xref: /aosp_15_r20/external/mesa3d/src/intel/vulkan_hasvk/anv_image.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include "drm-uapi/drm_fourcc.h"
31 
32 #include "anv_private.h"
33 #include "util/u_debug.h"
34 #include "vk_util.h"
35 #include "util/u_math.h"
36 
37 #include "vk_format.h"
38 
39 #define ANV_OFFSET_IMPLICIT UINT64_MAX
40 
41 static const enum isl_surf_dim
42 vk_to_isl_surf_dim[] = {
43    [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
44    [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
45    [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
46 };
47 
48 static uint64_t MUST_CHECK UNUSED
memory_range_end(struct anv_image_memory_range memory_range)49 memory_range_end(struct anv_image_memory_range memory_range)
50 {
51    assert(anv_is_aligned(memory_range.offset, memory_range.alignment));
52    return memory_range.offset + memory_range.size;
53 }
54 
55 /**
56  * Get binding for VkImagePlaneMemoryRequirementsInfo,
57  * VkBindImagePlaneMemoryInfo and VkDeviceImageMemoryRequirements.
58  */
59 static struct anv_image_binding *
image_aspect_to_binding(struct anv_image * image,VkImageAspectFlags aspect)60 image_aspect_to_binding(struct anv_image *image, VkImageAspectFlags aspect)
61 {
62    uint32_t plane;
63 
64    assert(image->disjoint);
65 
66    if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
67       /* Spec requires special aspects for modifier images. */
68       assert(aspect >= VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT &&
69              aspect <= VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT);
70 
71       /* We don't advertise DISJOINT for modifiers with aux, and therefore we
72        * don't handle queries of the modifier's "aux plane" here.
73        */
74       assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod));
75 
76       plane = aspect - VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT;
77    } else {
78       plane = anv_image_aspect_to_plane(image, aspect);
79    }
80 
81    return &image->bindings[ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane];
82 }
83 
84 /**
85  * Extend the memory binding's range by appending a new memory range with `size`
86  * and `alignment` at `offset`. Return the appended range.
87  *
88  * Offset is ignored if ANV_OFFSET_IMPLICIT.
89  *
90  * The given binding must not be ANV_IMAGE_MEMORY_BINDING_MAIN. The function
91  * converts to MAIN as needed.
92  */
93 static VkResult MUST_CHECK
image_binding_grow(const struct anv_device * device,struct anv_image * image,enum anv_image_memory_binding binding,uint64_t offset,uint64_t size,uint32_t alignment,struct anv_image_memory_range * out_range)94 image_binding_grow(const struct anv_device *device,
95                    struct anv_image *image,
96                    enum anv_image_memory_binding binding,
97                    uint64_t offset,
98                    uint64_t size,
99                    uint32_t alignment,
100                    struct anv_image_memory_range *out_range)
101 {
102    /* We overwrite 'offset' but need to remember if it was implicit. */
103    const bool has_implicit_offset = (offset == ANV_OFFSET_IMPLICIT);
104 
105    assert(size > 0);
106    assert(util_is_power_of_two_or_zero(alignment));
107 
108    switch (binding) {
109    case ANV_IMAGE_MEMORY_BINDING_MAIN:
110       /* The caller must not pre-translate BINDING_PLANE_i to BINDING_MAIN. */
111       unreachable("ANV_IMAGE_MEMORY_BINDING_MAIN");
112    case ANV_IMAGE_MEMORY_BINDING_PLANE_0:
113    case ANV_IMAGE_MEMORY_BINDING_PLANE_1:
114    case ANV_IMAGE_MEMORY_BINDING_PLANE_2:
115       if (!image->disjoint)
116          binding = ANV_IMAGE_MEMORY_BINDING_MAIN;
117       break;
118    case ANV_IMAGE_MEMORY_BINDING_PRIVATE:
119       assert(offset == ANV_OFFSET_IMPLICIT);
120       break;
121    case ANV_IMAGE_MEMORY_BINDING_END:
122       unreachable("ANV_IMAGE_MEMORY_BINDING_END");
123    }
124 
125    struct anv_image_memory_range *container =
126       &image->bindings[binding].memory_range;
127 
128    if (has_implicit_offset) {
129       offset = align64(container->offset + container->size, alignment);
130    } else {
131       /* Offset must be validated because it comes from
132        * VkImageDrmFormatModifierExplicitCreateInfoEXT.
133        */
134       if (unlikely(!anv_is_aligned(offset, alignment))) {
135          return vk_errorf(device,
136                           VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
137                           "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
138                           "pPlaneLayouts[]::offset is misaligned");
139       }
140 
141       /* We require that surfaces be added in memory-order. This simplifies the
142        * layout validation required by
143        * VkImageDrmFormatModifierExplicitCreateInfoEXT,
144        */
145       if (unlikely(offset < container->size)) {
146          return vk_errorf(device,
147                           VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
148                           "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
149                           "pPlaneLayouts[]::offset is too small");
150       }
151    }
152 
153    if (__builtin_add_overflow(offset, size, &container->size)) {
154       if (has_implicit_offset) {
155          assert(!"overflow");
156          return vk_errorf(device, VK_ERROR_UNKNOWN,
157                           "internal error: overflow in %s", __func__);
158       } else {
159          return vk_errorf(device,
160                           VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
161                           "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
162                           "pPlaneLayouts[]::offset is too large");
163       }
164    }
165 
166    container->alignment = MAX2(container->alignment, alignment);
167 
168    *out_range = (struct anv_image_memory_range) {
169       .binding = binding,
170       .offset = offset,
171       .size = size,
172       .alignment = alignment,
173    };
174 
175    return VK_SUCCESS;
176 }
177 
178 /**
179  * Adjust range 'a' to contain range 'b'.
180  *
181  * For simplicity's sake, the offset of 'a' must be 0 and remains 0.
182  * If 'a' and 'b' target different bindings, then no merge occurs.
183  */
184 static void
memory_range_merge(struct anv_image_memory_range * a,const struct anv_image_memory_range b)185 memory_range_merge(struct anv_image_memory_range *a,
186                    const struct anv_image_memory_range b)
187 {
188    if (b.size == 0)
189       return;
190 
191    if (a->binding != b.binding)
192       return;
193 
194    assert(a->offset == 0);
195    assert(anv_is_aligned(a->offset, a->alignment));
196    assert(anv_is_aligned(b.offset, b.alignment));
197 
198    a->alignment = MAX2(a->alignment, b.alignment);
199    a->size = MAX2(a->size, b.offset + b.size);
200 }
201 
202 static isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,VkImageUsageFlags vk_usage,isl_surf_usage_flags_t isl_extra_usage,VkImageAspectFlagBits aspect)203 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
204                       VkImageUsageFlags vk_usage,
205                       isl_surf_usage_flags_t isl_extra_usage,
206                       VkImageAspectFlagBits aspect)
207 {
208    isl_surf_usage_flags_t isl_usage = isl_extra_usage;
209 
210    if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
211       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
212 
213    if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
214       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
215 
216    if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
217       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
218 
219    if (vk_usage & VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR)
220       isl_usage |= ISL_SURF_USAGE_CPB_BIT;
221 
222    if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
223       isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
224 
225    /* Even if we're only using it for transfer operations, clears to depth and
226     * stencil images happen as depth and stencil so they need the right ISL
227     * usage bits or else things will fall apart.
228     */
229    switch (aspect) {
230    case VK_IMAGE_ASPECT_DEPTH_BIT:
231       isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
232       break;
233    case VK_IMAGE_ASPECT_STENCIL_BIT:
234       isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
235       break;
236    case VK_IMAGE_ASPECT_COLOR_BIT:
237    case VK_IMAGE_ASPECT_PLANE_0_BIT:
238    case VK_IMAGE_ASPECT_PLANE_1_BIT:
239    case VK_IMAGE_ASPECT_PLANE_2_BIT:
240       break;
241    default:
242       unreachable("bad VkImageAspect");
243    }
244 
245    if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
246       /* blorp implements transfers by sampling from the source image. */
247       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
248    }
249 
250    if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
251        aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
252       /* blorp implements transfers by rendering into the destination image.
253        * Only request this with color images, as we deal with depth/stencil
254        * formats differently. */
255       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
256    }
257 
258    return isl_usage;
259 }
260 
261 static isl_tiling_flags_t
choose_isl_tiling_flags(const struct intel_device_info * devinfo,const struct anv_image_create_info * anv_info,const struct isl_drm_modifier_info * isl_mod_info,bool legacy_scanout)262 choose_isl_tiling_flags(const struct intel_device_info *devinfo,
263                         const struct anv_image_create_info *anv_info,
264                         const struct isl_drm_modifier_info *isl_mod_info,
265                         bool legacy_scanout)
266 {
267    const VkImageCreateInfo *base_info = anv_info->vk_info;
268    isl_tiling_flags_t flags = 0;
269 
270    assert((isl_mod_info != NULL) ==
271           (base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));
272 
273    switch (base_info->tiling) {
274    default:
275       unreachable("bad VkImageTiling");
276    case VK_IMAGE_TILING_OPTIMAL:
277       flags = ISL_TILING_ANY_MASK;
278       break;
279    case VK_IMAGE_TILING_LINEAR:
280       flags = ISL_TILING_LINEAR_BIT;
281       break;
282    case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT:
283       flags = 1 << isl_mod_info->tiling;
284    }
285 
286    if (anv_info->isl_tiling_flags) {
287       assert(isl_mod_info == NULL);
288       flags &= anv_info->isl_tiling_flags;
289    }
290 
291    if (legacy_scanout) {
292       isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT;
293       if (devinfo->has_tiling_uapi)
294          legacy_mask |= ISL_TILING_X_BIT;
295       flags &= legacy_mask;
296    }
297 
298    assert(flags);
299 
300    return flags;
301 }
302 
303 /**
304  * Add the surface to the binding at the given offset.
305  *
306  * \see image_binding_grow()
307  */
308 static VkResult MUST_CHECK
add_surface(struct anv_device * device,struct anv_image * image,struct anv_surface * surf,enum anv_image_memory_binding binding,uint64_t offset)309 add_surface(struct anv_device *device,
310             struct anv_image *image,
311             struct anv_surface *surf,
312             enum anv_image_memory_binding binding,
313             uint64_t offset)
314 {
315    /* isl surface must be initialized */
316    assert(surf->isl.size_B > 0);
317 
318    return image_binding_grow(device, image, binding, offset,
319                              surf->isl.size_B,
320                              surf->isl.alignment_B,
321                              &surf->memory_range);
322 }
323 
324 /**
325  * Do hardware limitations require the image plane to use a shadow surface?
326  *
327  * If hardware limitations force us to use a shadow surface, then the same
328  * limitations may also constrain the tiling of the primary surface; therefore
329  * parameter @a inout_primary_tiling_flags.
330  *
331  * If the image plane is a separate stencil plane and if the user provided
332  * VkImageStencilUsageCreateInfo, then @a usage must be stencilUsage.
333  *
334  * @see anv_image::planes[]::shadow_surface
335  */
336 static bool
anv_image_plane_needs_shadow_surface(const struct intel_device_info * devinfo,struct anv_format_plane plane_format,VkImageTiling vk_tiling,VkImageUsageFlags vk_plane_usage,VkImageCreateFlags vk_create_flags,isl_tiling_flags_t * inout_primary_tiling_flags)337 anv_image_plane_needs_shadow_surface(const struct intel_device_info *devinfo,
338                                      struct anv_format_plane plane_format,
339                                      VkImageTiling vk_tiling,
340                                      VkImageUsageFlags vk_plane_usage,
341                                      VkImageCreateFlags vk_create_flags,
342                                      isl_tiling_flags_t *inout_primary_tiling_flags)
343 {
344    if (devinfo->ver <= 8 &&
345        (vk_create_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
346        vk_tiling == VK_IMAGE_TILING_OPTIMAL) {
347       /* We must fallback to a linear surface because we may not be able to
348        * correctly handle the offsets if tiled. (On gfx9,
349        * RENDER_SURFACE_STATE::X/Y Offset are sufficient). To prevent garbage
350        * performance while texturing, we maintain a tiled shadow surface.
