1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 net_err_ratelimited("%s: DMA mapping error for empty frame\n",
1096 netdev_name(ring->netdev));
1097 return -ENOMEM;
1098 }
1099
1100 buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1101 buffer->skb = skb;
1102 buffer->protocol = 0;
1103 buffer->bytecount = skb->len;
1104 buffer->gso_segs = 1;
1105 buffer->time_stamp = jiffies;
1106 dma_unmap_len_set(buffer, len, skb->len);
1107 dma_unmap_addr_set(buffer, dma, dma);
1108
1109 return 0;
1110 }
1111
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1112 static void igc_init_tx_empty_descriptor(struct igc_ring *ring,
1113 struct sk_buff *skb,
1114 struct igc_tx_buffer *first)
1115 {
1116 union igc_adv_tx_desc *desc;
1117 u32 cmd_type, olinfo_status;
1118
1119 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1120 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1121 first->bytecount;
1122 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1123
1124 desc = IGC_TX_DESC(ring, ring->next_to_use);
1125 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1126 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1127 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1128
1129 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1130
1131 first->next_to_watch = desc;
1132
1133 ring->next_to_use++;
1134 if (ring->next_to_use == ring->count)
1135 ring->next_to_use = 0;
1136 }
1137
1138 #define IGC_EMPTY_FRAME_SIZE 60
1139
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1140 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1141 __le32 launch_time, bool first_flag,
1142 u32 vlan_macip_lens, u32 type_tucmd,
1143 u32 mss_l4len_idx)
1144 {
1145 struct igc_adv_tx_context_desc *context_desc;
1146 u16 i = tx_ring->next_to_use;
1147
1148 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1149
1150 i++;
1151 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1152
1153 /* set bits to identify this as an advanced context descriptor */
1154 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1155
1156 /* For i225, context index must be unique per ring. */
1157 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1158 mss_l4len_idx |= tx_ring->reg_idx << 4;
1159
1160 if (first_flag)
1161 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1162
1163 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1164 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1165 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1166 context_desc->launch_time = launch_time;
1167 }
1168
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1169 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1170 __le32 launch_time, bool first_flag)
1171 {
1172 struct sk_buff *skb = first->skb;
1173 u32 vlan_macip_lens = 0;
1174 u32 type_tucmd = 0;
1175
1176 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1177 csum_failed:
1178 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1179 !tx_ring->launchtime_enable)
1180 return;
1181 goto no_csum;
1182 }
1183
1184 switch (skb->csum_offset) {
1185 case offsetof(struct tcphdr, check):
1186 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1187 fallthrough;
1188 case offsetof(struct udphdr, check):
1189 break;
1190 case offsetof(struct sctphdr, checksum):
1191 /* validate that this is actually an SCTP request */
1192 if (skb_csum_is_sctp(skb)) {
1193 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1194 break;
1195 }
1196 fallthrough;
1197 default:
1198 skb_checksum_help(skb);
1199 goto csum_failed;
1200 }
1201
1202 /* update TX checksum flag */
1203 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1204 vlan_macip_lens = skb_checksum_start_offset(skb) -
1205 skb_network_offset(skb);
1206 no_csum:
1207 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1208 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1209
1210 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1211 vlan_macip_lens, type_tucmd, 0);
1212 }
1213
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1214 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1215 {
1216 struct net_device *netdev = tx_ring->netdev;
1217
1218 netif_stop_subqueue(netdev, tx_ring->queue_index);
1219
1220 /* memory barriier comment */
1221 smp_mb();
1222
1223 /* We need to check again in a case another CPU has just
1224 * made room available.
1225 */
1226 if (igc_desc_unused(tx_ring) < size)
1227 return -EBUSY;
1228
1229 /* A reprieve! */
1230 netif_wake_subqueue(netdev, tx_ring->queue_index);
1231
1232 u64_stats_update_begin(&tx_ring->tx_syncp2);
1233 tx_ring->tx_stats.restart_queue2++;
1234 u64_stats_update_end(&tx_ring->tx_syncp2);
1235
1236 return 0;
1237 }
1238
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1239 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1240 {
1241 if (igc_desc_unused(tx_ring) >= size)
1242 return 0;
1243 return __igc_maybe_stop_tx(tx_ring, size);
1244 }
1245
1246 #define IGC_SET_FLAG(_input, _flag, _result) \
1247 (((_flag) <= (_result)) ? \
1248 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1249 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1250
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1251 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1252 {
1253 /* set type for advanced descriptor with frame checksum insertion */
1254 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1255 IGC_ADVTXD_DCMD_DEXT |
1256 IGC_ADVTXD_DCMD_IFCS;
1257
1258 /* set HW vlan bit if vlan is present */
1259 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1260 IGC_ADVTXD_DCMD_VLE);
1261
1262 /* set segmentation bits for TSO */
1263 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1264 (IGC_ADVTXD_DCMD_TSE));
1265
1266 /* set timestamp bit if present, will select the register set
1267 * based on the _TSTAMP(_X) bit.
1268 */
1269 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1270 (IGC_ADVTXD_MAC_TSTAMP));
1271
1272 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1273 (IGC_ADVTXD_TSTAMP_REG_1));
1274
1275 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1276 (IGC_ADVTXD_TSTAMP_REG_2));
1277
1278 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1279 (IGC_ADVTXD_TSTAMP_REG_3));
1280
1281 /* insert frame checksum */
1282 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1283
1284 return cmd_type;
1285 }
1286
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1287 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1288 union igc_adv_tx_desc *tx_desc,
1289 u32 tx_flags, unsigned int paylen)
1290 {
1291 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1292
1293 /* insert L4 checksum */
1294 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1295 (IGC_TXD_POPTS_TXSM << 8));
1296
1297 /* insert IPv4 checksum */
1298 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1299 (IGC_TXD_POPTS_IXSM << 8));
1300
1301 /* Use the second timer (free running, in general) for the timestamp */
1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1303 IGC_TXD_PTP2_TIMER_1);
1304
1305 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1306 }
1307
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1308 static int igc_tx_map(struct igc_ring *tx_ring,
1309 struct igc_tx_buffer *first,
1310 const u8 hdr_len)
1311 {
1312 struct sk_buff *skb = first->skb;
1313 struct igc_tx_buffer *tx_buffer;
1314 union igc_adv_tx_desc *tx_desc;
1315 u32 tx_flags = first->tx_flags;
1316 skb_frag_t *frag;
1317 u16 i = tx_ring->next_to_use;
1318 unsigned int data_len, size;
1319 dma_addr_t dma;
1320 u32 cmd_type;
1321
1322 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1323 tx_desc = IGC_TX_DESC(tx_ring, i);
1324
1325 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1326
1327 size = skb_headlen(skb);
1328 data_len = skb->data_len;
1329
1330 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1331
1332 tx_buffer = first;
1333
1334 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1335 if (dma_mapping_error(tx_ring->dev, dma))
1336 goto dma_error;
1337
1338 /* record length, and DMA address */
1339 dma_unmap_len_set(tx_buffer, len, size);
1340 dma_unmap_addr_set(tx_buffer, dma, dma);
1341
1342 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1343
1344 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1345 tx_desc->read.cmd_type_len =
1346 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1347
1348 i++;
1349 tx_desc++;
1350 if (i == tx_ring->count) {
1351 tx_desc = IGC_TX_DESC(tx_ring, 0);
1352 i = 0;
1353 }
1354 tx_desc->read.olinfo_status = 0;
1355
1356 dma += IGC_MAX_DATA_PER_TXD;
1357 size -= IGC_MAX_DATA_PER_TXD;
1358
1359 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1360 }
1361
1362 if (likely(!data_len))
1363 break;
1364
1365 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1366
1367 i++;
1368 tx_desc++;
1369 if (i == tx_ring->count) {
1370 tx_desc = IGC_TX_DESC(tx_ring, 0);
1371 i = 0;
1372 }
1373 tx_desc->read.olinfo_status = 0;
1374
1375 size = skb_frag_size(frag);
1376 data_len -= size;
1377
1378 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1379 size, DMA_TO_DEVICE);
1380
1381 tx_buffer = &tx_ring->tx_buffer_info[i];
1382 }
1383
1384 /* write last descriptor with RS and EOP bits */
1385 cmd_type |= size | IGC_TXD_DCMD;
1386 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1387
1388 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1389
1390 /* set the timestamp */
1391 first->time_stamp = jiffies;
1392
1393 skb_tx_timestamp(skb);
1394
1395 /* Force memory writes to complete before letting h/w know there
1396 * are new descriptors to fetch. (Only applicable for weak-ordered
1397 * memory model archs, such as IA-64).
1398 *
1399 * We also need this memory barrier to make certain all of the
1400 * status bits have been updated before next_to_watch is written.
1401 */
1402 wmb();
1403
1404 /* set next_to_watch value indicating a packet is present */
1405 first->next_to_watch = tx_desc;
1406
1407 i++;
1408 if (i == tx_ring->count)
1409 i = 0;
1410
1411 tx_ring->next_to_use = i;
1412
1413 /* Make sure there is space in the ring for the next send. */
1414 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1415
1416 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1417 writel(i, tx_ring->tail);
1418 }
1419
1420 return 0;
1421 dma_error:
1422 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1423 tx_buffer = &tx_ring->tx_buffer_info[i];
1424
1425 /* clear dma mappings for failed tx_buffer_info map */
1426 while (tx_buffer != first) {
1427 if (dma_unmap_len(tx_buffer, len))
1428 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1429
1430 if (i-- == 0)
1431 i += tx_ring->count;
1432 tx_buffer = &tx_ring->tx_buffer_info[i];
1433 }
1434
1435 if (dma_unmap_len(tx_buffer, len))
1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437
1438 dev_kfree_skb_any(tx_buffer->skb);
1439 tx_buffer->skb = NULL;
1440
1441 tx_ring->next_to_use = i;
1442
1443 return -1;
1444 }
1445
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1446 static int igc_tso(struct igc_ring *tx_ring,
1447 struct igc_tx_buffer *first,
1448 __le32 launch_time, bool first_flag,
1449 u8 *hdr_len)
1450 {
1451 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1452 struct sk_buff *skb = first->skb;
1453 union {
1454 struct iphdr *v4;
1455 struct ipv6hdr *v6;
1456 unsigned char *hdr;
1457 } ip;
1458 union {
1459 struct tcphdr *tcp;
1460 struct udphdr *udp;
1461 unsigned char *hdr;
1462 } l4;
1463 u32 paylen, l4_offset;
1464 int err;
1465
1466 if (skb->ip_summed != CHECKSUM_PARTIAL)
1467 return 0;
1468
1469 if (!skb_is_gso(skb))
1470 return 0;
1471
1472 err = skb_cow_head(skb, 0);
1473 if (err < 0)
1474 return err;
1475
1476 ip.hdr = skb_network_header(skb);
1477 l4.hdr = skb_checksum_start(skb);
1478
1479 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1480 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1481
1482 /* initialize outer IP header fields */
1483 if (ip.v4->version == 4) {
1484 unsigned char *csum_start = skb_checksum_start(skb);
1485 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1486
1487 /* IP header will have to cancel out any data that
1488 * is not a part of the outer IP header
1489 */
1490 ip.v4->check = csum_fold(csum_partial(trans_start,
1491 csum_start - trans_start,
1492 0));
1493 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1494
1495 ip.v4->tot_len = 0;
1496 first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 IGC_TX_FLAGS_CSUM |
1498 IGC_TX_FLAGS_IPV4;
1499 } else {
1500 ip.v6->payload_len = 0;
1501 first->tx_flags |= IGC_TX_FLAGS_TSO |
1502 IGC_TX_FLAGS_CSUM;
1503 }
1504
1505 /* determine offset of inner transport header */
1506 l4_offset = l4.hdr - skb->data;
1507
1508 /* remove payload length from inner checksum */
1509 paylen = skb->len - l4_offset;
1510 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1511 /* compute length of segmentation header */
1512 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1513 csum_replace_by_diff(&l4.tcp->check,
1514 (__force __wsum)htonl(paylen));
1515 } else {
1516 /* compute length of segmentation header */
1517 *hdr_len = sizeof(*l4.udp) + l4_offset;
1518 csum_replace_by_diff(&l4.udp->check,
1519 (__force __wsum)htonl(paylen));
1520 }
1521
1522 /* update gso size and bytecount with header size */
1523 first->gso_segs = skb_shinfo(skb)->gso_segs;
1524 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1525
1526 /* MSS L4LEN IDX */
1527 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1528 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1529
1530 /* VLAN MACLEN IPLEN */
1531 vlan_macip_lens = l4.hdr - ip.hdr;
1532 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1533 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1534
1535 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1536 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1537
1538 return 1;
1539 }
1540
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1541 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1542 {
1543 int i;
1544
1545 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1546 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1547
1548 if (tstamp->skb)
1549 continue;
1550
1551 tstamp->skb = skb_get(skb);
1552 tstamp->start = jiffies;
1553 *flags = tstamp->flags;
1554
1555 return true;
1556 }
1557
1558 return false;
1559 }
1560
igc_insert_empty_frame(struct igc_ring * tx_ring)1561 static int igc_insert_empty_frame(struct igc_ring *tx_ring)
1562 {
1563 struct igc_tx_buffer *empty_info;
1564 struct sk_buff *empty_skb;
1565 void *data;
1566 int ret;
1567
1568 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1569 empty_skb = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1570 if (unlikely(!empty_skb)) {
1571 net_err_ratelimited("%s: skb alloc error for empty frame\n",
1572 netdev_name(tx_ring->netdev));
1573 return -ENOMEM;
1574 }
1575
1576 data = skb_put(empty_skb, IGC_EMPTY_FRAME_SIZE);
1577 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1578
1579 /* Prepare DMA mapping and Tx buffer information */
1580 ret = igc_init_empty_frame(tx_ring, empty_info, empty_skb);
1581 if (unlikely(ret)) {
1582 dev_kfree_skb_any(empty_skb);
1583 return ret;
1584 }
1585
1586 /* Prepare advanced context descriptor for empty packet */
1587 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1588
1589 /* Prepare advanced data descriptor for empty packet */
1590 igc_init_tx_empty_descriptor(tx_ring, empty_skb, empty_info);
1591
1592 return 0;
1593 }
1594
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1595 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1596 struct igc_ring *tx_ring)
1597 {
1598 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1599 bool first_flag = false, insert_empty = false;
1600 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1601 __be16 protocol = vlan_get_protocol(skb);
1602 struct igc_tx_buffer *first;
1603 __le32 launch_time = 0;
1604 u32 tx_flags = 0;
1605 unsigned short f;
1606 ktime_t txtime;
1607 u8 hdr_len = 0;
1608 int tso = 0;
1609
1610 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1611 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1612 * + 2 desc gap to keep tail from touching head,
1613 * + 1 desc for context descriptor,
1614 * + 2 desc for inserting an empty packet for launch time,
1615 * otherwise try next time
1616 */
1617 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1618 count += TXD_USE_COUNT(skb_frag_size(
1619 &skb_shinfo(skb)->frags[f]));
1620
1621 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1622 /* this is a hard error */
1623 return NETDEV_TX_BUSY;
1624 }
1625
1626 if (!tx_ring->launchtime_enable)
1627 goto done;
1628
1629 txtime = skb->tstamp;
1630 skb->tstamp = ktime_set(0, 0);
1631 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1632
1633 if (insert_empty) {
1634 /* Reset the launch time if the required empty frame fails to
1635 * be inserted. However, this packet is not dropped, so it
1636 * "dirties" the current Qbv cycle. This ensures that the
1637 * upcoming packet, which is scheduled in the next Qbv cycle,
1638 * does not require an empty frame. This way, the launch time
1639 * continues to function correctly despite the current failure
1640 * to insert the empty frame.
1641 */
1642 if (igc_insert_empty_frame(tx_ring))
1643 launch_time = 0;
1644 }
1645
1646 done:
1647 /* record the location of the first descriptor for this packet */
1648 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1649 first->type = IGC_TX_BUFFER_TYPE_SKB;
1650 first->skb = skb;
1651 first->bytecount = skb->len;
1652 first->gso_segs = 1;
1653
1654 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1655 goto out_drop;
1656
1657 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1658 adapter->stats.txdrop++;
1659 goto out_drop;
1660 }
1661
1662 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1663 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1664 unsigned long flags;
1665 u32 tstamp_flags;
1666
1667 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1668 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1669 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1670 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1671 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1672 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1673 } else {
1674 adapter->tx_hwtstamp_skipped++;
1675 }
1676
1677 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1678 }
1679
1680 if (skb_vlan_tag_present(skb)) {
1681 tx_flags |= IGC_TX_FLAGS_VLAN;
1682 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1683 }
1684
1685 /* record initial flags and protocol */
1686 first->tx_flags = tx_flags;
1687 first->protocol = protocol;
1688
1689 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1690 if (tso < 0)
1691 goto out_drop;
1692 else if (!tso)
1693 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1694
1695 igc_tx_map(tx_ring, first, hdr_len);
1696
1697 return NETDEV_TX_OK;
1698
1699 out_drop:
1700 dev_kfree_skb_any(first->skb);
1701 first->skb = NULL;
1702
1703 return NETDEV_TX_OK;
1704 }
1705
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1706 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1707 struct sk_buff *skb)
1708 {
1709 unsigned int r_idx = skb->queue_mapping;
1710
1711 if (r_idx >= adapter->num_tx_queues)
1712 r_idx = r_idx % adapter->num_tx_queues;
1713
1714 return adapter->tx_ring[r_idx];
1715 }
1716
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1717 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1718 struct net_device *netdev)
1719 {
1720 struct igc_adapter *adapter = netdev_priv(netdev);
1721
1722 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1723 * in order to meet this minimum size requirement.
1724 */
1725 if (skb->len < 17) {
1726 if (skb_padto(skb, 17))
1727 return NETDEV_TX_OK;
1728 skb->len = 17;
1729 }
1730
1731 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1732 }
1733
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1734 static void igc_rx_checksum(struct igc_ring *ring,
1735 union igc_adv_rx_desc *rx_desc,
1736 struct sk_buff *skb)
1737 {
1738 skb_checksum_none_assert(skb);
1739
1740 /* Ignore Checksum bit is set */
1741 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1742 return;
1743
1744 /* Rx checksum disabled via ethtool */
1745 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1746 return;
1747
1748 /* TCP/UDP checksum error bit is set */
1749 if (igc_test_staterr(rx_desc,
1750 IGC_RXDEXT_STATERR_L4E |
1751 IGC_RXDEXT_STATERR_IPE)) {
1752 /* work around errata with sctp packets where the TCPE aka
1753 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1754 * packets (aka let the stack check the crc32c)
1755 */
1756 if (!(skb->len == 60 &&
1757 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1758 u64_stats_update_begin(&ring->rx_syncp);
1759 ring->rx_stats.csum_err++;
1760 u64_stats_update_end(&ring->rx_syncp);
1761 }
1762 /* let the stack verify checksum errors */
1763 return;
1764 }
1765 /* It must be a TCP or UDP packet with a valid checksum */
1766 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1767 IGC_RXD_STAT_UDPCS))
1768 skb->ip_summed = CHECKSUM_UNNECESSARY;
1769
1770 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1771 le32_to_cpu(rx_desc->wb.upper.status_error));
1772 }
1773
1774 /* Mapping HW RSS Type to enum pkt_hash_types */
1775 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1776 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1777 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1778 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1779 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1780 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1781 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1782 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1783 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1784 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1785 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1786 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1787 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1788 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1789 [13] = PKT_HASH_TYPE_NONE,
1790 [14] = PKT_HASH_TYPE_NONE,
1791 [15] = PKT_HASH_TYPE_NONE,
1792 };
1793
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1794 static inline void igc_rx_hash(struct igc_ring *ring,
1795 union igc_adv_rx_desc *rx_desc,
1796 struct sk_buff *skb)
1797 {
1798 if (ring->netdev->features & NETIF_F_RXHASH) {
1799 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1800 u32 rss_type = igc_rss_type(rx_desc);
1801
1802 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1803 }
1804 }
1805
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1806 static void igc_rx_vlan(struct igc_ring *rx_ring,
1807 union igc_adv_rx_desc *rx_desc,
1808 struct sk_buff *skb)
1809 {
1810 struct net_device *dev = rx_ring->netdev;
1811 u16 vid;
1812
1813 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1814 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1815 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1816 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1817 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1818 else
1819 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1820
1821 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1822 }
1823 }
1824
1825 /**
1826 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1827 * @rx_ring: rx descriptor ring packet is being transacted on
1828 * @rx_desc: pointer to the EOP Rx descriptor
1829 * @skb: pointer to current skb being populated
1830 *
1831 * This function checks the ring, descriptor, and packet information in order
1832 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1833 * skb.
1834 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1835 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1836 union igc_adv_rx_desc *rx_desc,
1837 struct sk_buff *skb)
1838 {
1839 igc_rx_hash(rx_ring, rx_desc, skb);
1840
1841 igc_rx_checksum(rx_ring, rx_desc, skb);
1842
1843 igc_rx_vlan(rx_ring, rx_desc, skb);
1844
1845 skb_record_rx_queue(skb, rx_ring->queue_index);
1846
1847 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1848 }
1849
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1850 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1851 {
1852 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1853 struct igc_adapter *adapter = netdev_priv(netdev);
1854 struct igc_hw *hw = &adapter->hw;
1855 u32 ctrl;
1856
1857 ctrl = rd32(IGC_CTRL);
1858
1859 if (enable) {
1860 /* enable VLAN tag insert/strip */
1861 ctrl |= IGC_CTRL_VME;
1862 } else {
1863 /* disable VLAN tag insert/strip */
1864 ctrl &= ~IGC_CTRL_VME;
1865 }
1866 wr32(IGC_CTRL, ctrl);
1867 }
1868
igc_restore_vlan(struct igc_adapter * adapter)1869 static void igc_restore_vlan(struct igc_adapter *adapter)
1870 {
1871 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1872 }
1873
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1874 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1875 const unsigned int size,
1876 int *rx_buffer_pgcnt)
1877 {
1878 struct igc_rx_buffer *rx_buffer;
1879
1880 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1881 *rx_buffer_pgcnt =
1882 #if (PAGE_SIZE < 8192)
1883 page_count(rx_buffer->page);
1884 #else
1885 0;
1886 #endif
1887 prefetchw(rx_buffer->page);
1888
1889 /* we are reusing so sync this buffer for CPU use */
1890 dma_sync_single_range_for_cpu(rx_ring->dev,
1891 rx_buffer->dma,
1892 rx_buffer->page_offset,
1893 size,
1894 DMA_FROM_DEVICE);
1895
1896 rx_buffer->pagecnt_bias--;
1897
1898 return rx_buffer;
1899 }
1900
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1901 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1902 unsigned int truesize)
1903 {
1904 #if (PAGE_SIZE < 8192)
1905 buffer->page_offset ^= truesize;
1906 #else
1907 buffer->page_offset += truesize;
1908 #endif
1909 }
1910
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1911 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1912 unsigned int size)
1913 {
1914 unsigned int truesize;
1915
1916 #if (PAGE_SIZE < 8192)
1917 truesize = igc_rx_pg_size(ring) / 2;
1918 #else
1919 truesize = ring_uses_build_skb(ring) ?
1920 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1921 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1922 SKB_DATA_ALIGN(size);
1923 #endif
1924 return truesize;
1925 }
1926
1927 /**
1928 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1929 * @rx_ring: rx descriptor ring to transact packets on
1930 * @rx_buffer: buffer containing page to add
1931 * @skb: sk_buff to place the data into
1932 * @size: size of buffer to be added
1933 *
1934 * This function will add the data contained in rx_buffer->page to the skb.
1935 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1936 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1937 struct igc_rx_buffer *rx_buffer,
1938 struct sk_buff *skb,
1939 unsigned int size)
1940 {
1941 unsigned int truesize;
1942
1943 #if (PAGE_SIZE < 8192)
1944 truesize = igc_rx_pg_size(rx_ring) / 2;
1945 #else
1946 truesize = ring_uses_build_skb(rx_ring) ?
