1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/mutex.h"
11 #include "util/symbol.h"
12 #include "util/thread.h"
13 #include "util/header.h"
14 #include "util/session.h"
15 #include "util/tool.h"
16 #include "util/cloexec.h"
17 #include "util/thread_map.h"
18 #include "util/color.h"
19 #include "util/stat.h"
20 #include "util/string2.h"
21 #include "util/callchain.h"
22 #include "util/time-utils.h"
23
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include "util/trace-event.h"
27
28 #include "util/debug.h"
29 #include "util/event.h"
30 #include "util/util.h"
31
32 #include <linux/kernel.h>
33 #include <linux/log2.h>
34 #include <linux/zalloc.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <inttypes.h>
38
39 #include <errno.h>
40 #include <semaphore.h>
41 #include <pthread.h>
42 #include <math.h>
43 #include <api/fs/fs.h>
44 #include <perf/cpumap.h>
45 #include <linux/time64.h>
46 #include <linux/err.h>
47
48 #include <linux/ctype.h>
49
50 #define PR_SET_NAME 15 /* Set process name */
51 #define MAX_CPUS 4096
52 #define COMM_LEN 20
53 #define SYM_LEN 129
54 #define MAX_PID 1024000
55 #define MAX_PRIO 140
56
57 static const char *cpu_list;
58 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
59
60 struct sched_atom;
61
62 struct task_desc {
63 unsigned long nr;
64 unsigned long pid;
65 char comm[COMM_LEN];
66
67 unsigned long nr_events;
68 unsigned long curr_event;
69 struct sched_atom **atoms;
70
71 pthread_t thread;
72
73 sem_t ready_for_work;
74 sem_t work_done_sem;
75
76 u64 cpu_usage;
77 };
78
79 enum sched_event_type {
80 SCHED_EVENT_RUN,
81 SCHED_EVENT_SLEEP,
82 SCHED_EVENT_WAKEUP,
83 };
84
85 struct sched_atom {
86 enum sched_event_type type;
87 u64 timestamp;
88 u64 duration;
89 unsigned long nr;
90 sem_t *wait_sem;
91 struct task_desc *wakee;
92 };
93
94 enum thread_state {
95 THREAD_SLEEPING = 0,
96 THREAD_WAIT_CPU,
97 THREAD_SCHED_IN,
98 THREAD_IGNORE
99 };
100
101 struct work_atom {
102 struct list_head list;
103 enum thread_state state;
104 u64 sched_out_time;
105 u64 wake_up_time;
106 u64 sched_in_time;
107 u64 runtime;
108 };
109
110 struct work_atoms {
111 struct list_head work_list;
112 struct thread *thread;
113 struct rb_node node;
114 u64 max_lat;
115 u64 max_lat_start;
116 u64 max_lat_end;
117 u64 total_lat;
118 u64 nb_atoms;
119 u64 total_runtime;
120 int num_merged;
121 };
122
123 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
124
125 struct perf_sched;
126
127 struct trace_sched_handler {
128 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
129 struct perf_sample *sample, struct machine *machine);
130
131 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
132 struct perf_sample *sample, struct machine *machine);
133
134 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
135 struct perf_sample *sample, struct machine *machine);
136
137 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
138 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
139 struct machine *machine);
140
141 int (*migrate_task_event)(struct perf_sched *sched,
142 struct evsel *evsel,
143 struct perf_sample *sample,
144 struct machine *machine);
145 };
146
147 #define COLOR_PIDS PERF_COLOR_BLUE
148 #define COLOR_CPUS PERF_COLOR_BG_RED
149
150 struct perf_sched_map {
151 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
152 struct perf_cpu *comp_cpus;
153 bool comp;
154 struct perf_thread_map *color_pids;
155 const char *color_pids_str;
156 struct perf_cpu_map *color_cpus;
157 const char *color_cpus_str;
158 const char *task_name;
159 struct strlist *task_names;
160 bool fuzzy;
161 struct perf_cpu_map *cpus;
162 const char *cpus_str;
163 };
164
165 struct perf_sched {
166 struct perf_tool tool;
167 const char *sort_order;
168 unsigned long nr_tasks;
169 struct task_desc **pid_to_task;
170 struct task_desc **tasks;
171 const struct trace_sched_handler *tp_handler;
172 struct mutex start_work_mutex;
173 struct mutex work_done_wait_mutex;
174 int profile_cpu;
175 /*
176 * Track the current task - that way we can know whether there's any
177 * weird events, such as a task being switched away that is not current.
178 */
179 struct perf_cpu max_cpu;
180 u32 *curr_pid;
181 struct thread **curr_thread;
182 struct thread **curr_out_thread;
183 char next_shortname1;
184 char next_shortname2;
185 unsigned int replay_repeat;
186 unsigned long nr_run_events;
187 unsigned long nr_sleep_events;
188 unsigned long nr_wakeup_events;
189 unsigned long nr_sleep_corrections;
190 unsigned long nr_run_events_optimized;
191 unsigned long targetless_wakeups;
192 unsigned long multitarget_wakeups;
193 unsigned long nr_runs;
194 unsigned long nr_timestamps;
195 unsigned long nr_unordered_timestamps;
196 unsigned long nr_context_switch_bugs;
197 unsigned long nr_events;
198 unsigned long nr_lost_chunks;
199 unsigned long nr_lost_events;
200 u64 run_measurement_overhead;
201 u64 sleep_measurement_overhead;
202 u64 start_time;
203 u64 cpu_usage;
204 u64 runavg_cpu_usage;
205 u64 parent_cpu_usage;
206 u64 runavg_parent_cpu_usage;
207 u64 sum_runtime;
208 u64 sum_fluct;
209 u64 run_avg;
210 u64 all_runtime;
211 u64 all_count;
212 u64 *cpu_last_switched;
213 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
214 struct list_head sort_list, cmp_pid;
215 bool force;
216 bool skip_merge;
217 struct perf_sched_map map;
218
219 /* options for timehist command */
220 bool summary;
221 bool summary_only;
222 bool idle_hist;
223 bool show_callchain;
224 unsigned int max_stack;
225 bool show_cpu_visual;
226 bool show_wakeups;
227 bool show_next;
228 bool show_migrations;
229 bool pre_migrations;
230 bool show_state;
231 bool show_prio;
232 u64 skipped_samples;
233 const char *time_str;
234 struct perf_time_interval ptime;
235 struct perf_time_interval hist_time;
236 volatile bool thread_funcs_exit;
237 const char *prio_str;
238 DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
239 };
240
241 /* per thread run time data */
242 struct thread_runtime {
243 u64 last_time; /* time of previous sched in/out event */
244 u64 dt_run; /* run time */
245 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
246 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
247 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
248 u64 dt_delay; /* time between wakeup and sched-in */
249 u64 dt_pre_mig; /* time between migration and wakeup */
250 u64 ready_to_run; /* time of wakeup */
251 u64 migrated; /* time when a thread is migrated */
252
253 struct stats run_stats;
254 u64 total_run_time;
255 u64 total_sleep_time;
256 u64 total_iowait_time;
257 u64 total_preempt_time;
258 u64 total_delay_time;
259 u64 total_pre_mig_time;
260
261 char last_state;
262
263 char shortname[3];
264 bool comm_changed;
265
266 u64 migrations;
267
268 int prio;
269 };
270
271 /* per event run time data */
272 struct evsel_runtime {
273 u64 *last_time; /* time this event was last seen per cpu */
274 u32 ncpu; /* highest cpu slot allocated */
275 };
276
277 /* per cpu idle time data */
278 struct idle_thread_runtime {
279 struct thread_runtime tr;
280 struct thread *last_thread;
281 struct rb_root_cached sorted_root;
282 struct callchain_root callchain;
283 struct callchain_cursor cursor;
284 };
285
286 /* track idle times per cpu */
287 static struct thread **idle_threads;
288 static int idle_max_cpu;
289 static char idle_comm[] = "<idle>";
290
get_nsecs(void)291 static u64 get_nsecs(void)
292 {
293 struct timespec ts;
294
295 clock_gettime(CLOCK_MONOTONIC, &ts);
296
297 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298 }
299
burn_nsecs(struct perf_sched * sched,u64 nsecs)300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301 {
302 u64 T0 = get_nsecs(), T1;
303
304 do {
305 T1 = get_nsecs();
306 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307 }
308
sleep_nsecs(u64 nsecs)309 static void sleep_nsecs(u64 nsecs)
310 {
311 struct timespec ts;
312
313 ts.tv_nsec = nsecs % 999999999;
314 ts.tv_sec = nsecs / 999999999;
315
316 nanosleep(&ts, NULL);
317 }
318
calibrate_run_measurement_overhead(struct perf_sched * sched)319 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320 {
321 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322 int i;
323
324 for (i = 0; i < 10; i++) {
325 T0 = get_nsecs();
326 burn_nsecs(sched, 0);
327 T1 = get_nsecs();
328 delta = T1-T0;
329 min_delta = min(min_delta, delta);
330 }
331 sched->run_measurement_overhead = min_delta;
332
333 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334 }
335
calibrate_sleep_measurement_overhead(struct perf_sched * sched)336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337 {
338 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339 int i;
340
341 for (i = 0; i < 10; i++) {
342 T0 = get_nsecs();
343 sleep_nsecs(10000);
344 T1 = get_nsecs();
345 delta = T1-T0;
346 min_delta = min(min_delta, delta);
347 }
348 min_delta -= 10000;
349 sched->sleep_measurement_overhead = min_delta;
350
351 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352 }
353
354 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)355 get_new_event(struct task_desc *task, u64 timestamp)
356 {
357 struct sched_atom *event = zalloc(sizeof(*event));
358 unsigned long idx = task->nr_events;
359 size_t size;
360
361 event->timestamp = timestamp;
362 event->nr = idx;
363
364 task->nr_events++;
365 size = sizeof(struct sched_atom *) * task->nr_events;
366 task->atoms = realloc(task->atoms, size);
367 BUG_ON(!task->atoms);
368
369 task->atoms[idx] = event;
370
371 return event;
372 }
373
last_event(struct task_desc * task)374 static struct sched_atom *last_event(struct task_desc *task)
375 {
376 if (!task->nr_events)
377 return NULL;
378
379 return task->atoms[task->nr_events - 1];
380 }
381
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383 u64 timestamp, u64 duration)
384 {
385 struct sched_atom *event, *curr_event = last_event(task);
386
387 /*
388 * optimize an existing RUN event by merging this one
389 * to it:
390 */
391 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392 sched->nr_run_events_optimized++;
393 curr_event->duration += duration;
394 return;
395 }
396
397 event = get_new_event(task, timestamp);
398
399 event->type = SCHED_EVENT_RUN;
400 event->duration = duration;
401
402 sched->nr_run_events++;
403 }
404
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406 u64 timestamp, struct task_desc *wakee)
407 {
408 struct sched_atom *event, *wakee_event;
409
410 event = get_new_event(task, timestamp);
411 event->type = SCHED_EVENT_WAKEUP;
412 event->wakee = wakee;
413
414 wakee_event = last_event(wakee);
415 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416 sched->targetless_wakeups++;
417 return;
418 }
419 if (wakee_event->wait_sem) {
420 sched->multitarget_wakeups++;
421 return;
422 }
423
424 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425 sem_init(wakee_event->wait_sem, 0, 0);
426 event->wait_sem = wakee_event->wait_sem;
427
428 sched->nr_wakeup_events++;
429 }
430
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp)431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
432 u64 timestamp)
433 {
434 struct sched_atom *event = get_new_event(task, timestamp);
435
436 event->type = SCHED_EVENT_SLEEP;
437
438 sched->nr_sleep_events++;
439 }
440
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)441 static struct task_desc *register_pid(struct perf_sched *sched,
442 unsigned long pid, const char *comm)
443 {
444 struct task_desc *task;
445 static int pid_max;
446
447 if (sched->pid_to_task == NULL) {
448 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
449 pid_max = MAX_PID;
450 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
451 }
452 if (pid >= (unsigned long)pid_max) {
453 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
454 sizeof(struct task_desc *))) == NULL);
455 while (pid >= (unsigned long)pid_max)
456 sched->pid_to_task[pid_max++] = NULL;
457 }
458
459 task = sched->pid_to_task[pid];
460
461 if (task)
462 return task;
463
464 task = zalloc(sizeof(*task));
465 task->pid = pid;
466 task->nr = sched->nr_tasks;
467 strcpy(task->comm, comm);
468 /*
469 * every task starts in sleeping state - this gets ignored
470 * if there's no wakeup pointing to this sleep state:
471 */
472 add_sched_event_sleep(sched, task, 0);
473
474 sched->pid_to_task[pid] = task;
475 sched->nr_tasks++;
476 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
477 BUG_ON(!sched->tasks);
478 sched->tasks[task->nr] = task;
479
480 if (verbose > 0)
481 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
482
483 return task;
484 }
485
486
print_task_traces(struct perf_sched * sched)487 static void print_task_traces(struct perf_sched *sched)
488 {
489 struct task_desc *task;
490 unsigned long i;
491
492 for (i = 0; i < sched->nr_tasks; i++) {
493 task = sched->tasks[i];
494 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
495 task->nr, task->comm, task->pid, task->nr_events);
496 }
497 }
498
add_cross_task_wakeups(struct perf_sched * sched)499 static void add_cross_task_wakeups(struct perf_sched *sched)
500 {
501 struct task_desc *task1, *task2;
502 unsigned long i, j;
503
504 for (i = 0; i < sched->nr_tasks; i++) {
505 task1 = sched->tasks[i];
506 j = i + 1;
507 if (j == sched->nr_tasks)
508 j = 0;
509 task2 = sched->tasks[j];
510 add_sched_event_wakeup(sched, task1, 0, task2);
511 }
512 }
513
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)514 static void perf_sched__process_event(struct perf_sched *sched,
515 struct sched_atom *atom)
516 {
517 int ret = 0;
518
519 switch (atom->type) {
520 case SCHED_EVENT_RUN:
521 burn_nsecs(sched, atom->duration);
522 break;
523 case SCHED_EVENT_SLEEP:
524 if (atom->wait_sem)
525 ret = sem_wait(atom->wait_sem);
526 BUG_ON(ret);
527 break;
528 case SCHED_EVENT_WAKEUP:
529 if (atom->wait_sem)
530 ret = sem_post(atom->wait_sem);
531 BUG_ON(ret);
532 break;
533 default:
534 BUG_ON(1);
535 }
536 }
537
get_cpu_usage_nsec_parent(void)538 static u64 get_cpu_usage_nsec_parent(void)
539 {
540 struct rusage ru;
541 u64 sum;
542 int err;
543
544 err = getrusage(RUSAGE_SELF, &ru);
545 BUG_ON(err);
546
547 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
548 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
549
550 return sum;
551 }
552
self_open_counters(struct perf_sched * sched,unsigned long cur_task)553 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
554 {
555 struct perf_event_attr attr;
556 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
557 int fd;
558 struct rlimit limit;
559 bool need_privilege = false;
560
561 memset(&attr, 0, sizeof(attr));
562
563 attr.type = PERF_TYPE_SOFTWARE;
564 attr.config = PERF_COUNT_SW_TASK_CLOCK;
565
566 force_again:
567 fd = sys_perf_event_open(&attr, 0, -1, -1,
568 perf_event_open_cloexec_flag());
569
570 if (fd < 0) {
571 if (errno == EMFILE) {
572 if (sched->force) {
573 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
574 limit.rlim_cur += sched->nr_tasks - cur_task;
575 if (limit.rlim_cur > limit.rlim_max) {
576 limit.rlim_max = limit.rlim_cur;
577 need_privilege = true;
578 }
579 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
580 if (need_privilege && errno == EPERM)
581 strcpy(info, "Need privilege\n");
582 } else
583 goto force_again;
584 } else
585 strcpy(info, "Have a try with -f option\n");
586 }
587 pr_err("Error: sys_perf_event_open() syscall returned "
588 "with %d (%s)\n%s", fd,
589 str_error_r(errno, sbuf, sizeof(sbuf)), info);
590 exit(EXIT_FAILURE);
591 }
592 return fd;
593 }
594
get_cpu_usage_nsec_self(int fd)595 static u64 get_cpu_usage_nsec_self(int fd)
596 {
597 u64 runtime;
598 int ret;
599
600 ret = read(fd, &runtime, sizeof(runtime));