351        */
352       assert(isl_format_is_compressed(plane_format.isl_format));
353 
354       if (inout_primary_tiling_flags) {
355          *inout_primary_tiling_flags = ISL_TILING_LINEAR_BIT;
356       }
357 
358       return true;
359    }
360 
361    if (devinfo->ver <= 7 &&
362        plane_format.aspect == VK_IMAGE_ASPECT_STENCIL_BIT &&
363        (vk_plane_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
364                           VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))) {
365       /* gfx7 can't sample from W-tiled surfaces. */
366       return true;
367    }
368 
369    return false;
370 }
371 
372 static bool
can_fast_clear_with_non_zero_color(const struct intel_device_info * devinfo,const struct anv_image * image,uint32_t plane,const VkImageFormatListCreateInfo * fmt_list)373 can_fast_clear_with_non_zero_color(const struct intel_device_info *devinfo,
374                                    const struct anv_image *image,
375                                    uint32_t plane,
376                                    const VkImageFormatListCreateInfo *fmt_list)
377 {
378    /* Triangles rendered on non-zero fast cleared images with 8xMSAA can get
379     * black pixels around them on Haswell.
380     */
381    if (devinfo->ver == 7 && image->vk.samples == 8) {
382       return false;
383    }
384 
385    /* If we don't have an AUX surface where fast clears apply, we can return
386     * early.
387     */
388    if (!isl_aux_usage_has_fast_clears(image->planes[plane].aux_usage))
389       return false;
390 
391    /* Non mutable image, we can fast clear with any color supported by HW.
392     */
393    if (!(image->vk.create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
394       return true;
395 
396    /* Mutable image with no format list, we have to assume all formats */
397    if (!fmt_list || fmt_list->viewFormatCount == 0)
398       return false;
399 
400    enum isl_format img_format = image->planes[plane].primary_surface.isl.format;
401 
402    /* Check bit compatibility for clear color components */
403    for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
404       struct anv_format_plane view_format_plane =
405          anv_get_format_plane(devinfo, fmt_list->pViewFormats[i],
406                               plane, image->vk.tiling);
407 
408       enum isl_format view_format = view_format_plane.isl_format;
409 
410       if (!isl_formats_have_same_bits_per_channel(img_format, view_format))
411          return false;
412 
413       /* Switching between any of those format types on Gfx7/8 will cause
414        * problems https://gitlab.freedesktop.org/mesa/mesa/-/issues/1711
415        */
416       if (devinfo->ver <= 8) {
417          if (isl_format_has_float_channel(img_format) &&
418              !isl_format_has_float_channel(view_format))
419             return false;
420 
421          if (isl_format_has_int_channel(img_format) &&
422              !isl_format_has_int_channel(view_format))
423             return false;
424 
425          if (isl_format_has_unorm_channel(img_format) &&
426              !isl_format_has_unorm_channel(view_format))
427             return false;
428 
429          if (isl_format_has_snorm_channel(img_format) &&
430              !isl_format_has_snorm_channel(view_format))
431             return false;
432       }
433    }
434 
435    return true;
436 }
437 
438 /**
439  * For color images that have an auxiliary surface, request allocation for an
440  * additional buffer that mainly stores fast-clear values. Use of this buffer
441  * allows us to access the image's subresources while being aware of their
442  * fast-clear values in non-trivial cases (e.g., outside of a render pass in
443  * which a fast clear has occurred).
444  *
445  * In order to avoid having multiple clear colors for a single plane of an
446  * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
447  * the first slice (level 0, layer 0).  At the time of our testing (Jan 17,
448  * 2018), there were no known applications which would benefit from fast-
449  * clearing more than just the first slice.
450  *
451  * The fast clear portion of the image is laid out in the following order:
452  *
453  *  * 1 or 4 dwords (depending on hardware generation) for the clear color
454  *  * 1 dword for the anv_fast_clear_type of the clear color
455  *  * On gfx9+, 1 dword per level and layer of the image (3D levels count
456  *    multiple layers) in level-major order for compression state.
457  *
458  * For the purpose of discoverability, the algorithm used to manage
459  * compression and fast-clears is described here:
460  *
461  *  * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
462  *    all of the values in the fast clear portion of the image are initialized
463  *    to default values.
464  *
465  *  * On fast-clear, the clear value is written into surface state and also
466  *    into the buffer and the fast clear type is set appropriately.  Both
467  *    setting the fast-clear value in the buffer and setting the fast-clear
468  *    type happen from the GPU using MI commands.
469  *
470  *  * Whenever a render or blorp operation is performed with CCS_E, we call
471  *    genX(cmd_buffer_mark_image_written) to set the compression state to
472  *    true (which is represented by UINT32_MAX).
473  *
474  *  * On pipeline barrier transitions, the worst-case transition is computed
475  *    from the image layouts.  The command streamer inspects the fast clear
476  *    type and compression state dwords and constructs a predicate.  The
477  *    worst-case resolve is performed with the given predicate and the fast
478  *    clear and compression state is set accordingly.
479  *
480  * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
481  * details on exactly what is allowed in what layouts.
482  *
483  * On gfx7-9, we do not have a concept of indirect clear colors in hardware.
484  * In order to deal with this, we have to do some clear color management.
485  *
486  *  * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
487  *    value from the buffer into the surface state with MI commands.
488  *
489  *  * For any blorp operations, we pass the address to the clear value into
490  *    blorp and it knows to copy the clear color.
491  */
492 static VkResult MUST_CHECK
add_aux_state_tracking_buffer(struct anv_device * device,struct anv_image * image,uint32_t plane)493 add_aux_state_tracking_buffer(struct anv_device *device,
494                               struct anv_image *image,
495                               uint32_t plane)
496 {
497    assert(image && device);
498    assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE &&
499           image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV |
500                                VK_IMAGE_ASPECT_DEPTH_BIT));
501 
502    const unsigned clear_color_state_size = device->info->ver >= 10 ?
503       device->isl_dev.ss.clear_color_state_size :
504       device->isl_dev.ss.clear_value_size;
505 
506    /* Clear color and fast clear type */
507    unsigned state_size = clear_color_state_size + 4;
508 
509    enum anv_image_memory_binding binding =
510       ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
511 
512    /* If an auxiliary surface is used for an externally-shareable image,
513     * we have to hide this from the memory of the image since other
514     * processes with access to the memory may not be aware of it or of
515     * its current state. So put that auxiliary data into a separate
516     * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
517     */
518    if (anv_image_is_externally_shared(image)) {
519       binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
520    }
521 
522    /* We believe that 256B alignment may be sufficient, but we choose 4K due to
523     * lack of testing.  And MI_LOAD/STORE operations require dword-alignment.
524     */
525    return image_binding_grow(device, image, binding,
526                              ANV_OFFSET_IMPLICIT, state_size, 4096,
527                              &image->planes[plane].fast_clear_memory_range);
528 }
529 
530 /**
531  * The return code indicates whether creation of the VkImage should continue
532  * or fail, not whether the creation of the aux surface succeeded.  If the aux
533  * surface is not required (for example, by neither hardware nor DRM format
534  * modifier), then this may return VK_SUCCESS when creation of the aux surface
535  * fails.
536  *
537  * @param offset See add_surface()
538  */
539 static VkResult
add_aux_surface_if_supported(struct anv_device * device,struct anv_image * image,uint32_t plane,struct anv_format_plane plane_format,const VkImageFormatListCreateInfo * fmt_list,uint64_t offset,uint32_t stride,isl_surf_usage_flags_t isl_extra_usage_flags)540 add_aux_surface_if_supported(struct anv_device *device,
541                              struct anv_image *image,
542                              uint32_t plane,
543                              struct anv_format_plane plane_format,
544                              const VkImageFormatListCreateInfo *fmt_list,
545                              uint64_t offset,
546                              uint32_t stride,
547                              isl_surf_usage_flags_t isl_extra_usage_flags)
548 {
549    VkImageAspectFlags aspect = plane_format.aspect;
550    VkResult result;
551    bool ok;
552 
553    /* The aux surface must not be already added. */
554    assert(!anv_surface_is_valid(&image->planes[plane].aux_surface));
555 
556    if ((isl_extra_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT))
557       return VK_SUCCESS;
558 
559    if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
560       /* We don't advertise that depth buffers could be used as storage
561        * images.
562        */
563        assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
564 
565       /* Allow the user to control HiZ enabling. Disable by default on gfx7
566        * because resolves are not currently implemented pre-BDW.
567        */
568       if (!(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
569          /* It will never be used as an attachment, HiZ is pointless. */
570          return VK_SUCCESS;
571       }
572 
573       if (device->info->ver == 7) {
574          anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Implement gfx7 HiZ");
575          return VK_SUCCESS;
576       }
577 
578       if (image->vk.mip_levels > 1) {
579          anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Enable multi-LOD HiZ");
580          return VK_SUCCESS;
581       }
582 
583       if (device->info->ver == 8 && image->vk.samples > 1) {
584          anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
585                        "Enable gfx8 multisampled HiZ");
586          return VK_SUCCESS;
587       }
588 
589       ok = isl_surf_get_hiz_surf(&device->isl_dev,
590                                  &image->planes[plane].primary_surface.isl,
591                                  &image->planes[plane].aux_surface.isl);
592       if (!ok)
593          return VK_SUCCESS;
594    } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples == 1) {
595       if (image->n_planes != 1) {
596          /* Multiplanar images seem to hit a sampler bug with CCS and R16G16
597           * format. (Putting the clear state a page/4096bytes further fixes
598           * the issue).
599           */
600          return VK_SUCCESS;
601       }
602 
603       if ((image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) && !image->from_wsi) {
604          /* The image may alias a plane of a multiplanar image. Above we ban
605           * CCS on multiplanar images.
606           *
607           * We must also reject aliasing of any image that uses
608           * ANV_IMAGE_MEMORY_BINDING_PRIVATE. Since we're already rejecting all
609           * aliasing here, there's no need to further analyze if the image needs
610           * a private binding.
611           */
612          return VK_SUCCESS;
613       }
614 
615       ok = isl_surf_get_ccs_surf(&device->isl_dev,
616                                  &image->planes[plane].primary_surface.isl,
617                                  &image->planes[plane].aux_surface.isl,
618                                  stride);
619       if (!ok)
620          return VK_SUCCESS;
621 
622       image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D;
623 
624       enum anv_image_memory_binding binding =
625          ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;
626 
627       if (image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID)
628          binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
629 
630       result = add_surface(device, image, &image->planes[plane].aux_surface,
631                            binding, offset);
632       if (result != VK_SUCCESS)
633          return result;
634 
635       return add_aux_state_tracking_buffer(device, image, plane);
636    } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples > 1) {
637       assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
638       ok = isl_surf_get_mcs_surf(&device->isl_dev,
639                                  &image->planes[plane].primary_surface.isl,
640                                  &image->planes[plane].aux_surface.isl);
641       if (!ok)
642          return VK_SUCCESS;
643 
644       image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
645 
646       result = add_surface(device, image, &image->planes[plane].aux_surface,
647                            ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
648                            ANV_OFFSET_IMPLICIT);
649       if (result != VK_SUCCESS)
650          return result;
651 
652       return add_aux_state_tracking_buffer(device, image, plane);
653    }
654 
655    return VK_SUCCESS;
656 }
657 
658 static VkResult
add_shadow_surface(struct anv_device * device,struct anv_image * image,uint32_t plane,struct anv_format_plane plane_format,uint32_t stride,VkImageUsageFlags vk_plane_usage)659 add_shadow_surface(struct anv_device *device,
660                    struct anv_image *image,
661                    uint32_t plane,
662                    struct anv_format_plane plane_format,
663                    uint32_t stride,
664                    VkImageUsageFlags vk_plane_usage)
665 {
666    ASSERTED bool ok;
667 
668    ok = isl_surf_init(&device->isl_dev,
669                       &image->planes[plane].shadow_surface.isl,
670                      .dim = vk_to_isl_surf_dim[image->vk.image_type],
671                      .format = plane_format.isl_format,
672                      .width = image->vk.extent.width,
673                      .height = image->vk.extent.height,
674                      .depth = image->vk.extent.depth,
675                      .levels = image->vk.mip_levels,
676                      .array_len = image->vk.array_layers,
677                      .samples = image->vk.samples,
678                      .min_alignment_B = 0,
679                      .row_pitch_B = stride,
680                      .usage = ISL_SURF_USAGE_TEXTURE_BIT |
681                               (vk_plane_usage & ISL_SURF_USAGE_CUBE_BIT),
682                      .tiling_flags = ISL_TILING_ANY_MASK);
683 
684    /* isl_surf_init() will fail only if provided invalid input. Invalid input
685     * here is illegal in Vulkan.
