max_cpu; i < j; ++i)
2427 			idle_threads[i] = NULL;
2428 
2429 		idle_max_cpu = j;
2430 	}
2431 
2432 	/* allocate a new thread struct if needed */
2433 	if (idle_threads[cpu] == NULL) {
2434 		idle_threads[cpu] = thread__new(0, 0);
2435 
2436 		if (idle_threads[cpu]) {
2437 			if (init_idle_thread(idle_threads[cpu]) < 0)
2438 				return NULL;
2439 		}
2440 	}
2441 
2442 	return idle_threads[cpu];
2443 }
2444 
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2445 static void save_idle_callchain(struct perf_sched *sched,
2446 				struct idle_thread_runtime *itr,
2447 				struct perf_sample *sample)
2448 {
2449 	struct callchain_cursor *cursor;
2450 
2451 	if (!sched->show_callchain || sample->callchain == NULL)
2452 		return;
2453 
2454 	cursor = get_tls_callchain_cursor();
2455 	if (cursor == NULL)
2456 		return;
2457 
2458 	callchain_cursor__copy(&itr->cursor, cursor);
2459 }
2460 
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2461 static struct thread *timehist_get_thread(struct perf_sched *sched,
2462 					  struct perf_sample *sample,
2463 					  struct machine *machine,
2464 					  struct evsel *evsel)
2465 {
2466 	struct thread *thread;
2467 
2468 	if (is_idle_sample(sample, evsel)) {
2469 		thread = get_idle_thread(sample->cpu);
2470 		if (thread == NULL)
2471 			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2472 
2473 	} else {
2474 		/* there were samples with tid 0 but non-zero pid */
2475 		thread = machine__findnew_thread(machine, sample->pid,
2476 						 sample->tid ?: sample->pid);
2477 		if (thread == NULL) {
2478 			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2479 				 sample->tid);
2480 		}
2481 
2482 		save_task_callchain(sched, sample, evsel, machine);
2483 		if (sched->idle_hist) {
2484 			struct thread *idle;
2485 			struct idle_thread_runtime *itr;
2486 
2487 			idle = get_idle_thread(sample->cpu);
2488 			if (idle == NULL) {
2489 				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2490 				return NULL;
2491 			}
2492 
2493 			itr = thread__priv(idle);
2494 			if (itr == NULL)
2495 				return NULL;
2496 
2497 			itr->last_thread = thread;
2498 
2499 			/* copy task callchain when entering to idle */
2500 			if (evsel__intval(evsel, sample, "next_pid") == 0)
2501 				save_idle_callchain(sched, itr, sample);
2502 		}
2503 	}
2504 
2505 	return thread;
2506 }
2507 
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2508 static bool timehist_skip_sample(struct perf_sched *sched,
2509 				 struct thread *thread,
2510 				 struct evsel *evsel,
2511 				 struct perf_sample *sample)
2512 {
2513 	bool rc = false;
2514 	int prio = -1;
2515 	struct thread_runtime *tr = NULL;
2516 
2517 	if (thread__is_filtered(thread)) {
2518 		rc = true;
2519 		sched->skipped_samples++;
2520 	}
2521 
2522 	if (sched->prio_str) {
2523 		/*
2524 		 * Because priority may be changed during task execution,
2525 		 * first read priority from prev sched_in event for current task.
2526 		 * If prev sched_in event is not saved, then read priority from
2527 		 * current task sched_out event.
2528 		 */
2529 		tr = thread__get_runtime(thread);
2530 		if (tr && tr->prio != -1)
2531 			prio = tr->prio;
2532 		else if (evsel__name_is(evsel, "sched:sched_switch"))
2533 			prio = evsel__intval(evsel, sample, "prev_prio");
2534 
2535 		if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2536 			rc = true;
2537 			sched->skipped_samples++;
2538 		}
2539 	}
2540 
2541 	if (sched->idle_hist) {
2542 		if (!evsel__name_is(evsel, "sched:sched_switch"))
2543 			rc = true;
2544 		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2545 			 evsel__intval(evsel, sample, "next_pid") != 0)
2546 			rc = true;
2547 	}
2548 
2549 	return rc;
2550 }
2551 
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2552 static void timehist_print_wakeup_event(struct perf_sched *sched,
2553 					struct evsel *evsel,
2554 					struct perf_sample *sample,
2555 					struct machine *machine,
2556 					struct thread *awakened)
2557 {
2558 	struct thread *thread;
2559 	char tstr[64];
2560 
2561 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2562 	if (thread == NULL)
2563 		return;
2564 
2565 	/* show wakeup unless both awakee and awaker are filtered */
2566 	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2567 	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2568 		return;
2569 	}
2570 
2571 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2572 	printf("%15s [%04d] ", tstr, sample->cpu);
2573 	if (sched->show_cpu_visual)
2574 		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2575 
2576 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2577 
2578 	/* dt spacer */
2579 	printf("  %9s  %9s  %9s ", "", "", "");
2580 
2581 	printf("awakened: %s", timehist_get_commstr(awakened));
2582 
2583 	printf("\n");
2584 }
2585 
timehist_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2586 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2587 					union perf_event *event __maybe_unused,
2588 					struct evsel *evsel __maybe_unused,
2589 					struct perf_sample *sample __maybe_unused,
2590 					struct machine *machine __maybe_unused)
2591 {
2592 	return 0;
2593 }
2594 
timehist_sched_wakeup_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2595 static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2596 				       union perf_event *event __maybe_unused,
2597 				       struct evsel *evsel,
2598 				       struct perf_sample *sample,
2599 				       struct machine *machine)
2600 {
2601 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2602 	struct thread *thread;
2603 	struct thread_runtime *tr = NULL;
2604 	/* want pid of awakened task not pid in sample */
2605 	const u32 pid = evsel__intval(evsel, sample, "pid");
2606 
2607 	thread = machine__findnew_thread(machine, 0, pid);
2608 	if (thread == NULL)
2609 		return -1;
2610 
2611 	tr = thread__get_runtime(thread);
2612 	if (tr == NULL)
2613 		return -1;
2614 
2615 	if (tr->ready_to_run == 0)
2616 		tr->ready_to_run = sample->time;
2617 
2618 	/* show wakeups if requested */
2619 	if (sched->show_wakeups &&
2620 	    !perf_time__skip_sample(&sched->ptime, sample->time))
2621 		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2622 
2623 	return 0;
2624 }
2625 
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2626 static void timehist_print_migration_event(struct perf_sched *sched,