601 BUG_ON(ret != sizeof(runtime));
602
603 return runtime;
604 }
605
606 struct sched_thread_parms {
607 struct task_desc *task;
608 struct perf_sched *sched;
609 int fd;
610 };
611
thread_func(void * ctx)612 static void *thread_func(void *ctx)
613 {
614 struct sched_thread_parms *parms = ctx;
615 struct task_desc *this_task = parms->task;
616 struct perf_sched *sched = parms->sched;
617 u64 cpu_usage_0, cpu_usage_1;
618 unsigned long i, ret;
619 char comm2[22];
620 int fd = parms->fd;
621
622 zfree(&parms);
623
624 sprintf(comm2, ":%s", this_task->comm);
625 prctl(PR_SET_NAME, comm2);
626 if (fd < 0)
627 return NULL;
628
629 while (!sched->thread_funcs_exit) {
630 ret = sem_post(&this_task->ready_for_work);
631 BUG_ON(ret);
632 mutex_lock(&sched->start_work_mutex);
633 mutex_unlock(&sched->start_work_mutex);
634
635 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
636
637 for (i = 0; i < this_task->nr_events; i++) {
638 this_task->curr_event = i;
639 perf_sched__process_event(sched, this_task->atoms[i]);
640 }
641
642 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
643 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
644 ret = sem_post(&this_task->work_done_sem);
645 BUG_ON(ret);
646
647 mutex_lock(&sched->work_done_wait_mutex);
648 mutex_unlock(&sched->work_done_wait_mutex);
649 }
650 return NULL;
651 }
652
create_tasks(struct perf_sched * sched)653 static void create_tasks(struct perf_sched *sched)
654 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
655 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
656 {
657 struct task_desc *task;
658 pthread_attr_t attr;
659 unsigned long i;
660 int err;
661
662 err = pthread_attr_init(&attr);
663 BUG_ON(err);
664 err = pthread_attr_setstacksize(&attr,
665 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
666 BUG_ON(err);
667 mutex_lock(&sched->start_work_mutex);
668 mutex_lock(&sched->work_done_wait_mutex);
669 for (i = 0; i < sched->nr_tasks; i++) {
670 struct sched_thread_parms *parms = malloc(sizeof(*parms));
671 BUG_ON(parms == NULL);
672 parms->task = task = sched->tasks[i];
673 parms->sched = sched;
674 parms->fd = self_open_counters(sched, i);
675 sem_init(&task->ready_for_work, 0, 0);
676 sem_init(&task->work_done_sem, 0, 0);
677 task->curr_event = 0;
678 err = pthread_create(&task->thread, &attr, thread_func, parms);
679 BUG_ON(err);
680 }
681 }
682
destroy_tasks(struct perf_sched * sched)683 static void destroy_tasks(struct perf_sched *sched)
684 UNLOCK_FUNCTION(sched->start_work_mutex)
685 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
686 {
687 struct task_desc *task;
688 unsigned long i;
689 int err;
690
691 mutex_unlock(&sched->start_work_mutex);
692 mutex_unlock(&sched->work_done_wait_mutex);
693 /* Get rid of threads so they won't be upset by mutex destrunction */
694 for (i = 0; i < sched->nr_tasks; i++) {
695 task = sched->tasks[i];
696 err = pthread_join(task->thread, NULL);
697 BUG_ON(err);
698 sem_destroy(&task->ready_for_work);
699 sem_destroy(&task->work_done_sem);
700 }
701 }
702
wait_for_tasks(struct perf_sched * sched)703 static void wait_for_tasks(struct perf_sched *sched)
704 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
705 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
706 {
707 u64 cpu_usage_0, cpu_usage_1;
708 struct task_desc *task;
709 unsigned long i, ret;
710
711 sched->start_time = get_nsecs();
712 sched->cpu_usage = 0;
713 mutex_unlock(&sched->work_done_wait_mutex);
714
715 for (i = 0; i < sched->nr_tasks; i++) {
716 task = sched->tasks[i];
717 ret = sem_wait(&task->ready_for_work);
718 BUG_ON(ret);
719 sem_init(&task->ready_for_work, 0, 0);
720 }
721 mutex_lock(&sched->work_done_wait_mutex);
722
723 cpu_usage_0 = get_cpu_usage_nsec_parent();
724
725 mutex_unlock(&sched->start_work_mutex);
726
727 for (i = 0; i < sched->nr_tasks; i++) {
728 task = sched->tasks[i];
729 ret = sem_wait(&task->work_done_sem);
730 BUG_ON(ret);
731 sem_init(&task->work_done_sem, 0, 0);
732 sched->cpu_usage += task->cpu_usage;
733 task->cpu_usage = 0;
734 }
735
736 cpu_usage_1 = get_cpu_usage_nsec_parent();
737 if (!sched->runavg_cpu_usage)
738 sched->runavg_cpu_usage = sched->cpu_usage;
739 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
740
741 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
742 if (!sched->runavg_parent_cpu_usage)
743 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
744 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
745 sched->parent_cpu_usage)/sched->replay_repeat;
746
747 mutex_lock(&sched->start_work_mutex);
748
749 for (i = 0; i < sched->nr_tasks; i++) {
750 task = sched->tasks[i];
751 task->curr_event = 0;
752 }
753 }
754
run_one_test(struct perf_sched * sched)755 static void run_one_test(struct perf_sched *sched)
756 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
757 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
758 {
759 u64 T0, T1, delta, avg_delta, fluct;
760
761 T0 = get_nsecs();
762 wait_for_tasks(sched);
763 T1 = get_nsecs();
764
765 delta = T1 - T0;
766 sched->sum_runtime += delta;
767 sched->nr_runs++;
768
769 avg_delta = sched->sum_runtime / sched->nr_runs;
770 if (delta < avg_delta)
771 fluct = avg_delta - delta;
772 else
773 fluct = delta - avg_delta;
774 sched->sum_fluct += fluct;
775 if (!sched->run_avg)
776 sched->run_avg = delta;
777 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
778
779 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
780
781 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
782
783 printf("cpu: %0.2f / %0.2f",
784 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
785
786 #if 0
787 /*
788 * rusage statistics done by the parent, these are less
789 * accurate than the sched->sum_exec_runtime based statistics:
790 */
791 printf(" [%0.2f / %0.2f]",
792 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
793 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
794 #endif
795
796 printf("\n");
797
798 if (sched->nr_sleep_corrections)
799 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
800 sched->nr_sleep_corrections = 0;
801 }
802
test_calibrations(struct perf_sched * sched)803 static void test_calibrations(struct perf_sched *sched)
804 {
805 u64 T0, T1;
806
807 T0 = get_nsecs();
808 burn_nsecs(sched, NSEC_PER_MSEC);
809 T1 = get_nsecs();
810
811 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
812
813 T0 = get_nsecs();
814 sleep_nsecs(NSEC_PER_MSEC);
815 T1 = get_nsecs();
816
817 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
818 }
819
820 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)821 replay_wakeup_event(struct perf_sched *sched,
822 struct evsel *evsel, struct perf_sample *sample,
823 struct machine *machine __maybe_unused)
824 {
825 const char *comm = evsel__strval(evsel, sample, "comm");
826 const u32 pid = evsel__intval(evsel, sample, "pid");
827 struct task_desc *waker, *wakee;
828
829 if (verbose > 0) {
830 printf("sched_wakeup event %p\n", evsel);
831
832 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
833 }
834
835 waker = register_pid(sched, sample->tid, "<unknown>");
836 wakee = register_pid(sched, pid, comm);
837
838 add_sched_event_wakeup(sched, waker, sample->time, wakee);
839 return 0;
840 }
841
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)842 static int replay_switch_event(struct perf_sched *sched,
843 struct evsel *evsel,
844 struct perf_sample *sample,
845 struct machine *machine __maybe_unused)
846 {
847 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
848 *next_comm = evsel__strval(evsel, sample, "next_comm");
849 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
850 next_pid = evsel__intval(evsel, sample, "next_pid");
851 struct task_desc *prev, __maybe_unused *next;
852 u64 timestamp0, timestamp = sample->time;
853 int cpu = sample->cpu;
854 s64 delta;
855
856 if (verbose > 0)
857 printf("sched_switch event %p\n", evsel);
858
859 if (cpu >= MAX_CPUS || cpu < 0)
860 return 0;
861
862 timestamp0 = sched->cpu_last_switched[cpu];
863 if (timestamp0)
864 delta = timestamp - timestamp0;
865 else
866 delta = 0;
867
868 if (delta < 0) {
869 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
870 return -1;
871 }
872
873 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
874 prev_comm, prev_pid, next_comm, next_pid, delta);
875
876 prev = register_pid(sched, prev_pid, prev_comm);
877 next = register_pid(sched, next_pid, next_comm);
878
879 sched->cpu_last_switched[cpu] = timestamp;
880
881 add_sched_event_run(sched, prev, timestamp, delta);
882 add_sched_event_sleep(sched, prev, timestamp);
883
884 return 0;
885 }
886
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)887 static int replay_fork_event(struct perf_sched *sched,
888 union perf_event *event,
889 struct machine *machine)
890 {
891 struct thread *child, *parent;
892
893 child = machine__findnew_thread(machine, event->fork.pid,
894 event->fork.tid);
895 parent = machine__findnew_thread(machine, event->fork.ppid,
896 event->fork.ptid);
897
898 if (child == NULL || parent == NULL) {
899 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
900 child, parent);
901 goto out_put;
902 }
903
904 if (verbose > 0) {
905 printf("fork event\n");
906 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
907 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
908 }
909
910 register_pid(sched, thread__tid(parent), thread__comm_str(parent));
911 register_pid(sched, thread__tid(child), thread__comm_str(child));
912 out_put:
913 thread__put(child);
914 thread__put(parent);
915 return 0;
916 }
917
918 struct sort_dimension {
919 const char *name;
920 sort_fn_t cmp;
921 struct list_head list;
922 };
923
init_prio(struct thread_runtime * r)924 static inline void init_prio(struct thread_runtime *r)
925 {
926 r->prio = -1;
927 }
928
929 /*
930 * handle runtime stats saved per thread
931 */
thread__init_runtime(struct thread * thread)932 static struct thread_runtime *thread__init_runtime(struct thread *thread)
933 {
934 struct thread_runtime *r;
935
936 r = zalloc(sizeof(struct thread_runtime));
937 if (!r)
938 return NULL;
939
940 init_stats(&r->run_stats);
941 init_prio(r);
942 thread__set_priv(thread, r);
943
944 return r;
945 }
946
thread__get_runtime(struct thread * thread)947 static struct thread_runtime *thread__get_runtime(struct thread *thread)
948 {
949 struct thread_runtime *tr;
950
951 tr = thread__priv(thread);
952 if (tr == NULL) {
953 tr = thread__init_runtime(thread);
954 if (tr == NULL)
955 pr_debug("Failed to malloc memory for runtime data.\n");
956 }
957
958 return tr;
959 }
960
961 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)962 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
963 {
964 struct sort_dimension *sort;
965 int ret = 0;
966
967 BUG_ON(list_empty(list));
968
969 list_for_each_entry(sort, list, list) {
970 ret = sort->cmp(l, r);
971 if (ret)
972 return ret;
973 }
974
975 return ret;
976 }
977
978 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)979 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
980 struct list_head *sort_list)
981 {
982 struct rb_node *node = root->rb_root.rb_node;
983 struct work_atoms key = { .thread = thread };
984
985 while (node) {
986 struct work_atoms *atoms;
987 int cmp;
988
989 atoms = container_of(node, struct work_atoms, node);
990
991 cmp = thread_lat_cmp(sort_list, &key, atoms);
992 if (cmp > 0)
993 node = node->rb_left;
994 else if (cmp < 0)
995 node = node->rb_right;
996 else {
997 BUG_ON(thread != atoms->thread);
998 return atoms;
999 }
1000 }
1001 return NULL;
1002 }
1003
1004 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)1005 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1006 struct list_head *sort_list)
1007 {
1008 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1009 bool leftmost = true;
1010
1011 while (*new) {
1012 struct work_atoms *this;
1013 int cmp;
1014
1015 this = container_of(*new, struct work_atoms, node);
1016 parent = *new;
1017
1018 cmp = thread_lat_cmp(sort_list, data, this);
1019
1020 if (cmp > 0)
1021 new = &((*new)->rb_left);
1022 else {
1023 new = &((*new)->rb_right);
1024 leftmost = false;
1025 }
1026 }
1027
1028 rb_link_node(&data->node, parent, new);
1029 rb_insert_color_cached(&data->node, root, leftmost);
1030 }
1031
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1032 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1033 {
1034 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1035 if (!atoms) {
1036 pr_err("No memory at %s\n", __func__);
1037 return -1;
1038 }
1039
1040 atoms->thread = thread__get(thread);
1041 INIT_LIST_HEAD(&atoms->work_list);
1042 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1043 return 0;
1044 }
1045
1046 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1047 add_sched_out_event(struct work_atoms *atoms,
1048 char run_state,
1049 u64 timestamp)
1050 {
1051 struct work_atom *atom = zalloc(sizeof(*atom));
1052 if (!atom) {
1053 pr_err("Non memory at %s", __func__);
1054 return -1;
1055 }
1056
1057 atom->sched_out_time = timestamp;
1058
1059 if (run_state == 'R') {
1060 atom->state = THREAD_WAIT_CPU;
1061 atom->wake_up_time = atom->sched_out_time;
1062 }
1063
1064 list_add_tail(&atom->list, &atoms->work_list);
1065 return 0;
1066 }
1067
1068 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1069 add_runtime_event(struct work_atoms *atoms, u64 delta,
1070 u64 timestamp __maybe_unused)
1071 {
1072 struct work_atom *atom;
1073
1074 BUG_ON(list_empty(&atoms->work_list));
1075
1076 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1077
1078 atom->runtime += delta;
1079 atoms->total_runtime += delta;
1080 }
1081
1082 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1083 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1084 {
1085 struct work_atom *atom;
1086 u64 delta;
1087
1088 if (list_empty(&atoms->work_list))
1089 return;
1090
1091 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092
1093 if (atom->state != THREAD_WAIT_CPU)
1094 return;
1095
1096 if (timestamp < atom->wake_up_time) {
1097 atom->state = THREAD_IGNORE;
1098 return;
1099 }
1100
1101 atom->state = THREAD_SCHED_IN;
1102 atom->sched_in_time = timestamp;
1103
1104 delta = atom->sched_in_time - atom->wake_up_time;
1105 atoms->total_lat += delta;
1106 if (delta > atoms->max_lat) {
1107 atoms->max_lat = delta;
1108 atoms->max_lat_start = atom->wake_up_time;
1109 atoms->max_lat_end = timestamp;
1110 }
1111 atoms->nb_atoms++;
1112 }
1113
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1114 static int latency_switch_event(struct perf_sched *sched,
1115 struct evsel *evsel,
1116 struct perf_sample *sample,
1117 struct machine *machine)
1118 {
1119 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1120 next_pid = evsel__intval(evsel, sample, "next_pid");
1121 const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1122 struct work_atoms *out_events, *in_events;
1123 struct thread *sched_out, *sched_in;
1124 u64 timestamp0, timestamp = sample->time;
1125 int cpu = sample->cpu, err = -1;
1126 s64 delta;
1127
1128 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1129
1130 timestamp0 = sched->cpu_last_switched[cpu];
1131 sched->cpu_last_switched[cpu] = timestamp;
1132 if (timestamp0)
1133 delta = timestamp - timestamp0;
1134 else
1135 delta = 0;
1136
1137 if (delta < 0) {
1138 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1139 return -1;
1140 }
1141
1142 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1143 sched_in = machine__findnew_thread(machine, -1, next_pid);
1144 if (sched_out == NULL || sched_in == NULL)
1145 goto out_put;
1146
1147 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1148 if (!out_events) {