686     */
687    assert(ok);
688 
689    return add_surface(device, image, &image->planes[plane].shadow_surface,
690                       ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
691                       ANV_OFFSET_IMPLICIT);
692 }
693 
694 /**
695  * Initialize the anv_image::*_surface selected by \a aspect. Then update the
696  * image's memory requirements (that is, the image's size and alignment).
697  *
698  * @param offset See add_surface()
699  */
700 static VkResult
add_primary_surface(struct anv_device * device,struct anv_image * image,uint32_t plane,struct anv_format_plane plane_format,uint64_t offset,uint32_t stride,isl_tiling_flags_t isl_tiling_flags,isl_surf_usage_flags_t isl_usage)701 add_primary_surface(struct anv_device *device,
702                     struct anv_image *image,
703                     uint32_t plane,
704                     struct anv_format_plane plane_format,
705                     uint64_t offset,
706                     uint32_t stride,
707                     isl_tiling_flags_t isl_tiling_flags,
708                     isl_surf_usage_flags_t isl_usage)
709 {
710    struct anv_surface *anv_surf = &image->planes[plane].primary_surface;
711    bool ok;
712 
713    ok = isl_surf_init(&device->isl_dev, &anv_surf->isl,
714       .dim = vk_to_isl_surf_dim[image->vk.image_type],
715       .format = plane_format.isl_format,
716       .width = image->vk.extent.width / plane_format.denominator_scales[0],
717       .height = image->vk.extent.height / plane_format.denominator_scales[1],
718       .depth = image->vk.extent.depth,
719       .levels = image->vk.mip_levels,
720       .array_len = image->vk.array_layers,
721       .samples = image->vk.samples,
722       .min_alignment_B = 0,
723       .row_pitch_B = stride,
724       .usage = isl_usage,
725       .tiling_flags = isl_tiling_flags);
726 
727    if (!ok) {
728       /* TODO: Should return
729        * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT in come cases.
730        */
731       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
732    }
733 
734    image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
735 
736    return add_surface(device, image, anv_surf,
737                       ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane, offset);
738 }
739 
740 #ifndef NDEBUG
741 static bool MUST_CHECK
memory_range_is_aligned(struct anv_image_memory_range memory_range)742 memory_range_is_aligned(struct anv_image_memory_range memory_range)
743 {
744    return anv_is_aligned(memory_range.offset, memory_range.alignment);
745 }
746 
747 static bool MUST_CHECK
memory_ranges_equal(struct anv_image_memory_range a,struct anv_image_memory_range b)748 memory_ranges_equal(struct anv_image_memory_range a,
749                     struct anv_image_memory_range b)
750 {
751    return a.binding == b.binding &&
752           a.offset == b.offset &&
753           a.size == b.size &&
754           a.alignment == b.alignment;
755 }
756 #endif
757 
758 struct check_memory_range_params {
759    struct anv_image_memory_range *accum_ranges;
760    const struct anv_surface *test_surface;
761    const struct anv_image_memory_range *test_range;
762    enum anv_image_memory_binding expect_binding;
763 };
764 
765 #define check_memory_range(...) \
766    check_memory_range_s(&(struct check_memory_range_params) { __VA_ARGS__ })
767 
768 static void UNUSED
check_memory_range_s(const struct check_memory_range_params * p)769 check_memory_range_s(const struct check_memory_range_params *p)
770 {
771    assert((p->test_surface == NULL) != (p->test_range == NULL));
772 
773    const struct anv_image_memory_range *test_range =
774       p->test_range ?: &p->test_surface->memory_range;
775 
776    struct anv_image_memory_range *accum_range =
777       &p->accum_ranges[p->expect_binding];
778 
779    assert(test_range->binding == p->expect_binding);
780    assert(test_range->offset >= memory_range_end(*accum_range));
781    assert(memory_range_is_aligned(*test_range));
782 
783    if (p->test_surface) {
784       assert(anv_surface_is_valid(p->test_surface));
785       assert(p->test_surface->memory_range.alignment ==
786              p->test_surface->isl.alignment_B);
787    }
788 
789    memory_range_merge(accum_range, *test_range);
790 }
791 
792 /**
793  * Validate the image's memory bindings *after* all its surfaces and memory
794  * ranges are final.
795  *
796  * For simplicity's sake, we do not validate free-form layout of the image's
797  * memory bindings. We validate the layout described in the comments of struct
798  * anv_image.
799  */
800 static void
check_memory_bindings(const struct anv_device * device,const struct anv_image * image)801 check_memory_bindings(const struct anv_device *device,
802                      const struct anv_image *image)
803 {
804 #if MESA_DEBUG
805    /* As we inspect each part of the image, we merge the part's memory range
806     * into these accumulation ranges.
807     */
808    struct anv_image_memory_range accum_ranges[ANV_IMAGE_MEMORY_BINDING_END];
809    for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
810       accum_ranges[i] = (struct anv_image_memory_range) {
811          .binding = i,
812       };
813    }
814 
815    for (uint32_t p = 0; p < image->n_planes; ++p) {
816       const struct anv_image_plane *plane = &image->planes[p];
817 
818       /* The binding that must contain the plane's primary surface. */
819       const enum anv_image_memory_binding primary_binding = image->disjoint
820          ? ANV_IMAGE_MEMORY_BINDING_PLANE_0 + p
821          : ANV_IMAGE_MEMORY_BINDING_MAIN;
822 
823       /* Aliasing is incompatible with the private binding because it does not
824        * live in a VkDeviceMemory.  The one exception is swapchain images.
825        */
826       assert(!(image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) ||
827              image->from_wsi ||
828              image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size == 0);
829 
830       /* Check primary surface */
831       check_memory_range(accum_ranges,
832                          .test_surface = &plane->primary_surface,
833                          .expect_binding = primary_binding);
834 
835       /* Check shadow surface */
836       if (anv_surface_is_valid(&plane->shadow_surface)) {
837          check_memory_range(accum_ranges,
838                             .test_surface = &plane->shadow_surface,
839                             .expect_binding = primary_binding);
840       }
841 
842       /* Check aux_surface */
843       if (anv_surface_is_valid(&plane->aux_surface)) {
844          enum anv_image_memory_binding binding = primary_binding;
845 
846          /* If an auxiliary surface is used for an externally-shareable image,
847           * we have to hide this from the memory of the image since other
848           * processes with access to the memory may not be aware of it or of
849           * its current state. So put that auxiliary data into a separate
850           * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
851           */
852          if (anv_image_is_externally_shared(image) &&
853              !isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
854             binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
855          }
856 
857          /* Display hardware requires that the aux surface start at
858           * a higher address than the primary surface. The 3D hardware
859           * doesn't care, but we enforce the display requirement in case
860           * the image is sent to display.
861           */
862          check_memory_range(accum_ranges,
863                             .test_surface = &plane->aux_surface,
864                             .expect_binding = binding);
865       }
866 
867       /* Check fast clear state */
868       if (plane->fast_clear_memory_range.size > 0) {
869          enum anv_image_memory_binding binding = primary_binding;
870 
871          /* If an auxiliary surface is used for an externally-shareable image,
872           * we have to hide this from the memory of the image since other
873           * processes with access to the memory may not be aware of it or of
874           * its current state. So put that auxiliary data into a separate
875           * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
876           */
877          if (anv_image_is_externally_shared(image)) {
878             binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
879          }
880 
881          /* We believe that 256B alignment may be sufficient, but we choose 4K
882           * due to lack of testing.  And MI_LOAD/STORE operations require
883           * dword-alignment.
884           */
885          assert(plane->fast_clear_memory_range.alignment == 4096);
886          check_memory_range(accum_ranges,
887                             .test_range = &plane->fast_clear_memory_range,
888                             .expect_binding = binding);
889       }
890    }
891 #endif
892 }
893 
894 /**
895  * Check that the fully-initialized anv_image is compatible with its DRM format
896  * modifier.
897  *
898  * Checking compatibility at the end of image creation is prudent, not
899  * superfluous, because usage of modifiers triggers numerous special cases
900  * throughout queries and image creation, and because
901  * vkGetPhysicalDeviceImageFormatProperties2 has difficulty detecting all
902  * incompatibilities.
903  *
904  * Return VK_ERROR_UNKNOWN if the incompatibility is difficult to detect in
905  * vkGetPhysicalDeviceImageFormatProperties2.  Otherwise, assert fail.
906  *
907  * Ideally, if vkGetPhysicalDeviceImageFormatProperties2() succeeds with a given
908  * modifier, then vkCreateImage() produces an image that is compatible with the
909  * modifier. However, it is difficult to reconcile the two functions to agree
910  * due to their complexity.
911  */
912 static VkResult MUST_CHECK
check_drm_format_mod(const struct anv_device * device,const struct anv_image * image)913 check_drm_format_mod(const struct anv_device *device,
914                      const struct anv_image *image)
915 {
916    /* Image must have a modifier if and only if it has modifier tiling. */
917    assert((image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) ==
918           (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));
919 
920    if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID)
921       return VK_SUCCESS;
922 
923    const struct isl_drm_modifier_info *isl_mod_info =
924       isl_drm_modifier_get_info(image->vk.drm_format_mod);
925 
926    /* Driver must support the modifier. */
927    assert(isl_drm_modifier_get_score(device->info, isl_mod_info->modifier));
928 
929    /* Enforced by us, not the Vulkan spec. */
930    assert(image->vk.image_type == VK_IMAGE_TYPE_2D);
931    assert(!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT));
932    assert(!(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT));
933    assert(image->vk.mip_levels == 1);
934    assert(image->vk.array_layers == 1);
935    assert(image->vk.samples == 1);
936 
937    for (int i = 0; i < image->n_planes; ++i) {
938       const struct anv_image_plane *plane = &image->planes[i];
939       ASSERTED const struct isl_format_layout *isl_layout =
940          isl_format_get_layout(plane->primary_surface.isl.format);
941 
942       /* Enforced by us, not the Vulkan spec. */
943       assert(isl_layout->txc == ISL_TXC_NONE);
944       assert(isl_layout->colorspace == ISL_COLORSPACE_LINEAR ||
945              isl_layout->colorspace == ISL_COLORSPACE_SRGB);
946       assert(!anv_surface_is_valid(&plane->shadow_surface));
947       assert(!isl_drm_modifier_has_aux(isl_mod_info->modifier));
948    }
949 
950    return VK_SUCCESS;
951 }
952 
953 /**
954  * Use when the app does not provide
955  * VkImageDrmFormatModifierExplicitCreateInfoEXT.