2627 					struct evsel *evsel,
2628 					struct perf_sample *sample,
2629 					struct machine *machine,
2630 					struct thread *migrated)
2631 {
2632 	struct thread *thread;
2633 	char tstr[64];
2634 	u32 max_cpus;
2635 	u32 ocpu, dcpu;
2636 
2637 	if (sched->summary_only)
2638 		return;
2639 
2640 	max_cpus = sched->max_cpu.cpu + 1;
2641 	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2642 	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2643 
2644 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2645 	if (thread == NULL)
2646 		return;
2647 
2648 	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2649 	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2650 		return;
2651 	}
2652 
2653 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2654 	printf("%15s [%04d] ", tstr, sample->cpu);
2655 
2656 	if (sched->show_cpu_visual) {
2657 		u32 i;
2658 		char c;
2659 
2660 		printf("  ");
2661 		for (i = 0; i < max_cpus; ++i) {
2662 			c = (i == sample->cpu) ? 'm' : ' ';
2663 			printf("%c", c);
2664 		}
2665 		printf("  ");
2666 	}
2667 
2668 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2669 
2670 	/* dt spacer */
2671 	printf("  %9s  %9s  %9s ", "", "", "");
2672 
2673 	printf("migrated: %s", timehist_get_commstr(migrated));
2674 	printf(" cpu %d => %d", ocpu, dcpu);
2675 
2676 	printf("\n");
2677 }
2678 
timehist_migrate_task_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2679 static int timehist_migrate_task_event(const struct perf_tool *tool,
2680 				       union perf_event *event __maybe_unused,
2681 				       struct evsel *evsel,
2682 				       struct perf_sample *sample,
2683 				       struct machine *machine)
2684 {
2685 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2686 	struct thread *thread;
2687 	struct thread_runtime *tr = NULL;
2688 	/* want pid of migrated task not pid in sample */
2689 	const u32 pid = evsel__intval(evsel, sample, "pid");
2690 
2691 	thread = machine__findnew_thread(machine, 0, pid);
2692 	if (thread == NULL)
2693 		return -1;
2694 
2695 	tr = thread__get_runtime(thread);
2696 	if (tr == NULL)
2697 		return -1;
2698 
2699 	tr->migrations++;
2700 	tr->migrated = sample->time;
2701 
2702 	/* show migrations if requested */
2703 	if (sched->show_migrations) {
2704 		timehist_print_migration_event(sched, evsel, sample,
2705 							machine, thread);
2706 	}
2707 
2708 	return 0;
2709 }
2710 
timehist_update_task_prio(struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2711 static void timehist_update_task_prio(struct evsel *evsel,
2712 				      struct perf_sample *sample,
2713 				      struct machine *machine)
2714 {
2715 	struct thread *thread;
2716 	struct thread_runtime *tr = NULL;
2717 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2718 	const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2719 
2720 	if (next_pid == 0)
2721 		thread = get_idle_thread(sample->cpu);
2722 	else
2723 		thread = machine__findnew_thread(machine, -1, next_pid);
2724 
2725 	if (thread == NULL)
2726 		return;
2727 
2728 	tr = thread__get_runtime(thread);
2729 	if (tr == NULL)
2730 		return;
2731 
2732 	tr->prio = next_prio;
2733 }
2734 
timehist_sched_change_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2735 static int timehist_sched_change_event(const struct perf_tool *tool,
2736 				       union perf_event *event,
2737 				       struct evsel *evsel,
2738 				       struct perf_sample *sample,
2739 				       struct machine *machine)
2740 {
2741 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2742 	struct perf_time_interval *ptime = &sched->ptime;
2743 	struct addr_location al;
2744 	struct thread *thread;
2745 	struct thread_runtime *tr = NULL;
2746 	u64 tprev, t = sample->time;
2747 	int rc = 0;
2748 	const char state = evsel__taskstate(evsel, sample, "prev_state");
2749 
2750 	addr_location__init(&al);
2751 	if (machine__resolve(machine, &al, sample) < 0) {
2752 		pr_err("problem processing %d event. skipping it\n",
2753 		       event->header.type);
2754 		rc = -1;
2755 		goto out;
2756 	}
2757 
2758 	if (sched->show_prio || sched->prio_str)
2759 		timehist_update_task_prio(evsel, sample, machine);
2760 
2761 	thread = timehist_get_thread(sched, sample, machine, evsel);
2762 	if (thread == NULL) {
2763 		rc = -1;
2764 		goto out;
2765 	}
2766 
2767 	if (timehist_skip_sample(sched, thread, evsel, sample))
2768 		goto out;
2769 
2770 	tr = thread__get_runtime(thread);
2771 	if (tr == NULL) {
2772 		rc = -1;
2773 		goto out;
2774 	}
2775 
2776 	tprev = evsel__get_time(evsel, sample->cpu);
2777 
2778 	/*
2779 	 * If start time given:
2780 	 * - sample time is under window user cares about - skip sample
2781 	 * - tprev is under window user cares about  - reset to start of window
2782 	 */
2783 	if (ptime->start && ptime->start > t)
2784 		goto out;
2785 
2786 	if (tprev && ptime->start > tprev)
2787 		tprev = ptime->start;
2788 
2789 	/*
2790 	 * If end time given:
2791 	 * - previous sched event is out of window - we are done
2792 	 * - sample time is beyond window user cares about - reset it
2793 	 *   to close out stats for time window interest
2794 	 * - If tprev is 0, that is, sched_in event for current task is
2795 	 *   not recorded, cannot determine whether sched_in event is
2796 	 *   within time window interest - ignore it
2797 	 */
2798 	if (ptime->end) {
2799 		if (!tprev || tprev > ptime->end)
2800 			goto out;
2801 
2802 		if (t > ptime->end)
2803 			t = ptime->end;
2804 	}
2805 
2806 	if (!sched->idle_hist || thread__tid(thread) == 0) {
2807 		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2808 			timehist_update_runtime_stats(tr, t, tprev);
2809 
2810 		if (sched->idle_hist) {
2811 			struct idle_thread_runtime *itr = (void *)tr;
2812 			struct thread_runtime *last_tr;
2813 
2814 			if (itr->last_thread == NULL)
2815 				goto out;
2816 
2817 			/* add current idle time as last thread's runtime */
2818 			last_tr = thread__get_runtime(itr->last_thread);
2819 			if (last_tr == NULL)
2820 				goto out;
2821 
2822 			timehist_update_runtime_stats(last_tr, t, tprev);
2823 			/*
2824 			 * remove delta time of last thread as it's not updated
2825 			 * and otherwise it will show an invalid value next
2826 			 * time.  we only care total run time and run stat.