1149 if (thread_atoms_insert(sched, sched_out))
1150 goto out_put;
1151 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1152 if (!out_events) {
1153 pr_err("out-event: Internal tree error");
1154 goto out_put;
1155 }
1156 }
1157 if (add_sched_out_event(out_events, prev_state, timestamp))
1158 return -1;
1159
1160 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1161 if (!in_events) {
1162 if (thread_atoms_insert(sched, sched_in))
1163 goto out_put;
1164 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1165 if (!in_events) {
1166 pr_err("in-event: Internal tree error");
1167 goto out_put;
1168 }
1169 /*
1170 * Take came in we have not heard about yet,
1171 * add in an initial atom in runnable state:
1172 */
1173 if (add_sched_out_event(in_events, 'R', timestamp))
1174 goto out_put;
1175 }
1176 add_sched_in_event(in_events, timestamp);
1177 err = 0;
1178 out_put:
1179 thread__put(sched_out);
1180 thread__put(sched_in);
1181 return err;
1182 }
1183
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1184 static int latency_runtime_event(struct perf_sched *sched,
1185 struct evsel *evsel,
1186 struct perf_sample *sample,
1187 struct machine *machine)
1188 {
1189 const u32 pid = evsel__intval(evsel, sample, "pid");
1190 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1191 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1192 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193 u64 timestamp = sample->time;
1194 int cpu = sample->cpu, err = -1;
1195
1196 if (thread == NULL)
1197 return -1;
1198
1199 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1200 if (!atoms) {
1201 if (thread_atoms_insert(sched, thread))
1202 goto out_put;
1203 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1204 if (!atoms) {
1205 pr_err("in-event: Internal tree error");
1206 goto out_put;
1207 }
1208 if (add_sched_out_event(atoms, 'R', timestamp))
1209 goto out_put;
1210 }
1211
1212 add_runtime_event(atoms, runtime, timestamp);
1213 err = 0;
1214 out_put:
1215 thread__put(thread);
1216 return err;
1217 }
1218
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1219 static int latency_wakeup_event(struct perf_sched *sched,
1220 struct evsel *evsel,
1221 struct perf_sample *sample,
1222 struct machine *machine)
1223 {
1224 const u32 pid = evsel__intval(evsel, sample, "pid");
1225 struct work_atoms *atoms;
1226 struct work_atom *atom;
1227 struct thread *wakee;
1228 u64 timestamp = sample->time;
1229 int err = -1;
1230
1231 wakee = machine__findnew_thread(machine, -1, pid);
1232 if (wakee == NULL)
1233 return -1;
1234 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1235 if (!atoms) {
1236 if (thread_atoms_insert(sched, wakee))
1237 goto out_put;
1238 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1239 if (!atoms) {
1240 pr_err("wakeup-event: Internal tree error");
1241 goto out_put;
1242 }
1243 if (add_sched_out_event(atoms, 'S', timestamp))
1244 goto out_put;
1245 }
1246
1247 BUG_ON(list_empty(&atoms->work_list));
1248
1249 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1250
1251 /*
1252 * As we do not guarantee the wakeup event happens when
1253 * task is out of run queue, also may happen when task is
1254 * on run queue and wakeup only change ->state to TASK_RUNNING,
1255 * then we should not set the ->wake_up_time when wake up a
1256 * task which is on run queue.
1257 *
1258 * You WILL be missing events if you've recorded only
1259 * one CPU, or are only looking at only one, so don't
1260 * skip in this case.
1261 */
1262 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1263 goto out_ok;
1264
1265 sched->nr_timestamps++;
1266 if (atom->sched_out_time > timestamp) {
1267 sched->nr_unordered_timestamps++;
1268 goto out_ok;
1269 }
1270
1271 atom->state = THREAD_WAIT_CPU;
1272 atom->wake_up_time = timestamp;
1273 out_ok:
1274 err = 0;
1275 out_put:
1276 thread__put(wakee);
1277 return err;
1278 }
1279
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1280 static int latency_migrate_task_event(struct perf_sched *sched,
1281 struct evsel *evsel,
1282 struct perf_sample *sample,
1283 struct machine *machine)
1284 {
1285 const u32 pid = evsel__intval(evsel, sample, "pid");
1286 u64 timestamp = sample->time;
1287 struct work_atoms *atoms;
1288 struct work_atom *atom;
1289 struct thread *migrant;
1290 int err = -1;
1291
1292 /*
1293 * Only need to worry about migration when profiling one CPU.
1294 */
1295 if (sched->profile_cpu == -1)
1296 return 0;
1297
1298 migrant = machine__findnew_thread(machine, -1, pid);
1299 if (migrant == NULL)
1300 return -1;
1301 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1302 if (!atoms) {
1303 if (thread_atoms_insert(sched, migrant))
1304 goto out_put;
1305 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1306 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1307 if (!atoms) {
1308 pr_err("migration-event: Internal tree error");
1309 goto out_put;
1310 }
1311 if (add_sched_out_event(atoms, 'R', timestamp))
1312 goto out_put;
1313 }
1314
1315 BUG_ON(list_empty(&atoms->work_list));
1316
1317 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1318 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1319
1320 sched->nr_timestamps++;
1321
1322 if (atom->sched_out_time > timestamp)
1323 sched->nr_unordered_timestamps++;
1324 err = 0;
1325 out_put:
1326 thread__put(migrant);
1327 return err;
1328 }
1329
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1330 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1331 {
1332 int i;
1333 int ret;
1334 u64 avg;
1335 char max_lat_start[32], max_lat_end[32];
1336
1337 if (!work_list->nb_atoms)
1338 return;
1339 /*
1340 * Ignore idle threads:
1341 */
1342 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1343 return;
1344
1345 sched->all_runtime += work_list->total_runtime;
1346 sched->all_count += work_list->nb_atoms;
1347
1348 if (work_list->num_merged > 1) {
1349 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1350 work_list->num_merged);
1351 } else {
1352 ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1353 thread__tid(work_list->thread));
1354 }
1355
1356 for (i = 0; i < 24 - ret; i++)
1357 printf(" ");
1358
1359 avg = work_list->total_lat / work_list->nb_atoms;
1360 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1361 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1362
1363 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1364 (double)work_list->total_runtime / NSEC_PER_MSEC,
1365 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1366 (double)work_list->max_lat / NSEC_PER_MSEC,
1367 max_lat_start, max_lat_end);
1368 }
1369
pid_cmp(struct work_atoms * l,struct work_atoms * r)1370 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1371 {
1372 pid_t l_tid, r_tid;
1373
1374 if (RC_CHK_EQUAL(l->thread, r->thread))
1375 return 0;
1376 l_tid = thread__tid(l->thread);
1377 r_tid = thread__tid(r->thread);
1378 if (l_tid < r_tid)
1379 return -1;
1380 if (l_tid > r_tid)
1381 return 1;
1382 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1383 }
1384
avg_cmp(struct work_atoms * l,struct work_atoms * r)1385 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387 u64 avgl, avgr;
1388
1389 if (!l->nb_atoms)
1390 return -1;
1391
1392 if (!r->nb_atoms)
1393 return 1;
1394
1395 avgl = l->total_lat / l->nb_atoms;
1396 avgr = r->total_lat / r->nb_atoms;
1397
1398 if (avgl < avgr)
1399 return -1;
1400 if (avgl > avgr)
1401 return 1;
1402
1403 return 0;
1404 }
1405
max_cmp(struct work_atoms * l,struct work_atoms * r)1406 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1407 {
1408 if (l->max_lat < r->max_lat)
1409 return -1;
1410 if (l->max_lat > r->max_lat)
1411 return 1;
1412
1413 return 0;
1414 }
1415
switch_cmp(struct work_atoms * l,struct work_atoms * r)1416 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1417 {
1418 if (l->nb_atoms < r->nb_atoms)
1419 return -1;
1420 if (l->nb_atoms > r->nb_atoms)
1421 return 1;
1422
1423 return 0;
1424 }
1425
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1426 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1427 {
1428 if (l->total_runtime < r->total_runtime)
1429 return -1;
1430 if (l->total_runtime > r->total_runtime)
1431 return 1;
1432
1433 return 0;
1434 }
1435
sort_dimension__add(const char * tok,struct list_head * list)1436 static int sort_dimension__add(const char *tok, struct list_head *list)
1437 {
1438 size_t i;
1439 static struct sort_dimension avg_sort_dimension = {
1440 .name = "avg",
1441 .cmp = avg_cmp,
1442 };
1443 static struct sort_dimension max_sort_dimension = {
1444 .name = "max",
1445 .cmp = max_cmp,
1446 };
1447 static struct sort_dimension pid_sort_dimension = {
1448 .name = "pid",
1449 .cmp = pid_cmp,
1450 };
1451 static struct sort_dimension runtime_sort_dimension = {
1452 .name = "runtime",
1453 .cmp = runtime_cmp,
1454 };
1455 static struct sort_dimension switch_sort_dimension = {
1456 .name = "switch",
1457 .cmp = switch_cmp,
1458 };
1459 struct sort_dimension *available_sorts[] = {
1460 &pid_sort_dimension,
1461 &avg_sort_dimension,
1462 &max_sort_dimension,
1463 &switch_sort_dimension,
1464 &runtime_sort_dimension,
1465 };
1466
1467 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1468 if (!strcmp(available_sorts[i]->name, tok)) {
1469 list_add_tail(&available_sorts[i]->list, list);
1470
1471 return 0;
1472 }
1473 }
1474
1475 return -1;
1476 }
1477
perf_sched__sort_lat(struct perf_sched * sched)1478 static void perf_sched__sort_lat(struct perf_sched *sched)
1479 {
1480 struct rb_node *node;
1481 struct rb_root_cached *root = &sched->atom_root;
1482 again:
1483 for (;;) {
1484 struct work_atoms *data;
1485 node = rb_first_cached(root);
1486 if (!node)
1487 break;
1488
1489 rb_erase_cached(node, root);
1490 data = rb_entry(node, struct work_atoms, node);
1491 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1492 }
1493 if (root == &sched->atom_root) {
1494 root = &sched->merged_atom_root;
1495 goto again;
1496 }
1497 }
1498
process_sched_wakeup_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1499 static int process_sched_wakeup_event(const struct perf_tool *tool,
1500 struct evsel *evsel,
1501 struct perf_sample *sample,
1502 struct machine *machine)
1503 {
1504 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1505
1506 if (sched->tp_handler->wakeup_event)
1507 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1508
1509 return 0;
1510 }
1511
process_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1512 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1513 struct evsel *evsel __maybe_unused,
1514 struct perf_sample *sample __maybe_unused,
1515 struct machine *machine __maybe_unused)
1516 {
1517 return 0;
1518 }
1519
1520 union map_priv {
1521 void *ptr;
1522 bool color;
1523 };
1524
thread__has_color(struct thread * thread)1525 static bool thread__has_color(struct thread *thread)
1526 {
1527 union map_priv priv = {
1528 .ptr = thread__priv(thread),
1529 };
1530
1531 return priv.color;
1532 }
1533
1534 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1535 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1536 {
1537 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1538 union map_priv priv = {
1539 .color = false,
1540 };
1541
1542 if (!sched->map.color_pids || !thread || thread__priv(thread))
1543 return thread;
1544
1545 if (thread_map__has(sched->map.color_pids, tid))
1546 priv.color = true;
1547
1548 thread__set_priv(thread, priv.ptr);
1549 return thread;
1550 }
1551
sched_match_task(struct perf_sched * sched,const char * comm_str)1552 static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1553 {
1554 bool fuzzy_match = sched->map.fuzzy;
1555 struct strlist *task_names = sched->map.task_names;
1556 struct str_node *node;
1557
1558 strlist__for_each_entry(node, task_names) {
1559 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1560 !strcmp(comm_str, node->s);
1561 if (match_found)
1562 return true;
1563 }
1564
1565 return false;
1566 }
1567
print_sched_map(struct perf_sched * sched,struct perf_cpu this_cpu,int cpus_nr,const char * color,bool sched_out)1568 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1569 const char *color, bool sched_out)
1570 {
1571 for (int i = 0; i < cpus_nr; i++) {
1572 struct perf_cpu cpu = {
1573 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1574 };
1575 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1576 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1577 struct thread_runtime *curr_tr;
1578 const char *pid_color = color;
1579 const char *cpu_color = color;
1580 char symbol = ' ';
1581 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1582
1583 if (thread_to_check && thread__has_color(thread_to_check))
1584 pid_color = COLOR_PIDS;
1585
1586 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1587 cpu_color = COLOR_CPUS;
1588
1589 if (cpu.cpu == this_cpu.cpu)
1590 symbol = '*';
1591
1592 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1593
1594 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1595 sched->curr_thread[cpu.cpu];
1596
1597 if (thread_to_check) {
1598 curr_tr = thread__get_runtime(thread_to_check);
1599 if (curr_tr == NULL)
1600 return;
1601
1602 if (sched_out) {
1603 if (cpu.cpu == this_cpu.cpu)
1604 color_fprintf(stdout, color, "- ");
1605 else {
1606 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1607 if (curr_tr != NULL)
1608 color_fprintf(stdout, pid_color, "%2s ",
1609 curr_tr->shortname);
1610 }
1611 } else
1612 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1613 } else
1614 color_fprintf(stdout, color, " ");
1615 }
1616 }
1617
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1618 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1619 struct perf_sample *sample, struct machine *machine)
1620 {
1621 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1622 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1623 struct thread *sched_in, *sched_out;
1624 struct thread_runtime *tr;
1625 int new_shortname;
1626 u64 timestamp0, timestamp = sample->time;
1627 s64 delta;
1628 struct perf_cpu this_cpu = {
1629 .cpu = sample->cpu,
1630 };
1631 int cpus_nr;
1632 int proceed;
1633 bool new_cpu = false;
1634 const char *color = PERF_COLOR_NORMAL;
1635 char stimestamp[32];
1636 const char *str;
1637
1638 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1639
1640 if (this_cpu.cpu > sched->max_cpu.cpu)
1641 sched->max_cpu = this_cpu;
1642
1643 if (sched->map.comp) {
1644 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1645 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1646 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1647 new_cpu = true;
1648 }
1649 } else
1650 cpus_nr = sched->max_cpu.cpu;
1651
1652 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1653 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1654 if (timestamp0)
1655 delta = timestamp - timestamp0;
1656 else
1657 delta = 0;
1658
1659 if (delta < 0) {
1660 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1661 return -1;
1662 }
1663
1664 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1665 sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1666 if (sched_in == NULL || sched_out == NULL)
1667 return -1;
1668
1669 tr = thread__get_runtime(sched_in);
1670 if (tr == NULL) {
1671 thread__put(sched_in);
1672 return -1;
1673 }
1674
1675 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1676 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1677
1678 str = thread__comm_str(sched_in);
1679 new_shortname = 0;
1680 if (!tr->shortname[0]) {
1681 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1682 /*
1683 * Don't allocate a letter-number for swapper:0
1684 * as a shortname. Instead, we use '.' for it.