956  */
957 static VkResult MUST_CHECK
add_all_surfaces_implicit_layout(struct anv_device * device,struct anv_image * image,const VkImageFormatListCreateInfo * format_list_info,uint32_t stride,isl_tiling_flags_t isl_tiling_flags,isl_surf_usage_flags_t isl_extra_usage_flags)958 add_all_surfaces_implicit_layout(
959    struct anv_device *device,
960    struct anv_image *image,
961    const VkImageFormatListCreateInfo *format_list_info,
962    uint32_t stride,
963    isl_tiling_flags_t isl_tiling_flags,
964    isl_surf_usage_flags_t isl_extra_usage_flags)
965 {
966    const struct intel_device_info *devinfo = device->info;
967    VkResult result;
968 
969    u_foreach_bit(b, image->vk.aspects) {
970       VkImageAspectFlagBits aspect = 1 << b;
971       const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
972       const  struct anv_format_plane plane_format =
973          anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling);
974 
975       VkImageUsageFlags vk_usage = vk_image_usage(&image->vk, aspect);
976       isl_surf_usage_flags_t isl_usage =
977          choose_isl_surf_usage(image->vk.create_flags, vk_usage,
978                                isl_extra_usage_flags, aspect);
979 
980       /* Must call this before adding any surfaces because it may modify
981        * isl_tiling_flags.
982        */
983       bool needs_shadow =
984          anv_image_plane_needs_shadow_surface(devinfo, plane_format,
985                                               image->vk.tiling, vk_usage,
986                                               image->vk.create_flags,
987                                               &isl_tiling_flags);
988 
989       result = add_primary_surface(device, image, plane, plane_format,
990                                    ANV_OFFSET_IMPLICIT, stride,
991                                    isl_tiling_flags, isl_usage);
992       if (result != VK_SUCCESS)
993          return result;
994 
995       if (needs_shadow) {
996          result = add_shadow_surface(device, image, plane, plane_format,
997                                      stride, vk_usage);
998          if (result != VK_SUCCESS)
999             return result;
1000       }
1001 
1002       result = add_aux_surface_if_supported(device, image, plane, plane_format,
1003                                             format_list_info,
1004                                             ANV_OFFSET_IMPLICIT, stride,
1005                                             isl_extra_usage_flags);
1006       if (result != VK_SUCCESS)
1007          return result;
1008    }
1009 
1010    return VK_SUCCESS;
1011 }
1012 
1013 /**
1014  * Use when the app provides VkImageDrmFormatModifierExplicitCreateInfoEXT.
1015  */
1016 static VkResult
add_all_surfaces_explicit_layout(struct anv_device * device,struct anv_image * image,const VkImageFormatListCreateInfo * format_list_info,const VkImageDrmFormatModifierExplicitCreateInfoEXT * drm_info,isl_tiling_flags_t isl_tiling_flags,isl_surf_usage_flags_t isl_extra_usage_flags)1017 add_all_surfaces_explicit_layout(
1018    struct anv_device *device,
1019    struct anv_image *image,
1020    const VkImageFormatListCreateInfo *format_list_info,
1021    const VkImageDrmFormatModifierExplicitCreateInfoEXT *drm_info,
1022    isl_tiling_flags_t isl_tiling_flags,
1023    isl_surf_usage_flags_t isl_extra_usage_flags)
1024 {
1025    const struct intel_device_info *devinfo = device->info;
1026    const uint32_t mod_plane_count = drm_info->drmFormatModifierPlaneCount;
1027    const bool mod_has_aux =
1028       isl_drm_modifier_has_aux(drm_info->drmFormatModifier);
1029    VkResult result;
1030 
1031    /* About valid usage in the Vulkan spec:
1032     *
1033     * Unlike vanilla vkCreateImage, which produces undefined behavior on user
1034     * error, here the spec requires the implementation to return
1035     * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT if the app provides
1036     * a bad plane layout. However, the spec does require
1037     * drmFormatModifierPlaneCount to be valid.
1038     *
1039     * Most validation of plane layout occurs in add_surface().
1040     */
1041 
1042    /* We support a restricted set of images with modifiers.
1043     *
1044     * With aux usage,
1045     * - Format plane count must be 1.
1046     * - Memory plane count must be 2.
1047     * Without aux usage,
1048     * - Each format plane must map to a distint memory plane.
1049     *
1050     * For the other cases, currently there is no way to properly map memory
1051     * planes to format planes and aux planes due to the lack of defined ABI
1052     * for external multi-planar images.
1053     */
1054    if (image->n_planes == 1)
1055       assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1056    else
1057       assert(!(image->vk.aspects & ~VK_IMAGE_ASPECT_PLANES_BITS_ANV));
1058 
1059    if (mod_has_aux)
1060       assert(image->n_planes == 1 && mod_plane_count == 2);
1061    else
1062       assert(image->n_planes == mod_plane_count);
1063 
1064    /* Reject special values in the app-provided plane layouts. */
1065    for (uint32_t i = 0; i < mod_plane_count; ++i) {
1066       if (drm_info->pPlaneLayouts[i].rowPitch == 0) {
1067          return vk_errorf(device,
1068                           VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
1069                           "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
1070                           "pPlaneLayouts[%u]::rowPitch is 0", i);
1071       }
1072 
1073       if (drm_info->pPlaneLayouts[i].offset == ANV_OFFSET_IMPLICIT) {
1074          return vk_errorf(device,
1075                           VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
1076                           "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
1077                           "pPlaneLayouts[%u]::offset is %" PRIu64,
1078                           i, ANV_OFFSET_IMPLICIT);
1079       }
1080    }
1081 
1082    u_foreach_bit(b, image->vk.aspects) {
1083       const VkImageAspectFlagBits aspect = 1 << b;
1084       const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
1085       const struct anv_format_plane format_plane =
1086          anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling);
1087       const VkSubresourceLayout *primary_layout = &drm_info->pPlaneLayouts[plane];
1088 
1089       result = add_primary_surface(device, image, plane,
1090                                    format_plane,
1091                                    primary_layout->offset,
1092                                    primary_layout->rowPitch,
1093                                    isl_tiling_flags,
1094                                    isl_extra_usage_flags);
1095       if (result != VK_SUCCESS)
1096          return result;
1097 
1098       if (mod_has_aux) {
1099          const VkSubresourceLayout *aux_layout = &drm_info->pPlaneLayouts[1];
1100          result = add_aux_surface_if_supported(device, image, plane,
1101                                                format_plane,
1102                                                format_list_info,
1103                                                aux_layout->offset,
1104                                                aux_layout->rowPitch,
1105                                                isl_extra_usage_flags);
1106          if (result != VK_SUCCESS)
1107             return result;
1108       }
1109    }
1110 
1111    return VK_SUCCESS;
1112 }
1113 
1114 static const struct isl_drm_modifier_info *
choose_drm_format_mod(const struct anv_physical_device * device,uint32_t modifier_count,const uint64_t * modifiers)1115 choose_drm_format_mod(const struct anv_physical_device *device,
1116                       uint32_t modifier_count, const uint64_t *modifiers)
1117 {
1118    uint64_t best_mod = UINT64_MAX;
1119    uint32_t best_score = 0;
1120 
1121    for (uint32_t i = 0; i < modifier_count; ++i) {
1122       uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]);
1123       if (score > best_score) {
1124          best_mod = modifiers[i];
1125          best_score = score;
1126       }
1127    }
1128 
1129    if (best_score > 0)
1130       return isl_drm_modifier_get_info(best_mod);
1131    else
1132       return NULL;
1133 }
1134 
1135 static VkImageUsageFlags
anv_image_create_usage(const VkImageCreateInfo * pCreateInfo,VkImageUsageFlags usage)1136 anv_image_create_usage(const VkImageCreateInfo *pCreateInfo,
1137                        VkImageUsageFlags usage)
1138 {
1139    /* Add TRANSFER_SRC usage for multisample attachment images. This is
1140     * because we might internally use the TRANSFER_SRC layout on them for
1141     * blorp operations associated with resolving those into other attachments
1142     * at the end of a subpass.
1143     *
1144     * Without this additional usage, we compute an incorrect AUX state in
1145     * anv_layout_to_aux_state().
1146     */
1147    if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT &&
1148        (usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1149                  VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)))
1150       usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
1151    return usage;
1152 }
1153 
1154 static VkResult MUST_CHECK
alloc_private_binding(struct anv_device * device,struct anv_image * image,const VkImageCreateInfo * create_info)1155 alloc_private_binding(struct anv_device *device,
1156                       struct anv_image *image,
1157                       const VkImageCreateInfo *create_info)
1158 {
1159    struct anv_image_binding *binding =
1160       &image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE];
1161 
1162    if (binding->memory_range.size == 0)
1163       return VK_SUCCESS;
1164 
1165    const VkImageSwapchainCreateInfoKHR *swapchain_info =
1166       vk_find_struct_const(create_info->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
1167 
1168    if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
1169       /* The image will be bound to swapchain memory. */
1170       return VK_SUCCESS;
1171    }
1172 
1173    return anv_device_alloc_bo(device, "image-binding-private",
1174                               binding->memory_range.size, 0, 0,
1175                               &binding->address.bo);
1176 }
1177 
1178 VkResult
anv_image_init(struct anv_device * device,struct anv_image * image,struct anv_image_create_info * create_info)1179 anv_image_init(struct anv_device *device, struct anv_image *image,
1180                struct anv_image_create_info *create_info)
1181 {
1182    const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
1183    const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL;
1184    const struct isl_drm_modifier_info *isl_mod_info = NULL;
1185    VkResult r;
1186 
1187    vk_image_init(&device->vk, &image->vk, pCreateInfo);
1188 
1189    image->vk.usage = anv_image_create_usage(pCreateInfo, image->vk.usage);
1190    image->vk.stencil_usage =
1191       anv_image_create_usage(pCreateInfo, image->vk.stencil_usage);
1192 
1193    if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
1194       assert(!image->vk.wsi_legacy_scanout);
1195       mod_explicit_info =
1196          vk_find_struct_const(pCreateInfo->pNext,
1197                               IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
1198       if (mod_explicit_info) {
1199          isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier);
1200       } else {
1201          const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info =
1202             vk_find_struct_const(pCreateInfo->pNext,
1203                                  IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
1204          isl_mod_info = choose_drm_format_mod(device->physical,
1205                                               mod_list_info->drmFormatModifierCount,
1206                                               mod_list_info->pDrmFormatModifiers);
1207       }
1208 
1209       assert(isl_mod_info);
1210       assert(image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID);
1211       image->vk.drm_format_mod = isl_mod_info->modifier;
1212    }
1213 
1214    for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
1215       image->bindings[i] = (struct anv_image_binding) {
1216          .memory_range = { .binding = i },
1217       };
1218    }
1219 
1220    /* In case of AHardwareBuffer import, we don't know the layout yet */
1221    if (image->vk.external_handle_types &
1222        VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) {
1223       image->from_ahb = true;
1224 #if DETECT_OS_ANDROID
1225       image->vk.ahb_format = anv_ahb_format_for_vk_format(image->vk.format);
1226 #endif
1227       return VK_SUCCESS;
1228    }
1229 
1230    image->n_planes = anv_get_format_planes(image->vk.format);
1231    image->from_wsi =
1232       vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA) != NULL;
1233 
1234    /* The Vulkan 1.2.165 glossary says:
1235     *
1236     *    A disjoint image consists of multiple disjoint planes, and is created
1237     *    with the VK_IMAGE_CREATE_DISJOINT_BIT bit set.
1238     */
1239    image->disjoint = image->n_planes > 1 &&
1240                      (pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT);
1241 
1242    /* Disable aux if image supports export without modifiers. */
1243    if (image->vk.external_handle_types != 0 &&
1244        image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)
1245       create_info->isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
1246 
1247    const isl_tiling_flags_t isl_tiling_flags =
1248       choose_isl_tiling_flags(device->info, create_info, isl_mod_info,
1249                               image->vk.wsi_legacy_scanout);
1250 
1251    const VkImageFormatListCreateInfo *fmt_list =
1252       vk_find_struct_const(pCreateInfo->pNext,
1253                            IMAGE_FORMAT_LIST_CREATE_INFO);
1254 
1255    if (mod_explicit_info) {
1256       r = add_all_surfaces_explicit_layout(device, image, fmt_list,
1257                                            mod_explicit_info, isl_tiling_flags,
1258                                            create_info->isl_extra_usage_flags);
1259    } else {
1260       r = add_all_surfaces_implicit_layout(device, image, fmt_list, 0,
1261                                            isl_tiling_flags,
1262                                            create_info->isl_extra_usage_flags);
1263    }
1264 
1265    if (r != VK_SUCCESS)
1266       goto fail;
1267 
1268    r = alloc_private_binding(device, image, pCreateInfo);
1269    if (r != VK_SUCCESS)
1270       goto fail;
1271 
1272    check_memory_bindings(device, image);
1273 
1274    r = check_drm_format_mod(device, image);
1275    if (r != VK_SUCCESS)
1276       goto fail;
1277 
1278    /* Once we have all the bindings, determine whether we can do non 0 fast
1279     * clears for each plane.