2827 			 */
2828 			last_tr->dt_run = 0;
2829 			last_tr->dt_delay = 0;
2830 			last_tr->dt_sleep = 0;
2831 			last_tr->dt_iowait = 0;
2832 			last_tr->dt_preempt = 0;
2833 
2834 			if (itr->cursor.nr)
2835 				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2836 
2837 			itr->last_thread = NULL;
2838 		}
2839 
2840 		if (!sched->summary_only)
2841 			timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2842 	}
2843 
2844 out:
2845 	if (sched->hist_time.start == 0 && t >= ptime->start)
2846 		sched->hist_time.start = t;
2847 	if (ptime->end == 0 || t <= ptime->end)
2848 		sched->hist_time.end = t;
2849 
2850 	if (tr) {
2851 		/* time of this sched_switch event becomes last time task seen */
2852 		tr->last_time = sample->time;
2853 
2854 		/* last state is used to determine where to account wait time */
2855 		tr->last_state = state;
2856 
2857 		/* sched out event for task so reset ready to run time and migrated time */
2858 		if (state == 'R')
2859 			tr->ready_to_run = t;
2860 		else
2861 			tr->ready_to_run = 0;
2862 
2863 		tr->migrated = 0;
2864 	}
2865 
2866 	evsel__save_time(evsel, sample->time, sample->cpu);
2867 
2868 	addr_location__exit(&al);
2869 	return rc;
2870 }
2871 
timehist_sched_switch_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2872 static int timehist_sched_switch_event(const struct perf_tool *tool,
2873 			     union perf_event *event,
2874 			     struct evsel *evsel,
2875 			     struct perf_sample *sample,
2876 			     struct machine *machine __maybe_unused)
2877 {
2878 	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2879 }
2880 
process_lost(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2881 static int process_lost(const struct perf_tool *tool __maybe_unused,
2882 			union perf_event *event,
2883 			struct perf_sample *sample,
2884 			struct machine *machine __maybe_unused)
2885 {
2886 	char tstr[64];
2887 
2888 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2889 	printf("%15s ", tstr);
2890 	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2891 
2892 	return 0;
2893 }
2894 
2895 
print_thread_runtime(struct thread * t,struct thread_runtime * r)2896 static void print_thread_runtime(struct thread *t,
2897 				 struct thread_runtime *r)
2898 {
2899 	double mean = avg_stats(&r->run_stats);
2900 	float stddev;
2901 
2902 	printf("%*s   %5d  %9" PRIu64 " ",
2903 	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2904 	       (u64) r->run_stats.n);
2905 
2906 	print_sched_time(r->total_run_time, 8);
2907 	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2908 	print_sched_time(r->run_stats.min, 6);
2909 	printf(" ");
2910 	print_sched_time((u64) mean, 6);
2911 	printf(" ");
2912 	print_sched_time(r->run_stats.max, 6);
2913 	printf("  ");
2914 	printf("%5.2f", stddev);
2915 	printf("   %5" PRIu64, r->migrations);
2916 	printf("\n");
2917 }
2918 
print_thread_waittime(struct thread * t,struct thread_runtime * r)2919 static void print_thread_waittime(struct thread *t,
2920 				  struct thread_runtime *r)
2921 {
2922 	printf("%*s   %5d  %9" PRIu64 " ",
2923 	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2924 	       (u64) r->run_stats.n);
2925 
2926 	print_sched_time(r->total_run_time, 8);
2927 	print_sched_time(r->total_sleep_time, 6);
2928 	printf(" ");
2929 	print_sched_time(r->total_iowait_time, 6);
2930 	printf(" ");
2931 	print_sched_time(r->total_preempt_time, 6);
2932 	printf(" ");
2933 	print_sched_time(r->total_delay_time, 6);
2934 	printf("\n");
2935 }
2936 
2937 struct total_run_stats {
2938 	struct perf_sched *sched;
2939 	u64  sched_count;
2940 	u64  task_count;
2941 	u64  total_run_time;
2942 };
2943 
show_thread_runtime(struct thread * t,void * priv)2944 static int show_thread_runtime(struct thread *t, void *priv)
2945 {
2946 	struct total_run_stats *stats = priv;
2947 	struct thread_runtime *r;
2948 
2949 	if (thread__is_filtered(t))
2950 		return 0;
2951 
2952 	r = thread__priv(t);
2953 	if (r && r->run_stats.n) {
2954 		stats->task_count++;
2955 		stats->sched_count += r->run_stats.n;
2956 		stats->total_run_time += r->total_run_time;
2957 
2958 		if (stats->sched->show_state)
2959 			print_thread_waittime(t, r);
2960 		else
2961 			print_thread_runtime(t, r);
2962 	}
2963 
2964 	return 0;
2965 }
2966 
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)2967 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2968 {
2969 	const char *sep = " <- ";
2970 	struct callchain_list *chain;
2971 	size_t ret = 0;
2972 	char bf[1024];
2973 	bool first;
2974 
2975 	if (node == NULL)
2976 		return 0;
2977 
2978 	ret = callchain__fprintf_folded(fp, node->parent);
2979 	first = (ret == 0);
2980 
2981 	list_for_each_entry(chain, &node->val, list) {
2982 		if (chain->ip >= PERF_CONTEXT_MAX)
2983 			continue;
2984 		if (chain->ms.sym && chain->ms.sym->ignore)
2985 			continue;
2986 		ret += fprintf(fp, "%s%s", first ? "" : sep,
2987 			       callchain_list__sym_name(chain, bf, sizeof(bf),
2988 							false));
2989 		first = false;
2990 	}
2991 
2992 	return ret;
2993 }
2994 
timehist_print_idlehist_callchain(struct rb_root_cached * root)2995 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2996 {
2997 	size_t ret = 0;
2998 	FILE *fp = stdout;
2999 	struct callchain_node *chain;
3000 	struct rb_node *rb_node = rb_first_cached(root);
3001 
3002 	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3003 	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3004 	       graph_dotted_line);
3005 
3006 	while (rb_node) {
3007 		chain = rb_entry(rb_node, struct callchain_node, rb_node);
3008 		rb_node = rb_next(rb_node);
3009 
3010 		ret += fprintf(fp, "  ");
3011 		print_sched_time(chain->hit, 12);
3012 		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3013 		ret += fprintf(fp, " %8d  ", chain->count);
3014 		ret += callchain__fprintf_folded(fp, chain);
3015 		ret += fprintf(fp, "\n");
3016 	}
3017 
3018 	return ret;
3019 }
3020 
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)3021 static void timehist_print_summary(struct perf_sched *sched,
3022 				   struct perf_session *session)
3023 {
3024 	struct machine *m = &session->machines.host;
3025 	struct total_run_stats totals;
3026 	u64 task_count;
3027 	struct thread *t;