1947 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1948 SKB_DATA_ALIGN(size);
1949 #endif
1950 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1951 rx_buffer->page_offset, size, truesize);
1952
1953 igc_rx_buffer_flip(rx_buffer, truesize);
1954 }
1955
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1956 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1957 struct igc_rx_buffer *rx_buffer,
1958 struct xdp_buff *xdp)
1959 {
1960 unsigned int size = xdp->data_end - xdp->data;
1961 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1962 unsigned int metasize = xdp->data - xdp->data_meta;
1963 struct sk_buff *skb;
1964
1965 /* prefetch first cache line of first page */
1966 net_prefetch(xdp->data_meta);
1967
1968 /* build an skb around the page buffer */
1969 skb = napi_build_skb(xdp->data_hard_start, truesize);
1970 if (unlikely(!skb))
1971 return NULL;
1972
1973 /* update pointers within the skb to store the data */
1974 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1975 __skb_put(skb, size);
1976 if (metasize)
1977 skb_metadata_set(skb, metasize);
1978
1979 igc_rx_buffer_flip(rx_buffer, truesize);
1980 return skb;
1981 }
1982
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1983 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1984 struct igc_rx_buffer *rx_buffer,
1985 struct igc_xdp_buff *ctx)
1986 {
1987 struct xdp_buff *xdp = &ctx->xdp;
1988 unsigned int metasize = xdp->data - xdp->data_meta;
1989 unsigned int size = xdp->data_end - xdp->data;
1990 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1991 void *va = xdp->data;
1992 unsigned int headlen;
1993 struct sk_buff *skb;
1994
1995 /* prefetch first cache line of first page */
1996 net_prefetch(xdp->data_meta);
1997
1998 /* allocate a skb to store the frags */
1999 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
2000 IGC_RX_HDR_LEN + metasize);
2001 if (unlikely(!skb))
2002 return NULL;
2003
2004 if (ctx->rx_ts) {
2005 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2006 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2007 }
2008
2009 /* Determine available headroom for copy */
2010 headlen = size;
2011 if (headlen > IGC_RX_HDR_LEN)
2012 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
2013
2014 /* align pull length to size of long to optimize memcpy performance */
2015 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2016 ALIGN(headlen + metasize, sizeof(long)));
2017
2018 if (metasize) {
2019 skb_metadata_set(skb, metasize);
2020 __skb_pull(skb, metasize);
2021 }
2022
2023 /* update all of the pointers */
2024 size -= headlen;
2025 if (size) {
2026 skb_add_rx_frag(skb, 0, rx_buffer->page,
2027 (va + headlen) - page_address(rx_buffer->page),
2028 size, truesize);
2029 igc_rx_buffer_flip(rx_buffer, truesize);
2030 } else {
2031 rx_buffer->pagecnt_bias++;
2032 }
2033
2034 return skb;
2035 }
2036
2037 /**
2038 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2039 * @rx_ring: rx descriptor ring to store buffers on
2040 * @old_buff: donor buffer to have page reused
2041 *
2042 * Synchronizes page for reuse by the adapter
2043 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2044 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2045 struct igc_rx_buffer *old_buff)
2046 {
2047 u16 nta = rx_ring->next_to_alloc;
2048 struct igc_rx_buffer *new_buff;
2049
2050 new_buff = &rx_ring->rx_buffer_info[nta];
2051
2052 /* update, and store next to alloc */
2053 nta++;
2054 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2055
2056 /* Transfer page from old buffer to new buffer.
2057 * Move each member individually to avoid possible store
2058 * forwarding stalls.
2059 */
2060 new_buff->dma = old_buff->dma;
2061 new_buff->page = old_buff->page;
2062 new_buff->page_offset = old_buff->page_offset;
2063 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2064 }
2065
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2066 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2067 int rx_buffer_pgcnt)
2068 {
2069 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2070 struct page *page = rx_buffer->page;
2071
2072 /* avoid re-using remote and pfmemalloc pages */
2073 if (!dev_page_is_reusable(page))
2074 return false;
2075
2076 #if (PAGE_SIZE < 8192)
2077 /* if we are only owner of page we can reuse it */
2078 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2079 return false;
2080 #else
2081 #define IGC_LAST_OFFSET \
2082 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2083
2084 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2085 return false;
2086 #endif
2087
2088 /* If we have drained the page fragment pool we need to update
2089 * the pagecnt_bias and page count so that we fully restock the
2090 * number of references the driver holds.
2091 */
2092 if (unlikely(pagecnt_bias == 1)) {
2093 page_ref_add(page, USHRT_MAX - 1);
2094 rx_buffer->pagecnt_bias = USHRT_MAX;
2095 }
2096
2097 return true;
2098 }
2099
2100 /**
2101 * igc_is_non_eop - process handling of non-EOP buffers
2102 * @rx_ring: Rx ring being processed
2103 * @rx_desc: Rx descriptor for current buffer
2104 *
2105 * This function updates next to clean. If the buffer is an EOP buffer
2106 * this function exits returning false, otherwise it will place the
2107 * sk_buff in the next buffer to be chained and return true indicating
2108 * that this is in fact a non-EOP buffer.
2109 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2110 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2111 union igc_adv_rx_desc *rx_desc)
2112 {
2113 u32 ntc = rx_ring->next_to_clean + 1;
2114
2115 /* fetch, update, and store next to clean */
2116 ntc = (ntc < rx_ring->count) ? ntc : 0;
2117 rx_ring->next_to_clean = ntc;
2118
2119 prefetch(IGC_RX_DESC(rx_ring, ntc));
2120
2121 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2122 return false;
2123
2124 return true;
2125 }
2126
2127 /**
2128 * igc_cleanup_headers - Correct corrupted or empty headers
2129 * @rx_ring: rx descriptor ring packet is being transacted on
2130 * @rx_desc: pointer to the EOP Rx descriptor
2131 * @skb: pointer to current skb being fixed
2132 *
2133 * Address the case where we are pulling data in on pages only
2134 * and as such no data is present in the skb header.
2135 *
2136 * In addition if skb is not at least 60 bytes we need to pad it so that
2137 * it is large enough to qualify as a valid Ethernet frame.
2138 *
2139 * Returns true if an error was encountered and skb was freed.
2140 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2141 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2142 union igc_adv_rx_desc *rx_desc,
2143 struct sk_buff *skb)
2144 {
2145 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2146 struct net_device *netdev = rx_ring->netdev;
2147
2148 if (!(netdev->features & NETIF_F_RXALL)) {
2149 dev_kfree_skb_any(skb);
2150 return true;
2151 }
2152 }
2153
2154 /* if eth_skb_pad returns an error the skb was freed */
2155 if (eth_skb_pad(skb))
2156 return true;
2157
2158 return false;
2159 }
2160
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2161 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2162 struct igc_rx_buffer *rx_buffer,
2163 int rx_buffer_pgcnt)
2164 {
2165 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2166 /* hand second half of page back to the ring */
2167 igc_reuse_rx_page(rx_ring, rx_buffer);
2168 } else {
2169 /* We are not reusing the buffer so unmap it and free
2170 * any references we are holding to it
2171 */
2172 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2173 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2174 IGC_RX_DMA_ATTR);
2175 __page_frag_cache_drain(rx_buffer->page,
2176 rx_buffer->pagecnt_bias);
2177 }
2178
2179 /* clear contents of rx_buffer */
2180 rx_buffer->page = NULL;
2181 }
2182
igc_rx_offset(struct igc_ring * rx_ring)2183 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2184 {
2185 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2186
2187 if (ring_uses_build_skb(rx_ring))
2188 return IGC_SKB_PAD;
2189 if (igc_xdp_is_enabled(adapter))
2190 return XDP_PACKET_HEADROOM;
2191
2192 return 0;
2193 }
2194
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2195 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2196 struct igc_rx_buffer *bi)
2197 {
2198 struct page *page = bi->page;
2199 dma_addr_t dma;
2200
2201 /* since we are recycling buffers we should seldom need to alloc */
2202 if (likely(page))
2203 return true;
2204
2205 /* alloc new page for storage */
2206 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2207 if (unlikely(!page)) {
2208 rx_ring->rx_stats.alloc_failed++;
2209 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2210 return false;
2211 }
2212
2213 /* map page for use */
2214 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2215 igc_rx_pg_size(rx_ring),
2216 DMA_FROM_DEVICE,
2217 IGC_RX_DMA_ATTR);
2218
2219 /* if mapping failed free memory back to system since
2220 * there isn't much point in holding memory we can't use
2221 */
2222 if (dma_mapping_error(rx_ring->dev, dma)) {
2223 __free_page(page);
2224
2225 rx_ring->rx_stats.alloc_failed++;
2226 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2227 return false;
2228 }
2229
2230 bi->dma = dma;
2231 bi->page = page;
2232 bi->page_offset = igc_rx_offset(rx_ring);
2233 page_ref_add(page, USHRT_MAX - 1);
2234 bi->pagecnt_bias = USHRT_MAX;
2235
2236 return true;
2237 }
2238
2239 /**
2240 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2241 * @rx_ring: rx descriptor ring
2242 * @cleaned_count: number of buffers to clean
2243 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2244 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2245 {
2246 union igc_adv_rx_desc *rx_desc;
2247 u16 i = rx_ring->next_to_use;
2248 struct igc_rx_buffer *bi;
2249 u16 bufsz;
2250
2251 /* nothing to do */
2252 if (!cleaned_count)
2253 return;
2254
2255 rx_desc = IGC_RX_DESC(rx_ring, i);
2256 bi = &rx_ring->rx_buffer_info[i];
2257 i -= rx_ring->count;
2258
2259 bufsz = igc_rx_bufsz(rx_ring);
2260
2261 do {
2262 if (!igc_alloc_mapped_page(rx_ring, bi))
2263 break;
2264
2265 /* sync the buffer for use by the device */
2266 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2267 bi->page_offset, bufsz,
2268 DMA_FROM_DEVICE);
2269
2270 /* Refresh the desc even if buffer_addrs didn't change
2271 * because each write-back erases this info.
2272 */
2273 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2274
2275 rx_desc++;
2276 bi++;
2277 i++;
2278 if (unlikely(!i)) {
2279 rx_desc = IGC_RX_DESC(rx_ring, 0);
2280 bi = rx_ring->rx_buffer_info;
2281 i -= rx_ring->count;
2282 }
2283
2284 /* clear the length for the next_to_use descriptor */
2285 rx_desc->wb.upper.length = 0;
2286
2287 cleaned_count--;
2288 } while (cleaned_count);
2289
2290 i += rx_ring->count;
2291
2292 if (rx_ring->next_to_use != i) {
2293 /* record the next descriptor to use */
2294 rx_ring->next_to_use = i;
2295
2296 /* update next to alloc since we have filled the ring */
2297 rx_ring->next_to_alloc = i;
2298
2299 /* Force memory writes to complete before letting h/w
2300 * know there are new descriptors to fetch. (Only
2301 * applicable for weak-ordered memory model archs,
2302 * such as IA-64).
2303 */
2304 wmb();
2305 writel(i, rx_ring->tail);
2306 }
2307 }
2308
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2309 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2310 {
2311 union igc_adv_rx_desc *desc;
2312 u16 i = ring->next_to_use;
2313 struct igc_rx_buffer *bi;
2314 dma_addr_t dma;
2315 bool ok = true;
2316
2317 if (!count)
2318 return ok;
2319
2320 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2321
2322 desc = IGC_RX_DESC(ring, i);
2323 bi = &ring->rx_buffer_info[i];
2324 i -= ring->count;
2325
2326 do {
2327 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2328 if (!bi->xdp) {
2329 ok = false;
2330 break;
2331 }
2332
2333 dma = xsk_buff_xdp_get_dma(bi->xdp);
2334 desc->read.pkt_addr = cpu_to_le64(dma);
2335
2336 desc++;
2337 bi++;
2338 i++;
2339 if (unlikely(!i)) {
2340 desc = IGC_RX_DESC(ring, 0);
2341 bi = ring->rx_buffer_info;
2342 i -= ring->count;
2343 }
2344
2345 /* Clear the length for the next_to_use descriptor. */
2346 desc->wb.upper.length = 0;
2347
2348 count--;
2349 } while (count);
2350
2351 i += ring->count;
2352
2353 if (ring->next_to_use != i) {
2354 ring->next_to_use = i;
2355
2356 /* Force memory writes to complete before letting h/w
2357 * know there are new descriptors to fetch. (Only
2358 * applicable for weak-ordered memory model archs,
2359 * such as IA-64).
2360 */
2361 wmb();
2362 writel(i, ring->tail);
2363 }
2364
2365 return ok;
2366 }
2367
2368 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2369 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2370 struct xdp_frame *xdpf)
2371 {
2372 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2373 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2374 u16 count, index = ring->next_to_use;
2375 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2376 struct igc_tx_buffer *buffer = head;
2377 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2378 u32 olinfo_status, len = xdpf->len, cmd_type;
2379 void *data = xdpf->data;
2380 u16 i;
2381
2382 count = TXD_USE_COUNT(len);
2383 for (i = 0; i < nr_frags; i++)
2384 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2385
2386 if (igc_maybe_stop_tx(ring, count + 3)) {
2387 /* this is a hard error */
2388 return -EBUSY;
2389 }
2390
2391 i = 0;
2392 head->bytecount = xdp_get_frame_len(xdpf);
2393 head->type = IGC_TX_BUFFER_TYPE_XDP;
2394 head->gso_segs = 1;
2395 head->xdpf = xdpf;
2396
2397 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2398 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2399
2400 for (;;) {
2401 dma_addr_t dma;
2402
2403 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2404 if (dma_mapping_error(ring->dev, dma)) {
2405 netdev_err_once(ring->netdev,
2406 "Failed to map DMA for TX\n");
2407 goto unmap;
2408 }
2409
2410 dma_unmap_len_set(buffer, len, len);
2411 dma_unmap_addr_set(buffer, dma, dma);
2412
2413 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2414 IGC_ADVTXD_DCMD_IFCS | len;
2415
2416 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2417 desc->read.buffer_addr = cpu_to_le64(dma);
2418
2419 buffer->protocol = 0;
2420
2421 if (++index == ring->count)
2422 index = 0;
2423
2424 if (i == nr_frags)
2425 break;
2426
2427 buffer = &ring->tx_buffer_info[index];
2428 desc = IGC_TX_DESC(ring, index);
2429 desc->read.olinfo_status = 0;
2430
2431 data = skb_frag_address(&sinfo->frags[i]);
2432 len = skb_frag_size(&sinfo->frags[i]);
2433 i++;
2434 }
2435 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2436
2437 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2438 /* set the timestamp */
2439 head->time_stamp = jiffies;
2440 /* set next_to_watch value indicating a packet is present */
2441 head->next_to_watch = desc;
2442 ring->next_to_use = index;
2443
2444 return 0;
2445
2446 unmap:
2447 for (;;) {
2448 buffer = &ring->tx_buffer_info[index];
2449 if (dma_unmap_len(buffer, len))
2450 dma_unmap_page(ring->dev,
2451 dma_unmap_addr(buffer, dma),
2452 dma_unmap_len(buffer, len),
2453 DMA_TO_DEVICE);
2454 dma_unmap_len_set(buffer, len, 0);
2455 if (buffer == head)
2456 break;
2457
2458 if (!index)
2459 index += ring->count;
2460 index--;
2461 }
2462
2463 return -ENOMEM;
2464 }
2465
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2466 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2467 int cpu)
2468 {
2469 int index = cpu;
2470
2471 if (unlikely(index < 0))
2472 index = 0;
2473
2474 while (index >= adapter->num_tx_queues)
2475 index -= adapter->num_tx_queues;
2476
2477 return adapter->tx_ring[index];
2478 }
2479
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2480 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2481 {
2482 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2483 int cpu = smp_processor_id();
2484 struct netdev_queue *nq;
2485 struct igc_ring *ring;
2486 int res;
2487
2488 if (unlikely(!xdpf))
2489 return -EFAULT;
2490
2491 ring = igc_xdp_get_tx_ring(adapter, cpu);
2492 nq = txring_txq(ring);
2493
2494 __netif_tx_lock(nq, cpu);
2495 /* Avoid transmit queue timeout since we share it with the slow path */
2496 txq_trans_cond_update(nq);
2497 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2498 __netif_tx_unlock(nq);
2499 return res;
2500 }
2501
2502 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2503 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2504 struct bpf_prog *prog,
2505 struct xdp_buff *xdp)
2506 {
2507 u32 act = bpf_prog_run_xdp(prog, xdp);
2508
2509 switch (act) {
2510 case XDP_PASS:
2511 return IGC_XDP_PASS;
2512 case XDP_TX:
2513 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2514 goto out_failure;
2515 return IGC_XDP_TX;
2516 case XDP_REDIRECT:
2517 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2518 goto out_failure;
2519 return IGC_XDP_REDIRECT;
2520 break;
2521 default:
2522 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2523 fallthrough;
2524 case XDP_ABORTED:
2525 out_failure:
2526 trace_xdp_exception(adapter->netdev, prog, act);
2527 fallthrough;
2528 case XDP_DROP:
2529 return IGC_XDP_CONSUMED;
2530 }
2531 }
2532
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2533 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2534 {
2535 struct bpf_prog *prog;
2536 int res;
2537
2538 prog = READ_ONCE(adapter->xdp_prog);
2539 if (!prog) {
2540 res = IGC_XDP_PASS;
2541 goto out;
2542 }
2543
2544 res = __igc_xdp_run_prog(adapter, prog, xdp);
2545
2546 out:
2547 return res;
2548 }
2549
2550 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2551 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2552 {
2553 /* Once tail pointer is updated, hardware can fetch the descriptors
2554 * any time so we issue a write membar here to ensure all memory
2555 * writes are complete before the tail pointer is updated.
2556 */
2557 wmb();
2558 writel(ring->next_to_use, ring->tail);
2559 }
2560
igc_finalize_xdp(struct igc_adapter * adapter,int status)2561 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2562 {
2563 int cpu = smp_processor_id();
2564 struct netdev_queue *nq;
2565 struct igc_ring *ring;
2566
2567 if (status & IGC_XDP_TX) {
2568 ring = igc_xdp_get_tx_ring(adapter, cpu);
2569 nq = txring_txq(ring);
2570
2571 __netif_tx_lock(nq, cpu);
2572 igc_flush_tx_descriptors(ring);
2573 __netif_tx_unlock(nq);
2574 }
2575
2576 if (status & IGC_XDP_REDIRECT)
2577 xdp_do_flush();
2578 }
2579
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2580 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2581 unsigned int packets, unsigned int bytes)
2582 {
2583 struct igc_ring *ring = q_vector->rx.ring;
2584
2585 u64_stats_update_begin(&ring->rx_syncp);
2586 ring->rx_stats.packets += packets;
2587 ring->rx_stats.bytes += bytes;
2588 u64_stats_update_end(&ring->rx_syncp);
2589
2590 q_vector->rx.total_packets += packets;
2591 q_vector->rx.total_bytes += bytes;
2592 }
2593
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2594 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2595 {
2596 unsigned int total_bytes = 0, total_packets = 0;
2597 struct igc_adapter *adapter = q_vector->adapter;
2598 struct igc_ring *rx_ring = q_vector->rx.ring;
2599 struct sk_buff *skb = rx_ring->skb;
2600 u16 cleaned_count = igc_desc_unused(rx_ring);
2601 int xdp_status = 0, rx_buffer_pgcnt;
2602 int xdp_res = 0;
2603
2604 while (likely(total_packets < budget)) {
2605 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2606 struct igc_rx_buffer *rx_buffer;
2607 union igc_adv_rx_desc *rx_desc;
2608 unsigned int size, truesize;
2609 int pkt_offset = 0;
2610 void *pktbuf;
2611
2612 /* return some buffers to hardware, one at a time is too slow */
2613 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2614 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2615 cleaned_count = 0;
2616 }
2617
2618 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2619 size = le16_to_cpu(rx_desc->wb.upper.length);
2620 if (!size)
2621 break;
2622
2623 /* This memory barrier is needed to keep us from reading
2624 * any other fields out of the rx_desc until we know the
2625 * descriptor has been written back
2626 */
2627 dma_rmb();
2628
2629 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2630 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2631
2632 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2633
2634 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2635 ctx.rx_ts = pktbuf;
2636 pkt_offset = IGC_TS_HDR_LEN;
2637 size -= IGC_TS_HDR_LEN;
2638 }
2639
2640 if (!skb) {
2641 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2642 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2643 igc_rx_offset(rx_ring) + pkt_offset,
2644 size, true);
2645 xdp_buff_clear_frags_flag(&ctx.xdp);
2646 ctx.rx_desc = rx_desc;
2647
2648 xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2649 }
2650
2651 if (xdp_res) {
2652 switch (xdp_res) {
2653 case IGC_XDP_CONSUMED:
2654 rx_buffer->pagecnt_bias++;
2655 break;
2656 case IGC_XDP_TX:
2657 case IGC_XDP_REDIRECT:
2658 igc_rx_buffer_flip(rx_buffer, truesize);
2659 xdp_status |= xdp_res;
2660 break;
2661 }
2662
2663 total_packets++;
2664 total_bytes += size;
2665 } else if (skb)
2666 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2667 else if (ring_uses_build_skb(rx_ring))
2668 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2669 else
2670 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2671
2672 /* exit if we failed to retrieve a buffer */
2673 if (!xdp_res && !skb) {
2674 rx_ring->rx_stats.alloc_failed++;
2675 rx_buffer->pagecnt_bias++;
2676 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2677 break;
2678 }
2679
2680 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2681 cleaned_count++;
2682
2683 /* fetch next buffer in frame if non-eop */
2684 if (igc_is_non_eop(rx_ring, rx_desc))
2685 continue;
2686
2687 /* verify the packet layout is correct */
2688 if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2689 skb = NULL;
2690 continue;
2691 }
2692
2693 /* probably a little skewed due to removing CRC */
2694 total_bytes += skb->len;
2695
2696 /* populate checksum, VLAN, and protocol */
2697 igc_process_skb_fields(rx_ring, rx_desc, skb);
2698
2699 napi_gro_receive(&q_vector->napi, skb);
2700
2701 /* reset skb pointer */
2702 skb = NULL;
2703
2704 /* update budget accounting */
2705 total_packets++;
2706 }
2707
2708 if (xdp_status)
2709 igc_finalize_xdp(adapter, xdp_status);
2710
2711 /* place incomplete frames back on ring for completion */
2712 rx_ring->skb = skb;
2713
2714 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2715
2716 if (cleaned_count)
2717 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2718
2719 return total_packets;
2720 }
2721
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2722 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2723 struct igc_xdp_buff *ctx)
2724 {
2725 struct xdp_buff *xdp = &ctx->xdp;
2726 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2727 unsigned int metasize = xdp->data - xdp->data_meta;
2728 struct sk_buff *skb;
2729
2730 net_prefetch(xdp->data_meta);
2731
2732 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2733 if (unlikely(!skb))
2734 return NULL;
2735
2736 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2737 ALIGN(totalsize, sizeof(long)));
2738
2739 if (metasize) {
2740 skb_metadata_set(skb, metasize);
2741 __skb_pull(skb, metasize);
2742 }
2743
2744 if (ctx->rx_ts) {
2745 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2746 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2747 }
2748
2749 return skb;
2750 }
2751
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2752 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2753 union igc_adv_rx_desc *desc,
2754 struct igc_xdp_buff *ctx)
2755 {
2756 struct igc_ring *ring = q_vector->rx.ring;
2757 struct sk_buff *skb;
2758
2759 skb = igc_construct_skb_zc(ring, ctx);
2760 if (!skb) {
2761 ring->rx_stats.alloc_failed++;
2762 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2763 return;
2764 }
2765
2766 if (igc_cleanup_headers(ring, desc, skb))
2767 return;
2768
2769 igc_process_skb_fields(ring, desc, skb);
2770 napi_gro_receive(&q_vector->napi, skb);
2771 }
2772
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2773 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2774 {
2775 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2776 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2777 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2778 */
2779 return (struct igc_xdp_buff *)xdp;
2780 }
2781
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2782 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2783 {
2784 struct igc_adapter *adapter = q_vector->adapter;
2785 struct igc_ring *ring = q_vector->rx.ring;
2786 u16 cleaned_count = igc_desc_unused(ring);
2787 int total_bytes = 0, total_packets = 0;
2788 u16 ntc = ring->next_to_clean;
2789 struct bpf_prog *prog;
2790 bool failure = false;
2791 int xdp_status = 0;
2792
2793 rcu_read_lock();
2794
2795 prog = READ_ONCE(adapter->xdp_prog);
2796
2797 while (likely(total_packets < budget)) {
2798 union igc_adv_rx_desc *desc;
2799 struct igc_rx_buffer *bi;
2800 struct igc_xdp_buff *ctx;
2801 unsigned int size;
2802 int res;
2803
2804 desc = IGC_RX_DESC(ring, ntc);
2805 size = le16_to_cpu(desc->wb.upper.length);
2806 if (!size)
2807 break;
2808
2809 /* This memory barrier is needed to keep us from reading
2810 * any other fields out of the rx_desc until we know the
2811 * descriptor has been written back
2812 */
2813 dma_rmb();
2814
2815 bi = &ring->rx_buffer_info[ntc];
2816
2817 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2818 ctx->rx_desc = desc;
2819
2820 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2821 ctx->rx_ts = bi->xdp->data;
2822
2823 bi->xdp->data += IGC_TS_HDR_LEN;
2824
2825 /* HW timestamp has been copied into local variable. Metadata
2826 * length when XDP program is called should be 0.