1685 */
1686 tr->shortname[0] = '.';
1687 tr->shortname[1] = ' ';
1688 } else if (!sched->map.task_name || sched_match_task(sched, str)) {
1689 tr->shortname[0] = sched->next_shortname1;
1690 tr->shortname[1] = sched->next_shortname2;
1691
1692 if (sched->next_shortname1 < 'Z') {
1693 sched->next_shortname1++;
1694 } else {
1695 sched->next_shortname1 = 'A';
1696 if (sched->next_shortname2 < '9')
1697 sched->next_shortname2++;
1698 else
1699 sched->next_shortname2 = '0';
1700 }
1701 } else {
1702 tr->shortname[0] = '-';
1703 tr->shortname[1] = ' ';
1704 }
1705 new_shortname = 1;
1706 }
1707
1708 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1709 goto out;
1710
1711 proceed = 0;
1712 str = thread__comm_str(sched_in);
1713 /*
1714 * Check which of sched_in and sched_out matches the passed --task-name
1715 * arguments and call the corresponding print_sched_map.
1716 */
1717 if (sched->map.task_name && !sched_match_task(sched, str)) {
1718 if (!sched_match_task(sched, thread__comm_str(sched_out)))
1719 goto out;
1720 else
1721 goto sched_out;
1722
1723 } else {
1724 str = thread__comm_str(sched_out);
1725 if (!(sched->map.task_name && !sched_match_task(sched, str)))
1726 proceed = 1;
1727 }
1728
1729 printf(" ");
1730
1731 print_sched_map(sched, this_cpu, cpus_nr, color, false);
1732
1733 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1734 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1735 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1736 const char *pid_color = color;
1737
1738 if (thread__has_color(sched_in))
1739 pid_color = COLOR_PIDS;
1740
1741 color_fprintf(stdout, pid_color, "%s => %s:%d",
1742 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1743 tr->comm_changed = false;
1744 }
1745
1746 if (sched->map.comp && new_cpu)
1747 color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1748
1749 if (proceed != 1) {
1750 color_fprintf(stdout, color, "\n");
1751 goto out;
1752 }
1753
1754 sched_out:
1755 if (sched->map.task_name) {
1756 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1757 if (strcmp(tr->shortname, "") == 0)
1758 goto out;
1759
1760 if (proceed == 1)
1761 color_fprintf(stdout, color, "\n");
1762
1763 printf(" ");
1764 print_sched_map(sched, this_cpu, cpus_nr, color, true);
1765 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1766 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1767 }
1768
1769 color_fprintf(stdout, color, "\n");
1770
1771 out:
1772 if (sched->map.task_name)
1773 thread__put(sched_out);
1774
1775 thread__put(sched_in);
1776
1777 return 0;
1778 }
1779
process_sched_switch_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1780 static int process_sched_switch_event(const struct perf_tool *tool,
1781 struct evsel *evsel,
1782 struct perf_sample *sample,
1783 struct machine *machine)
1784 {
1785 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1786 int this_cpu = sample->cpu, err = 0;
1787 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1788 next_pid = evsel__intval(evsel, sample, "next_pid");
1789
1790 if (sched->curr_pid[this_cpu] != (u32)-1) {
1791 /*
1792 * Are we trying to switch away a PID that is
1793 * not current?
1794 */
1795 if (sched->curr_pid[this_cpu] != prev_pid)
1796 sched->nr_context_switch_bugs++;
1797 }
1798
1799 if (sched->tp_handler->switch_event)
1800 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1801
1802 sched->curr_pid[this_cpu] = next_pid;
1803 return err;
1804 }
1805
process_sched_runtime_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1806 static int process_sched_runtime_event(const struct perf_tool *tool,
1807 struct evsel *evsel,
1808 struct perf_sample *sample,
1809 struct machine *machine)
1810 {
1811 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1812
1813 if (sched->tp_handler->runtime_event)
1814 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1815
1816 return 0;
1817 }
1818
perf_sched__process_fork_event(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1819 static int perf_sched__process_fork_event(const struct perf_tool *tool,
1820 union perf_event *event,
1821 struct perf_sample *sample,
1822 struct machine *machine)
1823 {
1824 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1825
1826 /* run the fork event through the perf machinery */
1827 perf_event__process_fork(tool, event, sample, machine);
1828
1829 /* and then run additional processing needed for this command */
1830 if (sched->tp_handler->fork_event)
1831 return sched->tp_handler->fork_event(sched, event, machine);
1832
1833 return 0;
1834 }
1835
process_sched_migrate_task_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1836 static int process_sched_migrate_task_event(const struct perf_tool *tool,
1837 struct evsel *evsel,
1838 struct perf_sample *sample,
1839 struct machine *machine)
1840 {
1841 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1842
1843 if (sched->tp_handler->migrate_task_event)
1844 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1845
1846 return 0;
1847 }
1848
1849 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1850 struct evsel *evsel,
1851 struct perf_sample *sample,
1852 struct machine *machine);
1853
perf_sched__process_tracepoint_sample(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1854 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1855 union perf_event *event __maybe_unused,
1856 struct perf_sample *sample,
1857 struct evsel *evsel,
1858 struct machine *machine)
1859 {
1860 int err = 0;
1861
1862 if (evsel->handler != NULL) {
1863 tracepoint_handler f = evsel->handler;
1864 err = f(tool, evsel, sample, machine);
1865 }
1866
1867 return err;
1868 }
1869
perf_sched__process_comm(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1870 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1871 union perf_event *event,
1872 struct perf_sample *sample,
1873 struct machine *machine)
1874 {
1875 struct thread *thread;
1876 struct thread_runtime *tr;
1877 int err;
1878
1879 err = perf_event__process_comm(tool, event, sample, machine);
1880 if (err)
1881 return err;
1882
1883 thread = machine__find_thread(machine, sample->pid, sample->tid);
1884 if (!thread) {
1885 pr_err("Internal error: can't find thread\n");
1886 return -1;
1887 }
1888
1889 tr = thread__get_runtime(thread);
1890 if (tr == NULL) {
1891 thread__put(thread);
1892 return -1;
1893 }
1894
1895 tr->comm_changed = true;
1896 thread__put(thread);
1897
1898 return 0;
1899 }
1900
perf_sched__read_events(struct perf_sched * sched)1901 static int perf_sched__read_events(struct perf_sched *sched)
1902 {
1903 struct evsel_str_handler handlers[] = {
1904 { "sched:sched_switch", process_sched_switch_event, },
1905 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1906 { "sched:sched_wakeup", process_sched_wakeup_event, },
1907 { "sched:sched_waking", process_sched_wakeup_event, },
1908 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1909 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1910 };
1911 struct perf_session *session;
1912 struct perf_data data = {
1913 .path = input_name,
1914 .mode = PERF_DATA_MODE_READ,
1915 .force = sched->force,
1916 };
1917 int rc = -1;
1918
1919 session = perf_session__new(&data, &sched->tool);
1920 if (IS_ERR(session)) {
1921 pr_debug("Error creating perf session");
1922 return PTR_ERR(session);
1923 }
1924
1925 symbol__init(&session->header.env);
1926
1927 /* prefer sched_waking if it is captured */
1928 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1929 handlers[2].handler = process_sched_wakeup_ignore;
1930
1931 if (perf_session__set_tracepoints_handlers(session, handlers))
1932 goto out_delete;
1933
1934 if (perf_session__has_traces(session, "record -R")) {
1935 int err = perf_session__process_events(session);
1936 if (err) {
1937 pr_err("Failed to process events, error %d", err);
1938 goto out_delete;
1939 }
1940
1941 sched->nr_events = session->evlist->stats.nr_events[0];
1942 sched->nr_lost_events = session->evlist->stats.total_lost;
1943 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1944 }
1945
1946 rc = 0;
1947 out_delete:
1948 perf_session__delete(session);
1949 return rc;
1950 }
1951
1952 /*
1953 * scheduling times are printed as msec.usec
1954 */
print_sched_time(unsigned long long nsecs,int width)1955 static inline void print_sched_time(unsigned long long nsecs, int width)
1956 {
1957 unsigned long msecs;
1958 unsigned long usecs;
1959
1960 msecs = nsecs / NSEC_PER_MSEC;
1961 nsecs -= msecs * NSEC_PER_MSEC;
1962 usecs = nsecs / NSEC_PER_USEC;
1963 printf("%*lu.%03lu ", width, msecs, usecs);
1964 }
1965
1966 /*
1967 * returns runtime data for event, allocating memory for it the
1968 * first time it is used.