3028 	struct thread_runtime *r;
3029 	int i;
3030 	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3031 
3032 	memset(&totals, 0, sizeof(totals));
3033 	totals.sched = sched;
3034 
3035 	if (sched->idle_hist) {
3036 		printf("\nIdle-time summary\n");
3037 		printf("%*s  parent  sched-out  ", comm_width, "comm");
3038 		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3039 	} else if (sched->show_state) {
3040 		printf("\nWait-time summary\n");
3041 		printf("%*s  parent   sched-in  ", comm_width, "comm");
3042 		printf("   run-time      sleep      iowait     preempt       delay\n");
3043 	} else {
3044 		printf("\nRuntime summary\n");
3045 		printf("%*s  parent   sched-in  ", comm_width, "comm");
3046 		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3047 	}
3048 	printf("%*s            (count)  ", comm_width, "");
3049 	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3050 	       sched->show_state ? "(msec)" : "%");
3051 	printf("%.117s\n", graph_dotted_line);
3052 
3053 	machine__for_each_thread(m, show_thread_runtime, &totals);
3054 	task_count = totals.task_count;
3055 	if (!task_count)
3056 		printf("<no still running tasks>\n");
3057 
3058 	/* CPU idle stats not tracked when samples were skipped */
3059 	if (sched->skipped_samples && !sched->idle_hist)
3060 		return;
3061 
3062 	printf("\nIdle stats:\n");
3063 	for (i = 0; i < idle_max_cpu; ++i) {
3064 		if (cpu_list && !test_bit(i, cpu_bitmap))
3065 			continue;
3066 
3067 		t = idle_threads[i];
3068 		if (!t)
3069 			continue;
3070 
3071 		r = thread__priv(t);
3072 		if (r && r->run_stats.n) {
3073 			totals.sched_count += r->run_stats.n;
3074 			printf("    CPU %2d idle for ", i);
3075 			print_sched_time(r->total_run_time, 6);
3076 			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3077 		} else
3078 			printf("    CPU %2d idle entire time window\n", i);
3079 	}
3080 
3081 	if (sched->idle_hist && sched->show_callchain) {
3082 		callchain_param.mode  = CHAIN_FOLDED;
3083 		callchain_param.value = CCVAL_PERIOD;
3084 
3085 		callchain_register_param(&callchain_param);
3086 
3087 		printf("\nIdle stats by callchain:\n");
3088 		for (i = 0; i < idle_max_cpu; ++i) {
3089 			struct idle_thread_runtime *itr;
3090 
3091 			t = idle_threads[i];
3092 			if (!t)
3093 				continue;
3094 
3095 			itr = thread__priv(t);
3096 			if (itr == NULL)
3097 				continue;
3098 
3099 			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3100 					     0, &callchain_param);
3101 
3102 			printf("  CPU %2d:", i);
3103 			print_sched_time(itr->tr.total_run_time, 6);
3104 			printf(" msec\n");
3105 			timehist_print_idlehist_callchain(&itr->sorted_root);
3106 			printf("\n");
3107 		}
3108 	}
3109 
3110 	printf("\n"
3111 	       "    Total number of unique tasks: %" PRIu64 "\n"
3112 	       "Total number of context switches: %" PRIu64 "\n",
3113 	       totals.task_count, totals.sched_count);
3114 
3115 	printf("           Total run time (msec): ");
3116 	print_sched_time(totals.total_run_time, 2);
3117 	printf("\n");
3118 
3119 	printf("    Total scheduling time (msec): ");
3120 	print_sched_time(hist_time, 2);
3121 	printf(" (x %d)\n", sched->max_cpu.cpu);
3122 }
3123 
3124 typedef int (*sched_handler)(const struct perf_tool *tool,
3125 			  union perf_event *event,
3126 			  struct evsel *evsel,
3127 			  struct perf_sample *sample,
3128 			  struct machine *machine);
3129 
perf_timehist__process_sample(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)3130 static int perf_timehist__process_sample(const struct perf_tool *tool,
3131 					 union perf_event *event,
3132 					 struct perf_sample *sample,
3133 					 struct evsel *evsel,
3134 					 struct machine *machine)
3135 {
3136 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3137 	int err = 0;
3138 	struct perf_cpu this_cpu = {
3139 		.cpu = sample->cpu,
3140 	};
3141 
3142 	if (this_cpu.cpu > sched->max_cpu.cpu)
3143 		sched->max_cpu = this_cpu;
3144 
3145 	if (evsel->handler != NULL) {
3146 		sched_handler f = evsel->handler;
3147 
3148 		err = f(tool, event, evsel, sample, machine);
3149 	}
3150 
3151 	return err;
3152 }
3153 
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)3154 static int timehist_check_attr(struct perf_sched *sched,
3155 			       struct evlist *evlist)
3156 {
3157 	struct evsel *evsel;
3158 	struct evsel_runtime *er;
3159 
3160 	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3161 		er = evsel__get_runtime(evsel);
3162 		if (er == NULL) {
3163 			pr_err("Failed to allocate memory for evsel runtime data\n");
3164 			return -1;
3165 		}
3166 
3167 		/* only need to save callchain related to sched_switch event */
3168 		if (sched->show_callchain &&
3169 		    evsel__name_is(evsel, "sched:sched_switch") &&
3170 		    !evsel__has_callchain(evsel)) {
3171 			pr_info("Samples of sched_switch event do not have callchains.\n");
3172 			sched->show_callchain = 0;
3173 			symbol_conf.use_callchain = 0;
3174 		}
3175 	}
3176 
3177 	return 0;
3178 }
3179 
timehist_parse_prio_str(struct perf_sched * sched)3180 static int timehist_parse_prio_str(struct perf_sched *sched)
3181 {
3182 	char *p;
3183 	unsigned long start_prio, end_prio;
3184 	const char *str = sched->prio_str;
3185 
3186 	if (!str)
3187 		return 0;
3188 
3189 	while (isdigit(*str)) {
3190 		p = NULL;
3191 		start_prio = strtoul(str, &p, 0);
3192 		if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3193 			return -1;
3194 
3195 		if (*p == '-') {
3196 			str = ++p;
3197 			p = NULL;
3198 			end_prio = strtoul(str, &p, 0);
3199 
3200 			if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3201 				return -1;
3202 
3203 			if (end_prio < start_prio)
3204 				return -1;
3205 		} else {
3206 			end_prio = start_prio;
3207 		}
3208 
3209 		for (; start_prio <= end_prio; start_prio++)
3210 			__set_bit(start_prio, sched->prio_bitmap);
3211 
3212 		if (*p)
3213 			++p;
3214 
3215 		str = p;
3216 	}
3217 
3218 	return 0;
3219 }
3220 
perf_sched__timehist(struct perf_sched * sched)3221 static int perf_sched__timehist(struct perf_sched *sched)
3222 {
3223 	struct evsel_str_handler handlers[] = {
3224 		{ "sched:sched_switch",       timehist_sched_switch_event, },