2827 */
2828 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2829 size -= IGC_TS_HDR_LEN;
2830 } else {
2831 ctx->rx_ts = NULL;
2832 }
2833
2834 bi->xdp->data_end = bi->xdp->data + size;
2835 xsk_buff_dma_sync_for_cpu(bi->xdp);
2836
2837 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2838 switch (res) {
2839 case IGC_XDP_PASS:
2840 igc_dispatch_skb_zc(q_vector, desc, ctx);
2841 fallthrough;
2842 case IGC_XDP_CONSUMED:
2843 xsk_buff_free(bi->xdp);
2844 break;
2845 case IGC_XDP_TX:
2846 case IGC_XDP_REDIRECT:
2847 xdp_status |= res;
2848 break;
2849 }
2850
2851 bi->xdp = NULL;
2852 total_bytes += size;
2853 total_packets++;
2854 cleaned_count++;
2855 ntc++;
2856 if (ntc == ring->count)
2857 ntc = 0;
2858 }
2859
2860 ring->next_to_clean = ntc;
2861 rcu_read_unlock();
2862
2863 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2864 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2865
2866 if (xdp_status)
2867 igc_finalize_xdp(adapter, xdp_status);
2868
2869 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2870
2871 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2872 if (failure || ring->next_to_clean == ring->next_to_use)
2873 xsk_set_rx_need_wakeup(ring->xsk_pool);
2874 else
2875 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2876 return total_packets;
2877 }
2878
2879 return failure ? budget : total_packets;
2880 }
2881
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2882 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2883 unsigned int packets, unsigned int bytes)
2884 {
2885 struct igc_ring *ring = q_vector->tx.ring;
2886
2887 u64_stats_update_begin(&ring->tx_syncp);
2888 ring->tx_stats.bytes += bytes;
2889 ring->tx_stats.packets += packets;
2890 u64_stats_update_end(&ring->tx_syncp);
2891
2892 q_vector->tx.total_bytes += bytes;
2893 q_vector->tx.total_packets += packets;
2894 }
2895
igc_xsk_request_timestamp(void * _priv)2896 static void igc_xsk_request_timestamp(void *_priv)
2897 {
2898 struct igc_metadata_request *meta_req = _priv;
2899 struct igc_ring *tx_ring = meta_req->tx_ring;
2900 struct igc_tx_timestamp_request *tstamp;
2901 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2902 struct igc_adapter *adapter;
2903 unsigned long lock_flags;
2904 bool found = false;
2905 int i;
2906
2907 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2908 adapter = netdev_priv(tx_ring->netdev);
2909
2910 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2911
2912 /* Search for available tstamp regs */
2913 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2914 tstamp = &adapter->tx_tstamp[i];
2915
2916 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2917 * When tstamp->skb is equal to NULL,
2918 * tstamp->xsk_tx_buffer is equal to NULL as well.
2919 * This condition means that the particular tstamp reg
2920 * is not occupied by other packet.
2921 */
2922 if (!tstamp->skb) {
2923 found = true;
2924 break;
2925 }
2926 }
2927
2928 /* Return if no available tstamp regs */
2929 if (!found) {
2930 adapter->tx_hwtstamp_skipped++;
2931 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2932 lock_flags);
2933 return;
2934 }
2935
2936 tstamp->start = jiffies;
2937 tstamp->xsk_queue_index = tx_ring->queue_index;
2938 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2939 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2940
2941 /* Hold the transmit completion until timestamp is ready */
2942 meta_req->tx_buffer->xsk_pending_ts = true;
2943
2944 /* Keep the pointer to tx_timestamp, which is located in XDP
2945 * metadata area. It is the location to store the value of
2946 * tx hardware timestamp.
2947 */
2948 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2949
2950 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2951 tx_flags |= tstamp->flags;
2952 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2953 IGC_TX_FLAGS_TSTAMP,
2954 (IGC_ADVTXD_MAC_TSTAMP));
2955 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2956 IGC_TX_FLAGS_TSTAMP_1,
2957 (IGC_ADVTXD_TSTAMP_REG_1));
2958 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2959 IGC_TX_FLAGS_TSTAMP_2,
2960 (IGC_ADVTXD_TSTAMP_REG_2));
2961 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2962 IGC_TX_FLAGS_TSTAMP_3,
2963 (IGC_ADVTXD_TSTAMP_REG_3));
2964
2965 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2966 }
2967 }
2968
igc_xsk_fill_timestamp(void * _priv)2969 static u64 igc_xsk_fill_timestamp(void *_priv)
2970 {
2971 return *(u64 *)_priv;
2972 }
2973
igc_xsk_request_launch_time(u64 launch_time,void * _priv)2974 static void igc_xsk_request_launch_time(u64 launch_time, void *_priv)
2975 {
2976 struct igc_metadata_request *meta_req = _priv;
2977 struct igc_ring *tx_ring = meta_req->tx_ring;
2978 __le32 launch_time_offset;
2979 bool insert_empty = false;
2980 bool first_flag = false;
2981 u16 used_desc = 0;
2982
2983 if (!tx_ring->launchtime_enable)
2984 return;
2985
2986 launch_time_offset = igc_tx_launchtime(tx_ring,
2987 ns_to_ktime(launch_time),
2988 &first_flag, &insert_empty);
2989 if (insert_empty) {
2990 /* Disregard the launch time request if the required empty frame
2991 * fails to be inserted.
2992 */
2993 if (igc_insert_empty_frame(tx_ring))
2994 return;
2995
2996 meta_req->tx_buffer =
2997 &tx_ring->tx_buffer_info[tx_ring->next_to_use];
2998 /* Inserting an empty packet requires two descriptors:
2999 * one data descriptor and one context descriptor.
3000 */
3001 used_desc += 2;
3002 }
3003
3004 /* Use one context descriptor to specify launch time and first flag. */
3005 igc_tx_ctxtdesc(tx_ring, launch_time_offset, first_flag, 0, 0, 0);
3006 used_desc += 1;
3007
3008 /* Update the number of used descriptors in this request */
3009 meta_req->used_desc += used_desc;
3010 }
3011
3012 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
3013 .tmo_request_timestamp = igc_xsk_request_timestamp,
3014 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
3015 .tmo_request_launch_time = igc_xsk_request_launch_time,
3016 };
3017
igc_xdp_xmit_zc(struct igc_ring * ring)3018 static void igc_xdp_xmit_zc(struct igc_ring *ring)
3019 {
3020 struct xsk_buff_pool *pool = ring->xsk_pool;
3021 struct netdev_queue *nq = txring_txq(ring);
3022 union igc_adv_tx_desc *tx_desc = NULL;
3023 int cpu = smp_processor_id();
3024 struct xdp_desc xdp_desc;
3025 u16 budget, ntu;
3026
3027 if (!netif_carrier_ok(ring->netdev))
3028 return;
3029
3030 __netif_tx_lock(nq, cpu);
3031
3032 /* Avoid transmit queue timeout since we share it with the slow path */
3033 txq_trans_cond_update(nq);
3034
3035 ntu = ring->next_to_use;
3036 budget = igc_desc_unused(ring);
3037
3038 /* Packets with launch time require one data descriptor and one context
3039 * descriptor. When the launch time falls into the next Qbv cycle, we
3040 * may need to insert an empty packet, which requires two more
3041 * descriptors. Therefore, to be safe, we always ensure we have at least
3042 * 4 descriptors available.
3043 */
3044 while (budget >= 4 && xsk_tx_peek_desc(pool, &xdp_desc)) {
3045 struct igc_metadata_request meta_req;
3046 struct xsk_tx_metadata *meta = NULL;
3047 struct igc_tx_buffer *bi;
3048 u32 olinfo_status;
3049 dma_addr_t dma;
3050
3051 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
3052 IGC_ADVTXD_DCMD_DEXT |
3053 IGC_ADVTXD_DCMD_IFCS |
3054 IGC_TXD_DCMD | xdp_desc.len;
3055 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
3056
3057 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3058 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3059 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3060 bi = &ring->tx_buffer_info[ntu];
3061
3062 meta_req.tx_ring = ring;
3063 meta_req.tx_buffer = bi;
3064 meta_req.meta = meta;
3065 meta_req.used_desc = 0;
3066 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3067 &meta_req);
3068
3069 /* xsk_tx_metadata_request() may have updated next_to_use */
3070 ntu = ring->next_to_use;
3071
3072 /* xsk_tx_metadata_request() may have updated Tx buffer info */
3073 bi = meta_req.tx_buffer;
3074
3075 /* xsk_tx_metadata_request() may use a few descriptors */
3076 budget -= meta_req.used_desc;
3077
3078 tx_desc = IGC_TX_DESC(ring, ntu);
3079 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3080 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3081 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3082
3083 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3084 bi->protocol = 0;
3085 bi->bytecount = xdp_desc.len;
3086 bi->gso_segs = 1;
3087 bi->time_stamp = jiffies;
3088 bi->next_to_watch = tx_desc;
3089
3090 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3091
3092 ntu++;
3093 if (ntu == ring->count)
3094 ntu = 0;
3095
3096 ring->next_to_use = ntu;
3097 budget--;
3098 }
3099
3100 if (tx_desc) {
3101 igc_flush_tx_descriptors(ring);
3102 xsk_tx_release(pool);
3103 }
3104
3105 __netif_tx_unlock(nq);
3106 }
3107
3108 /**
3109 * igc_clean_tx_irq - Reclaim resources after transmit completes
3110 * @q_vector: pointer to q_vector containing needed info
3111 * @napi_budget: Used to determine if we are in netpoll
3112 *
3113 * returns true if ring is completely cleaned
3114 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3115 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3116 {
3117 struct igc_adapter *adapter = q_vector->adapter;
3118 unsigned int total_bytes = 0, total_packets = 0;
3119 unsigned int budget = q_vector->tx.work_limit;
3120 struct igc_ring *tx_ring = q_vector->tx.ring;
3121 unsigned int i = tx_ring->next_to_clean;
3122 struct igc_tx_buffer *tx_buffer;
3123 union igc_adv_tx_desc *tx_desc;
3124 u32 xsk_frames = 0;
3125
3126 if (test_bit(__IGC_DOWN, &adapter->state))
3127 return true;
3128
3129 tx_buffer = &tx_ring->tx_buffer_info[i];
3130 tx_desc = IGC_TX_DESC(tx_ring, i);
3131 i -= tx_ring->count;
3132
3133 do {
3134 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3135
3136 /* if next_to_watch is not set then there is no work pending */
3137 if (!eop_desc)
3138 break;
3139
3140 /* prevent any other reads prior to eop_desc */
3141 smp_rmb();
3142
3143 /* if DD is not set pending work has not been completed */
3144 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3145 break;
3146
3147 /* Hold the completions while there's a pending tx hardware
3148 * timestamp request from XDP Tx metadata.
3149 */
3150 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3151 tx_buffer->xsk_pending_ts)
3152 break;
3153
3154 /* clear next_to_watch to prevent false hangs */
3155 tx_buffer->next_to_watch = NULL;
3156
3157 /* update the statistics for this packet */
3158 total_bytes += tx_buffer->bytecount;
3159 total_packets += tx_buffer->gso_segs;
3160
3161 switch (tx_buffer->type) {
3162 case IGC_TX_BUFFER_TYPE_XSK:
3163 xsk_frames++;
3164 break;
3165 case IGC_TX_BUFFER_TYPE_XDP:
3166 xdp_return_frame(tx_buffer->xdpf);
3167 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3168 break;
3169 case IGC_TX_BUFFER_TYPE_SKB:
3170 napi_consume_skb(tx_buffer->skb, napi_budget);
3171 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3172 break;
3173 default:
3174 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3175 break;
3176 }
3177
3178 /* clear last DMA location and unmap remaining buffers */
3179 while (tx_desc != eop_desc) {
3180 tx_buffer++;
3181 tx_desc++;
3182 i++;
3183 if (unlikely(!i)) {
3184 i -= tx_ring->count;
3185 tx_buffer = tx_ring->tx_buffer_info;
3186 tx_desc = IGC_TX_DESC(tx_ring, 0);
3187 }
3188
3189 /* unmap any remaining paged data */
3190 if (dma_unmap_len(tx_buffer, len))
3191 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3192 }
3193
3194 /* move us one more past the eop_desc for start of next pkt */
3195 tx_buffer++;
3196 tx_desc++;
3197 i++;
3198 if (unlikely(!i)) {
3199 i -= tx_ring->count;
3200 tx_buffer = tx_ring->tx_buffer_info;
3201 tx_desc = IGC_TX_DESC(tx_ring, 0);
3202 }
3203
3204 /* issue prefetch for next Tx descriptor */
3205 prefetch(tx_desc);
3206
3207 /* update budget accounting */
3208 budget--;
3209 } while (likely(budget));
3210
3211 netdev_tx_completed_queue(txring_txq(tx_ring),
3212 total_packets, total_bytes);
3213
3214 i += tx_ring->count;
3215 tx_ring->next_to_clean = i;
3216
3217 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3218
3219 if (tx_ring->xsk_pool) {
3220 if (xsk_frames)
3221 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3222 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3223 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3224 igc_xdp_xmit_zc(tx_ring);
3225 }
3226
3227 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3228 struct igc_hw *hw = &adapter->hw;
3229
3230 /* Detect a transmit hang in hardware, this serializes the
3231 * check with the clearing of time_stamp and movement of i
3232 */
3233 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3234 if (tx_buffer->next_to_watch &&
3235 time_after(jiffies, tx_buffer->time_stamp +
3236 (adapter->tx_timeout_factor * HZ)) &&
3237 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3238 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3239 !tx_ring->oper_gate_closed) {
3240 /* detected Tx unit hang */
3241 netdev_err(tx_ring->netdev,
3242 "Detected Tx Unit Hang\n"
3243 " Tx Queue <%d>\n"
3244 " TDH <%x>\n"
3245 " TDT <%x>\n"
3246 " next_to_use <%x>\n"
3247 " next_to_clean <%x>\n"
3248 "buffer_info[next_to_clean]\n"
3249 " time_stamp <%lx>\n"
3250 " next_to_watch <%p>\n"
3251 " jiffies <%lx>\n"
3252 " desc.status <%x>\n",
3253 tx_ring->queue_index,
3254 rd32(IGC_TDH(tx_ring->reg_idx)),
3255 readl(tx_ring->tail),
3256 tx_ring->next_to_use,
3257 tx_ring->next_to_clean,
3258 tx_buffer->time_stamp,
3259 tx_buffer->next_to_watch,
3260 jiffies,
3261 tx_buffer->next_to_watch->wb.status);
3262 netif_stop_subqueue(tx_ring->netdev,
3263 tx_ring->queue_index);
3264
3265 /* we are about to reset, no point in enabling stuff */
3266 return true;
3267 }
3268 }
3269
3270 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3271 if (unlikely(total_packets &&
3272 netif_carrier_ok(tx_ring->netdev) &&
3273 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3274 /* Make sure that anybody stopping the queue after this
3275 * sees the new next_to_clean.
3276 */
3277 smp_mb();
3278 if (__netif_subqueue_stopped(tx_ring->netdev,
3279 tx_ring->queue_index) &&
3280 !(test_bit(__IGC_DOWN, &adapter->state))) {
3281 netif_wake_subqueue(tx_ring->netdev,
3282 tx_ring->queue_index);
3283
3284 u64_stats_update_begin(&tx_ring->tx_syncp);
3285 tx_ring->tx_stats.restart_queue++;
3286 u64_stats_update_end(&tx_ring->tx_syncp);
3287 }
3288 }
3289
3290 return !!budget;
3291 }
3292
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3293 static int igc_find_mac_filter(struct igc_adapter *adapter,
3294 enum igc_mac_filter_type type, const u8 *addr)
3295 {
3296 struct igc_hw *hw = &adapter->hw;
3297 int max_entries = hw->mac.rar_entry_count;
3298 u32 ral, rah;
3299 int i;
3300
3301 for (i = 0; i < max_entries; i++) {
3302 ral = rd32(IGC_RAL(i));
3303 rah = rd32(IGC_RAH(i));
3304
3305 if (!(rah & IGC_RAH_AV))
3306 continue;
3307 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3308 continue;
3309 if ((rah & IGC_RAH_RAH_MASK) !=
3310 le16_to_cpup((__le16 *)(addr + 4)))
3311 continue;
3312 if (ral != le32_to_cpup((__le32 *)(addr)))
3313 continue;
3314
3315 return i;
3316 }
3317
3318 return -1;
3319 }
3320
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3321 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3322 {
3323 struct igc_hw *hw = &adapter->hw;
3324 int max_entries = hw->mac.rar_entry_count;
3325 u32 rah;
3326 int i;
3327
3328 for (i = 0; i < max_entries; i++) {
3329 rah = rd32(IGC_RAH(i));
3330
3331 if (!(rah & IGC_RAH_AV))
3332 return i;
3333 }
3334
3335 return -1;
3336 }
3337
3338 /**
3339 * igc_add_mac_filter() - Add MAC address filter
3340 * @adapter: Pointer to adapter where the filter should be added
3341 * @type: MAC address filter type (source or destination)
3342 * @addr: MAC address
3343 * @queue: If non-negative, queue assignment feature is enabled and frames
3344 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3345 * assignment is disabled.
3346 *
3347 * Return: 0 in case of success, negative errno code otherwise.
3348 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3349 static int igc_add_mac_filter(struct igc_adapter *adapter,
3350 enum igc_mac_filter_type type, const u8 *addr,
3351 int queue)
3352 {
3353 struct net_device *dev = adapter->netdev;
3354 int index;
3355
3356 index = igc_find_mac_filter(adapter, type, addr);
3357 if (index >= 0)
3358 goto update_filter;
3359
3360 index = igc_get_avail_mac_filter_slot(adapter);
3361 if (index < 0)
3362 return -ENOSPC;
3363
3364 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3365 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3366 addr, queue);
3367
3368 update_filter:
3369 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3370 return 0;
3371 }
3372
3373 /**
3374 * igc_del_mac_filter() - Delete MAC address filter
3375 * @adapter: Pointer to adapter where the filter should be deleted from
3376 * @type: MAC address filter type (source or destination)
3377 * @addr: MAC address
3378 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3379 static void igc_del_mac_filter(struct igc_adapter *adapter,
3380 enum igc_mac_filter_type type, const u8 *addr)
3381 {
3382 struct net_device *dev = adapter->netdev;
3383 int index;
3384
3385 index = igc_find_mac_filter(adapter, type, addr);
3386 if (index < 0)
3387 return;
3388
3389 if (index == 0) {
3390 /* If this is the default filter, we don't actually delete it.
3391 * We just reset to its default value i.e. disable queue
3392 * assignment.
3393 */
3394 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3395
3396 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3397 } else {
3398 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3399 index,
3400 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3401 addr);
3402
3403 igc_clear_mac_filter_hw(adapter, index);
3404 }
3405 }
3406
3407 /**
3408 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3409 * @adapter: Pointer to adapter where the filter should be added
3410 * @prio: VLAN priority value
3411 * @queue: Queue number which matching frames are assigned to
3412 *
3413 * Return: 0 in case of success, negative errno code otherwise.
3414 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3415 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3416 int queue)
3417 {
3418 struct net_device *dev = adapter->netdev;
3419 struct igc_hw *hw = &adapter->hw;
3420 u32 vlanpqf;
3421
3422 vlanpqf = rd32(IGC_VLANPQF);
3423
3424 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3425 netdev_dbg(dev, "VLAN priority filter already in use\n");
3426 return -EEXIST;
3427 }
3428
3429 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3430 vlanpqf |= IGC_VLANPQF_VALID(prio);
3431
3432 wr32(IGC_VLANPQF, vlanpqf);
3433
3434 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3435 prio, queue);
3436 return 0;
3437 }
3438
3439 /**
3440 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3441 * @adapter: Pointer to adapter where the filter should be deleted from
3442 * @prio: VLAN priority value
3443 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3444 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3445 {
3446 struct igc_hw *hw = &adapter->hw;
3447 u32 vlanpqf;
3448
3449 vlanpqf = rd32(IGC_VLANPQF);
3450
3451 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3452 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3453
3454 wr32(IGC_VLANPQF, vlanpqf);
3455
3456 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3457 prio);
3458 }
3459
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3460 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3461 {
3462 struct igc_hw *hw = &adapter->hw;
3463 int i;
3464
3465 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3466 u32 etqf = rd32(IGC_ETQF(i));
3467
3468 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3469 return i;
3470 }
3471
3472 return -1;
3473 }
3474
3475 /**
3476 * igc_add_etype_filter() - Add ethertype filter
3477 * @adapter: Pointer to adapter where the filter should be added
3478 * @etype: Ethertype value
3479 * @queue: If non-negative, queue assignment feature is enabled and frames
3480 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3481 * assignment is disabled.
3482 *
3483 * Return: 0 in case of success, negative errno code otherwise.
3484 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3485 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3486 int queue)
3487 {
3488 struct igc_hw *hw = &adapter->hw;
3489 int index;
3490 u32 etqf;
3491
3492 index = igc_get_avail_etype_filter_slot(adapter);
3493 if (index < 0)
3494 return -ENOSPC;
3495
3496 etqf = rd32(IGC_ETQF(index));
3497
3498 etqf &= ~IGC_ETQF_ETYPE_MASK;
3499 etqf |= etype;
3500
3501 if (queue >= 0) {
3502 etqf &= ~IGC_ETQF_QUEUE_MASK;
3503 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3504 etqf |= IGC_ETQF_QUEUE_ENABLE;
3505 }
3506
3507 etqf |= IGC_ETQF_FILTER_ENABLE;
3508
3509 wr32(IGC_ETQF(index), etqf);
3510
3511 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3512 etype, queue);
3513 return 0;
3514 }
3515
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3516 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3517 {
3518 struct igc_hw *hw = &adapter->hw;
3519 int i;
3520
3521 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3522 u32 etqf = rd32(IGC_ETQF(i));
3523
3524 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3525 return i;
3526 }
3527
3528 return -1;
3529 }
3530
3531 /**
3532 * igc_del_etype_filter() - Delete ethertype filter
3533 * @adapter: Pointer to adapter where the filter should be deleted from
3534 * @etype: Ethertype value
3535 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3536 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3537 {
3538 struct igc_hw *hw = &adapter->hw;
3539 int index;
3540
3541 index = igc_find_etype_filter(adapter, etype);
3542 if (index < 0)
3543 return;
3544
3545 wr32(IGC_ETQF(index), 0);
3546
3547 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3548 etype);
3549 }
3550
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3551 static int igc_flex_filter_select(struct igc_adapter *adapter,
3552 struct igc_flex_filter *input,
3553 u32 *fhft)
3554 {
3555 struct igc_hw *hw = &adapter->hw;
3556 u8 fhft_index;
3557 u32 fhftsl;
3558
3559 if (input->index >= MAX_FLEX_FILTER) {
3560 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3561 return -EINVAL;
3562 }
3563
3564 /* Indirect table select register */
3565 fhftsl = rd32(IGC_FHFTSL);
3566 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3567 switch (input->index) {
3568 case 0 ... 7:
3569 fhftsl |= 0x00;
3570 break;
3571 case 8 ... 15:
3572 fhftsl |= 0x01;
3573 break;
3574 case 16 ... 23:
3575 fhftsl |= 0x02;
3576 break;
3577 case 24 ... 31:
3578 fhftsl |= 0x03;
3579 break;
3580 }
3581 wr32(IGC_FHFTSL, fhftsl);
3582
3583 /* Normalize index down to host table register */
3584 fhft_index = input->index % 8;
3585
3586 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3587 IGC_FHFT_EXT(fhft_index - 4);
3588
3589 return 0;
3590 }
3591
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3592 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3593 struct igc_flex_filter *input)
3594 {
3595 struct igc_hw *hw = &adapter->hw;
3596 u8 *data = input->data;
3597 u8 *mask = input->mask;
3598 u32 queuing;
3599 u32 fhft;
3600 u32 wufc;
3601 int ret;
3602 int i;
3603
3604 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3605 * out early to avoid surprises later.
3606 */
3607 if (input->length % 8 != 0) {
3608 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3609 return -EINVAL;
3610 }
3611
3612 /* Select corresponding flex filter register and get base for host table. */
3613 ret = igc_flex_filter_select(adapter, input, &fhft);
3614 if (ret)
3615 return ret;
3616
3617 /* When adding a filter globally disable flex filter feature. That is
3618 * recommended within the datasheet.