1969 */
evsel__get_runtime(struct evsel * evsel)1970 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1971 {
1972 struct evsel_runtime *r = evsel->priv;
1973
1974 if (r == NULL) {
1975 r = zalloc(sizeof(struct evsel_runtime));
1976 evsel->priv = r;
1977 }
1978
1979 return r;
1980 }
1981
1982 /*
1983 * save last time event was seen per cpu
1984 */
evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)1985 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1986 {
1987 struct evsel_runtime *r = evsel__get_runtime(evsel);
1988
1989 if (r == NULL)
1990 return;
1991
1992 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1993 int i, n = __roundup_pow_of_two(cpu+1);
1994 void *p = r->last_time;
1995
1996 p = realloc(r->last_time, n * sizeof(u64));
1997 if (!p)
1998 return;
1999
2000 r->last_time = p;
2001 for (i = r->ncpu; i < n; ++i)
2002 r->last_time[i] = (u64) 0;
2003
2004 r->ncpu = n;
2005 }
2006
2007 r->last_time[cpu] = timestamp;
2008 }
2009
2010 /* returns last time this event was seen on the given cpu */
evsel__get_time(struct evsel * evsel,u32 cpu)2011 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2012 {
2013 struct evsel_runtime *r = evsel__get_runtime(evsel);
2014
2015 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2016 return 0;
2017
2018 return r->last_time[cpu];
2019 }
2020
2021 static int comm_width = 30;
2022
timehist_get_commstr(struct thread * thread)2023 static char *timehist_get_commstr(struct thread *thread)
2024 {
2025 static char str[32];
2026 const char *comm = thread__comm_str(thread);
2027 pid_t tid = thread__tid(thread);
2028 pid_t pid = thread__pid(thread);
2029 int n;
2030
2031 if (pid == 0)
2032 n = scnprintf(str, sizeof(str), "%s", comm);
2033
2034 else if (tid != pid)
2035 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2036
2037 else
2038 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2039
2040 if (n > comm_width)
2041 comm_width = n;
2042
2043 return str;
2044 }
2045
2046 /* prio field format: xxx or xxx->yyy */
2047 #define MAX_PRIO_STR_LEN 8
timehist_get_priostr(struct evsel * evsel,struct thread * thread,struct perf_sample * sample)2048 static char *timehist_get_priostr(struct evsel *evsel,
2049 struct thread *thread,
2050 struct perf_sample *sample)
2051 {
2052 static char prio_str[16];
2053 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2054 struct thread_runtime *tr = thread__priv(thread);
2055
2056 if (tr->prio != prev_prio && tr->prio != -1)
2057 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2058 else
2059 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2060
2061 return prio_str;
2062 }
2063
timehist_header(struct perf_sched * sched)2064 static void timehist_header(struct perf_sched *sched)
2065 {
2066 u32 ncpus = sched->max_cpu.cpu + 1;
2067 u32 i, j;
2068
2069 printf("%15s %6s ", "time", "cpu");
2070
2071 if (sched->show_cpu_visual) {
2072 printf(" ");
2073 for (i = 0, j = 0; i < ncpus; ++i) {
2074 printf("%x", j++);
2075 if (j > 15)
2076 j = 0;
2077 }
2078 printf(" ");
2079 }
2080
2081 printf(" %-*s", comm_width, "task name");
2082
2083 if (sched->show_prio)
2084 printf(" %-*s", MAX_PRIO_STR_LEN, "prio");
2085
2086 printf(" %9s %9s %9s", "wait time", "sch delay", "run time");
2087
2088 if (sched->pre_migrations)
2089 printf(" %9s", "pre-mig time");
2090
2091 if (sched->show_state)
2092 printf(" %s", "state");
2093
2094 printf("\n");
2095
2096 /*
2097 * units row
2098 */
2099 printf("%15s %-6s ", "", "");
2100
2101 if (sched->show_cpu_visual)
2102 printf(" %*s ", ncpus, "");
2103
2104 printf(" %-*s", comm_width, "[tid/pid]");
2105
2106 if (sched->show_prio)
2107 printf(" %-*s", MAX_PRIO_STR_LEN, "");
2108
2109 printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)");
2110
2111 if (sched->pre_migrations)
2112 printf(" %9s", "(msec)");
2113
2114 printf("\n");
2115
2116 /*
2117 * separator
2118 */
2119 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2120
2121 if (sched->show_cpu_visual)
2122 printf(" %.*s ", ncpus, graph_dotted_line);
2123
2124 printf(" %.*s", comm_width, graph_dotted_line);
2125
2126 if (sched->show_prio)
2127 printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2128
2129 printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2130
2131 if (sched->pre_migrations)
2132 printf(" %.9s", graph_dotted_line);
2133
2134 if (sched->show_state)
2135 printf(" %.5s", graph_dotted_line);
2136
2137 printf("\n");
2138 }
2139
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,const char state)2140 static void timehist_print_sample(struct perf_sched *sched,
2141 struct evsel *evsel,
2142 struct perf_sample *sample,
2143 struct addr_location *al,
2144 struct thread *thread,
2145 u64 t, const char state)
2146 {
2147 struct thread_runtime *tr = thread__priv(thread);
2148 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2149 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2150 u32 max_cpus = sched->max_cpu.cpu + 1;
2151 char tstr[64];
2152 char nstr[30];
2153 u64 wait_time;
2154
2155 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2156 return;
2157
2158 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2159 printf("%15s [%04d] ", tstr, sample->cpu);
2160
2161 if (sched->show_cpu_visual) {
2162 u32 i;
2163 char c;
2164
2165 printf(" ");
2166 for (i = 0; i < max_cpus; ++i) {
2167 /* flag idle times with 'i'; others are sched events */
2168 if (i == sample->cpu)
2169 c = (thread__tid(thread) == 0) ? 'i' : 's';
2170 else
2171 c = ' ';
2172 printf("%c", c);
2173 }
2174 printf(" ");
2175 }
2176
2177 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2178
2179 if (sched->show_prio)
2180 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2181
2182 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2183 print_sched_time(wait_time, 6);
2184
2185 print_sched_time(tr->dt_delay, 6);
2186 print_sched_time(tr->dt_run, 6);
2187 if (sched->pre_migrations)
2188 print_sched_time(tr->dt_pre_mig, 6);
2189
2190 if (sched->show_state)
2191 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2192
2193 if (sched->show_next) {
2194 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2195 printf(" %-*s", comm_width, nstr);
2196 }
2197
2198 if (sched->show_wakeups && !sched->show_next)
2199 printf(" %-*s", comm_width, "");
2200
2201 if (thread__tid(thread) == 0)
2202 goto out;
2203
2204 if (sched->show_callchain)
2205 printf(" ");
2206
2207 sample__fprintf_sym(sample, al, 0,
2208 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2209 EVSEL__PRINT_CALLCHAIN_ARROW |
2210 EVSEL__PRINT_SKIP_IGNORED,
2211 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2212
2213 out:
2214 printf("\n");
2215 }
2216
2217 /*
2218 * Explanation of delta-time stats:
2219 *
2220 * t = time of current schedule out event
2221 * tprev = time of previous sched out event
2222 * also time of schedule-in event for current task
2223 * last_time = time of last sched change event for current task
2224 * (i.e, time process was last scheduled out)
2225 * ready_to_run = time of wakeup for current task
2226 * migrated = time of task migration to another CPU
2227 *
2228 * -----|-------------|-------------|-------------|-------------|-----
2229 * last ready migrated tprev t
2230 * time to run
2231 *
2232 * |---------------- dt_wait ----------------|
2233 * |--------- dt_delay ---------|-- dt_run --|
2234 * |- dt_pre_mig -|
2235 *
2236 * dt_run = run time of current task
2237 * dt_wait = time between last schedule out event for task and tprev
2238 * represents time spent off the cpu
2239 * dt_delay = time between wakeup and schedule-in of task
2240 * dt_pre_mig = time between wakeup and migration to another CPU
2241 */
2242
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2243 static void timehist_update_runtime_stats(struct thread_runtime *r,
2244 u64 t, u64 tprev)
2245 {
2246 r->dt_delay = 0;
2247 r->dt_sleep = 0;
2248 r->dt_iowait = 0;
2249 r->dt_preempt = 0;
2250 r->dt_run = 0;
2251 r->dt_pre_mig = 0;
2252
2253 if (tprev) {
2254 r->dt_run = t - tprev;
2255 if (r->ready_to_run) {
2256 if (r->ready_to_run > tprev)
2257 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2258 else
2259 r->dt_delay = tprev - r->ready_to_run;
2260
2261 if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2262 r->dt_pre_mig = r->migrated - r->ready_to_run;
2263 }
2264
2265 if (r->last_time > tprev)
2266 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2267 else if (r->last_time) {
2268 u64 dt_wait = tprev - r->last_time;
2269
2270 if (r->last_state == 'R')
2271 r->dt_preempt = dt_wait;
2272 else if (r->last_state == 'D')
2273 r->dt_iowait = dt_wait;
2274 else
2275 r->dt_sleep = dt_wait;
2276 }
2277 }
2278
2279 update_stats(&r->run_stats, r->dt_run);
2280
2281 r->total_run_time += r->dt_run;
2282 r->total_delay_time += r->dt_delay;
2283 r->total_sleep_time += r->dt_sleep;
2284 r->total_iowait_time += r->dt_iowait;
2285 r->total_preempt_time += r->dt_preempt;
2286 r->total_pre_mig_time += r->dt_pre_mig;
2287 }
2288
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2289 static bool is_idle_sample(struct perf_sample *sample,
2290 struct evsel *evsel)
2291 {
2292 /* pid 0 == swapper == idle task */
2293 if (evsel__name_is(evsel, "sched:sched_switch"))
2294 return evsel__intval(evsel, sample, "prev_pid") == 0;
2295
2296 return sample->pid == 0;
2297 }
2298
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2299 static void save_task_callchain(struct perf_sched *sched,
2300 struct perf_sample *sample,
2301 struct evsel *evsel,
2302 struct machine *machine)
2303 {
2304 struct callchain_cursor *cursor;
2305 struct thread *thread;
2306
2307 /* want main thread for process - has maps */
2308 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2309 if (thread == NULL) {
2310 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2311 return;
2312 }
2313
2314 if (!sched->show_callchain || sample->callchain == NULL)
2315 return;
2316
2317 cursor = get_tls_callchain_cursor();
2318
2319 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2320 NULL, NULL, sched->max_stack + 2) != 0) {
2321 if (verbose > 0)
2322 pr_err("Failed to resolve callchain. Skipping\n");
2323
2324 return;
2325 }
2326
2327 callchain_cursor_commit(cursor);
2328
2329 while (true) {
2330 struct callchain_cursor_node *node;
2331 struct symbol *sym;
2332
2333 node = callchain_cursor_current(cursor);
2334 if (node == NULL)
2335 break;
2336
2337 sym = node->ms.sym;
2338 if (sym) {
2339 if (!strcmp(sym->name, "schedule") ||
2340 !strcmp(sym->name, "__schedule") ||
2341 !strcmp(sym->name, "preempt_schedule"))
2342 sym->ignore = 1;
2343 }
2344
2345 callchain_cursor_advance(cursor);
2346 }
2347 }
2348
init_idle_thread(struct thread * thread)2349 static int init_idle_thread(struct thread *thread)
2350 {
2351 struct idle_thread_runtime *itr;
2352
2353 thread__set_comm(thread, idle_comm, 0);
2354
2355 itr = zalloc(sizeof(*itr));
2356 if (itr == NULL)
2357 return -ENOMEM;
2358
2359 init_prio(&itr->tr);
2360 init_stats(&itr->tr.run_stats);
2361 callchain_init(&itr->callchain);
2362 callchain_cursor_reset(&itr->cursor);
2363 thread__set_priv(thread, itr);
2364
2365 return 0;
2366 }
2367
2368 /*
2369 * Track idle stats per cpu by maintaining a local thread
2370 * struct for the idle task on each cpu.
2371 */
init_idle_threads(int ncpu)2372 static int init_idle_threads(int ncpu)
2373 {
2374 int i, ret;
2375
2376 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2377 if (!idle_threads)
2378 return -ENOMEM;
2379
2380 idle_max_cpu = ncpu;
2381
2382 /* allocate the actual thread struct if needed */
2383 for (i = 0; i < ncpu; ++i) {
2384 idle_threads[i] = thread__new(0, 0);
2385 if (idle_threads[i] == NULL)
2386 return -ENOMEM;
2387
2388 ret = init_idle_thread(idle_threads[i]);
2389 if (ret < 0)
2390 return ret;
2391 }
2392
2393 return 0;
2394 }
2395
free_idle_threads(void)2396 static void free_idle_threads(void)
2397 {
2398 int i;
2399
2400 if (idle_threads == NULL)
2401 return;
2402
2403 for (i = 0; i < idle_max_cpu; ++i) {
2404 if ((idle_threads[i]))
2405 thread__delete(idle_threads[i]);
2406 }
2407
2408 free(idle_threads);
2409 }
2410
get_idle_thread(int cpu)2411 static struct thread *get_idle_thread(int cpu)
2412 {
2413 /*
2414 * expand/allocate array of pointers to local thread
2415 * structs if needed
2416 */
2417 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2418 int i, j = __roundup_pow_of_two(cpu+1);
2419 void *p;
2420
2421 p = realloc(idle_threads, j * sizeof(struct thread *));
2422 if (!p)
2423 return NULL;
2424
2425 idle_threads = (struct thread **) p;
2426 for (i = idle_max_cpu; i < j; ++i)
2427 idle_threads[i] = NULL;
2428
2429 idle_max_cpu = j;
2430 }
2431
2432 /* allocate a new thread struct if needed */
2433 if (idle_threads[cpu] == NULL) {
2434 idle_threads[cpu] = thread__new(0, 0);
2435
2436 if (idle_threads[cpu]) {
2437 if (init_idle_thread(idle_threads[cpu]) < 0)
2438 return NULL;
2439 }
2440 }
2441
2442 return idle_threads[cpu];
2443 }
2444
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2445 static void save_idle_callchain(struct perf_sched *sched,
2446 struct idle_thread_runtime *itr,
2447 struct perf_sample *sample)
2448 {
2449 struct callchain_cursor *cursor;
2450
2451 if (!sched->show_callchain || sample->callchain == NULL)
2452 return;
2453
2454 cursor = get_tls_callchain_cursor();
2455 if (cursor == NULL)
2456 return;
2457
2458 callchain_cursor__copy(&itr->cursor, cursor);
2459 }
2460
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2461 static struct thread *timehist_get_thread(struct perf_sched *sched,
2462 struct perf_sample *sample,
2463 struct machine *machine,
2464 struct evsel *evsel)
2465 {
2466 struct thread *thread;
2467
2468 if (is_idle_sample(sample, evsel)) {
2469 thread = get_idle_thread(sample->cpu);
2470 if (thread == NULL)
2471 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2472
2473 } else {
2474 /* there were samples with tid 0 but non-zero pid */
2475 thread = machine__findnew_thread(machine, sample->pid,
2476 sample->tid ?: sample->pid);
2477 if (thread == NULL) {
2478 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2479 sample->tid);
2480 }
2481
2482 save_task_callchain(sched, sample, evsel, machine);
2483 if (sched->idle_hist) {
2484 struct thread *idle;
2485 struct idle_thread_runtime *itr;
2486
2487 idle = get_idle_thread(sample->cpu);
2488 if (idle == NULL) {
2489 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2490 return NULL;
2491 }
2492
2493 itr = thread__priv(idle);
2494 if (itr == NULL)
2495 return NULL;
2496
2497 itr->last_thread = thread;
2498
2499 /* copy task callchain when entering to idle */
2500 if (evsel__intval(evsel, sample, "next_pid") == 0)
2501 save_idle_callchain(sched, itr, sample);
2502 }
2503 }
2504
2505 return thread;
2506 }
2507
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2508 static bool timehist_skip_sample(struct perf_sched *sched,
2509 struct thread *thread,
2510 struct evsel *evsel,
2511 struct perf_sample *sample)
2512 {
2513 bool rc = false;
2514 int prio = -1;
2515 struct thread_runtime *tr = NULL;
2516
2517 if (thread__is_filtered(thread)) {
2518 rc = true;
2519 sched->skipped_samples++;
2520 }
2521
2522 if (sched->prio_str) {
2523 /*
2524 * Because priority may be changed during task execution,
2525 * first read priority from prev sched_in event for current task.
2526 * If prev sched_in event is not saved, then read priority from
2527 * current task sched_out event.