1280     */
1281    for (uint32_t p = 0; p < image->n_planes; p++) {
1282       image->planes[p].can_non_zero_fast_clear =
1283          can_fast_clear_with_non_zero_color(device->info, image, p, fmt_list);
1284    }
1285 
1286    return VK_SUCCESS;
1287 
1288 fail:
1289    vk_image_finish(&image->vk);
1290    return r;
1291 }
1292 
1293 void
anv_image_finish(struct anv_image * image)1294 anv_image_finish(struct anv_image *image)
1295 {
1296    struct anv_device *device =
1297       container_of(image->vk.base.device, struct anv_device, vk);
1298 
1299    if (image->from_gralloc) {
1300       assert(!image->disjoint);
1301       assert(image->n_planes == 1);
1302       assert(image->planes[0].primary_surface.memory_range.binding ==
1303              ANV_IMAGE_MEMORY_BINDING_MAIN);
1304       assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo != NULL);
1305       anv_device_release_bo(device, image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo);
1306    }
1307 
1308    struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
1309    if (private_bo)
1310       anv_device_release_bo(device, private_bo);
1311 
1312    vk_image_finish(&image->vk);
1313 }
1314 
1315 static struct anv_image *
anv_swapchain_get_image(VkSwapchainKHR swapchain,uint32_t index)1316 anv_swapchain_get_image(VkSwapchainKHR swapchain,
1317                         uint32_t index)
1318 {
1319    VkImage image = wsi_common_get_image(swapchain, index);
1320    return anv_image_from_handle(image);
1321 }
1322 
1323 static VkResult
anv_image_init_from_create_info(struct anv_device * device,struct anv_image * image,const VkImageCreateInfo * pCreateInfo)1324 anv_image_init_from_create_info(struct anv_device *device,
1325                                 struct anv_image *image,
1326                                 const VkImageCreateInfo *pCreateInfo)
1327 {
1328    const VkNativeBufferANDROID *gralloc_info =
1329       vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
1330    if (gralloc_info)
1331       return anv_image_init_from_gralloc(device, image, pCreateInfo,
1332                                          gralloc_info);
1333 
1334    struct anv_image_create_info create_info = {
1335       .vk_info = pCreateInfo,
1336    };
1337 
1338    /* For dmabuf imports, configure the primary surface without support for
1339     * compression if the modifier doesn't specify it. This helps to create
1340     * VkImages with memory requirements that are compatible with the buffers
1341     * apps provide.
1342     */
1343    const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info =
1344       vk_find_struct_const(pCreateInfo->pNext,
1345                            IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
1346    if (mod_explicit_info &&
1347        !isl_drm_modifier_has_aux(mod_explicit_info->drmFormatModifier))
1348       create_info.isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
1349 
1350    return anv_image_init(device, image, &create_info);
1351 }
1352 
anv_CreateImage(VkDevice _device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)1353 VkResult anv_CreateImage(
1354     VkDevice                                    _device,
1355     const VkImageCreateInfo*                    pCreateInfo,
1356     const VkAllocationCallbacks*                pAllocator,
1357     VkImage*                                    pImage)
1358 {
1359    ANV_FROM_HANDLE(anv_device, device, _device);
1360 
1361 #ifndef VK_USE_PLATFORM_ANDROID_KHR
1362    /* Ignore swapchain creation info on Android. Since we don't have an
1363     * implementation in Mesa, we're guaranteed to access an Android object
1364     * incorrectly.
1365     */
1366    const VkImageSwapchainCreateInfoKHR *swapchain_info =
1367       vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
1368    if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
1369       return wsi_common_create_swapchain_image(&device->physical->wsi_device,
1370                                                pCreateInfo,
1371                                                swapchain_info->swapchain,
1372                                                pImage);
1373    }
1374 #endif
1375 
1376    struct anv_image *image =
1377       vk_object_zalloc(&device->vk, pAllocator, sizeof(*image),
1378                        VK_OBJECT_TYPE_IMAGE);
1379    if (!image)
1380       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1381 
1382    VkResult result = anv_image_init_from_create_info(device, image,
1383                                                      pCreateInfo);
1384    if (result != VK_SUCCESS) {
1385       vk_object_free(&device->vk, pAllocator, image);
1386       return result;
1387    }
1388 
1389    *pImage = anv_image_to_handle(image);
1390 
1391    return result;
1392 }
1393 
1394 void
anv_DestroyImage(VkDevice _device,VkImage _image,const VkAllocationCallbacks * pAllocator)1395 anv_DestroyImage(VkDevice _device, VkImage _image,
1396                  const VkAllocationCallbacks *pAllocator)
1397 {
1398    ANV_FROM_HANDLE(anv_device, device, _device);
1399    ANV_FROM_HANDLE(anv_image, image, _image);
1400 
1401    if (!image)
1402       return;
1403 
1404    assert(&device->vk == image->vk.base.device);
1405    anv_image_finish(image);
1406 
1407    vk_free2(&device->vk.alloc, pAllocator, image);
1408 }
1409 
1410 /* We are binding AHardwareBuffer. Get a description, resolve the
1411  * format and prepare anv_image properly.
1412  */
1413 static void
resolve_ahw_image(struct anv_device * device,struct anv_image * image,struct anv_device_memory * mem)1414 resolve_ahw_image(struct anv_device *device,
1415                   struct anv_image *image,
1416                   struct anv_device_memory *mem)
1417 {
1418 #if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 26
1419    assert(mem->ahw);
1420    AHardwareBuffer_Desc desc;
1421    AHardwareBuffer_describe(mem->ahw, &desc);
1422    VkResult result;
1423 
1424    /* Check tiling. */
1425    enum isl_tiling tiling;
1426    result = anv_device_get_bo_tiling(device, mem->bo, &tiling);
1427    assert(result == VK_SUCCESS);
1428 
1429    VkImageTiling vk_tiling =
1430       tiling == ISL_TILING_LINEAR ? VK_IMAGE_TILING_LINEAR :
1431                                     VK_IMAGE_TILING_OPTIMAL;
1432    isl_tiling_flags_t isl_tiling_flags = (1u << tiling);
1433 
1434    /* Check format. */
1435    VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
1436    enum isl_format isl_fmt = anv_get_isl_format(device->info,
1437                                                 vk_format,
1438                                                 VK_IMAGE_ASPECT_COLOR_BIT,
1439                                                 vk_tiling);
1440    assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);
1441 
1442    /* Handle RGB(X)->RGBA fallback. */
1443    switch (desc.format) {
1444    case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
1445    case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
1446       if (isl_format_is_rgb(isl_fmt))
1447          isl_fmt = isl_format_rgb_to_rgba(isl_fmt);
1448       break;
1449    }
1450 
1451    /* Now we are able to fill anv_image fields properly and create
1452     * isl_surface for it.
1453     */
1454    vk_image_set_format(&image->vk, vk_format);
1455    image->n_planes = anv_get_format_planes(image->vk.format);
1456 
1457    uint32_t stride = desc.stride *
1458                      (isl_format_get_layout(isl_fmt)->bpb / 8);
1459 
1460    result = add_all_surfaces_implicit_layout(device, image, NULL, stride,
1461                                              isl_tiling_flags,
1462                                              ISL_SURF_USAGE_DISABLE_AUX_BIT);
1463    assert(result == VK_SUCCESS);
1464 #endif
1465 }
1466 
1467 void
anv_image_get_memory_requirements(struct anv_device * device,struct anv_image * image,VkImageAspectFlags aspects,VkMemoryRequirements2 * pMemoryRequirements)1468 anv_image_get_memory_requirements(struct anv_device *device,
1469                                   struct anv_image *image,
1470                                   VkImageAspectFlags aspects,
1471                                   VkMemoryRequirements2 *pMemoryRequirements)
1472 {
1473    /* The Vulkan spec (git aaed022) says:
1474     *
1475     *    memoryTypeBits is a bitfield and contains one bit set for every
1476     *    supported memory type for the resource. The bit `1<<i` is set if and
1477     *    only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1478     *    structure for the physical device is supported.
1479     *
1480     * All types are currently supported for images.
1481     */
1482    uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
1483 
1484    vk_foreach_struct(ext, pMemoryRequirements->pNext) {
1485       switch (ext->sType) {
1486       case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
1487          VkMemoryDedicatedRequirements *requirements = (void *)ext;
1488          if (image->vk.wsi_legacy_scanout || image->from_ahb) {
1489             /* If we need to set the tiling for external consumers, we need a
1490              * dedicated allocation.
1491              *
1492              * See also anv_AllocateMemory.
1493              */
1494             requirements->prefersDedicatedAllocation = true;
1495             requirements->requiresDedicatedAllocation = true;
1496          } else {
1497             requirements->prefersDedicatedAllocation = false;
1498             requirements->requiresDedicatedAllocation = false;
1499          }
1500          break;
1501       }
1502 
1503       default:
1504          vk_debug_ignored_stype(ext->sType);
1505          break;
1506       }
1507    }
1508 
1509    /* If the image is disjoint, then we must return the memory requirements for
1510     * the single plane specified in VkImagePlaneMemoryRequirementsInfo. If
1511     * non-disjoint, then exactly one set of memory requirements exists for the
1512     * whole image.
1513     *
1514     * This is enforced by the Valid Usage for VkImageMemoryRequirementsInfo2,
1515     * which requires that the app provide VkImagePlaneMemoryRequirementsInfo if
1516     * and only if the image is disjoint (that is, multi-planar format and
1517     * VK_IMAGE_CREATE_DISJOINT_BIT).