3225 		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3226 		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3227 		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3228 	};
3229 	const struct evsel_str_handler migrate_handlers[] = {
3230 		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3231 	};
3232 	struct perf_data data = {
3233 		.path  = input_name,
3234 		.mode  = PERF_DATA_MODE_READ,
3235 		.force = sched->force,
3236 	};
3237 
3238 	struct perf_session *session;
3239 	struct evlist *evlist;
3240 	int err = -1;
3241 
3242 	/*
3243 	 * event handlers for timehist option
3244 	 */
3245 	sched->tool.sample	 = perf_timehist__process_sample;
3246 	sched->tool.mmap	 = perf_event__process_mmap;
3247 	sched->tool.comm	 = perf_event__process_comm;
3248 	sched->tool.exit	 = perf_event__process_exit;
3249 	sched->tool.fork	 = perf_event__process_fork;
3250 	sched->tool.lost	 = process_lost;
3251 	sched->tool.attr	 = perf_event__process_attr;
3252 	sched->tool.tracing_data = perf_event__process_tracing_data;
3253 	sched->tool.build_id	 = perf_event__process_build_id;
3254 
3255 	sched->tool.ordering_requires_timestamps = true;
3256 
3257 	symbol_conf.use_callchain = sched->show_callchain;
3258 
3259 	session = perf_session__new(&data, &sched->tool);
3260 	if (IS_ERR(session))
3261 		return PTR_ERR(session);
3262 
3263 	if (cpu_list) {
3264 		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3265 		if (err < 0)
3266 			goto out;
3267 	}
3268 
3269 	evlist = session->evlist;
3270 
3271 	symbol__init(&session->header.env);
3272 
3273 	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3274 		pr_err("Invalid time string\n");
3275 		err = -EINVAL;
3276 		goto out;
3277 	}
3278 
3279 	if (timehist_check_attr(sched, evlist) != 0)
3280 		goto out;
3281 
3282 	if (timehist_parse_prio_str(sched) != 0) {
3283 		pr_err("Invalid prio string\n");
3284 		goto out;
3285 	}
3286 
3287 	setup_pager();
3288 
3289 	/* prefer sched_waking if it is captured */
3290 	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3291 		handlers[1].handler = timehist_sched_wakeup_ignore;
3292 
3293 	/* setup per-evsel handlers */
3294 	if (perf_session__set_tracepoints_handlers(session, handlers))
3295 		goto out;
3296 
3297 	/* sched_switch event at a minimum needs to exist */
3298 	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3299 		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3300 		goto out;
3301 	}
3302 
3303 	if ((sched->show_migrations || sched->pre_migrations) &&
3304 		perf_session__set_tracepoints_handlers(session, migrate_handlers))
3305 		goto out;
3306 
3307 	/* pre-allocate struct for per-CPU idle stats */
3308 	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3309 	if (sched->max_cpu.cpu == 0)
3310 		sched->max_cpu.cpu = 4;
3311 	if (init_idle_threads(sched->max_cpu.cpu))
3312 		goto out;
3313 
3314 	/* summary_only implies summary option, but don't overwrite summary if set */
3315 	if (sched->summary_only)
3316 		sched->summary = sched->summary_only;
3317 
3318 	if (!sched->summary_only)
3319 		timehist_header(sched);
3320 
3321 	err = perf_session__process_events(session);
3322 	if (err) {
3323 		pr_err("Failed to process events, error %d", err);
3324 		goto out;
3325 	}
3326 
3327 	sched->nr_events      = evlist->stats.nr_events[0];
3328 	sched->nr_lost_events = evlist->stats.total_lost;
3329 	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3330 
3331 	if (sched->summary)
3332 		timehist_print_summary(sched, session);
3333 
3334 out:
3335 	free_idle_threads();
3336 	perf_session__delete(session);
3337 
3338 	return err;
3339 }
3340 
3341 
print_bad_events(struct perf_sched * sched)3342 static void print_bad_events(struct perf_sched *sched)
3343 {
3344 	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3345 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3346 			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3347 			sched->nr_unordered_timestamps, sched->nr_timestamps);
3348 	}
3349 	if (sched->nr_lost_events && sched->nr_events) {
3350 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3351 			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3352 			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3353 	}
3354 	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3355 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3356 			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3357 			sched->nr_context_switch_bugs, sched->nr_timestamps);
3358 		if (sched->nr_lost_events)
3359 			printf(" (due to lost events?)");
3360 		printf("\n");
3361 	}
3362 }
3363 
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3364 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3365 {
3366 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3367 	struct work_atoms *this;
3368 	const char *comm = thread__comm_str(data->thread), *this_comm;
3369 	bool leftmost = true;
3370 
3371 	while (*new) {
3372 		int cmp;
3373 
3374 		this = container_of(*new, struct work_atoms, node);
3375 		parent = *new;
3376 
3377 		this_comm = thread__comm_str(this->thread);
3378 		cmp = strcmp(comm, this_comm);
3379 		if (cmp > 0) {
3380 			new = &((*new)->rb_left);
3381 		} else if (cmp < 0) {
3382 			new = &((*new)->rb_right);
3383 			leftmost = false;
3384 		} else {
3385 			this->num_merged++;
3386 			this->total_runtime += data->total_runtime;
3387 			this->nb_atoms += data->nb_atoms;
3388 			this->total_lat += data->total_lat;
3389 			list_splice(&data->work_list, &this->work_list);
3390 			if (this->max_lat < data->max_lat) {
3391 				this->max_lat = data->max_lat;
3392 				this->max_lat_start = data->max_lat_start;
3393 				this->max_lat_end = data->max_lat_end;
3394 			}
3395 			zfree(&data);
3396 			return;
3397 		}
3398 	}
3399 
3400 	data->num_merged++;
3401 	rb_link_node(&data->node, parent, new);
3402 	rb_insert_color_cached(&data->node, root, leftmost);
3403 }
3404 
perf_sched__merge_lat(struct perf_sched * sched)3405 static void perf_sched__merge_lat(struct perf_sched *sched)
3406 {
3407 	struct work_atoms *data;
3408 	struct rb_node *node;
3409 
3410 	if (sched->skip_merge)
3411 		return;
3412 
3413 	while ((node = rb_first_cached(&sched->atom_root))) {
3414 		rb_erase_cached(node, &sched->atom_root);
3415 		data = rb_entry(node, struct work_atoms, node);