2528 */
2529 tr = thread__get_runtime(thread);
2530 if (tr && tr->prio != -1)
2531 prio = tr->prio;
2532 else if (evsel__name_is(evsel, "sched:sched_switch"))
2533 prio = evsel__intval(evsel, sample, "prev_prio");
2534
2535 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2536 rc = true;
2537 sched->skipped_samples++;
2538 }
2539 }
2540
2541 if (sched->idle_hist) {
2542 if (!evsel__name_is(evsel, "sched:sched_switch"))
2543 rc = true;
2544 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2545 evsel__intval(evsel, sample, "next_pid") != 0)
2546 rc = true;
2547 }
2548
2549 return rc;
2550 }
2551
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2552 static void timehist_print_wakeup_event(struct perf_sched *sched,
2553 struct evsel *evsel,
2554 struct perf_sample *sample,
2555 struct machine *machine,
2556 struct thread *awakened)
2557 {
2558 struct thread *thread;
2559 char tstr[64];
2560
2561 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2562 if (thread == NULL)
2563 return;
2564
2565 /* show wakeup unless both awakee and awaker are filtered */
2566 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2567 timehist_skip_sample(sched, awakened, evsel, sample)) {
2568 return;
2569 }
2570
2571 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2572 printf("%15s [%04d] ", tstr, sample->cpu);
2573 if (sched->show_cpu_visual)
2574 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2575
2576 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2577
2578 /* dt spacer */
2579 printf(" %9s %9s %9s ", "", "", "");
2580
2581 printf("awakened: %s", timehist_get_commstr(awakened));
2582
2583 printf("\n");
2584 }
2585
timehist_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2586 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2587 union perf_event *event __maybe_unused,
2588 struct evsel *evsel __maybe_unused,
2589 struct perf_sample *sample __maybe_unused,
2590 struct machine *machine __maybe_unused)
2591 {
2592 return 0;
2593 }
2594
timehist_sched_wakeup_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2595 static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2596 union perf_event *event __maybe_unused,
2597 struct evsel *evsel,
2598 struct perf_sample *sample,
2599 struct machine *machine)
2600 {
2601 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2602 struct thread *thread;
2603 struct thread_runtime *tr = NULL;
2604 /* want pid of awakened task not pid in sample */
2605 const u32 pid = evsel__intval(evsel, sample, "pid");
2606
2607 thread = machine__findnew_thread(machine, 0, pid);
2608 if (thread == NULL)
2609 return -1;
2610
2611 tr = thread__get_runtime(thread);
2612 if (tr == NULL)
2613 return -1;
2614
2615 if (tr->ready_to_run == 0)
2616 tr->ready_to_run = sample->time;
2617
2618 /* show wakeups if requested */
2619 if (sched->show_wakeups &&
2620 !perf_time__skip_sample(&sched->ptime, sample->time))
2621 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2622
2623 return 0;
2624 }
2625
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2626 static void timehist_print_migration_event(struct perf_sched *sched,
2627 struct evsel *evsel,
2628 struct perf_sample *sample,
2629 struct machine *machine,
2630 struct thread *migrated)
2631 {
2632 struct thread *thread;
2633 char tstr[64];
2634 u32 max_cpus;
2635 u32 ocpu, dcpu;
2636
2637 if (sched->summary_only)
2638 return;
2639
2640 max_cpus = sched->max_cpu.cpu + 1;
2641 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2642 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2643
2644 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2645 if (thread == NULL)
2646 return;
2647
2648 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2649 timehist_skip_sample(sched, migrated, evsel, sample)) {
2650 return;
2651 }
2652
2653 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2654 printf("%15s [%04d] ", tstr, sample->cpu);
2655
2656 if (sched->show_cpu_visual) {
2657 u32 i;
2658 char c;
2659
2660 printf(" ");
2661 for (i = 0; i < max_cpus; ++i) {
2662 c = (i == sample->cpu) ? 'm' : ' ';
2663 printf("%c", c);
2664 }
2665 printf(" ");
2666 }
2667
2668 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2669
2670 /* dt spacer */
2671 printf(" %9s %9s %9s ", "", "", "");
2672
2673 printf("migrated: %s", timehist_get_commstr(migrated));
2674 printf(" cpu %d => %d", ocpu, dcpu);
2675
2676 printf("\n");
2677 }
2678
timehist_migrate_task_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2679 static int timehist_migrate_task_event(const struct perf_tool *tool,
2680 union perf_event *event __maybe_unused,
2681 struct evsel *evsel,
2682 struct perf_sample *sample,
2683 struct machine *machine)
2684 {
2685 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2686 struct thread *thread;
2687 struct thread_runtime *tr = NULL;
2688 /* want pid of migrated task not pid in sample */
2689 const u32 pid = evsel__intval(evsel, sample, "pid");
2690
2691 thread = machine__findnew_thread(machine, 0, pid);
2692 if (thread == NULL)
2693 return -1;
2694
2695 tr = thread__get_runtime(thread);
2696 if (tr == NULL)
2697 return -1;
2698
2699 tr->migrations++;
2700 tr->migrated = sample->time;
2701
2702 /* show migrations if requested */
2703 if (sched->show_migrations) {
2704 timehist_print_migration_event(sched, evsel, sample,
2705 machine, thread);
2706 }
2707
2708 return 0;
2709 }
2710
timehist_update_task_prio(struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2711 static void timehist_update_task_prio(struct evsel *evsel,
2712 struct perf_sample *sample,
2713 struct machine *machine)
2714 {
2715 struct thread *thread;
2716 struct thread_runtime *tr = NULL;
2717 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2718 const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2719
2720 if (next_pid == 0)
2721 thread = get_idle_thread(sample->cpu);
2722 else
2723 thread = machine__findnew_thread(machine, -1, next_pid);
2724
2725 if (thread == NULL)
2726 return;
2727
2728 tr = thread__get_runtime(thread);
2729 if (tr == NULL)
2730 return;
2731
2732 tr->prio = next_prio;
2733 }
2734
timehist_sched_change_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2735 static int timehist_sched_change_event(const struct perf_tool *tool,
2736 union perf_event *event,
2737 struct evsel *evsel,
2738 struct perf_sample *sample,
2739 struct machine *machine)
2740 {
2741 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2742 struct perf_time_interval *ptime = &sched->ptime;
2743 struct addr_location al;
2744 struct thread *thread;
2745 struct thread_runtime *tr = NULL;
2746 u64 tprev, t = sample->time;
2747 int rc = 0;
2748 const char state = evsel__taskstate(evsel, sample, "prev_state");
2749
2750 addr_location__init(&al);
2751 if (machine__resolve(machine, &al, sample) < 0) {
2752 pr_err("problem processing %d event. skipping it\n",
2753 event->header.type);
2754 rc = -1;
2755 goto out;
2756 }
2757
2758 if (sched->show_prio || sched->prio_str)
2759 timehist_update_task_prio(evsel, sample, machine);
2760
2761 thread = timehist_get_thread(sched, sample, machine, evsel);
2762 if (thread == NULL) {
2763 rc = -1;
2764 goto out;
2765 }
2766
2767 if (timehist_skip_sample(sched, thread, evsel, sample))
2768 goto out;
2769
2770 tr = thread__get_runtime(thread);
2771 if (tr == NULL) {
2772 rc = -1;
2773 goto out;
2774 }
2775
2776 tprev = evsel__get_time(evsel, sample->cpu);
2777
2778 /*
2779 * If start time given:
2780 * - sample time is under window user cares about - skip sample
2781 * - tprev is under window user cares about - reset to start of window
2782 */
2783 if (ptime->start && ptime->start > t)
2784 goto out;
2785
2786 if (tprev && ptime->start > tprev)
2787 tprev = ptime->start;
2788
2789 /*
2790 * If end time given:
2791 * - previous sched event is out of window - we are done
2792 * - sample time is beyond window user cares about - reset it
2793 * to close out stats for time window interest
2794 * - If tprev is 0, that is, sched_in event for current task is
2795 * not recorded, cannot determine whether sched_in event is
2796 * within time window interest - ignore it
2797 */
2798 if (ptime->end) {
2799 if (!tprev || tprev > ptime->end)
2800 goto out;
2801
2802 if (t > ptime->end)
2803 t = ptime->end;
2804 }
2805
2806 if (!sched->idle_hist || thread__tid(thread) == 0) {
2807 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2808 timehist_update_runtime_stats(tr, t, tprev);
2809
2810 if (sched->idle_hist) {
2811 struct idle_thread_runtime *itr = (void *)tr;
2812 struct thread_runtime *last_tr;
2813
2814 if (itr->last_thread == NULL)
2815 goto out;
2816
2817 /* add current idle time as last thread's runtime */
2818 last_tr = thread__get_runtime(itr->last_thread);
2819 if (last_tr == NULL)
2820 goto out;
2821
2822 timehist_update_runtime_stats(last_tr, t, tprev);
2823 /*
2824 * remove delta time of last thread as it's not updated
2825 * and otherwise it will show an invalid value next
2826 * time. we only care total run time and run stat.
2827 */
2828 last_tr->dt_run = 0;
2829 last_tr->dt_delay = 0;
2830 last_tr->dt_sleep = 0;
2831 last_tr->dt_iowait = 0;
2832 last_tr->dt_preempt = 0;
2833
2834 if (itr->cursor.nr)
2835 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2836
2837 itr->last_thread = NULL;
2838 }
2839
2840 if (!sched->summary_only)
2841 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2842 }
2843
2844 out:
2845 if (sched->hist_time.start == 0 && t >= ptime->start)
2846 sched->hist_time.start = t;
2847 if (ptime->end == 0 || t <= ptime->end)
2848 sched->hist_time.end = t;
2849
2850 if (tr) {
2851 /* time of this sched_switch event becomes last time task seen */
2852 tr->last_time = sample->time;
2853
2854 /* last state is used to determine where to account wait time */
2855 tr->last_state = state;
2856
2857 /* sched out event for task so reset ready to run time and migrated time */
2858 if (state == 'R')
2859 tr->ready_to_run = t;
2860 else
2861 tr->ready_to_run = 0;
2862
2863 tr->migrated = 0;
2864 }
2865
2866 evsel__save_time(evsel, sample->time, sample->cpu);
2867
2868 addr_location__exit(&al);
2869 return rc;
2870 }
2871
timehist_sched_switch_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2872 static int timehist_sched_switch_event(const struct perf_tool *tool,
2873 union perf_event *event,
2874 struct evsel *evsel,
2875 struct perf_sample *sample,
2876 struct machine *machine __maybe_unused)
2877 {
2878 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2879 }
2880
process_lost(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2881 static int process_lost(const struct perf_tool *tool __maybe_unused,
2882 union perf_event *event,
2883 struct perf_sample *sample,
2884 struct machine *machine __maybe_unused)
2885 {
2886 char tstr[64];
2887
2888 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2889 printf("%15s ", tstr);
2890 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2891
2892 return 0;
2893 }
2894
2895
print_thread_runtime(struct thread * t,struct thread_runtime * r)2896 static void print_thread_runtime(struct thread *t,
2897 struct thread_runtime *r)
2898 {
2899 double mean = avg_stats(&r->run_stats);
2900 float stddev;
2901
2902 printf("%*s %5d %9" PRIu64 " ",
2903 comm_width, timehist_get_commstr(t), thread__ppid(t),
2904 (u64) r->run_stats.n);
2905
2906 print_sched_time(r->total_run_time, 8);
2907 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2908 print_sched_time(r->run_stats.min, 6);
2909 printf(" ");
2910 print_sched_time((u64) mean, 6);
2911 printf(" ");
2912 print_sched_time(r->run_stats.max, 6);
2913 printf(" ");
2914 printf("%5.2f", stddev);
2915 printf(" %5" PRIu64, r->migrations);
2916 printf("\n");
2917 }
2918
print_thread_waittime(struct thread * t,struct thread_runtime * r)2919 static void print_thread_waittime(struct thread *t,
2920 struct thread_runtime *r)
2921 {
2922 printf("%*s %5d %9" PRIu64 " ",
2923 comm_width, timehist_get_commstr(t), thread__ppid(t),
2924 (u64) r->run_stats.n);
2925
2926 print_sched_time(r->total_run_time, 8);
2927 print_sched_time(r->total_sleep_time, 6);
2928 printf(" ");
2929 print_sched_time(r->total_iowait_time, 6);
2930 printf(" ");
2931 print_sched_time(r->total_preempt_time, 6);
2932 printf(" ");
2933 print_sched_time(r->total_delay_time, 6);
2934 printf("\n");
2935 }
2936
2937 struct total_run_stats {
2938 struct perf_sched *sched;
2939 u64 sched_count;
2940 u64 task_count;
2941 u64 total_run_time;
2942 };
2943
show_thread_runtime(struct thread * t,void * priv)2944 static int show_thread_runtime(struct thread *t, void *priv)
2945 {
2946 struct total_run_stats *stats = priv;
2947 struct thread_runtime *r;
2948
2949 if (thread__is_filtered(t))
2950 return 0;
2951
2952 r = thread__priv(t);
2953 if (r && r->run_stats.n) {
2954 stats->task_count++;
2955 stats->sched_count += r->run_stats.n;
2956 stats->total_run_time += r->total_run_time;
2957
2958 if (stats->sched->show_state)
2959 print_thread_waittime(t, r);
2960 else
2961 print_thread_runtime(t, r);
2962 }
2963
2964 return 0;
2965 }
2966
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)2967 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2968 {
2969 const char *sep = " <- ";
2970 struct callchain_list *chain;
2971 size_t ret = 0;
2972 char bf[1024];
2973 bool first;
2974
2975 if (node == NULL)
2976 return 0;
2977
2978 ret = callchain__fprintf_folded(fp, node->parent);
2979 first = (ret == 0);
2980
2981 list_for_each_entry(chain, &node->val, list) {
2982 if (chain->ip >= PERF_CONTEXT_MAX)
2983 continue;
2984 if (chain->ms.sym && chain->ms.sym->ignore)
2985 continue;
2986 ret += fprintf(fp, "%s%s", first ? "" : sep,
2987 callchain_list__sym_name(chain, bf, sizeof(bf),
2988 false));
2989 first = false;
2990 }
2991
2992 return ret;
2993 }
2994
timehist_print_idlehist_callchain(struct rb_root_cached * root)2995 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2996 {
2997 size_t ret = 0;
2998 FILE *fp = stdout;
2999 struct callchain_node *chain;
3000 struct rb_node *rb_node = rb_first_cached(root);
3001
3002 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
3003 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
3004 graph_dotted_line);
3005
3006 while (rb_node) {
3007 chain = rb_entry(rb_node, struct callchain_node, rb_node);
3008 rb_node = rb_next(rb_node);
3009
3010 ret += fprintf(fp, " ");
3011 print_sched_time(chain->hit, 12);
3012 ret += 16; /* print_sched_time returns 2nd arg + 4 */
3013 ret += fprintf(fp, " %8d ", chain->count);
3014 ret += callchain__fprintf_folded(fp, chain);
3015 ret += fprintf(fp, "\n");
3016 }
3017
3018 return ret;
3019 }
3020
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)3021 static void timehist_print_summary(struct perf_sched *sched,
3022 struct perf_session *session)
3023 {
3024 struct machine *m = &session->machines.host;