3619 */
3620 wufc = rd32(IGC_WUFC);
3621 wufc &= ~IGC_WUFC_FLEX_HQ;
3622 wr32(IGC_WUFC, wufc);
3623
3624 /* Configure filter */
3625 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3626 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3627 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3628
3629 if (input->immediate_irq)
3630 queuing |= IGC_FHFT_IMM_INT;
3631
3632 if (input->drop)
3633 queuing |= IGC_FHFT_DROP;
3634
3635 wr32(fhft + 0xFC, queuing);
3636
3637 /* Write data (128 byte) and mask (128 bit) */
3638 for (i = 0; i < 16; ++i) {
3639 const size_t data_idx = i * 8;
3640 const size_t row_idx = i * 16;
3641 u32 dw0 =
3642 (data[data_idx + 0] << 0) |
3643 (data[data_idx + 1] << 8) |
3644 (data[data_idx + 2] << 16) |
3645 (data[data_idx + 3] << 24);
3646 u32 dw1 =
3647 (data[data_idx + 4] << 0) |
3648 (data[data_idx + 5] << 8) |
3649 (data[data_idx + 6] << 16) |
3650 (data[data_idx + 7] << 24);
3651 u32 tmp;
3652
3653 /* Write row: dw0, dw1 and mask */
3654 wr32(fhft + row_idx, dw0);
3655 wr32(fhft + row_idx + 4, dw1);
3656
3657 /* mask is only valid for MASK(7, 0) */
3658 tmp = rd32(fhft + row_idx + 8);
3659 tmp &= ~GENMASK(7, 0);
3660 tmp |= mask[i];
3661 wr32(fhft + row_idx + 8, tmp);
3662 }
3663
3664 /* Enable filter. */
3665 wufc |= IGC_WUFC_FLEX_HQ;
3666 if (input->index > 8) {
3667 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3668 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3669
3670 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3671
3672 wr32(IGC_WUFC_EXT, wufc_ext);
3673 } else {
3674 wufc |= (IGC_WUFC_FLX0 << input->index);
3675 }
3676 wr32(IGC_WUFC, wufc);
3677
3678 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3679 input->index);
3680
3681 return 0;
3682 }
3683
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3684 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3685 const void *src, unsigned int offset,
3686 size_t len, const void *mask)
3687 {
3688 int i;
3689
3690 /* data */
3691 memcpy(&flex->data[offset], src, len);
3692
3693 /* mask */
3694 for (i = 0; i < len; ++i) {
3695 const unsigned int idx = i + offset;
3696 const u8 *ptr = mask;
3697
3698 if (mask) {
3699 if (ptr[i] & 0xff)
3700 flex->mask[idx / 8] |= BIT(idx % 8);
3701
3702 continue;
3703 }
3704
3705 flex->mask[idx / 8] |= BIT(idx % 8);
3706 }
3707 }
3708
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3709 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3710 {
3711 struct igc_hw *hw = &adapter->hw;
3712 u32 wufc, wufc_ext;
3713 int i;
3714
3715 wufc = rd32(IGC_WUFC);
3716 wufc_ext = rd32(IGC_WUFC_EXT);
3717
3718 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3719 if (i < 8) {
3720 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3721 return i;
3722 } else {
3723 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3724 return i;
3725 }
3726 }
3727
3728 return -ENOSPC;
3729 }
3730
igc_flex_filter_in_use(struct igc_adapter * adapter)3731 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3732 {
3733 struct igc_hw *hw = &adapter->hw;
3734 u32 wufc, wufc_ext;
3735
3736 wufc = rd32(IGC_WUFC);
3737 wufc_ext = rd32(IGC_WUFC_EXT);
3738
3739 if (wufc & IGC_WUFC_FILTER_MASK)
3740 return true;
3741
3742 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3743 return true;
3744
3745 return false;
3746 }
3747
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3748 static int igc_add_flex_filter(struct igc_adapter *adapter,
3749 struct igc_nfc_rule *rule)
3750 {
3751 struct igc_nfc_filter *filter = &rule->filter;
3752 unsigned int eth_offset, user_offset;
3753 struct igc_flex_filter flex = { };
3754 int ret, index;
3755 bool vlan;
3756
3757 index = igc_find_avail_flex_filter_slot(adapter);
3758 if (index < 0)
3759 return -ENOSPC;
3760
3761 /* Construct the flex filter:
3762 * -> dest_mac [6]
3763 * -> src_mac [6]
3764 * -> tpid [2]
3765 * -> vlan tci [2]
3766 * -> ether type [2]
3767 * -> user data [8]
3768 * -> = 26 bytes => 32 length
3769 */
3770 flex.index = index;
3771 flex.length = 32;
3772 flex.rx_queue = rule->action;
3773
3774 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3775 eth_offset = vlan ? 16 : 12;
3776 user_offset = vlan ? 18 : 14;
3777
3778 /* Add destination MAC */
3779 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3780 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3781 ETH_ALEN, NULL);
3782
3783 /* Add source MAC */
3784 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3785 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3786 ETH_ALEN, NULL);
3787
3788 /* Add VLAN etype */
3789 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3790 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3791
3792 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3793 sizeof(vlan_etype), NULL);
3794 }
3795
3796 /* Add VLAN TCI */
3797 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3798 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3799 sizeof(filter->vlan_tci), NULL);
3800
3801 /* Add Ether type */
3802 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3803 __be16 etype = cpu_to_be16(filter->etype);
3804
3805 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3806 sizeof(etype), NULL);
3807 }
3808
3809 /* Add user data */
3810 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3811 igc_flex_filter_add_field(&flex, &filter->user_data,
3812 user_offset,
3813 sizeof(filter->user_data),
3814 filter->user_mask);
3815
3816 /* Add it down to the hardware and enable it. */
3817 ret = igc_write_flex_filter_ll(adapter, &flex);
3818 if (ret)
3819 return ret;
3820
3821 filter->flex_index = index;
3822
3823 return 0;
3824 }
3825
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3826 static void igc_del_flex_filter(struct igc_adapter *adapter,
3827 u16 reg_index)
3828 {
3829 struct igc_hw *hw = &adapter->hw;
3830 u32 wufc;
3831
3832 /* Just disable the filter. The filter table itself is kept
3833 * intact. Another flex_filter_add() should override the "old" data
3834 * then.
3835 */
3836 if (reg_index > 8) {
3837 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3838
3839 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3840 wr32(IGC_WUFC_EXT, wufc_ext);
3841 } else {
3842 wufc = rd32(IGC_WUFC);
3843
3844 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3845 wr32(IGC_WUFC, wufc);
3846 }
3847
3848 if (igc_flex_filter_in_use(adapter))
3849 return;
3850
3851 /* No filters are in use, we may disable flex filters */
3852 wufc = rd32(IGC_WUFC);
3853 wufc &= ~IGC_WUFC_FLEX_HQ;
3854 wr32(IGC_WUFC, wufc);
3855 }
3856
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3857 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3858 struct igc_nfc_rule *rule)
3859 {
3860 int err;
3861
3862 if (rule->flex) {
3863 return igc_add_flex_filter(adapter, rule);
3864 }
3865
3866 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3867 err = igc_add_etype_filter(adapter, rule->filter.etype,
3868 rule->action);
3869 if (err)
3870 return err;
3871 }
3872
3873 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3874 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3875 rule->filter.src_addr, rule->action);
3876 if (err)
3877 return err;
3878 }
3879
3880 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3881 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3882 rule->filter.dst_addr, rule->action);
3883 if (err)
3884 return err;
3885 }
3886
3887 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3888 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3889
3890 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3891 if (err)
3892 return err;
3893 }
3894
3895 return 0;
3896 }
3897
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3898 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3899 const struct igc_nfc_rule *rule)
3900 {
3901 if (rule->flex) {
3902 igc_del_flex_filter(adapter, rule->filter.flex_index);
3903 return;
3904 }
3905
3906 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3907 igc_del_etype_filter(adapter, rule->filter.etype);
3908
3909 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3910 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3911
3912 igc_del_vlan_prio_filter(adapter, prio);
3913 }
3914
3915 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3916 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3917 rule->filter.src_addr);
3918
3919 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3920 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3921 rule->filter.dst_addr);
3922 }
3923
3924 /**
3925 * igc_get_nfc_rule() - Get NFC rule
3926 * @adapter: Pointer to adapter
3927 * @location: Rule location
3928 *
3929 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3930 *
3931 * Return: Pointer to NFC rule at @location. If not found, NULL.
3932 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3933 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3934 u32 location)
3935 {
3936 struct igc_nfc_rule *rule;
3937
3938 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3939 if (rule->location == location)
3940 return rule;
3941 if (rule->location > location)
3942 break;
3943 }
3944
3945 return NULL;
3946 }
3947
3948 /**
3949 * igc_del_nfc_rule() - Delete NFC rule
3950 * @adapter: Pointer to adapter
3951 * @rule: Pointer to rule to be deleted
3952 *
3953 * Disable NFC rule in hardware and delete it from adapter.
3954 *
3955 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3956 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3957 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3958 {
3959 igc_disable_nfc_rule(adapter, rule);
3960
3961 list_del(&rule->list);
3962 adapter->nfc_rule_count--;
3963
3964 kfree(rule);
3965 }
3966
igc_flush_nfc_rules(struct igc_adapter * adapter)3967 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3968 {
3969 struct igc_nfc_rule *rule, *tmp;
3970
3971 mutex_lock(&adapter->nfc_rule_lock);
3972
3973 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3974 igc_del_nfc_rule(adapter, rule);
3975
3976 mutex_unlock(&adapter->nfc_rule_lock);
3977 }
3978
3979 /**
3980 * igc_add_nfc_rule() - Add NFC rule
3981 * @adapter: Pointer to adapter
3982 * @rule: Pointer to rule to be added
3983 *
3984 * Enable NFC rule in hardware and add it to adapter.
3985 *
3986 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3987 *
3988 * Return: 0 on success, negative errno on failure.
3989 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3990 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3991 {
3992 struct igc_nfc_rule *pred, *cur;
3993 int err;
3994
3995 err = igc_enable_nfc_rule(adapter, rule);
3996 if (err)
3997 return err;
3998
3999 pred = NULL;
4000 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
4001 if (cur->location >= rule->location)
4002 break;
4003 pred = cur;
4004 }
4005
4006 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
4007 adapter->nfc_rule_count++;
4008 return 0;
4009 }
4010
igc_restore_nfc_rules(struct igc_adapter * adapter)4011 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
4012 {
4013 struct igc_nfc_rule *rule;
4014
4015 mutex_lock(&adapter->nfc_rule_lock);
4016
4017 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
4018 igc_enable_nfc_rule(adapter, rule);
4019
4020 mutex_unlock(&adapter->nfc_rule_lock);
4021 }
4022
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)4023 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
4024 {
4025 struct igc_adapter *adapter = netdev_priv(netdev);
4026
4027 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
4028 }
4029
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)4030 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
4031 {
4032 struct igc_adapter *adapter = netdev_priv(netdev);
4033
4034 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
4035 return 0;
4036 }
4037
4038 /**
4039 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4040 * @netdev: network interface device structure
4041 *
4042 * The set_rx_mode entry point is called whenever the unicast or multicast
4043 * address lists or the network interface flags are updated. This routine is
4044 * responsible for configuring the hardware for proper unicast, multicast,
4045 * promiscuous mode, and all-multi behavior.
4046 */
igc_set_rx_mode(struct net_device * netdev)4047 static void igc_set_rx_mode(struct net_device *netdev)
4048 {
4049 struct igc_adapter *adapter = netdev_priv(netdev);
4050 struct igc_hw *hw = &adapter->hw;
4051 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4052 int count;
4053
4054 /* Check for Promiscuous and All Multicast modes */
4055 if (netdev->flags & IFF_PROMISC) {
4056 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
4057 } else {
4058 if (netdev->flags & IFF_ALLMULTI) {
4059 rctl |= IGC_RCTL_MPE;
4060 } else {
4061 /* Write addresses to the MTA, if the attempt fails
4062 * then we should just turn on promiscuous mode so
4063 * that we can at least receive multicast traffic
4064 */
4065 count = igc_write_mc_addr_list(netdev);
4066 if (count < 0)
4067 rctl |= IGC_RCTL_MPE;
4068 }
4069 }
4070
4071 /* Write addresses to available RAR registers, if there is not
4072 * sufficient space to store all the addresses then enable
4073 * unicast promiscuous mode
4074 */
4075 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4076 rctl |= IGC_RCTL_UPE;
4077
4078 /* update state of unicast and multicast */
4079 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4080 wr32(IGC_RCTL, rctl);
4081
4082 #if (PAGE_SIZE < 8192)
4083 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4084 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4085 #endif
4086 wr32(IGC_RLPML, rlpml);
4087 }
4088
4089 /**
4090 * igc_configure - configure the hardware for RX and TX
4091 * @adapter: private board structure
4092 */
igc_configure(struct igc_adapter * adapter)4093 static void igc_configure(struct igc_adapter *adapter)
4094 {
4095 struct net_device *netdev = adapter->netdev;
4096 int i = 0;
4097
4098 igc_get_hw_control(adapter);
4099 igc_set_rx_mode(netdev);
4100
4101 igc_restore_vlan(adapter);
4102
4103 igc_setup_tctl(adapter);
4104 igc_setup_mrqc(adapter);
4105 igc_setup_rctl(adapter);
4106
4107 igc_set_default_mac_filter(adapter);
4108 igc_restore_nfc_rules(adapter);
4109
4110 igc_configure_tx(adapter);
4111 igc_configure_rx(adapter);
4112
4113 igc_rx_fifo_flush_base(&adapter->hw);
4114
4115 /* call igc_desc_unused which always leaves
4116 * at least 1 descriptor unused to make sure
4117 * next_to_use != next_to_clean
4118 */
4119 for (i = 0; i < adapter->num_rx_queues; i++) {
4120 struct igc_ring *ring = adapter->rx_ring[i];
4121
4122 if (ring->xsk_pool)
4123 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4124 else
4125 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4126 }
4127 }
4128
4129 /**
4130 * igc_write_ivar - configure ivar for given MSI-X vector
4131 * @hw: pointer to the HW structure
4132 * @msix_vector: vector number we are allocating to a given ring
4133 * @index: row index of IVAR register to write within IVAR table
4134 * @offset: column offset of in IVAR, should be multiple of 8
4135 *
4136 * The IVAR table consists of 2 columns,
4137 * each containing an cause allocation for an Rx and Tx ring, and a
4138 * variable number of rows depending on the number of queues supported.
4139 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4140 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4141 int index, int offset)
4142 {
4143 u32 ivar = array_rd32(IGC_IVAR0, index);
4144
4145 /* clear any bits that are currently set */
4146 ivar &= ~((u32)0xFF << offset);
4147
4148 /* write vector and valid bit */
4149 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4150
4151 array_wr32(IGC_IVAR0, index, ivar);
4152 }
4153
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4154 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4155 {
4156 struct igc_adapter *adapter = q_vector->adapter;
4157 struct igc_hw *hw = &adapter->hw;
4158 int rx_queue = IGC_N0_QUEUE;
4159 int tx_queue = IGC_N0_QUEUE;
4160
4161 if (q_vector->rx.ring)
4162 rx_queue = q_vector->rx.ring->reg_idx;
4163 if (q_vector->tx.ring)
4164 tx_queue = q_vector->tx.ring->reg_idx;
4165
4166 switch (hw->mac.type) {
4167 case igc_i225:
4168 if (rx_queue > IGC_N0_QUEUE)
4169 igc_write_ivar(hw, msix_vector,
4170 rx_queue >> 1,
4171 (rx_queue & 0x1) << 4);
4172 if (tx_queue > IGC_N0_QUEUE)
4173 igc_write_ivar(hw, msix_vector,
4174 tx_queue >> 1,
4175 ((tx_queue & 0x1) << 4) + 8);
4176 q_vector->eims_value = BIT(msix_vector);
4177 break;
4178 default:
4179 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4180 break;
4181 }
4182
4183 /* add q_vector eims value to global eims_enable_mask */
4184 adapter->eims_enable_mask |= q_vector->eims_value;
4185
4186 /* configure q_vector to set itr on first interrupt */
4187 q_vector->set_itr = 1;
4188 }
4189
4190 /**
4191 * igc_configure_msix - Configure MSI-X hardware
4192 * @adapter: Pointer to adapter structure
4193 *
4194 * igc_configure_msix sets up the hardware to properly
4195 * generate MSI-X interrupts.
4196 */
igc_configure_msix(struct igc_adapter * adapter)4197 static void igc_configure_msix(struct igc_adapter *adapter)
4198 {
4199 struct igc_hw *hw = &adapter->hw;
4200 int i, vector = 0;
4201 u32 tmp;
4202
4203 adapter->eims_enable_mask = 0;
4204
4205 /* set vector for other causes, i.e. link changes */
4206 switch (hw->mac.type) {
4207 case igc_i225:
4208 /* Turn on MSI-X capability first, or our settings
4209 * won't stick. And it will take days to debug.
4210 */
4211 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4212 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4213 IGC_GPIE_NSICR);
4214
4215 /* enable msix_other interrupt */
4216 adapter->eims_other = BIT(vector);
4217 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4218
4219 wr32(IGC_IVAR_MISC, tmp);
4220 break;
4221 default:
4222 /* do nothing, since nothing else supports MSI-X */
4223 break;
4224 } /* switch (hw->mac.type) */
4225
4226 adapter->eims_enable_mask |= adapter->eims_other;
4227
4228 for (i = 0; i < adapter->num_q_vectors; i++)
4229 igc_assign_vector(adapter->q_vector[i], vector++);
4230
4231 wrfl();
4232 }
4233
4234 /**
4235 * igc_irq_enable - Enable default interrupt generation settings
4236 * @adapter: board private structure
4237 */
igc_irq_enable(struct igc_adapter * adapter)4238 static void igc_irq_enable(struct igc_adapter *adapter)
4239 {
4240 struct igc_hw *hw = &adapter->hw;
4241
4242 if (adapter->msix_entries) {
4243 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4244 u32 regval = rd32(IGC_EIAC);
4245
4246 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4247 regval = rd32(IGC_EIAM);
4248 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4249 wr32(IGC_EIMS, adapter->eims_enable_mask);
4250 wr32(IGC_IMS, ims);
4251 } else {
4252 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4253 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4254 }
4255 }
4256
4257 /**
4258 * igc_irq_disable - Mask off interrupt generation on the NIC
4259 * @adapter: board private structure
4260 */
igc_irq_disable(struct igc_adapter * adapter)4261 static void igc_irq_disable(struct igc_adapter *adapter)
4262 {
4263 struct igc_hw *hw = &adapter->hw;
4264
4265 if (adapter->msix_entries) {
4266 u32 regval = rd32(IGC_EIAM);
4267
4268 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4269 wr32(IGC_EIMC, adapter->eims_enable_mask);
4270 regval = rd32(IGC_EIAC);
4271 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4272 }
4273
4274 wr32(IGC_IAM, 0);
4275 wr32(IGC_IMC, ~0);
4276 wrfl();
4277
4278 if (adapter->msix_entries) {
4279 int vector = 0, i;
4280
4281 synchronize_irq(adapter->msix_entries[vector++].vector);
4282
4283 for (i = 0; i < adapter->num_q_vectors; i++)
4284 synchronize_irq(adapter->msix_entries[vector++].vector);
4285 } else {
4286 synchronize_irq(adapter->pdev->irq);
4287 }
4288 }
4289
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4290 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4291 const u32 max_rss_queues)
4292 {
4293 /* Determine if we need to pair queues. */
4294 /* If rss_queues > half of max_rss_queues, pair the queues in
4295 * order to conserve interrupts due to limited supply.
4296 */
4297 if (adapter->rss_queues > (max_rss_queues / 2))
4298 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4299 else
4300 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4301 }
4302
igc_get_max_rss_queues(struct igc_adapter * adapter)4303 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4304 {
4305 return IGC_MAX_RX_QUEUES;
4306 }
4307
igc_init_queue_configuration(struct igc_adapter * adapter)4308 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4309 {
4310 u32 max_rss_queues;
4311
4312 max_rss_queues = igc_get_max_rss_queues(adapter);
4313 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4314
4315 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4316 }
4317
4318 /**
4319 * igc_reset_q_vector - Reset config for interrupt vector
4320 * @adapter: board private structure to initialize
4321 * @v_idx: Index of vector to be reset
4322 *
4323 * If NAPI is enabled it will delete any references to the
4324 * NAPI struct. This is preparation for igc_free_q_vector.
4325 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4326 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4327 {
4328 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4329
4330 /* if we're coming from igc_set_interrupt_capability, the vectors are
4331 * not yet allocated
4332 */
4333 if (!q_vector)
4334 return;
4335
4336 if (q_vector->tx.ring)
4337 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4338
4339 if (q_vector->rx.ring)
4340 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4341
4342 netif_napi_del(&q_vector->napi);
4343 }
4344
4345 /**
4346 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4347 * @adapter: board private structure to initialize
4348 * @v_idx: Index of vector to be freed
4349 *
4350 * This function frees the memory allocated to the q_vector.
4351 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4352 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4353 {
4354 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4355
4356 adapter->q_vector[v_idx] = NULL;
4357
4358 /* igc_get_stats64() might access the rings on this vector,
4359 * we must wait a grace period before freeing it.
4360 */
4361 if (q_vector)
4362 kfree_rcu(q_vector, rcu);
4363 }
4364
4365 /**
4366 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4367 * @adapter: board private structure to initialize
4368 *
4369 * This function frees the memory allocated to the q_vectors. In addition if
4370 * NAPI is enabled it will delete any references to the NAPI struct prior
4371 * to freeing the q_vector.
4372 */
igc_free_q_vectors(struct igc_adapter * adapter)4373 static void igc_free_q_vectors(struct igc_adapter *adapter)
4374 {
4375 int v_idx = adapter->num_q_vectors;
4376
4377 adapter->num_tx_queues = 0;
4378 adapter->num_rx_queues = 0;
4379 adapter->num_q_vectors = 0;
4380
4381 while (v_idx--) {
4382 igc_reset_q_vector(adapter, v_idx);
4383 igc_free_q_vector(adapter, v_idx);
4384 }
4385 }
4386
4387 /**
4388 * igc_update_itr - update the dynamic ITR value based on statistics
4389 * @q_vector: pointer to q_vector
4390 * @ring_container: ring info to update the itr for
4391 *
4392 * Stores a new ITR value based on packets and byte
4393 * counts during the last interrupt. The advantage of per interrupt
4394 * computation is faster updates and more accurate ITR for the current
4395 * traffic pattern. Constants in this function were computed
4396 * based on theoretical maximum wire speed and thresholds were set based
4397 * on testing data as well as attempting to minimize response time
4398 * while increasing bulk throughput.
4399 * NOTE: These calculations are only valid when operating in a single-
4400 * queue environment.
4401 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4402 static void igc_update_itr(struct igc_q_vector *q_vector,
4403 struct igc_ring_container *ring_container)
4404 {
4405 unsigned int packets = ring_container->total_packets;
4406 unsigned int bytes = ring_container->total_bytes;
4407 u8 itrval = ring_container->itr;
4408
4409 /* no packets, exit with status unchanged */
4410 if (packets == 0)
4411 return;
4412
4413 switch (itrval) {
4414 case lowest_latency:
4415 /* handle TSO and jumbo frames */
4416 if (bytes / packets > 8000)
4417 itrval = bulk_latency;
4418 else if ((packets < 5) && (bytes > 512))
4419 itrval = low_latency;
4420 break;
4421 case low_latency: /* 50 usec aka 20000 ints/s */
4422 if (bytes > 10000) {
4423 /* this if handles the TSO accounting */
4424 if (bytes / packets > 8000)
4425 itrval = bulk_latency;
4426 else if ((packets < 10) || ((bytes / packets) > 1200))
4427 itrval = bulk_latency;
4428 else if ((packets > 35))
4429 itrval = lowest_latency;
4430 } else if (bytes / packets > 2000) {
4431 itrval = bulk_latency;
4432 } else if (packets <= 2 && bytes < 512) {
4433 itrval = lowest_latency;
4434 }
4435 break;
4436 case bulk_latency: /* 250 usec aka 4000 ints/s */
4437 if (bytes > 25000) {
4438 if (packets > 35)
4439 itrval = low_latency;
4440 } else if (bytes < 1500) {
4441 itrval = low_latency;
4442 }
4443 break;
4444 }
4445
4446 /* clear work counters since we have the values we need */
4447 ring_container->total_bytes = 0;
4448 ring_container->total_packets = 0;
4449
4450 /* write updated itr to ring container */
4451 ring_container->itr = itrval;
4452 }
4453
igc_set_itr(struct igc_q_vector * q_vector)4454 static void igc_set_itr(struct igc_q_vector *q_vector)
4455 {
4456 struct igc_adapter *adapter = q_vector->adapter;
4457 u32 new_itr = q_vector->itr_val;
4458 u8 current_itr = 0;
4459
4460 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4461 switch (adapter->link_speed) {
4462 case SPEED_10:
4463 case SPEED_100:
4464 current_itr = 0;
4465 new_itr = IGC_4K_ITR;
4466 goto set_itr_now;
4467 default:
4468 break;
4469 }
4470
4471 igc_update_itr(q_vector, &q_vector->tx);
4472 igc_update_itr(q_vector, &q_vector->rx);
4473
4474 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4475
4476 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4477 if (current_itr == lowest_latency &&
4478 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4479 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4480 current_itr = low_latency;
4481
4482 switch (current_itr) {
4483 /* counts and packets in update_itr are dependent on these numbers */
4484 case lowest_latency:
4485 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4486 break;
4487 case low_latency:
4488 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4489 break;
4490 case bulk_latency:
4491 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4492 break;
4493 default:
4494 break;
4495 }
4496
4497 set_itr_now:
4498 if (new_itr != q_vector->itr_val) {
4499 /* this attempts to bias the interrupt rate towards Bulk
4500 * by adding intermediate steps when interrupt rate is
4501 * increasing
4502 */
4503 new_itr = new_itr > q_vector->itr_val ?
4504 max((new_itr * q_vector->itr_val) /
4505 (new_itr + (q_vector->itr_val >> 2)),
4506 new_itr) : new_itr;
4507 /* Don't write the value here; it resets the adapter's
4508 * internal timer, and causes us to delay far longer than
4509 * we should between interrupts. Instead, we write the ITR
4510 * value at the beginning of the next interrupt so the timing
4511 * ends up being correct.
4512 */
4513 q_vector->itr_val = new_itr;
4514 q_vector->set_itr = 1;
4515 }
4516 }
4517
igc_reset_interrupt_capability(struct igc_adapter * adapter)4518 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4519 {
4520 int v_idx = adapter->num_q_vectors;
4521
4522 if (adapter->msix_entries) {
4523 pci_disable_msix(adapter->pdev);
4524 kfree(adapter->msix_entries);
4525 adapter->msix_entries = NULL;
4526 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4527 pci_disable_msi(adapter->pdev);
4528 }
4529
4530 while (v_idx--)
4531 igc_reset_q_vector(adapter, v_idx);
4532 }
4533
4534 /**
4535 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4536 * @adapter: Pointer to adapter structure
4537 * @msix: boolean value for MSI-X capability
4538 *
4539 * Attempt to configure interrupts using the best available
4540 * capabilities of the hardware and kernel.