1518     */
1519    const struct anv_image_binding *binding;
1520    if (image->disjoint) {
1521       assert(util_bitcount(aspects) == 1);
1522       assert(aspects & image->vk.aspects);
1523       binding = image_aspect_to_binding(image, aspects);
1524    } else {
1525       assert(aspects == image->vk.aspects);
1526       binding = &image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN];
1527    }
1528 
1529    pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) {
1530       .size = binding->memory_range.size,
1531       .alignment = binding->memory_range.alignment,
1532       .memoryTypeBits = memory_types,
1533    };
1534 }
1535 
anv_GetImageMemoryRequirements2(VkDevice _device,const VkImageMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)1536 void anv_GetImageMemoryRequirements2(
1537     VkDevice                                    _device,
1538     const VkImageMemoryRequirementsInfo2*       pInfo,
1539     VkMemoryRequirements2*                      pMemoryRequirements)
1540 {
1541    ANV_FROM_HANDLE(anv_device, device, _device);
1542    ANV_FROM_HANDLE(anv_image, image, pInfo->image);
1543 
1544    VkImageAspectFlags aspects = image->vk.aspects;
1545 
1546    vk_foreach_struct_const(ext, pInfo->pNext) {
1547       switch (ext->sType) {
1548       case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
1549          assert(image->disjoint);
1550          const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
1551             (const VkImagePlaneMemoryRequirementsInfo *) ext;
1552          aspects = plane_reqs->planeAspect;
1553          break;
1554       }
1555 
1556       default:
1557          vk_debug_ignored_stype(ext->sType);
1558          break;
1559       }
1560    }
1561 
1562    anv_image_get_memory_requirements(device, image, aspects,
1563                                      pMemoryRequirements);
1564 }
1565 
anv_GetDeviceImageMemoryRequirements(VkDevice _device,const VkDeviceImageMemoryRequirements * pInfo,VkMemoryRequirements2 * pMemoryRequirements)1566 void anv_GetDeviceImageMemoryRequirements(
1567     VkDevice                                    _device,
1568     const VkDeviceImageMemoryRequirements*   pInfo,
1569     VkMemoryRequirements2*                      pMemoryRequirements)
1570 {
1571    ANV_FROM_HANDLE(anv_device, device, _device);
1572    struct anv_image image = { 0 };
1573 
1574    ASSERTED VkResult result =
1575       anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo);
1576    assert(result == VK_SUCCESS);
1577 
1578    VkImageAspectFlags aspects =
1579       image.disjoint ? pInfo->planeAspect : image.vk.aspects;
1580 
1581    anv_image_get_memory_requirements(device, &image, aspects,
1582                                      pMemoryRequirements);
1583 }
1584 
anv_GetImageSparseMemoryRequirements(VkDevice device,VkImage image,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements * pSparseMemoryRequirements)1585 void anv_GetImageSparseMemoryRequirements(
1586     VkDevice                                    device,
1587     VkImage                                     image,
1588     uint32_t*                                   pSparseMemoryRequirementCount,
1589     VkSparseImageMemoryRequirements*            pSparseMemoryRequirements)
1590 {
1591    *pSparseMemoryRequirementCount = 0;
1592 }
1593 
anv_GetImageSparseMemoryRequirements2(VkDevice device,const VkImageSparseMemoryRequirementsInfo2 * pInfo,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements2 * pSparseMemoryRequirements)1594 void anv_GetImageSparseMemoryRequirements2(
1595     VkDevice                                    device,
1596     const VkImageSparseMemoryRequirementsInfo2* pInfo,
1597     uint32_t*                                   pSparseMemoryRequirementCount,
1598     VkSparseImageMemoryRequirements2*           pSparseMemoryRequirements)
1599 {
1600    *pSparseMemoryRequirementCount = 0;
1601 }
1602 
anv_GetDeviceImageSparseMemoryRequirements(VkDevice device,const VkDeviceImageMemoryRequirements * pInfo,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements2 * pSparseMemoryRequirements)1603 void anv_GetDeviceImageSparseMemoryRequirements(
1604     VkDevice                                    device,
1605     const VkDeviceImageMemoryRequirements* pInfo,
1606     uint32_t*                                   pSparseMemoryRequirementCount,
1607     VkSparseImageMemoryRequirements2*           pSparseMemoryRequirements)
1608 {
1609    *pSparseMemoryRequirementCount = 0;
1610 }
1611 
anv_BindImageMemory2(VkDevice _device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)1612 VkResult anv_BindImageMemory2(
1613     VkDevice                                    _device,
1614     uint32_t                                    bindInfoCount,
1615     const VkBindImageMemoryInfo*                pBindInfos)
1616 {
1617    ANV_FROM_HANDLE(anv_device, device, _device);
1618 
1619    for (uint32_t i = 0; i < bindInfoCount; i++) {
1620       const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
1621       ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
1622       ANV_FROM_HANDLE(anv_image, image, bind_info->image);
1623       bool did_bind = false;
1624 
1625       /* Resolve will alter the image's aspects, do this first. */
1626       if (mem && mem->ahw)
1627          resolve_ahw_image(device, image, mem);
1628 
1629       vk_foreach_struct_const(s, bind_info->pNext) {
1630          switch (s->sType) {
1631          case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
1632             const VkBindImagePlaneMemoryInfo *plane_info =
1633                (const VkBindImagePlaneMemoryInfo *) s;
1634 
1635             /* Workaround for possible spec bug.
1636              *
1637              * Unlike VkImagePlaneMemoryRequirementsInfo, which requires that
1638              * the image be disjoint (that is, multi-planar format and
1639              * VK_IMAGE_CREATE_DISJOINT_BIT), VkBindImagePlaneMemoryInfo allows
1640              * the image to be non-disjoint and requires only that the image
1641              * have the DISJOINT flag. In this case, regardless of the value of
1642              * VkImagePlaneMemoryRequirementsInfo::planeAspect, the behavior is
1643              * the same as if VkImagePlaneMemoryRequirementsInfo were omitted.
1644              */
1645             if (!image->disjoint)
1646                break;
1647 
1648             struct anv_image_binding *binding =
1649                image_aspect_to_binding(image, plane_info->planeAspect);
1650 
1651             binding->address = (struct anv_address) {
1652                .bo = mem->bo,
1653                .offset = bind_info->memoryOffset,
1654             };
1655 
1656             did_bind = true;
1657             break;
1658          }
1659          case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
1660             /* Ignore this struct on Android, we cannot access swapchain
1661              * structures there.
1662              */
1663 #ifndef VK_USE_PLATFORM_ANDROID_KHR
1664             const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
1665                (const VkBindImageMemorySwapchainInfoKHR *) s;
1666             struct anv_image *swapchain_image =
1667                anv_swapchain_get_image(swapchain_info->swapchain,
1668                                        swapchain_info->imageIndex);
1669             assert(swapchain_image);
1670             assert(image->vk.aspects == swapchain_image->vk.aspects);
1671             assert(mem == NULL);
1672 
1673             for (int j = 0; j < ARRAY_SIZE(image->bindings); ++j) {
1674                assert(memory_ranges_equal(image->bindings[j].memory_range,
1675                                           swapchain_image->bindings[j].memory_range));
1676                image->bindings[j].address = swapchain_image->bindings[j].address;
1677             }
1678 
1679             /* We must bump the private binding's bo's refcount because, unlike the other
1680              * bindings, its lifetime is not application-managed.
1681              */
1682             struct anv_bo *private_bo =
1683                image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
1684             if (private_bo)
1685                anv_bo_ref(private_bo);
1686 
1687             did_bind = true;
1688 #endif
1689             break;
1690          }
1691 #pragma GCC diagnostic push
1692 #pragma GCC diagnostic ignored "-Wswitch"
1693          case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: {
1694             const VkNativeBufferANDROID *gralloc_info =
1695                (const VkNativeBufferANDROID *)s;
1696             VkResult result = anv_image_bind_from_gralloc(device, image,
1697                                                           gralloc_info);
1698             if (result != VK_SUCCESS)
1699                return result;
1700             did_bind = true;
1701             break;
1702          }
1703 #pragma GCC diagnostic pop
1704          default:
1705             vk_debug_ignored_stype(s->sType);
1706             break;
1707          }
1708       }
1709 
1710       if (!did_bind) {
1711          assert(!image->disjoint);
1712 
1713          image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address =
1714             (struct anv_address) {
1715                .bo = mem->bo,
1716                .offset = bind_info->memoryOffset,
1717             };
1718 
1719          did_bind = true;
1720       }
1721    }
1722 
1723    return VK_SUCCESS;
1724 }
1725 
anv_GetImageSubresourceLayout(VkDevice device,VkImage _image,const VkImageSubresource * subresource,VkSubresourceLayout * layout)1726 void anv_GetImageSubresourceLayout(
1727     VkDevice                                    device,
1728     VkImage                                     _image,
1729     const VkImageSubresource*                   subresource,
1730     VkSubresourceLayout*                        layout)
1731 {
1732    ANV_FROM_HANDLE(anv_image, image, _image);
1733    const struct anv_surface *surface;
1734 
1735    assert(__builtin_popcount(subresource->aspectMask) == 1);
1736 
1737    /* The Vulkan spec requires that aspectMask be
1738     * VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT if tiling is
1739     * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
1740     *
1741     * For swapchain images, the Vulkan spec says that every swapchain image has
1742     * tiling VK_IMAGE_TILING_OPTIMAL, but we may choose
1743     * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT internally.  Vulkan doesn't allow
1744     * vkGetImageSubresourceLayout for images with VK_IMAGE_TILING_OPTIMAL,
1745     * therefore it's invalid for the application to call this on a swapchain
1746     * image.  The WSI code, however, knows when it has internally created
1747     * a swapchain image with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
1748     * so it _should_ correctly use VK_IMAGE_ASPECT_MEMORY_PLANE_* in that case.
1749     * But it incorrectly uses VK_IMAGE_ASPECT_PLANE_*, so we have a temporary
1750     * workaround.
1751     */
1752    if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
1753       /* TODO(chadv): Drop this workaround when WSI gets fixed. */
1754       uint32_t mem_plane;
1755       switch (subresource->aspectMask) {
1756       case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT:
1757       case VK_IMAGE_ASPECT_PLANE_0_BIT:
1758          mem_plane = 0;
1759          break;
1760       case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT:
1761       case VK_IMAGE_ASPECT_PLANE_1_BIT:
1762          mem_plane = 1;
1763          break;
1764       case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT:
1765       case VK_IMAGE_ASPECT_PLANE_2_BIT:
1766          mem_plane = 2;
1767          break;
1768       default:
1769          unreachable("bad VkImageAspectFlags");
1770       }
1771 
1772       if (mem_plane == 1 && isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
1773          assert(image->n_planes == 1);
1774          /* If the memory binding differs between primary and aux, then the
1775           * returned offset will be incorrect.
1776           */
1777          assert(image->planes[0].aux_surface.memory_range.binding ==
1778                 image->planes[0].primary_surface.memory_range.binding);
1779          surface = &image->planes[0].aux_surface;
1780       } else {
1781          assert(mem_plane < image->n_planes);
1782          surface = &image->planes[mem_plane].primary_surface;
1783       }
1784    } else {
1785       const uint32_t plane =
1786          anv_image_aspect_to_plane(image, subresource->aspectMask);
1787       surface = &image->planes[plane].primary_surface;
1788    }
1789 
1790    layout->offset = surface->memory_range.offset;
1791    layout->rowPitch = surface->isl.row_pitch_B;
1792    layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
1793    layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
1794 
1795    if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
1796       assert(surface->isl.tiling == ISL_TILING_LINEAR);
1797 
1798       uint64_t offset_B;
1799       isl_surf_get_image_offset_B_tile_sa(&surface->isl,
1800                                           subresource->mipLevel,
1801                                           subresource->arrayLayer,
1802                                           0 /* logical_z_offset_px */,
1803                                           &offset_B, NULL, NULL);
1804       layout->offset += offset_B;
1805       layout->size = layout->rowPitch * u_minify(image->vk.extent.height,
1806                                                  subresource->mipLevel) *
1807                      image->vk.extent.depth;
1808    } else {
1809       layout->size = surface->memory_range.size;
1810    }
1811 }
1812 
1813 /**
1814  * This function returns the assumed isl_aux_state for a given VkImageLayout.
1815  * Because Vulkan image layouts don't map directly to isl_aux_state enums, the
1816  * returned enum is the assumed worst case.
1817  *
1818  * @param devinfo The device information of the Intel GPU.
1819  * @param image The image that may contain a collection of buffers.
1820  * @param aspect The aspect of the image to be accessed.
1821  * @param layout The current layout of the image aspect(s).
1822  *
1823  * @return The primary buffer that should be used for the given layout.
1824  */
1825 enum isl_aux_state ATTRIBUTE_PURE
anv_layout_to_aux_state(const struct intel_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageLayout layout)1826 anv_layout_to_aux_state(const struct intel_device_info * const devinfo,
1827                         const struct anv_image * const image,
1828                         const VkImageAspectFlagBits aspect,
1829                         const VkImageLayout layout)
1830 {
1831    /* Validate the inputs. */
1832 
1833    /* The devinfo is needed as the optimal buffer varies across generations. */
1834    assert(devinfo != NULL);
1835 
1836    /* The layout of a NULL image is not properly defined. */
1837    assert(image != NULL);
1838 
1839    /* The aspect must be exactly one of the image aspects. */
1840    assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
1841 
1842    /* Determine the optimal buffer. */
1843 
1844    const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
1845 
1846    /* If we don't have an aux buffer then aux state makes no sense */
1847    const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
1848    assert(aux_usage != ISL_AUX_USAGE_NONE);
1849 
1850    /* All images that use an auxiliary surface are required to be tiled. */
1851    assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);
1852 
1853    /* Handle a few special cases */
1854    switch (layout) {
1855    /* Invalid layouts */
1856    case VK_IMAGE_LAYOUT_MAX_ENUM:
1857       unreachable("Invalid image layout.");
1858 
1859    /* Undefined layouts
1860     *
1861     * The pre-initialized layout is equivalent to the undefined layout for
1862     * optimally-tiled images.  We can only do color compression (CCS or HiZ)
1863     * on tiled images.