3025 struct total_run_stats totals;
3026 u64 task_count;
3027 struct thread *t;
3028 struct thread_runtime *r;
3029 int i;
3030 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3031
3032 memset(&totals, 0, sizeof(totals));
3033 totals.sched = sched;
3034
3035 if (sched->idle_hist) {
3036 printf("\nIdle-time summary\n");
3037 printf("%*s parent sched-out ", comm_width, "comm");
3038 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
3039 } else if (sched->show_state) {
3040 printf("\nWait-time summary\n");
3041 printf("%*s parent sched-in ", comm_width, "comm");
3042 printf(" run-time sleep iowait preempt delay\n");
3043 } else {
3044 printf("\nRuntime summary\n");
3045 printf("%*s parent sched-in ", comm_width, "comm");
3046 printf(" run-time min-run avg-run max-run stddev migrations\n");
3047 }
3048 printf("%*s (count) ", comm_width, "");
3049 printf(" (msec) (msec) (msec) (msec) %s\n",
3050 sched->show_state ? "(msec)" : "%");
3051 printf("%.117s\n", graph_dotted_line);
3052
3053 machine__for_each_thread(m, show_thread_runtime, &totals);
3054 task_count = totals.task_count;
3055 if (!task_count)
3056 printf("<no still running tasks>\n");
3057
3058 /* CPU idle stats not tracked when samples were skipped */
3059 if (sched->skipped_samples && !sched->idle_hist)
3060 return;
3061
3062 printf("\nIdle stats:\n");
3063 for (i = 0; i < idle_max_cpu; ++i) {
3064 if (cpu_list && !test_bit(i, cpu_bitmap))
3065 continue;
3066
3067 t = idle_threads[i];
3068 if (!t)
3069 continue;
3070
3071 r = thread__priv(t);
3072 if (r && r->run_stats.n) {
3073 totals.sched_count += r->run_stats.n;
3074 printf(" CPU %2d idle for ", i);
3075 print_sched_time(r->total_run_time, 6);
3076 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3077 } else
3078 printf(" CPU %2d idle entire time window\n", i);
3079 }
3080
3081 if (sched->idle_hist && sched->show_callchain) {
3082 callchain_param.mode = CHAIN_FOLDED;
3083 callchain_param.value = CCVAL_PERIOD;
3084
3085 callchain_register_param(&callchain_param);
3086
3087 printf("\nIdle stats by callchain:\n");
3088 for (i = 0; i < idle_max_cpu; ++i) {
3089 struct idle_thread_runtime *itr;
3090
3091 t = idle_threads[i];
3092 if (!t)
3093 continue;
3094
3095 itr = thread__priv(t);
3096 if (itr == NULL)
3097 continue;
3098
3099 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3100 0, &callchain_param);
3101
3102 printf(" CPU %2d:", i);
3103 print_sched_time(itr->tr.total_run_time, 6);
3104 printf(" msec\n");
3105 timehist_print_idlehist_callchain(&itr->sorted_root);
3106 printf("\n");
3107 }
3108 }
3109
3110 printf("\n"
3111 " Total number of unique tasks: %" PRIu64 "\n"
3112 "Total number of context switches: %" PRIu64 "\n",
3113 totals.task_count, totals.sched_count);
3114
3115 printf(" Total run time (msec): ");
3116 print_sched_time(totals.total_run_time, 2);
3117 printf("\n");
3118
3119 printf(" Total scheduling time (msec): ");
3120 print_sched_time(hist_time, 2);
3121 printf(" (x %d)\n", sched->max_cpu.cpu);
3122 }
3123
3124 typedef int (*sched_handler)(const struct perf_tool *tool,
3125 union perf_event *event,
3126 struct evsel *evsel,
3127 struct perf_sample *sample,
3128 struct machine *machine);
3129
perf_timehist__process_sample(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)3130 static int perf_timehist__process_sample(const struct perf_tool *tool,
3131 union perf_event *event,
3132 struct perf_sample *sample,
3133 struct evsel *evsel,
3134 struct machine *machine)
3135 {
3136 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3137 int err = 0;
3138 struct perf_cpu this_cpu = {
3139 .cpu = sample->cpu,
3140 };
3141
3142 if (this_cpu.cpu > sched->max_cpu.cpu)
3143 sched->max_cpu = this_cpu;
3144
3145 if (evsel->handler != NULL) {
3146 sched_handler f = evsel->handler;
3147
3148 err = f(tool, event, evsel, sample, machine);
3149 }
3150
3151 return err;
3152 }
3153
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)3154 static int timehist_check_attr(struct perf_sched *sched,
3155 struct evlist *evlist)
3156 {
3157 struct evsel *evsel;
3158 struct evsel_runtime *er;
3159
3160 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3161 er = evsel__get_runtime(evsel);
3162 if (er == NULL) {
3163 pr_err("Failed to allocate memory for evsel runtime data\n");
3164 return -1;
3165 }
3166
3167 /* only need to save callchain related to sched_switch event */
3168 if (sched->show_callchain &&
3169 evsel__name_is(evsel, "sched:sched_switch") &&
3170 !evsel__has_callchain(evsel)) {
3171 pr_info("Samples of sched_switch event do not have callchains.\n");
3172 sched->show_callchain = 0;
3173 symbol_conf.use_callchain = 0;
3174 }
3175 }
3176
3177 return 0;
3178 }
3179
timehist_parse_prio_str(struct perf_sched * sched)3180 static int timehist_parse_prio_str(struct perf_sched *sched)
3181 {
3182 char *p;
3183 unsigned long start_prio, end_prio;
3184 const char *str = sched->prio_str;
3185
3186 if (!str)
3187 return 0;
3188
3189 while (isdigit(*str)) {
3190 p = NULL;
3191 start_prio = strtoul(str, &p, 0);
3192 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3193 return -1;
3194
3195 if (*p == '-') {
3196 str = ++p;
3197 p = NULL;
3198 end_prio = strtoul(str, &p, 0);
3199
3200 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3201 return -1;
3202
3203 if (end_prio < start_prio)
3204 return -1;
3205 } else {
3206 end_prio = start_prio;
3207 }
3208
3209 for (; start_prio <= end_prio; start_prio++)
3210 __set_bit(start_prio, sched->prio_bitmap);
3211
3212 if (*p)
3213 ++p;
3214
3215 str = p;
3216 }
3217
3218 return 0;
3219 }
3220
perf_sched__timehist(struct perf_sched * sched)3221 static int perf_sched__timehist(struct perf_sched *sched)
3222 {
3223 struct evsel_str_handler handlers[] = {
3224 { "sched:sched_switch", timehist_sched_switch_event, },
3225 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3226 { "sched:sched_waking", timehist_sched_wakeup_event, },
3227 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3228 };
3229 const struct evsel_str_handler migrate_handlers[] = {
3230 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3231 };
3232 struct perf_data data = {
3233 .path = input_name,
3234 .mode = PERF_DATA_MODE_READ,
3235 .force = sched->force,
3236 };
3237
3238 struct perf_session *session;
3239 struct evlist *evlist;
3240 int err = -1;
3241
3242 /*
3243 * event handlers for timehist option
3244 */
3245 sched->tool.sample = perf_timehist__process_sample;
3246 sched->tool.mmap = perf_event__process_mmap;
3247 sched->tool.comm = perf_event__process_comm;
3248 sched->tool.exit = perf_event__process_exit;
3249 sched->tool.fork = perf_event__process_fork;
3250 sched->tool.lost = process_lost;
3251 sched->tool.attr = perf_event__process_attr;
3252 sched->tool.tracing_data = perf_event__process_tracing_data;
3253 sched->tool.build_id = perf_event__process_build_id;
3254
3255 sched->tool.ordering_requires_timestamps = true;
3256
3257 symbol_conf.use_callchain = sched->show_callchain;
3258
3259 session = perf_session__new(&data, &sched->tool);
3260 if (IS_ERR(session))
3261 return PTR_ERR(session);
3262
3263 if (cpu_list) {
3264 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3265 if (err < 0)
3266 goto out;
3267 }
3268
3269 evlist = session->evlist;
3270
3271 symbol__init(&session->header.env);
3272
3273 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3274 pr_err("Invalid time string\n");
3275 err = -EINVAL;
3276 goto out;
3277 }
3278
3279 if (timehist_check_attr(sched, evlist) != 0)
3280 goto out;
3281
3282 if (timehist_parse_prio_str(sched) != 0) {
3283 pr_err("Invalid prio string\n");
3284 goto out;
3285 }
3286
3287 setup_pager();
3288
3289 /* prefer sched_waking if it is captured */
3290 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3291 handlers[1].handler = timehist_sched_wakeup_ignore;
3292
3293 /* setup per-evsel handlers */
3294 if (perf_session__set_tracepoints_handlers(session, handlers))
3295 goto out;
3296
3297 /* sched_switch event at a minimum needs to exist */
3298 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3299 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3300 goto out;
3301 }
3302
3303 if ((sched->show_migrations || sched->pre_migrations) &&
3304 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3305 goto out;
3306
3307 /* pre-allocate struct for per-CPU idle stats */
3308 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3309 if (sched->max_cpu.cpu == 0)
3310 sched->max_cpu.cpu = 4;
3311 if (init_idle_threads(sched->max_cpu.cpu))
3312 goto out;
3313
3314 /* summary_only implies summary option, but don't overwrite summary if set */
3315 if (sched->summary_only)
3316 sched->summary = sched->summary_only;
3317
3318 if (!sched->summary_only)
3319 timehist_header(sched);
3320
3321 err = perf_session__process_events(session);
3322 if (err) {
3323 pr_err("Failed to process events, error %d", err);
3324 goto out;
3325 }
3326
3327 sched->nr_events = evlist->stats.nr_events[0];
3328 sched->nr_lost_events = evlist->stats.total_lost;
3329 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3330
3331 if (sched->summary)
3332 timehist_print_summary(sched, session);
3333
3334 out:
3335 free_idle_threads();
3336 perf_session__delete(session);
3337
3338 return err;
3339 }
3340
3341
print_bad_events(struct perf_sched * sched)3342 static void print_bad_events(struct perf_sched *sched)
3343 {
3344 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3345 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3346 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3347 sched->nr_unordered_timestamps, sched->nr_timestamps);
3348 }
3349 if (sched->nr_lost_events && sched->nr_events) {
3350 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3351 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3352 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3353 }
3354 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3355 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3356 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3357 sched->nr_context_switch_bugs, sched->nr_timestamps);
3358 if (sched->nr_lost_events)
3359 printf(" (due to lost events?)");
3360 printf("\n");
3361 }
3362 }
3363
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3364 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3365 {
3366 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3367 struct work_atoms *this;
3368 const char *comm = thread__comm_str(data->thread), *this_comm;
3369 bool leftmost = true;
3370
3371 while (*new) {
3372 int cmp;
3373
3374 this = container_of(*new, struct work_atoms, node);
3375 parent = *new;
3376
3377 this_comm = thread__comm_str(this->thread);
3378 cmp = strcmp(comm, this_comm);
3379 if (cmp > 0) {
3380 new = &((*new)->rb_left);
3381 } else if (cmp < 0) {
3382 new = &((*new)->rb_right);
3383 leftmost = false;
3384 } else {
3385 this->num_merged++;
3386 this->total_runtime += data->total_runtime;
3387 this->nb_atoms += data->nb_atoms;
3388 this->total_lat += data->total_lat;
3389 list_splice(&data->work_list, &this->work_list);
3390 if (this->max_lat < data->max_lat) {
3391 this->max_lat = data->max_lat;
3392 this->max_lat_start = data->max_lat_start;
3393 this->max_lat_end = data->max_lat_end;
3394 }
3395 zfree(&data);
3396 return;
3397 }
3398 }
3399
3400 data->num_merged++;
3401 rb_link_node(&data->node, parent, new);
3402 rb_insert_color_cached(&data->node, root, leftmost);
3403 }
3404
perf_sched__merge_lat(struct perf_sched * sched)3405 static void perf_sched__merge_lat(struct perf_sched *sched)
3406 {
3407 struct work_atoms *data;
3408 struct rb_node *node;
3409
3410 if (sched->skip_merge)
3411 return;
3412
3413 while ((node = rb_first_cached(&sched->atom_root))) {
3414 rb_erase_cached(node, &sched->atom_root);
3415 data = rb_entry(node, struct work_atoms, node);
3416 __merge_work_atoms(&sched->merged_atom_root, data);
3417 }
3418 }
3419
setup_cpus_switch_event(struct perf_sched * sched)3420 static int setup_cpus_switch_event(struct perf_sched *sched)
3421 {
3422 unsigned int i;
3423
3424 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3425 if (!sched->cpu_last_switched)
3426 return -1;
3427
3428 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3429 if (!sched->curr_pid) {
3430 zfree(&sched->cpu_last_switched);
3431 return -1;
3432 }
3433
3434 for (i = 0; i < MAX_CPUS; i++)
3435 sched->curr_pid[i] = -1;
3436
3437 return 0;
3438 }
3439
free_cpus_switch_event(struct perf_sched * sched)3440 static void free_cpus_switch_event(struct perf_sched *sched)
3441 {
3442 zfree(&sched->curr_pid);
3443 zfree(&sched->cpu_last_switched);
3444 }
3445
perf_sched__lat(struct perf_sched * sched)3446 static int perf_sched__lat(struct perf_sched *sched)
3447 {
3448 int rc = -1;
3449 struct rb_node *next;
3450
3451 setup_pager();
3452
3453 if (setup_cpus_switch_event(sched))
3454 return rc;
3455
3456 if (perf_sched__read_events(sched))
3457 goto out_free_cpus_switch_event;
3458
3459 perf_sched__merge_lat(sched);
3460 perf_sched__sort_lat(sched);
3461
3462 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3463 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3464 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3465
3466 next = rb_first_cached(&sched->sorted_atom_root);
3467
3468 while (next) {
3469 struct work_atoms *work_list;
3470
3471 work_list = rb_entry(next, struct work_atoms, node);
3472 output_lat_thread(sched, work_list);
3473 next = rb_next(next);
3474 thread__zput(work_list->thread);
3475 }
3476
3477 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3478 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3479 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3480
3481 printf(" ---------------------------------------------------\n");
3482
3483 print_bad_events(sched);
3484 printf("\n");
3485
3486 rc = 0;
3487
3488 out_free_cpus_switch_event:
3489 free_cpus_switch_event(sched);
3490 return rc;
3491 }
3492
setup_map_cpus(struct perf_sched * sched)3493 static int setup_map_cpus(struct perf_sched *sched)
3494 {
3495 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3496
3497 if (sched->map.comp) {
3498 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3499 if (!sched->map.comp_cpus)
3500 return -1;
3501 }
3502
3503 if (sched->map.cpus_str) {
3504 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3505 if (!sched->map.cpus) {
3506 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3507 zfree(&sched->map.comp_cpus);
3508 return -1;
3509 }
3510 }
3511
3512 return 0;
3513 }
3514
setup_color_pids(struct perf_sched * sched)3515 static int setup_color_pids(struct perf_sched *sched)
3516 {
3517 struct perf_thread_map *map;
3518
3519 if (!sched->map.color_pids_str)
3520 return 0;
3521
3522 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3523 if (!map) {