3416 		__merge_work_atoms(&sched->merged_atom_root, data);
3417 	}
3418 }
3419 
setup_cpus_switch_event(struct perf_sched * sched)3420 static int setup_cpus_switch_event(struct perf_sched *sched)
3421 {
3422 	unsigned int i;
3423 
3424 	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3425 	if (!sched->cpu_last_switched)
3426 		return -1;
3427 
3428 	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3429 	if (!sched->curr_pid) {
3430 		zfree(&sched->cpu_last_switched);
3431 		return -1;
3432 	}
3433 
3434 	for (i = 0; i < MAX_CPUS; i++)
3435 		sched->curr_pid[i] = -1;
3436 
3437 	return 0;
3438 }
3439 
free_cpus_switch_event(struct perf_sched * sched)3440 static void free_cpus_switch_event(struct perf_sched *sched)
3441 {
3442 	zfree(&sched->curr_pid);
3443 	zfree(&sched->cpu_last_switched);
3444 }
3445 
perf_sched__lat(struct perf_sched * sched)3446 static int perf_sched__lat(struct perf_sched *sched)
3447 {
3448 	int rc = -1;
3449 	struct rb_node *next;
3450 
3451 	setup_pager();
3452 
3453 	if (setup_cpus_switch_event(sched))
3454 		return rc;
3455 
3456 	if (perf_sched__read_events(sched))
3457 		goto out_free_cpus_switch_event;
3458 
3459 	perf_sched__merge_lat(sched);
3460 	perf_sched__sort_lat(sched);
3461 
3462 	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3463 	printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3464 	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3465 
3466 	next = rb_first_cached(&sched->sorted_atom_root);
3467 
3468 	while (next) {
3469 		struct work_atoms *work_list;
3470 
3471 		work_list = rb_entry(next, struct work_atoms, node);
3472 		output_lat_thread(sched, work_list);
3473 		next = rb_next(next);
3474 		thread__zput(work_list->thread);
3475 	}
3476 
3477 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3478 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3479 		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3480 
3481 	printf(" ---------------------------------------------------\n");
3482 
3483 	print_bad_events(sched);
3484 	printf("\n");
3485 
3486 	rc = 0;
3487 
3488 out_free_cpus_switch_event:
3489 	free_cpus_switch_event(sched);
3490 	return rc;
3491 }
3492 
setup_map_cpus(struct perf_sched * sched)3493 static int setup_map_cpus(struct perf_sched *sched)
3494 {
3495 	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3496 
3497 	if (sched->map.comp) {
3498 		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3499 		if (!sched->map.comp_cpus)
3500 			return -1;
3501 	}
3502 
3503 	if (sched->map.cpus_str) {
3504 		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3505 		if (!sched->map.cpus) {
3506 			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3507 			zfree(&sched->map.comp_cpus);
3508 			return -1;
3509 		}
3510 	}
3511 
3512 	return 0;
3513 }
3514 
setup_color_pids(struct perf_sched * sched)3515 static int setup_color_pids(struct perf_sched *sched)
3516 {
3517 	struct perf_thread_map *map;
3518 
3519 	if (!sched->map.color_pids_str)
3520 		return 0;
3521 
3522 	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3523 	if (!map) {
3524 		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3525 		return -1;
3526 	}
3527 
3528 	sched->map.color_pids = map;
3529 	return 0;
3530 }
3531 
setup_color_cpus(struct perf_sched * sched)3532 static int setup_color_cpus(struct perf_sched *sched)
3533 {
3534 	struct perf_cpu_map *map;
3535 
3536 	if (!sched->map.color_cpus_str)
3537 		return 0;
3538 
3539 	map = perf_cpu_map__new(sched->map.color_cpus_str);
3540 	if (!map) {
3541 		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3542 		return -1;
3543 	}
3544 
3545 	sched->map.color_cpus = map;
3546 	return 0;
3547 }
3548 
perf_sched__map(struct perf_sched * sched)3549 static int perf_sched__map(struct perf_sched *sched)
3550 {
3551 	int rc = -1;
3552 
3553 	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3554 	if (!sched->curr_thread)
3555 		return rc;
3556 
3557 	sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3558 	if (!sched->curr_out_thread)
3559 		return rc;
3560 
3561 	if (setup_cpus_switch_event(sched))
3562 		goto out_free_curr_thread;
3563 
3564 	if (setup_map_cpus(sched))
3565 		goto out_free_cpus_switch_event;
3566 
3567 	if (setup_color_pids(sched))
3568 		goto out_put_map_cpus;
3569 
3570 	if (setup_color_cpus(sched))
3571 		goto out_put_color_pids;
3572 
3573 	setup_pager();
3574 	if (perf_sched__read_events(sched))
3575 		goto out_put_color_cpus;
3576 
3577 	rc = 0;
3578 	print_bad_events(sched);
3579 
3580 out_put_color_cpus:
3581 	perf_cpu_map__put(sched->map.color_cpus);
3582 
3583 out_put_color_pids:
3584 	perf_thread_map__put(sched->map.color_pids);
3585 
3586 out_put_map_cpus:
3587 	zfree(&sched->map.comp_cpus);
3588 	perf_cpu_map__put(sched->map.cpus);
3589 
3590 out_free_cpus_switch_event:
3591 	free_cpus_switch_event(sched);
3592 
3593 out_free_curr_thread:
3594 	zfree(&sched->curr_thread);
3595 	return rc;
3596 }
3597 
perf_sched__replay(struct perf_sched * sched)3598 static int perf_sched__replay(struct perf_sched *sched)
3599 {
3600 	int ret;
3601 	unsigned long i;
3602 
3603 	mutex_init(&sched->start_work_mutex);
3604 	mutex_init(&sched->work_done_wait_mutex);
3605 
3606 	ret = setup_cpus_switch_event(sched);
3607 	if (ret)
3608 		goto out_mutex_destroy;
3609 
3610 	calibrate_run_measurement_overhead(sched);
3611 	calibrate_sleep_measurement_overhead(sched);
3612 
3613 	test_calibrations(sched);
3614 
3615 	ret = perf_sched__read_events(sched);
3616 	if (ret)
3617 		goto out_free_cpus_switch_event;
3618 
3619 	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3620 	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3621 	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3622 
3623 	if (sched->targetless_wakeups)
3624 		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3625 	if (sched->multitarget_wakeups)
3626 		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3627 	if (sched->nr_run_events_optimized)
3628 		printf("run atoms optimized: %ld\n",
3629 			sched->nr_run_events_optimized);
3630 
3631 	print_task_traces(sched);
3632 	add_cross_task_wakeups(sched);
3633 
3634 	sched->thread_funcs_exit = false;
3635 	create_tasks(sched);
3636 	printf("------------------------------------------------------------\n");