1864     */
1865    case VK_IMAGE_LAYOUT_UNDEFINED:
1866    case VK_IMAGE_LAYOUT_PREINITIALIZED:
1867       return ISL_AUX_STATE_AUX_INVALID;
1868 
1869    case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
1870       assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1871 
1872       enum isl_aux_state aux_state =
1873          isl_drm_modifier_get_default_aux_state(image->vk.drm_format_mod);
1874 
1875       switch (aux_state) {
1876       case ISL_AUX_STATE_AUX_INVALID:
1877          /* The modifier does not support compression. But, if we arrived
1878           * here, then we have enabled compression on it anyway, in which case
1879           * we must resolve the aux surface before we release ownership to the
1880           * presentation engine (because, having no modifier, the presentation
1881           * engine will not be aware of the aux surface). The presentation
1882           * engine will not access the aux surface (because it is unware of
1883           * it), and so the aux surface will still be resolved when we
1884           * re-acquire ownership.
1885           *
1886           * Therefore, at ownership transfers in either direction, there does
1887           * exist an aux surface despite the lack of modifier and its state is
1888           * pass-through.
1889           */
1890          return ISL_AUX_STATE_PASS_THROUGH;
1891       case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1892          return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1893       default:
1894          unreachable("unexpected isl_aux_state");
1895       }
1896    }
1897 
1898    default:
1899       break;
1900    }
1901 
1902    const bool read_only = vk_image_layout_is_read_only(layout, aspect);
1903 
1904    const VkImageUsageFlags image_aspect_usage =
1905       vk_image_usage(&image->vk, aspect);
1906    const VkImageUsageFlags usage =
1907       vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage;
1908 
1909    bool aux_supported = true;
1910    bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
1911 
1912    if ((usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && !read_only) {
1913       /* This image could be used as both an input attachment and a render
1914        * target (depth, stencil, or color) at the same time and this can cause
1915        * corruption.
1916        *
1917        * We currently only disable aux in this way for depth even though we
1918        * disable it for color in GL.
1919        *
1920        * TODO: Should we be disabling this in more cases?
1921        */
1922       if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT && devinfo->ver <= 9) {
1923          aux_supported = false;
1924          clear_supported = false;
1925       }
1926    }
1927 
1928    if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1929                 VK_IMAGE_USAGE_SAMPLED_BIT |
1930                 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
1931       switch (aux_usage) {
1932       case ISL_AUX_USAGE_HIZ:
1933          if (!anv_can_sample_with_hiz(devinfo, image)) {
1934             aux_supported = false;
1935             clear_supported = false;
1936          }
1937          break;
1938 
1939       case ISL_AUX_USAGE_CCS_D:
1940          aux_supported = false;
1941          clear_supported = false;
1942          break;
1943 
1944       case ISL_AUX_USAGE_MCS:
1945          break;
1946 
1947       default:
1948          unreachable("Unsupported aux usage");
1949       }
1950    }
1951 
1952    switch (aux_usage) {
1953    case ISL_AUX_USAGE_CCS_D:
1954       /* We only support clear in exactly one state */
1955       if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
1956          assert(aux_supported);
1957          assert(clear_supported);
1958          return ISL_AUX_STATE_PARTIAL_CLEAR;
1959       } else {
1960          return ISL_AUX_STATE_PASS_THROUGH;
1961       }
1962 
1963    case ISL_AUX_USAGE_MCS:
1964       assert(aux_supported);
1965       if (clear_supported) {
1966          return ISL_AUX_STATE_COMPRESSED_CLEAR;
1967       } else {
1968          return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1969       }
1970 
1971    default:
1972       unreachable("Unsupported aux usage");
1973    }
1974 }
1975 
1976 /**
1977  * This function determines the optimal buffer to use for a given
1978  * VkImageLayout and other pieces of information needed to make that
1979  * determination. This does not determine the optimal buffer to use
1980  * during a resolve operation.
1981  *
1982  * @param devinfo The device information of the Intel GPU.
1983  * @param image The image that may contain a collection of buffers.
1984  * @param aspect The aspect of the image to be accessed.
1985  * @param usage The usage which describes how the image will be accessed.
1986  * @param layout The current layout of the image aspect(s).
1987  *
1988  * @return The primary buffer that should be used for the given layout.
1989  */
1990 enum isl_aux_usage ATTRIBUTE_PURE
anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageUsageFlagBits usage,const VkImageLayout layout)1991 anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,
1992                         const struct anv_image * const image,
1993                         const VkImageAspectFlagBits aspect,
1994                         const VkImageUsageFlagBits usage,
1995                         const VkImageLayout layout)
1996 {
1997    const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
1998 
1999    /* If there is no auxiliary surface allocated, we must use the one and only
2000     * main buffer.
2001     */
2002    if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
2003       return ISL_AUX_USAGE_NONE;
2004 
2005    enum isl_aux_state aux_state =
2006       anv_layout_to_aux_state(devinfo, image, aspect, layout);
2007 
2008    switch (aux_state) {
2009    case ISL_AUX_STATE_CLEAR:
2010       unreachable("We never use this state");
2011 
2012    case ISL_AUX_STATE_PARTIAL_CLEAR:
2013       assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
2014       assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D);
2015       assert(image->vk.samples == 1);
2016       return ISL_AUX_USAGE_CCS_D;
2017 
2018    case ISL_AUX_STATE_COMPRESSED_CLEAR:
2019    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2020       return image->planes[plane].aux_usage;
2021 
2022    case ISL_AUX_STATE_RESOLVED:
2023       /* We can only use RESOLVED in read-only layouts because any write will
2024        * either land us in AUX_INVALID or COMPRESSED_NO_CLEAR.  We can do
2025        * writes in PASS_THROUGH without destroying it so that is allowed.
2026        */
2027       assert(vk_image_layout_is_read_only(layout, aspect));
2028       assert(util_is_power_of_two_or_zero(usage));
2029       if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
2030          /* If we have valid HiZ data and are using the image as a read-only
2031           * depth/stencil attachment, we should enable HiZ so that we can get
2032           * faster depth testing.
2033           */
2034          return image->planes[plane].aux_usage;
2035       } else {
2036          return ISL_AUX_USAGE_NONE;
2037       }
2038 
2039    case ISL_AUX_STATE_PASS_THROUGH:
2040    case ISL_AUX_STATE_AUX_INVALID:
2041       return ISL_AUX_USAGE_NONE;
2042    }
2043 
2044    unreachable("Invalid isl_aux_state");
2045 }
2046 
2047 /**
2048  * This function returns the level of unresolved fast-clear support of the
2049  * given image in the given VkImageLayout.
2050  *
2051  * @param devinfo The device information of the Intel GPU.
2052  * @param image The image that may contain a collection of buffers.
2053  * @param aspect The aspect of the image to be accessed.
2054  * @param usage The usage which describes how the image will be accessed.
2055  * @param layout The current layout of the image aspect(s).
2056  */
2057 enum anv_fast_clear_type ATTRIBUTE_PURE
anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageLayout layout)2058 anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,
2059                               const struct anv_image * const image,
2060                               const VkImageAspectFlagBits aspect,
2061                               const VkImageLayout layout)
2062 {
2063    if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
2064       return ANV_FAST_CLEAR_NONE;
2065 
2066    const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
2067 
2068    /* If there is no auxiliary surface allocated, there are no fast-clears */
2069    if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
2070       return ANV_FAST_CLEAR_NONE;
2071 
2072    /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
2073     * lack the MI ALU which we need to determine the predicates.
2074     */
2075    if (devinfo->verx10 == 70 && image->vk.samples > 1)
2076       return ANV_FAST_CLEAR_NONE;
2077 
2078    enum isl_aux_state aux_state =
2079       anv_layout_to_aux_state(devinfo, image, aspect, layout);
2080 
2081    switch (aux_state) {
2082    case ISL_AUX_STATE_CLEAR:
2083       unreachable("We never use this state");
2084 
2085    case ISL_AUX_STATE_PARTIAL_CLEAR:
2086    case ISL_AUX_STATE_COMPRESSED_CLEAR:
2087       if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
2088          return ANV_FAST_CLEAR_DEFAULT_VALUE;
2089       } else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
2090          /* The image might not support non zero fast clears when mutable. */
2091          if (!image->planes[plane].can_non_zero_fast_clear)
2092             return ANV_FAST_CLEAR_DEFAULT_VALUE;
2093 
2094          /* When we're in a render pass we have the clear color data from the
2095           * VkRenderPassBeginInfo and we can use arbitrary clear colors.  They
2096           * must get partially resolved before we leave the render pass.
2097           */
2098          return ANV_FAST_CLEAR_ANY;
2099       } else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS) {
2100          /* If the image has MCS or CCS_E enabled all the time then we can
2101           * use fast-clear as long as the clear color is the default value
2102           * of zero since this is the default value we program into every
2103           * surface state used for texturing.
2104           */
2105          return ANV_FAST_CLEAR_DEFAULT_VALUE;
2106       } else {
2107          return ANV_FAST_CLEAR_NONE;
2108       }
2109 
2110    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2111    case ISL_AUX_STATE_RESOLVED:
2112    case ISL_AUX_STATE_PASS_THROUGH:
2113    case ISL_AUX_STATE_AUX_INVALID:
2114       return ANV_FAST_CLEAR_NONE;
2115    }
2116 
2117    unreachable("Invalid isl_aux_state");
2118 }
2119 
2120 
2121 static struct anv_state
alloc_surface_state(struct anv_device * device)2122 alloc_surface_state(struct anv_device *device)
2123 {
2124    return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
2125 }
2126 
2127 static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,struct isl_swizzle format_swizzle)2128 remap_swizzle(VkComponentSwizzle swizzle,
2129               struct isl_swizzle format_swizzle)
2130 {
2131    switch (swizzle) {
2132    case VK_COMPONENT_SWIZZLE_ZERO:  return ISL_CHANNEL_SELECT_ZERO;
2133    case VK_COMPONENT_SWIZZLE_ONE:   return ISL_CHANNEL_SELECT_ONE;
2134    case VK_COMPONENT_SWIZZLE_R:     return format_swizzle.r;
2135    case VK_COMPONENT_SWIZZLE_G:     return format_swizzle.g;
2136    case VK_COMPONENT_SWIZZLE_B:     return format_swizzle.b;
2137    case VK_COMPONENT_SWIZZLE_A:     return format_swizzle.a;
2138    default:
2139       unreachable("Invalid swizzle");
2140    }
2141 }
2142 
2143 void
anv_image_fill_surface_state(struct anv_device * device,const struct anv_image * image,VkImageAspectFlagBits aspect,const struct isl_view * view_in,isl_surf_usage_flags_t view_usage,enum isl_aux_usage aux_usage,const union isl_color_value * clear_color,enum anv_image_view_state_flags flags,struct anv_surface_state * state_inout,struct isl_image_param * image_param_out)2144 anv_image_fill_surface_state(struct anv_device *device,
2145                              const struct anv_image *image,
2146                              VkImageAspectFlagBits aspect,
2147                              const struct isl_view *view_in,
2148                              isl_surf_usage_flags_t view_usage,
2149                              enum isl_aux_usage aux_usage,
2150                              const union isl_color_value *clear_color,
2151                              enum anv_image_view_state_flags flags,
2152                              struct anv_surface_state *state_inout,
2153                              struct isl_image_param *image_param_out)
2154 {
2155    const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
2156 
2157    const struct anv_surface *surface = &image->planes[plane].primary_surface,
2158       *aux_surface = &image->planes[plane].aux_surface;
2159 
2160    struct isl_view view = *view_in;
2161    view.usage |= view_usage;
2162 
2163    /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
2164     * compressed surface with a shadow surface, we use the shadow instead of
2165     * the primary surface.  The shadow surface will be tiled, unlike the main
2166     * surface, so it should get significantly better performance.