3524 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3525 return -1;
3526 }
3527
3528 sched->map.color_pids = map;
3529 return 0;
3530 }
3531
setup_color_cpus(struct perf_sched * sched)3532 static int setup_color_cpus(struct perf_sched *sched)
3533 {
3534 struct perf_cpu_map *map;
3535
3536 if (!sched->map.color_cpus_str)
3537 return 0;
3538
3539 map = perf_cpu_map__new(sched->map.color_cpus_str);
3540 if (!map) {
3541 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3542 return -1;
3543 }
3544
3545 sched->map.color_cpus = map;
3546 return 0;
3547 }
3548
perf_sched__map(struct perf_sched * sched)3549 static int perf_sched__map(struct perf_sched *sched)
3550 {
3551 int rc = -1;
3552
3553 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3554 if (!sched->curr_thread)
3555 return rc;
3556
3557 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3558 if (!sched->curr_out_thread)
3559 return rc;
3560
3561 if (setup_cpus_switch_event(sched))
3562 goto out_free_curr_thread;
3563
3564 if (setup_map_cpus(sched))
3565 goto out_free_cpus_switch_event;
3566
3567 if (setup_color_pids(sched))
3568 goto out_put_map_cpus;
3569
3570 if (setup_color_cpus(sched))
3571 goto out_put_color_pids;
3572
3573 setup_pager();
3574 if (perf_sched__read_events(sched))
3575 goto out_put_color_cpus;
3576
3577 rc = 0;
3578 print_bad_events(sched);
3579
3580 out_put_color_cpus:
3581 perf_cpu_map__put(sched->map.color_cpus);
3582
3583 out_put_color_pids:
3584 perf_thread_map__put(sched->map.color_pids);
3585
3586 out_put_map_cpus:
3587 zfree(&sched->map.comp_cpus);
3588 perf_cpu_map__put(sched->map.cpus);
3589
3590 out_free_cpus_switch_event:
3591 free_cpus_switch_event(sched);
3592
3593 out_free_curr_thread:
3594 zfree(&sched->curr_thread);
3595 return rc;
3596 }
3597
perf_sched__replay(struct perf_sched * sched)3598 static int perf_sched__replay(struct perf_sched *sched)
3599 {
3600 int ret;
3601 unsigned long i;
3602
3603 mutex_init(&sched->start_work_mutex);
3604 mutex_init(&sched->work_done_wait_mutex);
3605
3606 ret = setup_cpus_switch_event(sched);
3607 if (ret)
3608 goto out_mutex_destroy;
3609
3610 calibrate_run_measurement_overhead(sched);
3611 calibrate_sleep_measurement_overhead(sched);
3612
3613 test_calibrations(sched);
3614
3615 ret = perf_sched__read_events(sched);
3616 if (ret)
3617 goto out_free_cpus_switch_event;
3618
3619 printf("nr_run_events: %ld\n", sched->nr_run_events);
3620 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3621 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3622
3623 if (sched->targetless_wakeups)
3624 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3625 if (sched->multitarget_wakeups)
3626 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3627 if (sched->nr_run_events_optimized)
3628 printf("run atoms optimized: %ld\n",
3629 sched->nr_run_events_optimized);
3630
3631 print_task_traces(sched);
3632 add_cross_task_wakeups(sched);
3633
3634 sched->thread_funcs_exit = false;
3635 create_tasks(sched);
3636 printf("------------------------------------------------------------\n");
3637 if (sched->replay_repeat == 0)
3638 sched->replay_repeat = UINT_MAX;
3639
3640 for (i = 0; i < sched->replay_repeat; i++)
3641 run_one_test(sched);
3642
3643 sched->thread_funcs_exit = true;
3644 destroy_tasks(sched);
3645
3646 out_free_cpus_switch_event:
3647 free_cpus_switch_event(sched);
3648
3649 out_mutex_destroy:
3650 mutex_destroy(&sched->start_work_mutex);
3651 mutex_destroy(&sched->work_done_wait_mutex);
3652 return ret;
3653 }
3654
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3655 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3656 const char * const usage_msg[])
3657 {
3658 char *tmp, *tok, *str = strdup(sched->sort_order);
3659
3660 for (tok = strtok_r(str, ", ", &tmp);
3661 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3662 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3663 usage_with_options_msg(usage_msg, options,
3664 "Unknown --sort key: `%s'", tok);
3665 }
3666 }
3667
3668 free(str);
3669
3670 sort_dimension__add("pid", &sched->cmp_pid);
3671 }
3672
schedstat_events_exposed(void)3673 static bool schedstat_events_exposed(void)
3674 {
3675 /*
3676 * Select "sched:sched_stat_wait" event to check
3677 * whether schedstat tracepoints are exposed.
3678 */
3679 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3680 false : true;
3681 }
3682
__cmd_record(int argc,const char ** argv)3683 static int __cmd_record(int argc, const char **argv)
3684 {
3685 unsigned int rec_argc, i, j;
3686 char **rec_argv;
3687 const char **rec_argv_copy;
3688 const char * const record_args[] = {
3689 "record",
3690 "-a",
3691 "-R",
3692 "-m", "1024",
3693 "-c", "1",
3694 "-e", "sched:sched_switch",
3695 "-e", "sched:sched_stat_runtime",
3696 "-e", "sched:sched_process_fork",
3697 "-e", "sched:sched_wakeup_new",
3698 "-e", "sched:sched_migrate_task",
3699 };
3700
3701 /*
3702 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3703 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3704 * to prevent "perf sched record" execution failure, determine
3705 * whether to record schedstat events according to actual situation.
3706 */
3707 const char * const schedstat_args[] = {
3708 "-e", "sched:sched_stat_wait",
3709 "-e", "sched:sched_stat_sleep",
3710 "-e", "sched:sched_stat_iowait",
3711 };
3712 unsigned int schedstat_argc = schedstat_events_exposed() ?
3713 ARRAY_SIZE(schedstat_args) : 0;
3714
3715 struct tep_event *waking_event;
3716 int ret;
3717
3718 /*
3719 * +2 for either "-e", "sched:sched_wakeup" or
3720 * "-e", "sched:sched_waking"
3721 */
3722 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3723 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3724 if (rec_argv == NULL)
3725 return -ENOMEM;
3726 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3727 if (rec_argv_copy == NULL) {
3728 free(rec_argv);
3729 return -ENOMEM;
3730 }
3731
3732 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3733 rec_argv[i] = strdup(record_args[i]);
3734
3735 rec_argv[i++] = strdup("-e");
3736 waking_event = trace_event__tp_format("sched", "sched_waking");
3737 if (!IS_ERR(waking_event))
3738 rec_argv[i++] = strdup("sched:sched_waking");
3739 else
3740 rec_argv[i++] = strdup("sched:sched_wakeup");
3741
3742 for (j = 0; j < schedstat_argc; j++)
3743 rec_argv[i++] = strdup(schedstat_args[j]);
3744
3745 for (j = 1; j < (unsigned int)argc; j++, i++)
3746 rec_argv[i] = strdup(argv[j]);
3747
3748 BUG_ON(i != rec_argc);
3749
3750 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3751 ret = cmd_record(rec_argc, rec_argv_copy);
3752
3753 for (i = 0; i < rec_argc; i++)
3754 free(rec_argv[i]);
3755 free(rec_argv);
3756 free(rec_argv_copy);
3757
3758 return ret;
3759 }
3760
cmd_sched(int argc,const char ** argv)3761 int cmd_sched(int argc, const char **argv)
3762 {
3763 static const char default_sort_order[] = "avg, max, switch, runtime";
3764 struct perf_sched sched = {
3765 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3766 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3767 .sort_order = default_sort_order,
3768 .replay_repeat = 10,
3769 .profile_cpu = -1,
3770 .next_shortname1 = 'A',
3771 .next_shortname2 = '0',
3772 .skip_merge = 0,
3773 .show_callchain = 1,
3774 .max_stack = 5,
3775 };
3776 const struct option sched_options[] = {
3777 OPT_STRING('i', "input", &input_name, "file",
3778 "input file name"),
3779 OPT_INCR('v', "verbose", &verbose,
3780 "be more verbose (show symbol address, etc)"),
3781 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3782 "dump raw trace in ASCII"),
3783 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3784 OPT_END()
3785 };
3786 const struct option latency_options[] = {
3787 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3788 "sort by key(s): runtime, switch, avg, max"),
3789 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3790 "CPU to profile on"),
3791 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3792 "latency stats per pid instead of per comm"),
3793 OPT_PARENT(sched_options)
3794 };
3795 const struct option replay_options[] = {
3796 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3797 "repeat the workload replay N times (0: infinite)"),
3798 OPT_PARENT(sched_options)
3799 };
3800 const struct option map_options[] = {
3801 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3802 "map output in compact mode"),
3803 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3804 "highlight given pids in map"),
3805 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3806 "highlight given CPUs in map"),
3807 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3808 "display given CPUs in map"),
3809 OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3810 "map output only for the given task name(s)."),
3811 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3812 "given command name can be partially matched (fuzzy matching)"),
3813 OPT_PARENT(sched_options)
3814 };
3815 const struct option timehist_options[] = {
3816 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3817 "file", "vmlinux pathname"),
3818 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3819 "file", "kallsyms pathname"),
3820 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3821 "Display call chains if present (default on)"),
3822 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3823 "Maximum number of functions to display backtrace."),
3824 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3825 "Look for files with symbols relative to this directory"),
3826 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3827 "Show only syscall summary with statistics"),
3828 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3829 "Show all syscalls and summary with statistics"),
3830 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3831 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3832 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3833 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3834 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3835 OPT_STRING(0, "time", &sched.time_str, "str",
3836 "Time span for analysis (start,stop)"),
3837 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3838 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3839 "analyze events only for given process id(s)"),
3840 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3841 "analyze events only for given thread id(s)"),
3842 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3843 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3844 OPT_STRING(0, "prio", &sched.prio_str, "prio",
3845 "analyze events only for given task priority(ies)"),
3846 OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3847 OPT_PARENT(sched_options)
3848 };
3849
3850 const char * const latency_usage[] = {
3851 "perf sched latency [<options>]",
3852 NULL
3853 };
3854 const char * const replay_usage[] = {
3855 "perf sched replay [<options>]",
3856 NULL
3857 };
3858 const char * const map_usage[] = {
3859 "perf sched map [<options>]",
3860 NULL
3861 };
3862 const char * const timehist_usage[] = {
3863 "perf sched timehist [<options>]",
3864 NULL
3865 };
3866 const char *const sched_subcommands[] = { "record", "latency", "map",
3867 "replay", "script",
3868 "timehist", NULL };
3869 const char *sched_usage[] = {
3870 NULL,
3871 NULL
3872 };
3873 struct trace_sched_handler lat_ops = {
3874 .wakeup_event = latency_wakeup_event,
3875 .switch_event = latency_switch_event,
3876 .runtime_event = latency_runtime_event,
3877 .migrate_task_event = latency_migrate_task_event,
3878 };
3879 struct trace_sched_handler map_ops = {
3880 .switch_event = map_switch_event,
3881 };
3882 struct trace_sched_handler replay_ops = {
3883 .wakeup_event = replay_wakeup_event,
3884 .switch_event = replay_switch_event,
3885 .fork_event = replay_fork_event,
3886 };
3887 int ret;
3888
3889 perf_tool__init(&sched.tool, /*ordered_events=*/true);
3890 sched.tool.sample = perf_sched__process_tracepoint_sample;
3891 sched.tool.comm = perf_sched__process_comm;
3892 sched.tool.namespaces = perf_event__process_namespaces;
3893 sched.tool.lost = perf_event__process_lost;
3894 sched.tool.fork = perf_sched__process_fork_event;
3895
3896 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3897 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3898 if (!argc)
3899 usage_with_options(sched_usage, sched_options);
3900
3901 /*
3902 * Aliased to 'perf script' for now:
3903 */
3904 if (!strcmp(argv[0], "script")) {
3905 return cmd_script(argc, argv);
3906 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3907 return __cmd_record(argc, argv);
3908 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3909 sched.tp_handler = &lat_ops;
3910 if (argc > 1) {
3911 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3912 if (argc)
3913 usage_with_options(latency_usage, latency_options);
3914 }
3915 setup_sorting(&sched, latency_options, latency_usage);
3916 return perf_sched__lat(&sched);
3917 } else if (!strcmp(argv[0], "map")) {
3918 if (argc) {
3919 argc = parse_options(argc, argv, map_options, map_usage, 0);
3920 if (argc)
3921 usage_with_options(map_usage, map_options);
3922
3923 if (sched.map.task_name) {
3924 sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3925 if (sched.map.task_names == NULL) {
3926 fprintf(stderr, "Failed to parse task names\n");
3927 return -1;
3928 }
3929 }
3930 }
3931 sched.tp_handler = &map_ops;
3932 setup_sorting(&sched, latency_options, latency_usage);
3933 return perf_sched__map(&sched);
3934 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3935 sched.tp_handler = &replay_ops;
3936 if (argc) {
3937 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3938 if (argc)
3939 usage_with_options(replay_usage, replay_options);
3940 }
3941 return perf_sched__replay(&sched);
3942 } else if (!strcmp(argv[0], "timehist")) {
3943 if (argc) {
3944 argc = parse_options(argc, argv, timehist_options,
3945 timehist_usage, 0);
3946 if (argc)
3947 usage_with_options(timehist_usage, timehist_options);
3948 }
3949 if ((sched.show_wakeups || sched.show_next) &&
3950 sched.summary_only) {
3951 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3952 parse_options_usage(timehist_usage, timehist_options, "s", true);
3953 if (sched.show_wakeups)
3954 parse_options_usage(NULL, timehist_options, "w", true);
3955 if (sched.show_next)
3956 parse_options_usage(NULL, timehist_options, "n", true);
3957 return -EINVAL;
3958 }
3959 ret = symbol__validate_sym_arguments();
3960 if (ret)
3961 return ret;
3962
3963 return perf_sched__timehist(&sched);
3964 } else {
3965 usage_with_options(sched_usage, sched_options);
3966 }
3967
3968 /* free usage string allocated by parse_options_subcommand */
3969 free((void *)sched_usage[0]);
3970
3971 return 0;
3972 }
3973