4541 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4542 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4543 bool msix)
4544 {
4545 int numvecs, i;
4546 int err;
4547
4548 if (!msix)
4549 goto msi_only;
4550 adapter->flags |= IGC_FLAG_HAS_MSIX;
4551
4552 /* Number of supported queues. */
4553 adapter->num_rx_queues = adapter->rss_queues;
4554
4555 adapter->num_tx_queues = adapter->rss_queues;
4556
4557 /* start with one vector for every Rx queue */
4558 numvecs = adapter->num_rx_queues;
4559
4560 /* if Tx handler is separate add 1 for every Tx queue */
4561 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4562 numvecs += adapter->num_tx_queues;
4563
4564 /* store the number of vectors reserved for queues */
4565 adapter->num_q_vectors = numvecs;
4566
4567 /* add 1 vector for link status interrupts */
4568 numvecs++;
4569
4570 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4571 GFP_KERNEL);
4572
4573 if (!adapter->msix_entries)
4574 return;
4575
4576 /* populate entry values */
4577 for (i = 0; i < numvecs; i++)
4578 adapter->msix_entries[i].entry = i;
4579
4580 err = pci_enable_msix_range(adapter->pdev,
4581 adapter->msix_entries,
4582 numvecs,
4583 numvecs);
4584 if (err > 0)
4585 return;
4586
4587 kfree(adapter->msix_entries);
4588 adapter->msix_entries = NULL;
4589
4590 igc_reset_interrupt_capability(adapter);
4591
4592 msi_only:
4593 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4594
4595 adapter->rss_queues = 1;
4596 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4597 adapter->num_rx_queues = 1;
4598 adapter->num_tx_queues = 1;
4599 adapter->num_q_vectors = 1;
4600 if (!pci_enable_msi(adapter->pdev))
4601 adapter->flags |= IGC_FLAG_HAS_MSI;
4602 }
4603
4604 /**
4605 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4606 * @q_vector: pointer to q_vector
4607 *
4608 * Stores a new ITR value based on strictly on packet size. This
4609 * algorithm is less sophisticated than that used in igc_update_itr,
4610 * due to the difficulty of synchronizing statistics across multiple
4611 * receive rings. The divisors and thresholds used by this function
4612 * were determined based on theoretical maximum wire speed and testing
4613 * data, in order to minimize response time while increasing bulk
4614 * throughput.
4615 * NOTE: This function is called only when operating in a multiqueue
4616 * receive environment.
4617 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4618 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4619 {
4620 struct igc_adapter *adapter = q_vector->adapter;
4621 int new_val = q_vector->itr_val;
4622 int avg_wire_size = 0;
4623 unsigned int packets;
4624
4625 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4626 * ints/sec - ITR timer value of 120 ticks.
4627 */
4628 switch (adapter->link_speed) {
4629 case SPEED_10:
4630 case SPEED_100:
4631 new_val = IGC_4K_ITR;
4632 goto set_itr_val;
4633 default:
4634 break;
4635 }
4636
4637 packets = q_vector->rx.total_packets;
4638 if (packets)
4639 avg_wire_size = q_vector->rx.total_bytes / packets;
4640
4641 packets = q_vector->tx.total_packets;
4642 if (packets)
4643 avg_wire_size = max_t(u32, avg_wire_size,
4644 q_vector->tx.total_bytes / packets);
4645
4646 /* if avg_wire_size isn't set no work was done */
4647 if (!avg_wire_size)
4648 goto clear_counts;
4649
4650 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4651 avg_wire_size += 24;
4652
4653 /* Don't starve jumbo frames */
4654 avg_wire_size = min(avg_wire_size, 3000);
4655
4656 /* Give a little boost to mid-size frames */
4657 if (avg_wire_size > 300 && avg_wire_size < 1200)
4658 new_val = avg_wire_size / 3;
4659 else
4660 new_val = avg_wire_size / 2;
4661
4662 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4663 if (new_val < IGC_20K_ITR &&
4664 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4665 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4666 new_val = IGC_20K_ITR;
4667
4668 set_itr_val:
4669 if (new_val != q_vector->itr_val) {
4670 q_vector->itr_val = new_val;
4671 q_vector->set_itr = 1;
4672 }
4673 clear_counts:
4674 q_vector->rx.total_bytes = 0;
4675 q_vector->rx.total_packets = 0;
4676 q_vector->tx.total_bytes = 0;
4677 q_vector->tx.total_packets = 0;
4678 }
4679
igc_ring_irq_enable(struct igc_q_vector * q_vector)4680 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4681 {
4682 struct igc_adapter *adapter = q_vector->adapter;
4683 struct igc_hw *hw = &adapter->hw;
4684
4685 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4686 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4687 if (adapter->num_q_vectors == 1)
4688 igc_set_itr(q_vector);
4689 else
4690 igc_update_ring_itr(q_vector);
4691 }
4692
4693 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4694 if (adapter->msix_entries)
4695 wr32(IGC_EIMS, q_vector->eims_value);
4696 else
4697 igc_irq_enable(adapter);
4698 }
4699 }
4700
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4701 static void igc_add_ring(struct igc_ring *ring,
4702 struct igc_ring_container *head)
4703 {
4704 head->ring = ring;
4705 head->count++;
4706 }
4707
4708 /**
4709 * igc_cache_ring_register - Descriptor ring to register mapping
4710 * @adapter: board private structure to initialize
4711 *
4712 * Once we know the feature-set enabled for the device, we'll cache
4713 * the register offset the descriptor ring is assigned to.
4714 */
igc_cache_ring_register(struct igc_adapter * adapter)4715 static void igc_cache_ring_register(struct igc_adapter *adapter)
4716 {
4717 int i = 0, j = 0;
4718
4719 switch (adapter->hw.mac.type) {
4720 case igc_i225:
4721 default:
4722 for (; i < adapter->num_rx_queues; i++)
4723 adapter->rx_ring[i]->reg_idx = i;
4724 for (; j < adapter->num_tx_queues; j++)
4725 adapter->tx_ring[j]->reg_idx = j;
4726 break;
4727 }
4728 }
4729
4730 /**
4731 * igc_poll - NAPI Rx polling callback
4732 * @napi: napi polling structure
4733 * @budget: count of how many packets we should handle
4734 */
igc_poll(struct napi_struct * napi,int budget)4735 static int igc_poll(struct napi_struct *napi, int budget)
4736 {
4737 struct igc_q_vector *q_vector = container_of(napi,
4738 struct igc_q_vector,
4739 napi);
4740 struct igc_ring *rx_ring = q_vector->rx.ring;
4741 bool clean_complete = true;
4742 int work_done = 0;
4743
4744 if (q_vector->tx.ring)
4745 clean_complete = igc_clean_tx_irq(q_vector, budget);
4746
4747 if (rx_ring) {
4748 int cleaned = rx_ring->xsk_pool ?
4749 igc_clean_rx_irq_zc(q_vector, budget) :
4750 igc_clean_rx_irq(q_vector, budget);
4751
4752 work_done += cleaned;
4753 if (cleaned >= budget)
4754 clean_complete = false;
4755 }
4756
4757 /* If all work not completed, return budget and keep polling */
4758 if (!clean_complete)
4759 return budget;
4760
4761 /* Exit the polling mode, but don't re-enable interrupts if stack might
4762 * poll us due to busy-polling
4763 */
4764 if (likely(napi_complete_done(napi, work_done)))
4765 igc_ring_irq_enable(q_vector);
4766
4767 return min(work_done, budget - 1);
4768 }
4769
4770 /**
4771 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4772 * @adapter: board private structure to initialize
4773 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4774 * @v_idx: index of vector in adapter struct
4775 * @txr_count: total number of Tx rings to allocate
4776 * @txr_idx: index of first Tx ring to allocate
4777 * @rxr_count: total number of Rx rings to allocate
4778 * @rxr_idx: index of first Rx ring to allocate
4779 *
4780 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4781 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4782 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4783 unsigned int v_count, unsigned int v_idx,
4784 unsigned int txr_count, unsigned int txr_idx,
4785 unsigned int rxr_count, unsigned int rxr_idx)
4786 {
4787 struct igc_q_vector *q_vector;
4788 struct igc_ring *ring;
4789 int ring_count;
4790
4791 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4792 if (txr_count > 1 || rxr_count > 1)
4793 return -ENOMEM;
4794
4795 ring_count = txr_count + rxr_count;
4796
4797 /* allocate q_vector and rings */
4798 q_vector = adapter->q_vector[v_idx];
4799 if (!q_vector)
4800 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4801 GFP_KERNEL);
4802 else
4803 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4804 if (!q_vector)
4805 return -ENOMEM;
4806
4807 /* initialize NAPI */
4808 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4809
4810 /* tie q_vector and adapter together */
4811 adapter->q_vector[v_idx] = q_vector;
4812 q_vector->adapter = adapter;
4813
4814 /* initialize work limits */
4815 q_vector->tx.work_limit = adapter->tx_work_limit;
4816
4817 /* initialize ITR configuration */
4818 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4819 q_vector->itr_val = IGC_START_ITR;
4820
4821 /* initialize pointer to rings */
4822 ring = q_vector->ring;
4823
4824 /* initialize ITR */
4825 if (rxr_count) {
4826 /* rx or rx/tx vector */
4827 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4828 q_vector->itr_val = adapter->rx_itr_setting;
4829 } else {
4830 /* tx only vector */
4831 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4832 q_vector->itr_val = adapter->tx_itr_setting;
4833 }
4834
4835 if (txr_count) {
4836 /* assign generic ring traits */
4837 ring->dev = &adapter->pdev->dev;
4838 ring->netdev = adapter->netdev;
4839
4840 /* configure backlink on ring */
4841 ring->q_vector = q_vector;
4842
4843 /* update q_vector Tx values */
4844 igc_add_ring(ring, &q_vector->tx);
4845
4846 /* apply Tx specific ring traits */
4847 ring->count = adapter->tx_ring_count;
4848 ring->queue_index = txr_idx;
4849
4850 /* assign ring to adapter */
4851 adapter->tx_ring[txr_idx] = ring;
4852
4853 /* push pointer to next ring */
4854 ring++;
4855 }
4856
4857 if (rxr_count) {
4858 /* assign generic ring traits */
4859 ring->dev = &adapter->pdev->dev;
4860 ring->netdev = adapter->netdev;
4861
4862 /* configure backlink on ring */
4863 ring->q_vector = q_vector;
4864
4865 /* update q_vector Rx values */
4866 igc_add_ring(ring, &q_vector->rx);
4867
4868 /* apply Rx specific ring traits */
4869 ring->count = adapter->rx_ring_count;
4870 ring->queue_index = rxr_idx;
4871
4872 /* assign ring to adapter */
4873 adapter->rx_ring[rxr_idx] = ring;
4874 }
4875
4876 return 0;
4877 }
4878
4879 /**
4880 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4881 * @adapter: board private structure to initialize
4882 *
4883 * We allocate one q_vector per queue interrupt. If allocation fails we
4884 * return -ENOMEM.
4885 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4886 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4887 {
4888 int rxr_remaining = adapter->num_rx_queues;
4889 int txr_remaining = adapter->num_tx_queues;
4890 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4891 int q_vectors = adapter->num_q_vectors;
4892 int err;
4893
4894 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4895 for (; rxr_remaining; v_idx++) {
4896 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4897 0, 0, 1, rxr_idx);
4898
4899 if (err)
4900 goto err_out;
4901
4902 /* update counts and index */
4903 rxr_remaining--;
4904 rxr_idx++;
4905 }
4906 }
4907
4908 for (; v_idx < q_vectors; v_idx++) {
4909 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4910 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4911
4912 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4913 tqpv, txr_idx, rqpv, rxr_idx);
4914
4915 if (err)
4916 goto err_out;
4917
4918 /* update counts and index */
4919 rxr_remaining -= rqpv;
4920 txr_remaining -= tqpv;
4921 rxr_idx++;
4922 txr_idx++;
4923 }
4924
4925 return 0;
4926
4927 err_out:
4928 adapter->num_tx_queues = 0;
4929 adapter->num_rx_queues = 0;
4930 adapter->num_q_vectors = 0;
4931
4932 while (v_idx--)
4933 igc_free_q_vector(adapter, v_idx);
4934
4935 return -ENOMEM;
4936 }
4937
4938 /**
4939 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4940 * @adapter: Pointer to adapter structure
4941 * @msix: boolean for MSI-X capability
4942 *
4943 * This function initializes the interrupts and allocates all of the queues.
4944 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4945 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4946 {
4947 struct net_device *dev = adapter->netdev;
4948 int err = 0;
4949
4950 igc_set_interrupt_capability(adapter, msix);
4951
4952 err = igc_alloc_q_vectors(adapter);
4953 if (err) {
4954 netdev_err(dev, "Unable to allocate memory for vectors\n");
4955 goto err_alloc_q_vectors;
4956 }
4957
4958 igc_cache_ring_register(adapter);
4959
4960 return 0;
4961
4962 err_alloc_q_vectors:
4963 igc_reset_interrupt_capability(adapter);
4964 return err;
4965 }
4966
4967 /**
4968 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4969 * @adapter: board private structure to initialize
4970 *
4971 * igc_sw_init initializes the Adapter private data structure.
4972 * Fields are initialized based on PCI device information and
4973 * OS network device settings (MTU size).
4974 */
igc_sw_init(struct igc_adapter * adapter)4975 static int igc_sw_init(struct igc_adapter *adapter)
4976 {
4977 struct net_device *netdev = adapter->netdev;
4978 struct pci_dev *pdev = adapter->pdev;
4979 struct igc_hw *hw = &adapter->hw;
4980
4981 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4982
4983 /* set default ring sizes */
4984 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4985 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4986
4987 /* set default ITR values */
4988 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4989 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4990
4991 /* set default work limits */
4992 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4993
4994 /* adjust max frame to be at least the size of a standard frame */
4995 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4996 VLAN_HLEN;
4997 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4998
4999 mutex_init(&adapter->nfc_rule_lock);
5000 INIT_LIST_HEAD(&adapter->nfc_rule_list);
5001 adapter->nfc_rule_count = 0;
5002
5003 spin_lock_init(&adapter->stats64_lock);
5004 spin_lock_init(&adapter->qbv_tx_lock);
5005 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
5006 adapter->flags |= IGC_FLAG_HAS_MSIX;
5007
5008 igc_init_queue_configuration(adapter);
5009
5010 /* This call may decrease the number of queues */
5011 if (igc_init_interrupt_scheme(adapter, true)) {
5012 netdev_err(netdev, "Unable to allocate memory for queues\n");
5013 return -ENOMEM;
5014 }
5015
5016 /* Explicitly disable IRQ since the NIC can be in any state. */
5017 igc_irq_disable(adapter);
5018
5019 set_bit(__IGC_DOWN, &adapter->state);
5020
5021 return 0;
5022 }
5023
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)5024 static void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
5025 struct napi_struct *napi)
5026 {
5027 struct igc_q_vector *q_vector = adapter->q_vector[vector];
5028
5029 if (q_vector->rx.ring)
5030 netif_queue_set_napi(adapter->netdev,
5031 q_vector->rx.ring->queue_index,
5032 NETDEV_QUEUE_TYPE_RX, napi);
5033
5034 if (q_vector->tx.ring)
5035 netif_queue_set_napi(adapter->netdev,
5036 q_vector->tx.ring->queue_index,
5037 NETDEV_QUEUE_TYPE_TX, napi);
5038 }
5039
5040 /**
5041 * igc_up - Open the interface and prepare it to handle traffic
5042 * @adapter: board private structure
5043 */
igc_up(struct igc_adapter * adapter)5044 void igc_up(struct igc_adapter *adapter)
5045 {
5046 struct igc_hw *hw = &adapter->hw;
5047 struct napi_struct *napi;
5048 int i = 0;
5049
5050 /* hardware has been reset, we need to reload some things */
5051 igc_configure(adapter);
5052
5053 clear_bit(__IGC_DOWN, &adapter->state);
5054
5055 for (i = 0; i < adapter->num_q_vectors; i++) {
5056 napi = &adapter->q_vector[i]->napi;
5057 napi_enable(napi);
5058 igc_set_queue_napi(adapter, i, napi);
5059 }
5060
5061 if (adapter->msix_entries)
5062 igc_configure_msix(adapter);
5063 else
5064 igc_assign_vector(adapter->q_vector[0], 0);
5065
5066 /* Clear any pending interrupts. */
5067 rd32(IGC_ICR);
5068 igc_irq_enable(adapter);
5069
5070 netif_tx_start_all_queues(adapter->netdev);
5071
5072 /* start the watchdog. */
5073 hw->mac.get_link_status = true;
5074 schedule_work(&adapter->watchdog_task);
5075 }
5076
5077 /**
5078 * igc_update_stats - Update the board statistics counters
5079 * @adapter: board private structure
5080 */
igc_update_stats(struct igc_adapter * adapter)5081 void igc_update_stats(struct igc_adapter *adapter)
5082 {
5083 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5084 struct pci_dev *pdev = adapter->pdev;
5085 struct igc_hw *hw = &adapter->hw;
5086 u64 _bytes, _packets;
5087 u64 bytes, packets;
5088 unsigned int start;
5089 u32 mpc;
5090 int i;
5091
5092 /* Prevent stats update while adapter is being reset, or if the pci
5093 * connection is down.
5094 */
5095 if (adapter->link_speed == 0)
5096 return;
5097 if (pci_channel_offline(pdev))
5098 return;
5099
5100 packets = 0;
5101 bytes = 0;
5102
5103 rcu_read_lock();
5104 for (i = 0; i < adapter->num_rx_queues; i++) {
5105 struct igc_ring *ring = adapter->rx_ring[i];
5106 u32 rqdpc = rd32(IGC_RQDPC(i));
5107
5108 if (hw->mac.type >= igc_i225)
5109 wr32(IGC_RQDPC(i), 0);
5110
5111 if (rqdpc) {
5112 ring->rx_stats.drops += rqdpc;
5113 net_stats->rx_fifo_errors += rqdpc;
5114 }
5115
5116 do {
5117 start = u64_stats_fetch_begin(&ring->rx_syncp);
5118 _bytes = ring->rx_stats.bytes;
5119 _packets = ring->rx_stats.packets;
5120 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5121 bytes += _bytes;
5122 packets += _packets;
5123 }
5124
5125 net_stats->rx_bytes = bytes;
5126 net_stats->rx_packets = packets;
5127
5128 packets = 0;
5129 bytes = 0;
5130 for (i = 0; i < adapter->num_tx_queues; i++) {
5131 struct igc_ring *ring = adapter->tx_ring[i];
5132
5133 do {
5134 start = u64_stats_fetch_begin(&ring->tx_syncp);
5135 _bytes = ring->tx_stats.bytes;
5136 _packets = ring->tx_stats.packets;
5137 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5138 bytes += _bytes;
5139 packets += _packets;
5140 }
5141 net_stats->tx_bytes = bytes;
5142 net_stats->tx_packets = packets;
5143 rcu_read_unlock();
5144
5145 /* read stats registers */
5146 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5147 adapter->stats.gprc += rd32(IGC_GPRC);
5148 adapter->stats.gorc += rd32(IGC_GORCL);
5149 rd32(IGC_GORCH); /* clear GORCL */
5150 adapter->stats.bprc += rd32(IGC_BPRC);
5151 adapter->stats.mprc += rd32(IGC_MPRC);
5152 adapter->stats.roc += rd32(IGC_ROC);
5153
5154 adapter->stats.prc64 += rd32(IGC_PRC64);
5155 adapter->stats.prc127 += rd32(IGC_PRC127);
5156 adapter->stats.prc255 += rd32(IGC_PRC255);
5157 adapter->stats.prc511 += rd32(IGC_PRC511);
5158 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5159 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5160 adapter->stats.tlpic += rd32(IGC_TLPIC);
5161 adapter->stats.rlpic += rd32(IGC_RLPIC);
5162 adapter->stats.hgptc += rd32(IGC_HGPTC);
5163
5164 mpc = rd32(IGC_MPC);
5165 adapter->stats.mpc += mpc;
5166 net_stats->rx_fifo_errors += mpc;
5167 adapter->stats.scc += rd32(IGC_SCC);
5168 adapter->stats.ecol += rd32(IGC_ECOL);
5169 adapter->stats.mcc += rd32(IGC_MCC);
5170 adapter->stats.latecol += rd32(IGC_LATECOL);
5171 adapter->stats.dc += rd32(IGC_DC);
5172 adapter->stats.rlec += rd32(IGC_RLEC);
5173 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5174 adapter->stats.xontxc += rd32(IGC_XONTXC);
5175 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5176 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5177 adapter->stats.fcruc += rd32(IGC_FCRUC);
5178 adapter->stats.gptc += rd32(IGC_GPTC);
5179 adapter->stats.gotc += rd32(IGC_GOTCL);
5180 rd32(IGC_GOTCH); /* clear GOTCL */
5181 adapter->stats.rnbc += rd32(IGC_RNBC);
5182 adapter->stats.ruc += rd32(IGC_RUC);
5183 adapter->stats.rfc += rd32(IGC_RFC);
5184 adapter->stats.rjc += rd32(IGC_RJC);
5185 adapter->stats.tor += rd32(IGC_TORH);
5186 adapter->stats.tot += rd32(IGC_TOTH);
5187 adapter->stats.tpr += rd32(IGC_TPR);
5188
5189 adapter->stats.ptc64 += rd32(IGC_PTC64);
5190 adapter->stats.ptc127 += rd32(IGC_PTC127);
5191 adapter->stats.ptc255 += rd32(IGC_PTC255);
5192 adapter->stats.ptc511 += rd32(IGC_PTC511);
5193 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5194 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5195
5196 adapter->stats.mptc += rd32(IGC_MPTC);
5197 adapter->stats.bptc += rd32(IGC_BPTC);
5198
5199 adapter->stats.tpt += rd32(IGC_TPT);
5200 adapter->stats.colc += rd32(IGC_COLC);
5201 adapter->stats.colc += rd32(IGC_RERC);
5202
5203 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5204
5205 adapter->stats.tsctc += rd32(IGC_TSCTC);
5206
5207 adapter->stats.iac += rd32(IGC_IAC);
5208
5209 /* Fill out the OS statistics structure */
5210 net_stats->multicast = adapter->stats.mprc;
5211 net_stats->collisions = adapter->stats.colc;
5212
5213 /* Rx Errors */
5214
5215 /* RLEC on some newer hardware can be incorrect so build
5216 * our own version based on RUC and ROC
5217 */
5218 net_stats->rx_errors = adapter->stats.rxerrc +
5219 adapter->stats.crcerrs + adapter->stats.algnerrc +
5220 adapter->stats.ruc + adapter->stats.roc +
5221 adapter->stats.cexterr;
5222 net_stats->rx_length_errors = adapter->stats.ruc +
5223 adapter->stats.roc;
5224 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5225 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5226 net_stats->rx_missed_errors = adapter->stats.mpc;
5227
5228 /* Tx Errors */
5229 net_stats->tx_errors = adapter->stats.ecol +
5230 adapter->stats.latecol;
5231 net_stats->tx_aborted_errors = adapter->stats.ecol;
5232 net_stats->tx_window_errors = adapter->stats.latecol;
5233 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5234
5235 /* Tx Dropped */
5236 net_stats->tx_dropped = adapter->stats.txdrop;
5237
5238 /* Management Stats */
5239 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5240 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5241 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5242 }
5243
5244 /**
5245 * igc_down - Close the interface
5246 * @adapter: board private structure
5247 */
igc_down(struct igc_adapter * adapter)5248 void igc_down(struct igc_adapter *adapter)
5249 {
5250 struct net_device *netdev = adapter->netdev;
5251 struct igc_hw *hw = &adapter->hw;
5252 u32 tctl, rctl;
5253 int i = 0;
5254
5255 set_bit(__IGC_DOWN, &adapter->state);
5256
5257 igc_ptp_suspend(adapter);
5258
5259 if (pci_device_is_present(adapter->pdev)) {
5260 /* disable receives in the hardware */
5261 rctl = rd32(IGC_RCTL);
5262 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5263 /* flush and sleep below */
5264 }
5265 /* set trans_start so we don't get spurious watchdogs during reset */
5266 netif_trans_update(netdev);
5267
5268 netif_carrier_off(netdev);
5269 netif_tx_stop_all_queues(netdev);
5270
5271 if (pci_device_is_present(adapter->pdev)) {
5272 /* disable transmits in the hardware */
5273 tctl = rd32(IGC_TCTL);
5274 tctl &= ~IGC_TCTL_EN;
5275 wr32(IGC_TCTL, tctl);
5276 /* flush both disables and wait for them to finish */
5277 wrfl();
5278 usleep_range(10000, 20000);
5279
5280 igc_irq_disable(adapter);
5281 }
5282
5283 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5284
5285 for (i = 0; i < adapter->num_q_vectors; i++) {
5286 if (adapter->q_vector[i]) {
5287 napi_synchronize(&adapter->q_vector[i]->napi);
5288 igc_set_queue_napi(adapter, i, NULL);
5289 napi_disable(&adapter->q_vector[i]->napi);
5290 }
5291 }
5292
5293 del_timer_sync(&adapter->watchdog_timer);
5294 del_timer_sync(&adapter->phy_info_timer);
5295
5296 /* record the stats before reset*/
5297 spin_lock(&adapter->stats64_lock);
5298 igc_update_stats(adapter);
5299 spin_unlock(&adapter->stats64_lock);
5300
5301 adapter->link_speed = 0;
5302 adapter->link_duplex = 0;
5303
5304 if (!pci_channel_offline(adapter->pdev))
5305 igc_reset(adapter);
5306
5307 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5308 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5309
5310 igc_disable_all_tx_rings_hw(adapter);
5311 igc_clean_all_tx_rings(adapter);
5312 igc_clean_all_rx_rings(adapter);
5313 }
5314
igc_reinit_locked(struct igc_adapter * adapter)5315 void igc_reinit_locked(struct igc_adapter *adapter)
5316 {
5317 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5318 usleep_range(1000, 2000);
5319 igc_down(adapter);
5320 igc_up(adapter);
5321 clear_bit(__IGC_RESETTING, &adapter->state);
5322 }
5323
igc_reset_task(struct work_struct * work)5324 static void igc_reset_task(struct work_struct *work)
5325 {
5326 struct igc_adapter *adapter;
5327
5328 adapter = container_of(work, struct igc_adapter, reset_task);
5329
5330 rtnl_lock();
5331 /* If we're already down or resetting, just bail */
5332 if (test_bit(__IGC_DOWN, &adapter->state) ||
5333 test_bit(__IGC_RESETTING, &adapter->state)) {
5334 rtnl_unlock();
5335 return;
5336 }
5337
5338 igc_rings_dump(adapter);
5339 igc_regs_dump(adapter);
5340 netdev_err(adapter->netdev, "Reset adapter\n");
5341 igc_reinit_locked(adapter);
5342 rtnl_unlock();
5343 }
5344
5345 /**
5346 * igc_change_mtu - Change the Maximum Transfer Unit
5347 * @netdev: network interface device structure
5348 * @new_mtu: new value for maximum frame size
5349 *
5350 * Returns 0 on success, negative on failure
5351 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5352 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5353 {
5354 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5355 struct igc_adapter *adapter = netdev_priv(netdev);
5356
5357 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5358 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5359 return -EINVAL;
5360 }
5361
5362 /* adjust max frame to be at least the size of a standard frame */
5363 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5364 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5365
5366 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5367 usleep_range(1000, 2000);
5368
5369 /* igc_down has a dependency on max_frame_size */
5370 adapter->max_frame_size = max_frame;
5371
5372 if (netif_running(netdev))
5373 igc_down(adapter);
5374
5375 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5376 WRITE_ONCE(netdev->mtu, new_mtu);
5377
5378 if (netif_running(netdev))
5379 igc_up(adapter);
5380 else
5381 igc_reset(adapter);
5382
5383 clear_bit(__IGC_RESETTING, &adapter->state);
5384
5385 return 0;
5386 }
5387
5388 /**
5389 * igc_tx_timeout - Respond to a Tx Hang
5390 * @netdev: network interface device structure
5391 * @txqueue: queue number that timed out
5392 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5393 static void igc_tx_timeout(struct net_device *netdev,
5394 unsigned int __always_unused txqueue)
5395 {
5396 struct igc_adapter *adapter = netdev_priv(netdev);
5397 struct igc_hw *hw = &adapter->hw;
5398
5399 /* Do the reset outside of interrupt context */
5400 adapter->tx_timeout_count++;
5401 schedule_work(&adapter->reset_task);
5402 wr32(IGC_EICS,
5403 (adapter->eims_enable_mask & ~adapter->eims_other));
5404 }
5405
5406 /**
5407 * igc_get_stats64 - Get System Network Statistics
5408 * @netdev: network interface device structure
5409 * @stats: rtnl_link_stats64 pointer
5410 *
5411 * Returns the address of the device statistics structure.