3637 	if (sched->replay_repeat == 0)
3638 		sched->replay_repeat = UINT_MAX;
3639 
3640 	for (i = 0; i < sched->replay_repeat; i++)
3641 		run_one_test(sched);
3642 
3643 	sched->thread_funcs_exit = true;
3644 	destroy_tasks(sched);
3645 
3646 out_free_cpus_switch_event:
3647 	free_cpus_switch_event(sched);
3648 
3649 out_mutex_destroy:
3650 	mutex_destroy(&sched->start_work_mutex);
3651 	mutex_destroy(&sched->work_done_wait_mutex);
3652 	return ret;
3653 }
3654 
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3655 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3656 			  const char * const usage_msg[])
3657 {
3658 	char *tmp, *tok, *str = strdup(sched->sort_order);
3659 
3660 	for (tok = strtok_r(str, ", ", &tmp);
3661 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3662 		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3663 			usage_with_options_msg(usage_msg, options,
3664 					"Unknown --sort key: `%s'", tok);
3665 		}
3666 	}
3667 
3668 	free(str);
3669 
3670 	sort_dimension__add("pid", &sched->cmp_pid);
3671 }
3672 
schedstat_events_exposed(void)3673 static bool schedstat_events_exposed(void)
3674 {
3675 	/*
3676 	 * Select "sched:sched_stat_wait" event to check
3677 	 * whether schedstat tracepoints are exposed.
3678 	 */
3679 	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3680 		false : true;
3681 }
3682 
__cmd_record(int argc,const char ** argv)3683 static int __cmd_record(int argc, const char **argv)
3684 {
3685 	unsigned int rec_argc, i, j;
3686 	char **rec_argv;
3687 	const char **rec_argv_copy;
3688 	const char * const record_args[] = {
3689 		"record",
3690 		"-a",
3691 		"-R",
3692 		"-m", "1024",
3693 		"-c", "1",
3694 		"-e", "sched:sched_switch",
3695 		"-e", "sched:sched_stat_runtime",
3696 		"-e", "sched:sched_process_fork",
3697 		"-e", "sched:sched_wakeup_new",
3698 		"-e", "sched:sched_migrate_task",
3699 	};
3700 
3701 	/*
3702 	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3703 	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3704 	 * to prevent "perf sched record" execution failure, determine
3705 	 * whether to record schedstat events according to actual situation.
3706 	 */
3707 	const char * const schedstat_args[] = {
3708 		"-e", "sched:sched_stat_wait",
3709 		"-e", "sched:sched_stat_sleep",
3710 		"-e", "sched:sched_stat_iowait",
3711 	};
3712 	unsigned int schedstat_argc = schedstat_events_exposed() ?
3713 		ARRAY_SIZE(schedstat_args) : 0;
3714 
3715 	struct tep_event *waking_event;
3716 	int ret;
3717 
3718 	/*
3719 	 * +2 for either "-e", "sched:sched_wakeup" or
3720 	 * "-e", "sched:sched_waking"
3721 	 */
3722 	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3723 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3724 	if (rec_argv == NULL)
3725 		return -ENOMEM;
3726 	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3727 	if (rec_argv_copy == NULL) {
3728 		free(rec_argv);
3729 		return -ENOMEM;
3730 	}
3731 
3732 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3733 		rec_argv[i] = strdup(record_args[i]);
3734 
3735 	rec_argv[i++] = strdup("-e");
3736 	waking_event = trace_event__tp_format("sched", "sched_waking");
3737 	if (!IS_ERR(waking_event))
3738 		rec_argv[i++] = strdup("sched:sched_waking");
3739 	else
3740 		rec_argv[i++] = strdup("sched:sched_wakeup");
3741 
3742 	for (j = 0; j < schedstat_argc; j++)
3743 		rec_argv[i++] = strdup(schedstat_args[j]);
3744 
3745 	for (j = 1; j < (unsigned int)argc; j++, i++)
3746 		rec_argv[i] = strdup(argv[j]);
3747 
3748 	BUG_ON(i != rec_argc);
3749 
3750 	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3751 	ret = cmd_record(rec_argc, rec_argv_copy);
3752 
3753 	for (i = 0; i < rec_argc; i++)
3754 		free(rec_argv[i]);
3755 	free(rec_argv);
3756 	free(rec_argv_copy);
3757 
3758 	return ret;
3759 }
3760 
cmd_sched(int argc,const char ** argv)3761 int cmd_sched(int argc, const char **argv)
3762 {
3763 	static const char default_sort_order[] = "avg, max, switch, runtime";
3764 	struct perf_sched sched = {
3765 		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3766 		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3767 		.sort_order	      = default_sort_order,
3768 		.replay_repeat	      = 10,
3769 		.profile_cpu	      = -1,
3770 		.next_shortname1      = 'A',
3771 		.next_shortname2      = '0',
3772 		.skip_merge           = 0,
3773 		.show_callchain	      = 1,
3774 		.max_stack            = 5,
3775 	};
3776 	const struct option sched_options[] = {
3777 	OPT_STRING('i', "input", &input_name, "file",
3778 		    "input file name"),
3779 	OPT_INCR('v', "verbose", &verbose,
3780 		    "be more verbose (show symbol address, etc)"),
3781 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3782 		    "dump raw trace in ASCII"),
3783 	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3784 	OPT_END()
3785 	};
3786 	const struct option latency_options[] = {
3787 	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3788 		   "sort by key(s): runtime, switch, avg, max"),
3789 	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3790 		    "CPU to profile on"),
3791 	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3792 		    "latency stats per pid instead of per comm"),
3793 	OPT_PARENT(sched_options)
3794 	};
3795 	const struct option replay_options[] = {
3796 	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3797 		     "repeat the workload replay N times (0: infinite)"),
3798 	OPT_PARENT(sched_options)
3799 	};
3800 	const struct option map_options[] = {
3801 	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3802 		    "map output in compact mode"),
3803 	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3804 		   "highlight given pids in map"),
3805 	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3806                     "highlight given CPUs in map"),
3807 	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3808                     "display given CPUs in map"),
3809 	OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3810 		"map output only for the given task name(s)."),
3811 	OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3812 		"given command name can be partially matched (fuzzy matching)"),