5412 * The statistics are updated here and also from the timer callback.
5413 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5414 static void igc_get_stats64(struct net_device *netdev,
5415 struct rtnl_link_stats64 *stats)
5416 {
5417 struct igc_adapter *adapter = netdev_priv(netdev);
5418
5419 spin_lock(&adapter->stats64_lock);
5420 if (!test_bit(__IGC_RESETTING, &adapter->state))
5421 igc_update_stats(adapter);
5422 memcpy(stats, &adapter->stats64, sizeof(*stats));
5423 spin_unlock(&adapter->stats64_lock);
5424 }
5425
igc_fix_features(struct net_device * netdev,netdev_features_t features)5426 static netdev_features_t igc_fix_features(struct net_device *netdev,
5427 netdev_features_t features)
5428 {
5429 /* Since there is no support for separate Rx/Tx vlan accel
5430 * enable/disable make sure Tx flag is always in same state as Rx.
5431 */
5432 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5433 features |= NETIF_F_HW_VLAN_CTAG_TX;
5434 else
5435 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5436
5437 return features;
5438 }
5439
igc_set_features(struct net_device * netdev,netdev_features_t features)5440 static int igc_set_features(struct net_device *netdev,
5441 netdev_features_t features)
5442 {
5443 netdev_features_t changed = netdev->features ^ features;
5444 struct igc_adapter *adapter = netdev_priv(netdev);
5445
5446 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5447 igc_vlan_mode(netdev, features);
5448
5449 /* Add VLAN support */
5450 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5451 return 0;
5452
5453 if (!(features & NETIF_F_NTUPLE))
5454 igc_flush_nfc_rules(adapter);
5455
5456 netdev->features = features;
5457
5458 if (netif_running(netdev))
5459 igc_reinit_locked(adapter);
5460 else
5461 igc_reset(adapter);
5462
5463 return 1;
5464 }
5465
5466 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5467 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5468 netdev_features_t features)
5469 {
5470 unsigned int network_hdr_len, mac_hdr_len;
5471
5472 /* Make certain the headers can be described by a context descriptor */
5473 mac_hdr_len = skb_network_offset(skb);
5474 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5475 return features & ~(NETIF_F_HW_CSUM |
5476 NETIF_F_SCTP_CRC |
5477 NETIF_F_HW_VLAN_CTAG_TX |
5478 NETIF_F_TSO |
5479 NETIF_F_TSO6);
5480
5481 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5482 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5483 return features & ~(NETIF_F_HW_CSUM |
5484 NETIF_F_SCTP_CRC |
5485 NETIF_F_TSO |
5486 NETIF_F_TSO6);
5487
5488 /* We can only support IPv4 TSO in tunnels if we can mangle the
5489 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5490 */
5491 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5492 features &= ~NETIF_F_TSO;
5493
5494 return features;
5495 }
5496
igc_tsync_interrupt(struct igc_adapter * adapter)5497 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5498 {
5499 struct igc_hw *hw = &adapter->hw;
5500 u32 tsauxc, sec, nsec, tsicr;
5501 struct ptp_clock_event event;
5502 struct timespec64 ts;
5503
5504 tsicr = rd32(IGC_TSICR);
5505
5506 if (tsicr & IGC_TSICR_SYS_WRAP) {
5507 event.type = PTP_CLOCK_PPS;
5508 if (adapter->ptp_caps.pps)
5509 ptp_clock_event(adapter->ptp_clock, &event);
5510 }
5511
5512 if (tsicr & IGC_TSICR_TXTS) {
5513 /* retrieve hardware timestamp */
5514 igc_ptp_tx_tstamp_event(adapter);
5515 }
5516
5517 if (tsicr & IGC_TSICR_TT0) {
5518 spin_lock(&adapter->tmreg_lock);
5519 ts = timespec64_add(adapter->perout[0].start,
5520 adapter->perout[0].period);
5521 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5522 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5523 tsauxc = rd32(IGC_TSAUXC);
5524 tsauxc |= IGC_TSAUXC_EN_TT0;
5525 wr32(IGC_TSAUXC, tsauxc);
5526 adapter->perout[0].start = ts;
5527 spin_unlock(&adapter->tmreg_lock);
5528 }
5529
5530 if (tsicr & IGC_TSICR_TT1) {
5531 spin_lock(&adapter->tmreg_lock);
5532 ts = timespec64_add(adapter->perout[1].start,
5533 adapter->perout[1].period);
5534 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5535 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5536 tsauxc = rd32(IGC_TSAUXC);
5537 tsauxc |= IGC_TSAUXC_EN_TT1;
5538 wr32(IGC_TSAUXC, tsauxc);
5539 adapter->perout[1].start = ts;
5540 spin_unlock(&adapter->tmreg_lock);
5541 }
5542
5543 if (tsicr & IGC_TSICR_AUTT0) {
5544 nsec = rd32(IGC_AUXSTMPL0);
5545 sec = rd32(IGC_AUXSTMPH0);
5546 event.type = PTP_CLOCK_EXTTS;
5547 event.index = 0;
5548 event.timestamp = sec * NSEC_PER_SEC + nsec;
5549 ptp_clock_event(adapter->ptp_clock, &event);
5550 }
5551
5552 if (tsicr & IGC_TSICR_AUTT1) {
5553 nsec = rd32(IGC_AUXSTMPL1);
5554 sec = rd32(IGC_AUXSTMPH1);
5555 event.type = PTP_CLOCK_EXTTS;
5556 event.index = 1;
5557 event.timestamp = sec * NSEC_PER_SEC + nsec;
5558 ptp_clock_event(adapter->ptp_clock, &event);
5559 }
5560 }
5561
5562 /**
5563 * igc_msix_other - msix other interrupt handler
5564 * @irq: interrupt number
5565 * @data: pointer to a q_vector
5566 */
igc_msix_other(int irq,void * data)5567 static irqreturn_t igc_msix_other(int irq, void *data)
5568 {
5569 struct igc_adapter *adapter = data;
5570 struct igc_hw *hw = &adapter->hw;
5571 u32 icr = rd32(IGC_ICR);
5572
5573 /* reading ICR causes bit 31 of EICR to be cleared */
5574 if (icr & IGC_ICR_DRSTA)
5575 schedule_work(&adapter->reset_task);
5576
5577 if (icr & IGC_ICR_DOUTSYNC) {
5578 /* HW is reporting DMA is out of sync */
5579 adapter->stats.doosync++;
5580 }
5581
5582 if (icr & IGC_ICR_LSC) {
5583 hw->mac.get_link_status = true;
5584 /* guard against interrupt when we're going down */
5585 if (!test_bit(__IGC_DOWN, &adapter->state))
5586 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5587 }
5588
5589 if (icr & IGC_ICR_TS)
5590 igc_tsync_interrupt(adapter);
5591
5592 wr32(IGC_EIMS, adapter->eims_other);
5593
5594 return IRQ_HANDLED;
5595 }
5596
igc_write_itr(struct igc_q_vector * q_vector)5597 static void igc_write_itr(struct igc_q_vector *q_vector)
5598 {
5599 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5600
5601 if (!q_vector->set_itr)
5602 return;
5603
5604 if (!itr_val)
5605 itr_val = IGC_ITR_VAL_MASK;
5606
5607 itr_val |= IGC_EITR_CNT_IGNR;
5608
5609 writel(itr_val, q_vector->itr_register);
5610 q_vector->set_itr = 0;
5611 }
5612
igc_msix_ring(int irq,void * data)5613 static irqreturn_t igc_msix_ring(int irq, void *data)
5614 {
5615 struct igc_q_vector *q_vector = data;
5616
5617 /* Write the ITR value calculated from the previous interrupt. */
5618 igc_write_itr(q_vector);
5619
5620 napi_schedule(&q_vector->napi);
5621
5622 return IRQ_HANDLED;
5623 }
5624
5625 /**
5626 * igc_request_msix - Initialize MSI-X interrupts
5627 * @adapter: Pointer to adapter structure
5628 *
5629 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5630 * kernel.
5631 */
igc_request_msix(struct igc_adapter * adapter)5632 static int igc_request_msix(struct igc_adapter *adapter)
5633 {
5634 unsigned int num_q_vectors = adapter->num_q_vectors;
5635 int i = 0, err = 0, vector = 0, free_vector = 0;
5636 struct net_device *netdev = adapter->netdev;
5637
5638 err = request_irq(adapter->msix_entries[vector].vector,
5639 &igc_msix_other, 0, netdev->name, adapter);
5640 if (err)
5641 goto err_out;
5642
5643 if (num_q_vectors > MAX_Q_VECTORS) {
5644 num_q_vectors = MAX_Q_VECTORS;
5645 dev_warn(&adapter->pdev->dev,
5646 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5647 adapter->num_q_vectors, MAX_Q_VECTORS);
5648 }
5649 for (i = 0; i < num_q_vectors; i++) {
5650 struct igc_q_vector *q_vector = adapter->q_vector[i];
5651
5652 vector++;
5653
5654 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5655
5656 if (q_vector->rx.ring && q_vector->tx.ring)
5657 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5658 q_vector->rx.ring->queue_index);
5659 else if (q_vector->tx.ring)
5660 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5661 q_vector->tx.ring->queue_index);
5662 else if (q_vector->rx.ring)
5663 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5664 q_vector->rx.ring->queue_index);
5665 else
5666 sprintf(q_vector->name, "%s-unused", netdev->name);
5667
5668 err = request_irq(adapter->msix_entries[vector].vector,
5669 igc_msix_ring, 0, q_vector->name,
5670 q_vector);
5671 if (err)
5672 goto err_free;
5673
5674 netif_napi_set_irq(&q_vector->napi,
5675 adapter->msix_entries[vector].vector);
5676 }
5677
5678 igc_configure_msix(adapter);
5679 return 0;
5680
5681 err_free:
5682 /* free already assigned IRQs */
5683 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5684
5685 vector--;
5686 for (i = 0; i < vector; i++) {
5687 free_irq(adapter->msix_entries[free_vector++].vector,
5688 adapter->q_vector[i]);
5689 }
5690 err_out:
5691 return err;
5692 }
5693
5694 /**
5695 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5696 * @adapter: Pointer to adapter structure
5697 *
5698 * This function resets the device so that it has 0 rx queues, tx queues, and
5699 * MSI-X interrupts allocated.
5700 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5701 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5702 {
5703 igc_free_q_vectors(adapter);
5704 igc_reset_interrupt_capability(adapter);
5705 }
5706
5707 /* Need to wait a few seconds after link up to get diagnostic information from
5708 * the phy
5709 */
igc_update_phy_info(struct timer_list * t)5710 static void igc_update_phy_info(struct timer_list *t)
5711 {
5712 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5713
5714 igc_get_phy_info(&adapter->hw);
5715 }
5716
5717 /**
5718 * igc_has_link - check shared code for link and determine up/down
5719 * @adapter: pointer to driver private info
5720 */
igc_has_link(struct igc_adapter * adapter)5721 bool igc_has_link(struct igc_adapter *adapter)
5722 {
5723 struct igc_hw *hw = &adapter->hw;
5724 bool link_active = false;
5725
5726 /* get_link_status is set on LSC (link status) interrupt or
5727 * rx sequence error interrupt. get_link_status will stay
5728 * false until the igc_check_for_link establishes link
5729 * for copper adapters ONLY
5730 */
5731 if (!hw->mac.get_link_status)
5732 return true;
5733 hw->mac.ops.check_for_link(hw);
5734 link_active = !hw->mac.get_link_status;
5735
5736 if (hw->mac.type == igc_i225) {
5737 if (!netif_carrier_ok(adapter->netdev)) {
5738 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5739 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5740 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5741 adapter->link_check_timeout = jiffies;
5742 }
5743 }
5744
5745 return link_active;
5746 }
5747
5748 /**
5749 * igc_watchdog - Timer Call-back
5750 * @t: timer for the watchdog
5751 */
igc_watchdog(struct timer_list * t)5752 static void igc_watchdog(struct timer_list *t)
5753 {
5754 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5755 /* Do the rest outside of interrupt context */
5756 schedule_work(&adapter->watchdog_task);
5757 }
5758
igc_watchdog_task(struct work_struct * work)5759 static void igc_watchdog_task(struct work_struct *work)
5760 {
5761 struct igc_adapter *adapter = container_of(work,
5762 struct igc_adapter,
5763 watchdog_task);
5764 struct net_device *netdev = adapter->netdev;
5765 struct igc_hw *hw = &adapter->hw;
5766 struct igc_phy_info *phy = &hw->phy;
5767 u16 phy_data, retry_count = 20;
5768 u32 link;
5769 int i;
5770
5771 link = igc_has_link(adapter);
5772
5773 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5774 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5775 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5776 else
5777 link = false;
5778 }
5779
5780 if (link) {
5781 /* Cancel scheduled suspend requests. */
5782 pm_runtime_resume(netdev->dev.parent);
5783
5784 if (!netif_carrier_ok(netdev)) {
5785 u32 ctrl;
5786
5787 hw->mac.ops.get_speed_and_duplex(hw,
5788 &adapter->link_speed,
5789 &adapter->link_duplex);
5790
5791 ctrl = rd32(IGC_CTRL);
5792 /* Link status message must follow this format */
5793 netdev_info(netdev,
5794 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5795 adapter->link_speed,
5796 adapter->link_duplex == FULL_DUPLEX ?
5797 "Full" : "Half",
5798 (ctrl & IGC_CTRL_TFCE) &&
5799 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5800 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5801 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5802
5803 /* disable EEE if enabled */
5804 if ((adapter->flags & IGC_FLAG_EEE) &&
5805 adapter->link_duplex == HALF_DUPLEX) {
5806 netdev_info(netdev,
5807 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5808 adapter->hw.dev_spec._base.eee_enable = false;
5809 adapter->flags &= ~IGC_FLAG_EEE;
5810 }
5811
5812 /* check if SmartSpeed worked */
5813 igc_check_downshift(hw);
5814 if (phy->speed_downgraded)
5815 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5816
5817 /* adjust timeout factor according to speed/duplex */
5818 adapter->tx_timeout_factor = 1;
5819 switch (adapter->link_speed) {
5820 case SPEED_10:
5821 adapter->tx_timeout_factor = 14;
5822 break;
5823 case SPEED_100:
5824 case SPEED_1000:
5825 case SPEED_2500:
5826 adapter->tx_timeout_factor = 1;
5827 break;
5828 }
5829
5830 /* Once the launch time has been set on the wire, there
5831 * is a delay before the link speed can be determined
5832 * based on link-up activity. Write into the register
5833 * as soon as we know the correct link speed.
5834 */
5835 igc_tsn_adjust_txtime_offset(adapter);
5836
5837 if (adapter->link_speed != SPEED_1000)
5838 goto no_wait;
5839
5840 /* wait for Remote receiver status OK */
5841 retry_read_status:
5842 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5843 &phy_data)) {
5844 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5845 retry_count) {
5846 msleep(100);
5847 retry_count--;
5848 goto retry_read_status;
5849 } else if (!retry_count) {
5850 netdev_err(netdev, "exceed max 2 second\n");
5851 }
5852 } else {
5853 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5854 }
5855 no_wait:
5856 netif_carrier_on(netdev);
5857
5858 /* link state has changed, schedule phy info update */
5859 if (!test_bit(__IGC_DOWN, &adapter->state))
5860 mod_timer(&adapter->phy_info_timer,
5861 round_jiffies(jiffies + 2 * HZ));
5862 }
5863 } else {
5864 if (netif_carrier_ok(netdev)) {
5865 adapter->link_speed = 0;
5866 adapter->link_duplex = 0;
5867
5868 /* Links status message must follow this format */
5869 netdev_info(netdev, "NIC Link is Down\n");
5870 netif_carrier_off(netdev);
5871
5872 /* link state has changed, schedule phy info update */
5873 if (!test_bit(__IGC_DOWN, &adapter->state))
5874 mod_timer(&adapter->phy_info_timer,
5875 round_jiffies(jiffies + 2 * HZ));
5876
5877 pm_schedule_suspend(netdev->dev.parent,
5878 MSEC_PER_SEC * 5);
5879 }
5880 }
5881
5882 spin_lock(&adapter->stats64_lock);
5883 igc_update_stats(adapter);
5884 spin_unlock(&adapter->stats64_lock);
5885
5886 for (i = 0; i < adapter->num_tx_queues; i++) {
5887 struct igc_ring *tx_ring = adapter->tx_ring[i];
5888
5889 if (!netif_carrier_ok(netdev)) {
5890 /* We've lost link, so the controller stops DMA,
5891 * but we've got queued Tx work that's never going
5892 * to get done, so reset controller to flush Tx.
5893 * (Do the reset outside of interrupt context).
5894 */
5895 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5896 adapter->tx_timeout_count++;
5897 schedule_work(&adapter->reset_task);
5898 /* return immediately since reset is imminent */
5899 return;
5900 }
5901 }
5902
5903 /* Force detection of hung controller every watchdog period */
5904 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5905 }
5906
5907 /* Cause software interrupt to ensure Rx ring is cleaned */
5908 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5909 u32 eics = 0;
5910
5911 for (i = 0; i < adapter->num_q_vectors; i++) {
5912 struct igc_q_vector *q_vector = adapter->q_vector[i];
5913 struct igc_ring *rx_ring;
5914
5915 if (!q_vector->rx.ring)
5916 continue;
5917
5918 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5919
5920 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5921 eics |= q_vector->eims_value;
5922 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5923 }
5924 }
5925 if (eics)
5926 wr32(IGC_EICS, eics);
5927 } else {
5928 struct igc_ring *rx_ring = adapter->rx_ring[0];
5929
5930 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5931 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5932 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5933 }
5934 }
5935
5936 igc_ptp_tx_hang(adapter);
5937
5938 /* Reset the timer */
5939 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5940 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5941 mod_timer(&adapter->watchdog_timer,
5942 round_jiffies(jiffies + HZ));
5943 else
5944 mod_timer(&adapter->watchdog_timer,
5945 round_jiffies(jiffies + 2 * HZ));
5946 }
5947 }
5948
5949 /**
5950 * igc_intr_msi - Interrupt Handler
5951 * @irq: interrupt number
5952 * @data: pointer to a network interface device structure
5953 */
igc_intr_msi(int irq,void * data)5954 static irqreturn_t igc_intr_msi(int irq, void *data)
5955 {
5956 struct igc_adapter *adapter = data;
5957 struct igc_q_vector *q_vector = adapter->q_vector[0];
5958 struct igc_hw *hw = &adapter->hw;
5959 /* read ICR disables interrupts using IAM */
5960 u32 icr = rd32(IGC_ICR);
5961
5962 igc_write_itr(q_vector);
5963
5964 if (icr & IGC_ICR_DRSTA)
5965 schedule_work(&adapter->reset_task);
5966
5967 if (icr & IGC_ICR_DOUTSYNC) {
5968 /* HW is reporting DMA is out of sync */
5969 adapter->stats.doosync++;
5970 }
5971
5972 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5973 hw->mac.get_link_status = true;
5974 if (!test_bit(__IGC_DOWN, &adapter->state))
5975 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5976 }
5977
5978 if (icr & IGC_ICR_TS)
5979 igc_tsync_interrupt(adapter);
5980
5981 napi_schedule(&q_vector->napi);
5982
5983 return IRQ_HANDLED;
5984 }
5985
5986 /**
5987 * igc_intr - Legacy Interrupt Handler
5988 * @irq: interrupt number
5989 * @data: pointer to a network interface device structure
5990 */
igc_intr(int irq,void * data)5991 static irqreturn_t igc_intr(int irq, void *data)
5992 {
5993 struct igc_adapter *adapter = data;
5994 struct igc_q_vector *q_vector = adapter->q_vector[0];
5995 struct igc_hw *hw = &adapter->hw;
5996 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5997 * need for the IMC write
5998 */
5999 u32 icr = rd32(IGC_ICR);
6000
6001 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6002 * not set, then the adapter didn't send an interrupt
6003 */
6004 if (!(icr & IGC_ICR_INT_ASSERTED))
6005 return IRQ_NONE;
6006
6007 igc_write_itr(q_vector);
6008
6009 if (icr & IGC_ICR_DRSTA)
6010 schedule_work(&adapter->reset_task);
6011
6012 if (icr & IGC_ICR_DOUTSYNC) {
6013 /* HW is reporting DMA is out of sync */
6014 adapter->stats.doosync++;
6015 }
6016
6017 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6018 hw->mac.get_link_status = true;
6019 /* guard against interrupt when we're going down */
6020 if (!test_bit(__IGC_DOWN, &adapter->state))
6021 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6022 }
6023
6024 if (icr & IGC_ICR_TS)
6025 igc_tsync_interrupt(adapter);
6026
6027 napi_schedule(&q_vector->napi);
6028
6029 return IRQ_HANDLED;
6030 }
6031
igc_free_irq(struct igc_adapter * adapter)6032 static void igc_free_irq(struct igc_adapter *adapter)
6033 {
6034 if (adapter->msix_entries) {
6035 int vector = 0, i;
6036
6037 free_irq(adapter->msix_entries[vector++].vector, adapter);
6038
6039 for (i = 0; i < adapter->num_q_vectors; i++)
6040 free_irq(adapter->msix_entries[vector++].vector,
6041 adapter->q_vector[i]);
6042 } else {
6043 free_irq(adapter->pdev->irq, adapter);
6044 }
6045 }
6046
6047 /**
6048 * igc_request_irq - initialize interrupts
6049 * @adapter: Pointer to adapter structure
6050 *
6051 * Attempts to configure interrupts using the best available
6052 * capabilities of the hardware and kernel.