3813 	OPT_PARENT(sched_options)
3814 	};
3815 	const struct option timehist_options[] = {
3816 	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3817 		   "file", "vmlinux pathname"),
3818 	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3819 		   "file", "kallsyms pathname"),
3820 	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3821 		    "Display call chains if present (default on)"),
3822 	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3823 		   "Maximum number of functions to display backtrace."),
3824 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3825 		    "Look for files with symbols relative to this directory"),
3826 	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3827 		    "Show only syscall summary with statistics"),
3828 	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3829 		    "Show all syscalls and summary with statistics"),
3830 	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3831 	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3832 	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3833 	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3834 	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3835 	OPT_STRING(0, "time", &sched.time_str, "str",
3836 		   "Time span for analysis (start,stop)"),
3837 	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3838 	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3839 		   "analyze events only for given process id(s)"),
3840 	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3841 		   "analyze events only for given thread id(s)"),
3842 	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3843 	OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3844 	OPT_STRING(0, "prio", &sched.prio_str, "prio",
3845 		   "analyze events only for given task priority(ies)"),
3846 	OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3847 	OPT_PARENT(sched_options)
3848 	};
3849 
3850 	const char * const latency_usage[] = {
3851 		"perf sched latency [<options>]",
3852 		NULL
3853 	};
3854 	const char * const replay_usage[] = {
3855 		"perf sched replay [<options>]",
3856 		NULL
3857 	};
3858 	const char * const map_usage[] = {
3859 		"perf sched map [<options>]",
3860 		NULL
3861 	};
3862 	const char * const timehist_usage[] = {
3863 		"perf sched timehist [<options>]",
3864 		NULL
3865 	};
3866 	const char *const sched_subcommands[] = { "record", "latency", "map",
3867 						  "replay", "script",
3868 						  "timehist", NULL };
3869 	const char *sched_usage[] = {
3870 		NULL,
3871 		NULL
3872 	};
3873 	struct trace_sched_handler lat_ops  = {
3874 		.wakeup_event	    = latency_wakeup_event,
3875 		.switch_event	    = latency_switch_event,
3876 		.runtime_event	    = latency_runtime_event,
3877 		.migrate_task_event = latency_migrate_task_event,
3878 	};
3879 	struct trace_sched_handler map_ops  = {
3880 		.switch_event	    = map_switch_event,
3881 	};
3882 	struct trace_sched_handler replay_ops  = {
3883 		.wakeup_event	    = replay_wakeup_event,
3884 		.switch_event	    = replay_switch_event,
3885 		.fork_event	    = replay_fork_event,
3886 	};
3887 	int ret;
3888 
3889 	perf_tool__init(&sched.tool, /*ordered_events=*/true);
3890 	sched.tool.sample	 = perf_sched__process_tracepoint_sample;
3891 	sched.tool.comm		 = perf_sched__process_comm;
3892 	sched.tool.namespaces	 = perf_event__process_namespaces;
3893 	sched.tool.lost		 = perf_event__process_lost;
3894 	sched.tool.fork		 = perf_sched__process_fork_event;
3895 
3896 	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3897 					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3898 	if (!argc)
3899 		usage_with_options(sched_usage, sched_options);
3900 
3901 	/*
3902 	 * Aliased to 'perf script' for now:
3903 	 */
3904 	if (!strcmp(argv[0], "script")) {
3905 		return cmd_script(argc, argv);
3906 	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3907 		return __cmd_record(argc, argv);
3908 	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3909 		sched.tp_handler = &lat_ops;
3910 		if (argc > 1) {
3911 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3912 			if (argc)
3913 				usage_with_options(latency_usage, latency_options);
3914 		}
3915 		setup_sorting(&sched, latency_options, latency_usage);
3916 		return perf_sched__lat(&sched);
3917 	} else if (!strcmp(argv[0], "map")) {
3918 		if (argc) {
3919 			argc = parse_options(argc, argv, map_options, map_usage, 0);
3920 			if (argc)
3921 				usage_with_options(map_usage, map_options);
3922 
3923 			if (sched.map.task_name) {
3924 				sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3925 				if (sched.map.task_names == NULL) {
3926 					fprintf(stderr, "Failed to parse task names\n");
3927 					return -1;
3928 				}
3929 			}
3930 		}
3931 		sched.tp_handler = &map_ops;
3932 		setup_sorting(&sched, latency_options, latency_usage);
3933 		return perf_sched__map(&sched);
3934 	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3935 		sched.tp_handler = &replay_ops;
3936 		if (argc) {
3937 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3938 			if (argc)
3939 				usage_with_options(replay_usage, replay_options);
3940 		}
3941 		return perf_sched__replay(&sched);
3942 	} else if (!strcmp(argv[0], "timehist")) {
3943 		if (argc) {
3944 			argc = parse_options(argc, argv, timehist_options,
3945 					     timehist_usage, 0);
3946 			if (argc)
3947 				usage_with_options(timehist_usage, timehist_options);
3948 		}
3949 		if ((sched.show_wakeups || sched.show_next) &&
3950 		    sched.summary_only) {
3951 			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3952 			parse_options_usage(timehist_usage, timehist_options, "s", true);
3953 			if (sched.show_wakeups)
3954 				parse_options_usage(NULL, timehist_options, "w", true);
3955 			if (sched.show_next)
3956 				parse_options_usage(NULL, timehist_options, "n", true);
3957 			return -EINVAL;
3958 		}
3959 		ret = symbol__validate_sym_arguments();
3960 		if (ret)
3961 			return ret;
3962 
3963 		return perf_sched__timehist(&sched);
3964 	} else {
3965 		usage_with_options(sched_usage, sched_options);
3966 	}
3967 
3968 	/* free usage string allocated by parse_options_subcommand */
3969 	free((void *)sched_usage[0]);
3970 
3971 	return 0;
3972 }
3973