6053 */
igc_request_irq(struct igc_adapter * adapter)6054 static int igc_request_irq(struct igc_adapter *adapter)
6055 {
6056 struct net_device *netdev = adapter->netdev;
6057 struct pci_dev *pdev = adapter->pdev;
6058 int err = 0;
6059
6060 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
6061 err = igc_request_msix(adapter);
6062 if (!err)
6063 goto request_done;
6064 /* fall back to MSI */
6065 igc_free_all_tx_resources(adapter);
6066 igc_free_all_rx_resources(adapter);
6067
6068 igc_clear_interrupt_scheme(adapter);
6069 err = igc_init_interrupt_scheme(adapter, false);
6070 if (err)
6071 goto request_done;
6072 igc_setup_all_tx_resources(adapter);
6073 igc_setup_all_rx_resources(adapter);
6074 igc_configure(adapter);
6075 }
6076
6077 igc_assign_vector(adapter->q_vector[0], 0);
6078
6079 if (adapter->flags & IGC_FLAG_HAS_MSI) {
6080 err = request_irq(pdev->irq, &igc_intr_msi, 0,
6081 netdev->name, adapter);
6082 if (!err)
6083 goto request_done;
6084
6085 /* fall back to legacy interrupts */
6086 igc_reset_interrupt_capability(adapter);
6087 adapter->flags &= ~IGC_FLAG_HAS_MSI;
6088 }
6089
6090 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6091 netdev->name, adapter);
6092
6093 if (err)
6094 netdev_err(netdev, "Error %d getting interrupt\n", err);
6095
6096 request_done:
6097 return err;
6098 }
6099
6100 /**
6101 * __igc_open - Called when a network interface is made active
6102 * @netdev: network interface device structure
6103 * @resuming: boolean indicating if the device is resuming
6104 *
6105 * Returns 0 on success, negative value on failure
6106 *
6107 * The open entry point is called when a network interface is made
6108 * active by the system (IFF_UP). At this point all resources needed
6109 * for transmit and receive operations are allocated, the interrupt
6110 * handler is registered with the OS, the watchdog timer is started,
6111 * and the stack is notified that the interface is ready.
6112 */
__igc_open(struct net_device * netdev,bool resuming)6113 static int __igc_open(struct net_device *netdev, bool resuming)
6114 {
6115 struct igc_adapter *adapter = netdev_priv(netdev);
6116 struct pci_dev *pdev = adapter->pdev;
6117 struct igc_hw *hw = &adapter->hw;
6118 struct napi_struct *napi;
6119 int err = 0;
6120 int i = 0;
6121
6122 /* disallow open during test */
6123
6124 if (test_bit(__IGC_TESTING, &adapter->state)) {
6125 WARN_ON(resuming);
6126 return -EBUSY;
6127 }
6128
6129 if (!resuming)
6130 pm_runtime_get_sync(&pdev->dev);
6131
6132 netif_carrier_off(netdev);
6133
6134 /* allocate transmit descriptors */
6135 err = igc_setup_all_tx_resources(adapter);
6136 if (err)
6137 goto err_setup_tx;
6138
6139 /* allocate receive descriptors */
6140 err = igc_setup_all_rx_resources(adapter);
6141 if (err)
6142 goto err_setup_rx;
6143
6144 igc_power_up_link(adapter);
6145
6146 igc_configure(adapter);
6147
6148 err = igc_request_irq(adapter);
6149 if (err)
6150 goto err_req_irq;
6151
6152 clear_bit(__IGC_DOWN, &adapter->state);
6153
6154 for (i = 0; i < adapter->num_q_vectors; i++) {
6155 napi = &adapter->q_vector[i]->napi;
6156 napi_enable(napi);
6157 igc_set_queue_napi(adapter, i, napi);
6158 }
6159
6160 /* Clear any pending interrupts. */
6161 rd32(IGC_ICR);
6162 igc_irq_enable(adapter);
6163
6164 if (!resuming)
6165 pm_runtime_put(&pdev->dev);
6166
6167 netif_tx_start_all_queues(netdev);
6168
6169 /* start the watchdog. */
6170 hw->mac.get_link_status = true;
6171 schedule_work(&adapter->watchdog_task);
6172
6173 return IGC_SUCCESS;
6174
6175 err_req_irq:
6176 igc_release_hw_control(adapter);
6177 igc_power_down_phy_copper_base(&adapter->hw);
6178 igc_free_all_rx_resources(adapter);
6179 err_setup_rx:
6180 igc_free_all_tx_resources(adapter);
6181 err_setup_tx:
6182 igc_reset(adapter);
6183 if (!resuming)
6184 pm_runtime_put(&pdev->dev);
6185
6186 return err;
6187 }
6188
igc_open(struct net_device * netdev)6189 int igc_open(struct net_device *netdev)
6190 {
6191 struct igc_adapter *adapter = netdev_priv(netdev);
6192 int err;
6193
6194 /* Notify the stack of the actual queue counts. */
6195 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6196 adapter->num_rx_queues);
6197 if (err) {
6198 netdev_err(netdev, "error setting real queue count\n");
6199 return err;
6200 }
6201
6202 return __igc_open(netdev, false);
6203 }
6204
6205 /**
6206 * __igc_close - Disables a network interface
6207 * @netdev: network interface device structure
6208 * @suspending: boolean indicating the device is suspending
6209 *
6210 * Returns 0, this is not allowed to fail
6211 *
6212 * The close entry point is called when an interface is de-activated
6213 * by the OS. The hardware is still under the driver's control, but
6214 * needs to be disabled. A global MAC reset is issued to stop the
6215 * hardware, and all transmit and receive resources are freed.
6216 */
__igc_close(struct net_device * netdev,bool suspending)6217 static int __igc_close(struct net_device *netdev, bool suspending)
6218 {
6219 struct igc_adapter *adapter = netdev_priv(netdev);
6220 struct pci_dev *pdev = adapter->pdev;
6221
6222 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6223
6224 if (!suspending)
6225 pm_runtime_get_sync(&pdev->dev);
6226
6227 igc_down(adapter);
6228
6229 igc_release_hw_control(adapter);
6230
6231 igc_free_irq(adapter);
6232
6233 igc_free_all_tx_resources(adapter);
6234 igc_free_all_rx_resources(adapter);
6235
6236 if (!suspending)
6237 pm_runtime_put_sync(&pdev->dev);
6238
6239 return 0;
6240 }
6241
igc_close(struct net_device * netdev)6242 int igc_close(struct net_device *netdev)
6243 {
6244 if (netif_device_present(netdev) || netdev->dismantle)
6245 return __igc_close(netdev, false);
6246 return 0;
6247 }
6248
6249 /**
6250 * igc_ioctl - Access the hwtstamp interface
6251 * @netdev: network interface device structure
6252 * @ifr: interface request data
6253 * @cmd: ioctl command
6254 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6255 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6256 {
6257 switch (cmd) {
6258 case SIOCGHWTSTAMP:
6259 return igc_ptp_get_ts_config(netdev, ifr);
6260 case SIOCSHWTSTAMP:
6261 return igc_ptp_set_ts_config(netdev, ifr);
6262 default:
6263 return -EOPNOTSUPP;
6264 }
6265 }
6266
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6267 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6268 bool enable)
6269 {
6270 struct igc_ring *ring;
6271
6272 if (queue < 0 || queue >= adapter->num_tx_queues)
6273 return -EINVAL;
6274
6275 ring = adapter->tx_ring[queue];
6276 ring->launchtime_enable = enable;
6277
6278 return 0;
6279 }
6280
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6281 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6282 {
6283 struct timespec64 b;
6284
6285 b = ktime_to_timespec64(base_time);
6286
6287 return timespec64_compare(now, &b) > 0;
6288 }
6289
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6290 static bool validate_schedule(struct igc_adapter *adapter,
6291 const struct tc_taprio_qopt_offload *qopt)
6292 {
6293 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6294 struct igc_hw *hw = &adapter->hw;
6295 struct timespec64 now;
6296 size_t n;
6297
6298 if (qopt->cycle_time_extension)
6299 return false;
6300
6301 igc_ptp_read(adapter, &now);
6302
6303 /* If we program the controller's BASET registers with a time
6304 * in the future, it will hold all the packets until that
6305 * time, causing a lot of TX Hangs, so to avoid that, we
6306 * reject schedules that would start in the future.
6307 * Note: Limitation above is no longer in i226.
6308 */
6309 if (!is_base_time_past(qopt->base_time, &now) &&
6310 igc_is_device_id_i225(hw))
6311 return false;
6312
6313 for (n = 0; n < qopt->num_entries; n++) {
6314 const struct tc_taprio_sched_entry *e, *prev;
6315 int i;
6316
6317 prev = n ? &qopt->entries[n - 1] : NULL;
6318 e = &qopt->entries[n];
6319
6320 /* i225 only supports "global" frame preemption
6321 * settings.
6322 */
6323 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6324 return false;
6325
6326 for (i = 0; i < adapter->num_tx_queues; i++)
6327 if (e->gate_mask & BIT(i)) {
6328 queue_uses[i]++;
6329
6330 /* There are limitations: A single queue cannot
6331 * be opened and closed multiple times per cycle
6332 * unless the gate stays open. Check for it.
6333 */
6334 if (queue_uses[i] > 1 &&
6335 !(prev->gate_mask & BIT(i)))
6336 return false;
6337 }
6338 }
6339
6340 return true;
6341 }
6342
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6343 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6344 struct tc_etf_qopt_offload *qopt)
6345 {
6346 struct igc_hw *hw = &adapter->hw;
6347 int err;
6348
6349 if (hw->mac.type != igc_i225)
6350 return -EOPNOTSUPP;
6351
6352 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6353 if (err)
6354 return err;
6355
6356 return igc_tsn_offload_apply(adapter);
6357 }
6358
igc_qbv_clear_schedule(struct igc_adapter * adapter)6359 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6360 {
6361 unsigned long flags;
6362 int i;
6363
6364 adapter->base_time = 0;
6365 adapter->cycle_time = NSEC_PER_SEC;
6366 adapter->taprio_offload_enable = false;
6367 adapter->qbv_config_change_errors = 0;
6368 adapter->qbv_count = 0;
6369
6370 for (i = 0; i < adapter->num_tx_queues; i++) {
6371 struct igc_ring *ring = adapter->tx_ring[i];
6372
6373 ring->start_time = 0;
6374 ring->end_time = NSEC_PER_SEC;
6375 ring->max_sdu = 0;
6376 }
6377
6378 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6379
6380 adapter->qbv_transition = false;
6381
6382 for (i = 0; i < adapter->num_tx_queues; i++) {
6383 struct igc_ring *ring = adapter->tx_ring[i];
6384
6385 ring->oper_gate_closed = false;
6386 ring->admin_gate_closed = false;
6387 }
6388
6389 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6390
6391 return 0;
6392 }
6393
igc_tsn_clear_schedule(struct igc_adapter * adapter)6394 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6395 {
6396 igc_qbv_clear_schedule(adapter);
6397
6398 return 0;
6399 }
6400
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6401 static void igc_taprio_stats(struct net_device *dev,
6402 struct tc_taprio_qopt_stats *stats)
6403 {
6404 /* When Strict_End is enabled, the tx_overruns counter
6405 * will always be zero.
6406 */
6407 stats->tx_overruns = 0;
6408 }
6409
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6410 static void igc_taprio_queue_stats(struct net_device *dev,
6411 struct tc_taprio_qopt_queue_stats *queue_stats)
6412 {
6413 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6414
6415 /* When Strict_End is enabled, the tx_overruns counter
6416 * will always be zero.
6417 */
6418 stats->tx_overruns = 0;
6419 }
6420
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6421 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6422 struct tc_taprio_qopt_offload *qopt)
6423 {
6424 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6425 struct igc_hw *hw = &adapter->hw;
6426 u32 start_time = 0, end_time = 0;
6427 struct timespec64 now;
6428 unsigned long flags;
6429 size_t n;
6430 int i;
6431
6432 if (qopt->base_time < 0)
6433 return -ERANGE;
6434
6435 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6436 return -EALREADY;
6437
6438 if (!validate_schedule(adapter, qopt))
6439 return -EINVAL;
6440
6441 igc_ptp_read(adapter, &now);
6442
6443 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6444 is_base_time_past(qopt->base_time, &now))
6445 adapter->qbv_config_change_errors++;
6446
6447 adapter->cycle_time = qopt->cycle_time;
6448 adapter->base_time = qopt->base_time;
6449 adapter->taprio_offload_enable = true;
6450
6451 for (n = 0; n < qopt->num_entries; n++) {
6452 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6453
6454 end_time += e->interval;
6455
6456 /* If any of the conditions below are true, we need to manually
6457 * control the end time of the cycle.
6458 * 1. Qbv users can specify a cycle time that is not equal
6459 * to the total GCL intervals. Hence, recalculation is
6460 * necessary here to exclude the time interval that
6461 * exceeds the cycle time.
6462 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6463 * once the end of the list is reached, it will switch
6464 * to the END_OF_CYCLE state and leave the gates in the
6465 * same state until the next cycle is started.
6466 */
6467 if (end_time > adapter->cycle_time ||
6468 n + 1 == qopt->num_entries)
6469 end_time = adapter->cycle_time;
6470
6471 for (i = 0; i < adapter->num_tx_queues; i++) {
6472 struct igc_ring *ring = adapter->tx_ring[i];
6473
6474 if (!(e->gate_mask & BIT(i)))
6475 continue;
6476
6477 /* Check whether a queue stays open for more than one
6478 * entry. If so, keep the start and advance the end
6479 * time.
6480 */
6481 if (!queue_configured[i])
6482 ring->start_time = start_time;
6483 ring->end_time = end_time;
6484
6485 if (ring->start_time >= adapter->cycle_time)
6486 queue_configured[i] = false;
6487 else
6488 queue_configured[i] = true;
6489 }
6490
6491 start_time += e->interval;
6492 }
6493
6494 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6495
6496 /* Check whether a queue gets configured.
6497 * If not, set the start and end time to be end time.
6498 */
6499 for (i = 0; i < adapter->num_tx_queues; i++) {
6500 struct igc_ring *ring = adapter->tx_ring[i];
6501
6502 if (!is_base_time_past(qopt->base_time, &now)) {
6503 ring->admin_gate_closed = false;
6504 } else {
6505 ring->oper_gate_closed = false;
6506 ring->admin_gate_closed = false;
6507 }
6508
6509 if (!queue_configured[i]) {
6510 if (!is_base_time_past(qopt->base_time, &now))
6511 ring->admin_gate_closed = true;
6512 else
6513 ring->oper_gate_closed = true;
6514
6515 ring->start_time = end_time;
6516 ring->end_time = end_time;
6517 }
6518 }
6519
6520 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6521
6522 for (i = 0; i < adapter->num_tx_queues; i++) {
6523 struct igc_ring *ring = adapter->tx_ring[i];
6524 struct net_device *dev = adapter->netdev;
6525
6526 if (qopt->max_sdu[i])
6527 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6528 else
6529 ring->max_sdu = 0;
6530 }
6531
6532 return 0;
6533 }
6534
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6535 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6536 struct tc_taprio_qopt_offload *qopt)
6537 {
6538 struct igc_hw *hw = &adapter->hw;
6539 int err;
6540
6541 if (hw->mac.type != igc_i225)
6542 return -EOPNOTSUPP;
6543
6544 switch (qopt->cmd) {
6545 case TAPRIO_CMD_REPLACE:
6546 err = igc_save_qbv_schedule(adapter, qopt);
6547 break;
6548 case TAPRIO_CMD_DESTROY:
6549 err = igc_tsn_clear_schedule(adapter);
6550 break;
6551 case TAPRIO_CMD_STATS:
6552 igc_taprio_stats(adapter->netdev, &qopt->stats);
6553 return 0;
6554 case TAPRIO_CMD_QUEUE_STATS:
6555 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6556 return 0;
6557 default:
6558 return -EOPNOTSUPP;
6559 }
6560
6561 if (err)
6562 return err;
6563
6564 return igc_tsn_offload_apply(adapter);
6565 }
6566
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6567 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6568 bool enable, int idleslope, int sendslope,
6569 int hicredit, int locredit)
6570 {
6571 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6572 struct net_device *netdev = adapter->netdev;
6573 struct igc_ring *ring;
6574 int i;
6575
6576 /* i225 has two sets of credit-based shaper logic.
6577 * Supporting it only on the top two priority queues
6578 */
6579 if (queue < 0 || queue > 1)
6580 return -EINVAL;
6581
6582 ring = adapter->tx_ring[queue];
6583
6584 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6585 if (adapter->tx_ring[i])
6586 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6587
6588 /* CBS should be enabled on the highest priority queue first in order
6589 * for the CBS algorithm to operate as intended.
6590 */
6591 if (enable) {
6592 if (queue == 1 && !cbs_status[0]) {
6593 netdev_err(netdev,
6594 "Enabling CBS on queue1 before queue0\n");
6595 return -EINVAL;
6596 }
6597 } else {
6598 if (queue == 0 && cbs_status[1]) {
6599 netdev_err(netdev,
6600 "Disabling CBS on queue0 before queue1\n");
6601 return -EINVAL;
6602 }
6603 }
6604
6605 ring->cbs_enable = enable;
6606 ring->idleslope = idleslope;
6607 ring->sendslope = sendslope;
6608 ring->hicredit = hicredit;
6609 ring->locredit = locredit;
6610
6611 return 0;
6612 }
6613
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6614 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6615 struct tc_cbs_qopt_offload *qopt)
6616 {
6617 struct igc_hw *hw = &adapter->hw;
6618 int err;
6619
6620 if (hw->mac.type != igc_i225)
6621 return -EOPNOTSUPP;
6622
6623 if (qopt->queue < 0 || qopt->queue > 1)
6624 return -EINVAL;
6625
6626 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6627 qopt->idleslope, qopt->sendslope,
6628 qopt->hicredit, qopt->locredit);
6629 if (err)
6630 return err;
6631
6632 return igc_tsn_offload_apply(adapter);
6633 }
6634
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6635 static int igc_tc_query_caps(struct igc_adapter *adapter,
6636 struct tc_query_caps_base *base)
6637 {
6638 struct igc_hw *hw = &adapter->hw;
6639
6640 switch (base->type) {
6641 case TC_SETUP_QDISC_MQPRIO: {
6642 struct tc_mqprio_caps *caps = base->caps;
6643
6644 caps->validate_queue_counts = true;
6645
6646 return 0;
6647 }
6648 case TC_SETUP_QDISC_TAPRIO: {
6649 struct tc_taprio_caps *caps = base->caps;
6650
6651 caps->broken_mqprio = true;
6652
6653 if (hw->mac.type == igc_i225) {
6654 caps->supports_queue_max_sdu = true;
6655 caps->gate_mask_per_txq = true;
6656 }
6657
6658 return 0;
6659 }
6660 default:
6661 return -EOPNOTSUPP;
6662 }
6663 }
6664
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6665 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6666 u16 *offset)
6667 {
6668 int i;
6669
6670 adapter->strict_priority_enable = true;
6671 adapter->num_tc = num_tc;
6672
6673 for (i = 0; i < num_tc; i++)
6674 adapter->queue_per_tc[i] = offset[i];
6675 }
6676
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6677 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6678 struct tc_mqprio_qopt_offload *mqprio)
6679 {
6680 struct igc_hw *hw = &adapter->hw;
6681 int i;
6682
6683 if (hw->mac.type != igc_i225)
6684 return -EOPNOTSUPP;
6685
6686 if (!mqprio->qopt.num_tc) {
6687 adapter->strict_priority_enable = false;
6688 goto apply;
6689 }
6690
6691 /* There are as many TCs as Tx queues. */
6692 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6693 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6694 "Only %d traffic classes supported",
6695 adapter->num_tx_queues);
6696 return -EOPNOTSUPP;
6697 }
6698
6699 /* Only one queue per TC is supported. */
6700 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6701 if (mqprio->qopt.count[i] != 1) {
6702 NL_SET_ERR_MSG_MOD(mqprio->extack,
6703 "Only one queue per TC supported");
6704 return -EOPNOTSUPP;
6705 }
6706 }
6707
6708 /* Preemption is not supported yet. */
6709 if (mqprio->preemptible_tcs) {
6710 NL_SET_ERR_MSG_MOD(mqprio->extack,
6711 "Preemption is not supported yet");
6712 return -EOPNOTSUPP;
6713 }
6714
6715 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6716 mqprio->qopt.offset);
6717
6718 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6719
6720 apply:
6721 return igc_tsn_offload_apply(adapter);
6722 }
6723
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6724 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6725 void *type_data)
6726 {
6727 struct igc_adapter *adapter = netdev_priv(dev);
6728
6729 adapter->tc_setup_type = type;
6730
6731 switch (type) {
6732 case TC_QUERY_CAPS:
6733 return igc_tc_query_caps(adapter, type_data);
6734 case TC_SETUP_QDISC_TAPRIO:
6735 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6736
6737 case TC_SETUP_QDISC_ETF:
6738 return igc_tsn_enable_launchtime(adapter, type_data);
6739
6740 case TC_SETUP_QDISC_CBS:
6741 return igc_tsn_enable_cbs(adapter, type_data);
6742
6743 case TC_SETUP_QDISC_MQPRIO:
6744 return igc_tsn_enable_mqprio(adapter, type_data);
6745
6746 default:
6747 return -EOPNOTSUPP;
6748 }
6749 }
6750
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6751 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6752 {
6753 struct igc_adapter *adapter = netdev_priv(dev);
6754
6755 switch (bpf->command) {
6756 case XDP_SETUP_PROG:
6757 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6758 case XDP_SETUP_XSK_POOL:
6759 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6760 bpf->xsk.queue_id);
6761 default:
6762 return -EOPNOTSUPP;
6763 }
6764 }
6765
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6766 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6767 struct xdp_frame **frames, u32 flags)
6768 {
6769 struct igc_adapter *adapter = netdev_priv(dev);
6770 int cpu = smp_processor_id();
6771 struct netdev_queue *nq;
6772 struct igc_ring *ring;
6773 int i, nxmit;
6774
6775 if (unlikely(!netif_carrier_ok(dev)))
6776 return -ENETDOWN;
6777
6778 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6779 return -EINVAL;
6780
6781 ring = igc_xdp_get_tx_ring(adapter, cpu);
6782 nq = txring_txq(ring);
6783
6784 __netif_tx_lock(nq, cpu);
6785
6786 /* Avoid transmit queue timeout since we share it with the slow path */
6787 txq_trans_cond_update(nq);
6788
6789 nxmit = 0;
6790 for (i = 0; i < num_frames; i++) {
6791 int err;
6792 struct xdp_frame *xdpf = frames[i];
6793
6794 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6795 if (err)
6796 break;
6797 nxmit++;
6798 }
6799
6800 if (flags & XDP_XMIT_FLUSH)
6801 igc_flush_tx_descriptors(ring);
6802
6803 __netif_tx_unlock(nq);
6804
6805 return nxmit;
6806 }
6807
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6808 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6809 struct igc_q_vector *q_vector)
6810 {
6811 struct igc_hw *hw = &adapter->hw;
6812 u32 eics = 0;
6813
6814 eics |= q_vector->eims_value;
6815 wr32(IGC_EICS, eics);
6816 }
6817
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6818 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6819 {
6820 struct igc_adapter *adapter = netdev_priv(dev);
6821 struct igc_q_vector *q_vector;
6822 struct igc_ring *ring;
6823
6824 if (test_bit(__IGC_DOWN, &adapter->state))
6825 return -ENETDOWN;
6826
6827 if (!igc_xdp_is_enabled(adapter))
6828 return -ENXIO;
6829
6830 if (queue_id >= adapter->num_rx_queues)
6831 return -EINVAL;
6832
6833 ring = adapter->rx_ring[queue_id];
6834
6835 if (!ring->xsk_pool)
6836 return -ENXIO;
6837
6838 q_vector = adapter->q_vector[queue_id];
6839 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6840 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6841
6842 return 0;
6843 }
6844
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6845 static ktime_t igc_get_tstamp(struct net_device *dev,
6846 const struct skb_shared_hwtstamps *hwtstamps,
6847 bool cycles)
6848 {
6849 struct igc_adapter *adapter = netdev_priv(dev);
6850 struct igc_inline_rx_tstamps *tstamp;
6851 ktime_t timestamp;
6852
6853 tstamp = hwtstamps->netdev_data;
6854
6855 if (cycles)
6856 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6857 else
6858 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6859
6860 return timestamp;
6861 }
6862
6863 static const struct net_device_ops igc_netdev_ops = {
6864 .ndo_open = igc_open,
6865 .ndo_stop = igc_close,
6866 .ndo_start_xmit = igc_xmit_frame,
6867 .ndo_set_rx_mode = igc_set_rx_mode,
6868 .ndo_set_mac_address = igc_set_mac,
6869 .ndo_change_mtu = igc_change_mtu,
6870 .ndo_tx_timeout = igc_tx_timeout,
6871 .ndo_get_stats64 = igc_get_stats64,
6872 .ndo_fix_features = igc_fix_features,
6873 .ndo_set_features = igc_set_features,
6874 .ndo_features_check = igc_features_check,
6875 .ndo_eth_ioctl = igc_ioctl,
6876 .ndo_setup_tc = igc_setup_tc,
6877 .ndo_bpf = igc_bpf,
6878 .ndo_xdp_xmit = igc_xdp_xmit,
6879 .ndo_xsk_wakeup = igc_xsk_wakeup,
6880 .ndo_get_tstamp = igc_get_tstamp,
6881 };
6882
igc_rd32(struct igc_hw * hw,u32 reg)6883 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6884 {
6885 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6886 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6887 u32 value = 0;
6888
6889 if (IGC_REMOVED(hw_addr))
6890 return ~value;
6891
6892 value = readl(&hw_addr[reg]);
6893
6894 /* reads should not return all F's */
6895 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6896 struct net_device *netdev = igc->netdev;
6897
6898 hw->hw_addr = NULL;
6899 netif_device_detach(netdev);
6900 netdev_err(netdev, "PCIe link lost, device now detached\n");
6901 WARN(pci_device_is_present(igc->pdev),
6902 "igc: Failed to read reg 0x%x!\n", reg);
6903 }
6904
6905 return value;
6906 }
6907
6908 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6909 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6910 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6911 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6912 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6913 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6914 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6915 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6916 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6917 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6918 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6919 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6920 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6921 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6922 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6923 [13] = XDP_RSS_TYPE_NONE,
6924 [14] = XDP_RSS_TYPE_NONE,
6925 [15] = XDP_RSS_TYPE_NONE,
6926 };
6927
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6928 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6929 enum xdp_rss_hash_type *rss_type)
6930 {
6931 const struct igc_xdp_buff *ctx = (void *)_ctx;
6932
6933 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6934 return -ENODATA;
6935
6936 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6937 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6938
6939 return 0;
6940 }
6941
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6942 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6943 {
6944 const struct igc_xdp_buff *ctx = (void *)_ctx;
6945 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6946 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6947
6948 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6949 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6950
6951 return 0;
6952 }
6953
6954 return -ENODATA;
6955 }
6956
6957 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6958 .xmo_rx_hash = igc_xdp_rx_hash,
6959 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6960 };
6961
igc_qbv_scheduling_timer(struct hrtimer * timer)6962 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6963 {
6964 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6965 hrtimer);
6966 unsigned long flags;
6967 unsigned int i;
6968
6969 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6970
6971 adapter->qbv_transition = true;
6972 for (i = 0; i < adapter->num_tx_queues; i++) {
6973 struct igc_ring *tx_ring = adapter->tx_ring[i];
6974
6975 if (tx_ring->admin_gate_closed) {
6976 tx_ring->admin_gate_closed = false;
6977 tx_ring->oper_gate_closed = true;
6978 } else {
6979 tx_ring->oper_gate_closed = false;
6980 }
6981 }
6982 adapter->qbv_transition = false;
6983
6984 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6985
6986 return HRTIMER_NORESTART;
6987 }
6988
6989 /**
6990 * igc_probe - Device Initialization Routine
6991 * @pdev: PCI device information struct
6992 * @ent: entry in igc_pci_tbl
6993 *
6994 * Returns 0 on success, negative on failure
6995 *
6996 * igc_probe initializes an adapter identified by a pci_dev structure.
6997 * The OS initialization, configuring the adapter private structure,
6998 * and a hardware reset occur.
6999 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7000 static int igc_probe(struct pci_dev *pdev,
7001 const struct pci_device_id *ent)
7002 {
7003 struct igc_adapter *adapter;
7004 struct net_device *netdev;
7005 struct igc_hw *hw;
7006 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
7007 int err;
7008
7009 err = pci_enable_device_mem(pdev);
7010 if (err)
7011 return err;
7012
7013 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7014 if (err) {
7015 dev_err(&pdev->dev,
7016 "No usable DMA configuration, aborting\n");
7017 goto err_dma;
7018 }
7019
7020 err = pci_request_mem_regions(pdev, igc_driver_name);
7021 if (err)
7022 goto err_pci_reg;
7023
7024 err = pci_enable_ptm(pdev, NULL);
7025 if (err < 0)
7026 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
7027
7028 pci_set_master(pdev);
7029
7030 err = -ENOMEM;
7031 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
7032 IGC_MAX_TX_QUEUES);
7033
7034 if (!netdev)
7035 goto err_alloc_etherdev;
7036
7037 SET_NETDEV_DEV(netdev, &pdev->dev);
7038
7039 pci_set_drvdata(pdev, netdev);
7040 adapter = netdev_priv(netdev);
7041 adapter->netdev = netdev;
7042 adapter->pdev = pdev;
7043 hw = &adapter->hw;
7044 hw->back = adapter;
7045 adapter->port_num = hw->bus.func;
7046 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7047
7048 err = pci_save_state(pdev);
7049 if (err)
7050 goto err_ioremap;
7051
7052 err = -EIO;
7053 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7054 pci_resource_len(pdev, 0));
7055 if (!adapter->io_addr)
7056 goto err_ioremap;
7057
7058 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7059 hw->hw_addr = adapter->io_addr;
7060
7061 netdev->netdev_ops = &igc_netdev_ops;
7062 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7063 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7064 igc_ethtool_set_ops(netdev);
7065 netdev->watchdog_timeo = 5 * HZ;
7066
7067 netdev->mem_start = pci_resource_start(pdev, 0);
7068 netdev->mem_end = pci_resource_end(pdev, 0);
7069
7070 /* PCI config space info */
7071 hw->vendor_id = pdev->vendor;
7072 hw->device_id = pdev->device;
7073 hw->revision_id = pdev->revision;
7074 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7075 hw->subsystem_device_id = pdev->subsystem_device;
7076
7077 /* Copy the default MAC and PHY function pointers */
7078 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7079 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7080
7081 /* Initialize skew-specific constants */
7082 err = ei->get_invariants(hw);
7083 if (err)
7084 goto err_sw_init;
7085
7086 /* Add supported features to the features list*/
7087 netdev->features |= NETIF_F_SG;
7088 netdev->features |= NETIF_F_TSO;
7089 netdev->features |= NETIF_F_TSO6;
7090 netdev->features |= NETIF_F_TSO_ECN;
7091 netdev->features |= NETIF_F_RXHASH;
7092 netdev->features |= NETIF_F_RXCSUM;
7093 netdev->features |= NETIF_F_HW_CSUM;
7094 netdev->features |= NETIF_F_SCTP_CRC;
7095 netdev->features |= NETIF_F_HW_TC;
7096
7097 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7098 NETIF_F_GSO_GRE_CSUM | \
7099 NETIF_F_GSO_IPXIP4 | \
7100 NETIF_F_GSO_IPXIP6 | \
7101 NETIF_F_GSO_UDP_TUNNEL | \
7102 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7103
7104 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7105 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7106
7107 /* setup the private structure */
7108 err = igc_sw_init(adapter);
7109 if (err)
7110 goto err_sw_init;
7111
7112 /* copy netdev features into list of user selectable features */
7113 netdev->hw_features |= NETIF_F_NTUPLE;
7114 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7115 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7116 netdev->hw_features |= netdev->features;
7117
7118 netdev->features |= NETIF_F_HIGHDMA;
7119
7120 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7121 netdev->mpls_features |= NETIF_F_HW_CSUM;
7122 netdev->hw_enc_features |= netdev->vlan_features;
7123
7124 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7125 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7126
7127 /* MTU range: 68 - 9216 */
7128 netdev->min_mtu = ETH_MIN_MTU;
7129 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7130
7131 /* before reading the NVM, reset the controller to put the device in a
7132 * known good starting state
7133 */
7134 hw->mac.ops.reset_hw(hw);
7135
7136 if (igc_get_flash_presence_i225(hw)) {
7137 if (hw->nvm.ops.validate(hw) < 0) {
7138 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7139 err = -EIO;
7140 goto err_eeprom;
7141 }
7142 }
7143
7144 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7145 /* copy the MAC address out of the NVM */
7146 if (hw->mac.ops.read_mac_addr(hw))
7147 dev_err(&pdev->dev, "NVM Read Error\n");
7148 }
7149
7150 eth_hw_addr_set(netdev, hw->mac.addr);
7151
7152 if (!is_valid_ether_addr(netdev->dev_addr)) {
7153 dev_err(&pdev->dev, "Invalid MAC Address\n");
7154 err = -EIO;
7155 goto err_eeprom;
7156 }
7157
7158 /* configure RXPBSIZE and TXPBSIZE */
7159 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7160 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7161
7162 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7163 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7164
7165 INIT_WORK(&adapter->reset_task, igc_reset_task);
7166 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7167
7168 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7169 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7170
7171 /* Initialize link properties that are user-changeable */
7172 adapter->fc_autoneg = true;
7173 hw->phy.autoneg_advertised = 0xaf;
7174
7175 hw->fc.requested_mode = igc_fc_default;
7176 hw->fc.current_mode = igc_fc_default;
7177
7178 /* By default, support wake on port A */
7179 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7180
7181 /* initialize the wol settings based on the eeprom settings */
7182 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7183 adapter->wol |= IGC_WUFC_MAG;
7184
7185 device_set_wakeup_enable(&adapter->pdev->dev,
7186 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7187
7188 igc_ptp_init(adapter);
7189
7190 igc_tsn_clear_schedule(adapter);
7191
7192 /* reset the hardware with the new settings */
7193 igc_reset(adapter);
7194
7195 /* let the f/w know that the h/w is now under the control of the
7196 * driver.
7197 */
7198 igc_get_hw_control(adapter);
7199
7200 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7201 err = register_netdev(netdev);
7202 if (err)
7203 goto err_register;
7204
7205 /* carrier off reporting is important to ethtool even BEFORE open */
7206 netif_carrier_off(netdev);
7207
7208 /* Check if Media Autosense is enabled */
7209 adapter->ei = *ei;
7210
7211 /* print pcie link status and MAC address */
7212 pcie_print_link_status(pdev);
7213 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7214
7215 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7216 /* Disable EEE for internal PHY devices */
7217 hw->dev_spec._base.eee_enable = false;
7218 adapter->flags &= ~IGC_FLAG_EEE;
7219 igc_set_eee_i225(hw, false, false, false);
7220
7221 pm_runtime_put_noidle(&pdev->dev);
7222
7223 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7224 err = igc_led_setup(adapter);
7225 if (err)
7226 goto err_register;
7227 }
7228
7229 return 0;
7230
7231 err_register:
7232 igc_release_hw_control(adapter);
7233 igc_ptp_stop(adapter);
7234 err_eeprom:
7235 if (!igc_check_reset_block(hw))
7236 igc_reset_phy(hw);
7237 err_sw_init:
7238 igc_clear_interrupt_scheme(adapter);
7239 iounmap(adapter->io_addr);
7240 err_ioremap:
7241 free_netdev(netdev);
7242 err_alloc_etherdev:
7243 pci_release_mem_regions(pdev);
7244 err_pci_reg:
7245 err_dma:
7246 pci_disable_device(pdev);
7247 return err;
7248 }
7249
7250 /**
7251 * igc_remove - Device Removal Routine
7252 * @pdev: PCI device information struct
7253 *
7254 * igc_remove is called by the PCI subsystem to alert the driver
7255 * that it should release a PCI device. This could be caused by a
7256 * Hot-Plug event, or because the driver is going to be removed from
7257 * memory.
7258 */
igc_remove(struct pci_dev * pdev)7259 static void igc_remove(struct pci_dev *pdev)
7260 {
7261 struct net_device *netdev = pci_get_drvdata(pdev);
7262 struct igc_adapter *adapter = netdev_priv(netdev);
7263
7264 pm_runtime_get_noresume(&pdev->dev);
7265
7266 igc_flush_nfc_rules(adapter);
7267
7268 igc_ptp_stop(adapter);
7269
7270 pci_disable_ptm(pdev);
7271 pci_clear_master(pdev);
7272
7273 set_bit(__IGC_DOWN, &adapter->state);
7274
7275 del_timer_sync(&adapter->watchdog_timer);
7276 del_timer_sync(&adapter->phy_info_timer);
7277
7278 cancel_work_sync(&adapter->reset_task);
7279 cancel_work_sync(&adapter->watchdog_task);
7280 hrtimer_cancel(&adapter->hrtimer);
7281
7282 if (IS_ENABLED(CONFIG_IGC_LEDS))
7283 igc_led_free(adapter);
7284
7285 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7286 * would have already happened in close and is redundant.
7287 */
7288 igc_release_hw_control(adapter);
7289 unregister_netdev(netdev);
7290
7291 igc_clear_interrupt_scheme(adapter);
7292 pci_iounmap(pdev, adapter->io_addr);
7293 pci_release_mem_regions(pdev);
7294
7295 free_netdev(netdev);
7296
7297 pci_disable_device(pdev);
7298 }
7299
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7300 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7301 bool runtime)
7302 {
7303 struct net_device *netdev = pci_get_drvdata(pdev);
7304 struct igc_adapter *adapter = netdev_priv(netdev);
7305 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7306 struct igc_hw *hw = &adapter->hw;
7307 u32 ctrl, rctl, status;
7308 bool wake;
7309
7310 rtnl_lock();
7311 netif_device_detach(netdev);
7312
7313 if (netif_running(netdev))
7314 __igc_close(netdev, true);
7315
7316 igc_ptp_suspend(adapter);
7317
7318 igc_clear_interrupt_scheme(adapter);
7319 rtnl_unlock();
7320
7321 status = rd32(IGC_STATUS);
7322 if (status & IGC_STATUS_LU)
7323 wufc &= ~IGC_WUFC_LNKC;
7324
7325 if (wufc) {
7326 igc_setup_rctl(adapter);
7327 igc_set_rx_mode(netdev);
7328
7329 /* turn on all-multi mode if wake on multicast is enabled */
7330 if (wufc & IGC_WUFC_MC) {
7331 rctl = rd32(IGC_RCTL);
7332 rctl |= IGC_RCTL_MPE;
7333 wr32(IGC_RCTL, rctl);
7334 }
7335
7336 ctrl = rd32(IGC_CTRL);
7337 ctrl |= IGC_CTRL_ADVD3WUC;
7338 wr32(IGC_CTRL, ctrl);
7339
7340 /* Allow time for pending master requests to run */
7341 igc_disable_pcie_master(hw);
7342
7343 wr32(IGC_WUC, IGC_WUC_PME_EN);
7344 wr32(IGC_WUFC, wufc);
7345 } else {
7346 wr32(IGC_WUC, 0);
7347 wr32(IGC_WUFC, 0);
7348 }
7349
7350 wake = wufc || adapter->en_mng_pt;
7351 if (!wake)
7352 igc_power_down_phy_copper_base(&adapter->hw);
7353 else
7354 igc_power_up_link(adapter);
7355
7356 if (enable_wake)
7357 *enable_wake = wake;
7358
7359 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7360 * would have already happened in close and is redundant.
7361 */
7362 igc_release_hw_control(adapter);
7363
7364 pci_disable_device(pdev);
7365
7366 return 0;
7367 }
7368
igc_runtime_suspend(struct device * dev)7369 static int igc_runtime_suspend(struct device *dev)
7370 {
7371 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7372 }
7373
igc_deliver_wake_packet(struct net_device * netdev)7374 static void igc_deliver_wake_packet(struct net_device *netdev)
7375 {
7376 struct igc_adapter *adapter = netdev_priv(netdev);
7377 struct igc_hw *hw = &adapter->hw;
7378 struct sk_buff *skb;
7379 u32 wupl;
7380
7381 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7382
7383 /* WUPM stores only the first 128 bytes of the wake packet.
7384 * Read the packet only if we have the whole thing.
7385 */
7386 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7387 return;
7388
7389 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7390 if (!skb)
7391 return;
7392
7393 skb_put(skb, wupl);
7394
7395 /* Ensure reads are 32-bit aligned */
7396 wupl = roundup(wupl, 4);
7397
7398 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7399
7400 skb->protocol = eth_type_trans(skb, netdev);
7401 netif_rx(skb);
7402 }
7403
__igc_resume(struct device * dev,bool rpm)7404 static int __igc_resume(struct device *dev, bool rpm)
7405 {
7406 struct pci_dev *pdev = to_pci_dev(dev);
7407 struct net_device *netdev = pci_get_drvdata(pdev);
7408 struct igc_adapter *adapter = netdev_priv(netdev);
7409 struct igc_hw *hw = &adapter->hw;
7410 u32 err, val;
7411
7412 pci_set_power_state(pdev, PCI_D0);
7413 pci_restore_state(pdev);
7414 pci_save_state(pdev);
7415
7416 if (!pci_device_is_present(pdev))
7417 return -ENODEV;
7418 err = pci_enable_device_mem(pdev);
7419 if (err) {
7420 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7421 return err;
7422 }
7423 pci_set_master(pdev);
7424
7425 pci_enable_wake(pdev, PCI_D3hot, 0);
7426 pci_enable_wake(pdev, PCI_D3cold, 0);
7427
7428 if (igc_init_interrupt_scheme(adapter, true)) {
7429 netdev_err(netdev, "Unable to allocate memory for queues\n");
7430 return -ENOMEM;
7431 }
7432
7433 igc_reset(adapter);
7434
7435 /* let the f/w know that the h/w is now under the control of the
7436 * driver.
7437 */
7438 igc_get_hw_control(adapter);
7439
7440 val = rd32(IGC_WUS);
7441 if (val & WAKE_PKT_WUS)
7442 igc_deliver_wake_packet(netdev);
7443
7444 wr32(IGC_WUS, ~0);
7445
7446 if (netif_running(netdev)) {
7447 if (!rpm)
7448 rtnl_lock();
7449 err = __igc_open(netdev, true);
7450 if (!rpm)
7451 rtnl_unlock();
7452 if (!err)
7453 netif_device_attach(netdev);
7454 }
7455
7456 return err;
7457 }
7458
igc_resume(struct device * dev)7459 static int igc_resume(struct device *dev)
7460 {
7461 return __igc_resume(dev, false);
7462 }
7463
igc_runtime_resume(struct device * dev)7464 static int igc_runtime_resume(struct device *dev)
7465 {
7466 return __igc_resume(dev, true);
7467 }
7468
igc_suspend(struct device * dev)7469 static int igc_suspend(struct device *dev)
7470 {
7471 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7472 }
7473
igc_runtime_idle(struct device * dev)7474 static int __maybe_unused igc_runtime_idle(struct device *dev)
7475 {
7476 struct net_device *netdev = dev_get_drvdata(dev);
7477 struct igc_adapter *adapter = netdev_priv(netdev);
7478
7479 if (!igc_has_link(adapter))
7480 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7481
7482 return -EBUSY;
7483 }
7484
igc_shutdown(struct pci_dev * pdev)7485 static void igc_shutdown(struct pci_dev *pdev)
7486 {
7487 bool wake;
7488
7489 __igc_shutdown(pdev, &wake, 0);
7490
7491 if (system_state == SYSTEM_POWER_OFF) {
7492 pci_wake_from_d3(pdev, wake);
7493 pci_set_power_state(pdev, PCI_D3hot);
7494 }
7495 }
7496
7497 /**
7498 * igc_io_error_detected - called when PCI error is detected
7499 * @pdev: Pointer to PCI device
7500 * @state: The current PCI connection state
7501 *
7502 * This function is called after a PCI bus error affecting
7503 * this device has been detected.
7504 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7505 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7506 pci_channel_state_t state)
7507 {
7508 struct net_device *netdev = pci_get_drvdata(pdev);
7509 struct igc_adapter *adapter = netdev_priv(netdev);
7510
7511 rtnl_lock();
7512 netif_device_detach(netdev);
7513
7514 if (state == pci_channel_io_perm_failure) {
7515 rtnl_unlock();
7516 return PCI_ERS_RESULT_DISCONNECT;
7517 }
7518
7519 if (netif_running(netdev))
7520 igc_down(adapter);
7521 pci_disable_device(pdev);
7522 rtnl_unlock();
7523
7524 /* Request a slot reset. */
7525 return PCI_ERS_RESULT_NEED_RESET;
7526 }
7527
7528 /**
7529 * igc_io_slot_reset - called after the PCI bus has been reset.
7530 * @pdev: Pointer to PCI device
7531 *
7532 * Restart the card from scratch, as if from a cold-boot. Implementation
7533 * resembles the first-half of the __igc_resume routine.
7534 **/
igc_io_slot_reset(struct pci_dev * pdev)7535 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7536 {
7537 struct net_device *netdev = pci_get_drvdata(pdev);
7538 struct igc_adapter *adapter = netdev_priv(netdev);
7539 struct igc_hw *hw = &adapter->hw;
7540 pci_ers_result_t result;
7541
7542 if (pci_enable_device_mem(pdev)) {
7543 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7544 result = PCI_ERS_RESULT_DISCONNECT;
7545 } else {
7546 pci_set_master(pdev);
7547 pci_restore_state(pdev);
7548 pci_save_state(pdev);
7549
7550 pci_enable_wake(pdev, PCI_D3hot, 0);
7551 pci_enable_wake(pdev, PCI_D3cold, 0);
7552
7553 /* In case of PCI error, adapter loses its HW address
7554 * so we should re-assign it here.
7555 */
7556 hw->hw_addr = adapter->io_addr;
7557
7558 igc_reset(adapter);
7559 wr32(IGC_WUS, ~0);
7560 result = PCI_ERS_RESULT_RECOVERED;
7561 }
7562
7563 return result;
7564 }
7565
7566 /**
7567 * igc_io_resume - called when traffic can start to flow again.
7568 * @pdev: Pointer to PCI device
7569 *
7570 * This callback is called when the error recovery driver tells us that
7571 * its OK to resume normal operation. Implementation resembles the
7572 * second-half of the __igc_resume routine.
7573 */
igc_io_resume(struct pci_dev * pdev)7574 static void igc_io_resume(struct pci_dev *pdev)
7575 {
7576 struct net_device *netdev = pci_get_drvdata(pdev);
7577 struct igc_adapter *adapter = netdev_priv(netdev);
7578
7579 rtnl_lock();
7580 if (netif_running(netdev)) {
7581 if (igc_open(netdev)) {
7582 rtnl_unlock();
7583 netdev_err(netdev, "igc_open failed after reset\n");
7584 return;
7585 }
7586 }
7587
7588 netif_device_attach(netdev);
7589
7590 /* let the f/w know that the h/w is now under the control of the
7591 * driver.
7592 */
7593 igc_get_hw_control(adapter);
7594 rtnl_unlock();
7595 }
7596
7597 static const struct pci_error_handlers igc_err_handler = {
7598 .error_detected = igc_io_error_detected,
7599 .slot_reset = igc_io_slot_reset,
7600 .resume = igc_io_resume,
7601 };
7602
7603 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7604 igc_runtime_suspend, igc_runtime_resume,
7605 igc_runtime_idle);
7606
7607 static struct pci_driver igc_driver = {
7608 .name = igc_driver_name,
7609 .id_table = igc_pci_tbl,
7610 .probe = igc_probe,
7611 .remove = igc_remove,
7612 .driver.pm = pm_ptr(&igc_pm_ops),
7613 .shutdown = igc_shutdown,
7614 .err_handler = &igc_err_handler,
7615 };
7616
7617 /**
7618 * igc_reinit_queues - return error
7619 * @adapter: pointer to adapter structure
7620 */
igc_reinit_queues(struct igc_adapter * adapter)7621 int igc_reinit_queues(struct igc_adapter *adapter)
7622 {
7623 struct net_device *netdev = adapter->netdev;
7624 int err = 0;
7625
7626 if (netif_running(netdev))
7627 igc_close(netdev);
7628
7629 igc_reset_interrupt_capability(adapter);
7630
7631 if (igc_init_interrupt_scheme(adapter, true)) {
7632 netdev_err(netdev, "Unable to allocate memory for queues\n");
7633 return -ENOMEM;
7634 }
7635
7636 if (netif_running(netdev))
7637 err = igc_open(netdev);
7638
7639 return err;
7640 }
7641
7642 /**
7643 * igc_get_hw_dev - return device
7644 * @hw: pointer to hardware structure
7645 *
7646 * used by hardware layer to print debugging information
7647 */
igc_get_hw_dev(struct igc_hw * hw)7648 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7649 {
7650 struct igc_adapter *adapter = hw->back;
7651
7652 return adapter->netdev;
7653 }
7654
igc_disable_rx_ring_hw(struct igc_ring * ring)7655 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7656 {
7657 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7658 u8 idx = ring->reg_idx;
7659 u32 rxdctl;
7660
7661 rxdctl = rd32(IGC_RXDCTL(idx));
7662 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7663 rxdctl |= IGC_RXDCTL_SWFLUSH;
7664 wr32(IGC_RXDCTL(idx), rxdctl);
7665 }
7666
igc_disable_rx_ring(struct igc_ring * ring)7667 void igc_disable_rx_ring(struct igc_ring *ring)
7668 {
7669 igc_disable_rx_ring_hw(ring);
7670 igc_clean_rx_ring(ring);
7671 }
7672
igc_enable_rx_ring(struct igc_ring * ring)7673 void igc_enable_rx_ring(struct igc_ring *ring)
7674 {
7675 struct igc_adapter *adapter = ring->q_vector->adapter;
7676
7677 igc_configure_rx_ring(adapter, ring);
7678
7679 if (ring->xsk_pool)
7680 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7681 else
7682 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7683 }
7684
igc_disable_tx_ring(struct igc_ring * ring)7685 void igc_disable_tx_ring(struct igc_ring *ring)
7686 {
7687 igc_disable_tx_ring_hw(ring);
7688 igc_clean_tx_ring(ring);
7689 }
7690
igc_enable_tx_ring(struct igc_ring * ring)7691 void igc_enable_tx_ring(struct igc_ring *ring)
7692 {
7693 struct igc_adapter *adapter = ring->q_vector->adapter;
7694
7695 igc_configure_tx_ring(adapter, ring);
7696 }
7697
7698 /**
7699 * igc_init_module - Driver Registration Routine
7700 *
7701 * igc_init_module is the first routine called when the driver is
7702 * loaded. All it does is register with the PCI subsystem.
7703 */
igc_init_module(void)7704 static int __init igc_init_module(void)
7705 {
7706 int ret;
7707
7708 pr_info("%s\n", igc_driver_string);
7709 pr_info("%s\n", igc_copyright);
7710
7711 ret = pci_register_driver(&igc_driver);
7712 return ret;
7713 }
7714
7715 module_init(igc_init_module);
7716
7717 /**
7718 * igc_exit_module - Driver Exit Cleanup Routine
7719 *
7720 * igc_exit_module is called just before the driver is removed
7721 * from memory.
7722 */
igc_exit_module(void)7723 static void __exit igc_exit_module(void)
7724 {
7725 pci_unregister_driver(&igc_driver);
7726 }
7727
7728 module_exit(igc_exit_module);
7729 /* igc_main.c */
7730