2167     */
2168    if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
2169        isl_format_is_compressed(view.format) &&
2170        (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
2171       assert(isl_format_is_compressed(surface->isl.format));
2172       assert(surface->isl.tiling == ISL_TILING_LINEAR);
2173       assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
2174       surface = &image->planes[plane].shadow_surface;
2175    }
2176 
2177    /* For texturing from stencil on gfx7, we have to sample from a shadow
2178     * surface because we don't support W-tiling in the sampler.
2179     */
2180    if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
2181        aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
2182       assert(device->info->ver == 7);
2183       assert(view_usage & ISL_SURF_USAGE_TEXTURE_BIT);
2184       surface = &image->planes[plane].shadow_surface;
2185    }
2186 
2187    if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
2188       view.swizzle = anv_swizzle_for_render(view.swizzle);
2189 
2190    /* On Ivy Bridge and Bay Trail we do the swizzle in the shader */
2191    if (device->info->verx10 == 70)
2192       view.swizzle = ISL_SWIZZLE_IDENTITY;
2193 
2194    /* If this is a HiZ buffer we can sample from with a programmable clear
2195     * value (SKL+), define the clear value to the optimal constant.
2196     */
2197    union isl_color_value default_clear_color = { .u32 = { 0, } };
2198    if (!clear_color)
2199       clear_color = &default_clear_color;
2200 
2201    const struct anv_address address =
2202       anv_image_address(image, &surface->memory_range);
2203 
2204    if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
2205        (flags & ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED) &&
2206        !isl_has_matching_typed_storage_image_format(device->info,
2207                                                     view.format)) {
2208       /* In this case, we are a writeable storage buffer which needs to be
2209        * lowered to linear. All tiling and offset calculations will be done in
2210        * the shader.
2211        */
2212       assert(aux_usage == ISL_AUX_USAGE_NONE);
2213       isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
2214                             .address = anv_address_physical(address),
2215                             .size_B = surface->isl.size_B,
2216                             .format = ISL_FORMAT_RAW,
2217                             .swizzle = ISL_SWIZZLE_IDENTITY,
2218                             .stride_B = 1,
2219                             .mocs = anv_mocs(device, address.bo, view_usage));
2220       state_inout->address = address,
2221       state_inout->aux_address = ANV_NULL_ADDRESS;
2222       state_inout->clear_address = ANV_NULL_ADDRESS;
2223    } else {
2224       if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
2225           (flags & ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED)) {
2226          /* Typed surface reads support a very limited subset of the shader
2227           * image formats.  Translate it into the closest format the hardware
2228           * supports.
2229           */
2230          enum isl_format lower_format =
2231             isl_lower_storage_image_format(device->info, view.format);
2232 
2233          /* If we lower the format, we should ensure either they both match in
2234           * bits per channel or that there is no swizzle, because we can't use
2235           * the swizzle for a different bit pattern.
2236           */
2237          assert(isl_formats_have_same_bits_per_channel(lower_format,
2238                                                        view.format) ||
2239                 isl_swizzle_is_identity_for_format(view.format, view.swizzle));
2240 
2241          view.format = lower_format;
2242       }
2243 
2244       const struct isl_surf *isl_surf = &surface->isl;
2245 
2246       struct isl_surf tmp_surf;
2247       uint64_t offset_B = 0;
2248       uint32_t tile_x_sa = 0, tile_y_sa = 0;
2249       if (isl_format_is_compressed(surface->isl.format) &&
2250           !isl_format_is_compressed(view.format)) {
2251          /* We're creating an uncompressed view of a compressed surface.  This
2252           * is allowed but only for a single level/layer.
2253           */
2254          assert(surface->isl.samples == 1);
2255          assert(view.levels == 1);
2256          assert(view.array_len == 1);
2257 
2258          ASSERTED bool ok =
2259             isl_surf_get_uncompressed_surf(&device->isl_dev, isl_surf, &view,
2260                                            &tmp_surf, &view,
2261                                            &offset_B, &tile_x_sa, &tile_y_sa);
2262          assert(ok);
2263          isl_surf = &tmp_surf;
2264 
2265          if (device->info->ver <= 8) {
2266             assert(surface->isl.tiling == ISL_TILING_LINEAR);
2267             assert(tile_x_sa == 0);
2268             assert(tile_y_sa == 0);
2269          }
2270       }
2271 
2272       state_inout->address = anv_address_add(address, offset_B);
2273 
2274       struct anv_address aux_address = ANV_NULL_ADDRESS;
2275       if (aux_usage != ISL_AUX_USAGE_NONE)
2276          aux_address = anv_image_address(image, &aux_surface->memory_range);
2277       state_inout->aux_address = aux_address;
2278 
2279       struct anv_address clear_address = ANV_NULL_ADDRESS;
2280       if (device->info->ver >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) {
2281          clear_address = anv_image_get_clear_color_addr(device, image, aspect);
2282       }
2283       state_inout->clear_address = clear_address;
2284 
2285       isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
2286                           .surf = isl_surf,
2287                           .view = &view,
2288                           .address = anv_address_physical(state_inout->address),
2289                           .clear_color = *clear_color,
2290                           .aux_surf = &aux_surface->isl,
2291                           .aux_usage = aux_usage,
2292                           .aux_address = anv_address_physical(aux_address),
2293                           .clear_address = anv_address_physical(clear_address),
2294                           .use_clear_address = !anv_address_is_null(clear_address),
2295                           .mocs = anv_mocs(device, state_inout->address.bo,
2296                                            view_usage),
2297                           .x_offset_sa = tile_x_sa,
2298                           .y_offset_sa = tile_y_sa);
2299 
2300       /* With the exception of gfx8, the bottom 12 bits of the MCS base address
2301        * are used to store other information.  This should be ok, however,
2302        * because the surface buffer addresses are always 4K page aligned.
2303        */
2304       if (!anv_address_is_null(aux_address)) {
2305          uint32_t *aux_addr_dw = state_inout->state.map +
2306             device->isl_dev.ss.aux_addr_offset;
2307          assert((aux_address.offset & 0xfff) == 0);
2308          state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
2309       }
2310 
2311       if (device->info->ver >= 10 && clear_address.bo) {
2312          uint32_t *clear_addr_dw = state_inout->state.map +
2313                                    device->isl_dev.ss.clear_color_state_offset;
2314          assert((clear_address.offset & 0x3f) == 0);
2315          state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
2316       }
2317    }
2318 
2319    if (image_param_out) {
2320       assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
2321       isl_surf_fill_image_param(&device->isl_dev, image_param_out,
2322                                 &surface->isl, &view);
2323    }
2324 }
2325 
2326 static uint32_t
anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)2327 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
2328 {
2329    anv_assert_valid_aspect_set(aspect_mask);
2330    return util_bitcount(aspect_mask);
2331 }
2332 
2333 VkResult
anv_CreateImageView(VkDevice _device,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)2334 anv_CreateImageView(VkDevice _device,
2335                     const VkImageViewCreateInfo *pCreateInfo,
2336                     const VkAllocationCallbacks *pAllocator,
2337                     VkImageView *pView)
2338 {
2339    ANV_FROM_HANDLE(anv_device, device, _device);
2340    ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
2341    struct anv_image_view *iview;
2342 
2343    iview = vk_image_view_create(&device->vk, false, pCreateInfo,
2344                                 pAllocator, sizeof(*iview));
2345    if (iview == NULL)
2346       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2347 
2348    iview->image = image;
2349    iview->n_planes = anv_image_aspect_get_planes(iview->vk.aspects);
2350 
2351    /* Now go through the underlying image selected planes and map them to
2352     * planes in the image view.
2353     */
2354    anv_foreach_image_aspect_bit(iaspect_bit, image, iview->vk.aspects) {
2355       const uint32_t iplane =
2356          anv_aspect_to_plane(image->vk.aspects, 1UL << iaspect_bit);
2357       const uint32_t vplane =
2358          anv_aspect_to_plane(iview->vk.aspects, 1UL << iaspect_bit);
2359       struct anv_format_plane format;
2360       format = anv_get_format_plane(device->info, iview->vk.view_format,
2361                                     vplane, image->vk.tiling);
2362 
2363       iview->planes[vplane].image_plane = iplane;
2364 
2365       iview->planes[vplane].isl = (struct isl_view) {
2366          .format = format.isl_format,
2367          .base_level = iview->vk.base_mip_level,
2368          .levels = iview->vk.level_count,
2369          .base_array_layer = iview->vk.base_array_layer,
2370          .array_len = iview->vk.layer_count,
2371          .min_lod_clamp = iview->vk.min_lod,
2372          .swizzle = {
2373             .r = remap_swizzle(iview->vk.swizzle.r, format.swizzle),
2374             .g = remap_swizzle(iview->vk.swizzle.g, format.swizzle),
2375             .b = remap_swizzle(iview->vk.swizzle.b, format.swizzle),
2376             .a = remap_swizzle(iview->vk.swizzle.a, format.swizzle),
2377          },
2378       };
2379 
2380       if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
2381          iview->planes[vplane].isl.base_array_layer = 0;
2382          iview->planes[vplane].isl.array_len = iview->vk.extent.depth;
2383       }
2384 
2385       if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
2386           pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
2387          iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
2388       } else {
2389          iview->planes[vplane].isl.usage = 0;
2390       }
2391 
2392       if (iview->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
2393                              VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
2394          iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
2395          iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
2396 
2397          enum isl_aux_usage general_aux_usage =
2398             anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
2399                                     VK_IMAGE_USAGE_SAMPLED_BIT,
2400                                     VK_IMAGE_LAYOUT_GENERAL);
2401          enum isl_aux_usage optimal_aux_usage =
2402             anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
2403                                     VK_IMAGE_USAGE_SAMPLED_BIT,
2404                                     VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
2405 
2406          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2407                                       &iview->planes[vplane].isl,
2408                                       ISL_SURF_USAGE_TEXTURE_BIT,
2409                                       optimal_aux_usage, NULL,
2410                                       ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
2411                                       &iview->planes[vplane].optimal_sampler_surface_state,
2412                                       NULL);
2413 
2414          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2415                                       &iview->planes[vplane].isl,
2416                                       ISL_SURF_USAGE_TEXTURE_BIT,
2417                                       general_aux_usage, NULL,
2418                                       0,
2419                                       &iview->planes[vplane].general_sampler_surface_state,
2420                                       NULL);
2421       }
2422 
2423       /* NOTE: This one needs to go last since it may stomp isl_view.format */
2424       if (iview->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT) {
2425          enum isl_aux_usage general_aux_usage =
2426             anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
2427                                     VK_IMAGE_USAGE_STORAGE_BIT,
2428                                     VK_IMAGE_LAYOUT_GENERAL);
2429          iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
2430          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2431                                       &iview->planes[vplane].isl,
2432                                       ISL_SURF_USAGE_STORAGE_BIT,
2433                                       general_aux_usage, NULL,
2434                                       0,
2435                                       &iview->planes[vplane].storage_surface_state,
2436                                       NULL);
2437 
2438          if (isl_is_storage_image_format(device->info, format.isl_format)) {
2439             iview->planes[vplane].lowered_storage_surface_state.state =
2440                alloc_surface_state(device);
2441 
2442             anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2443                                          &iview->planes[vplane].isl,
2444                                          ISL_SURF_USAGE_STORAGE_BIT,
2445                                          general_aux_usage, NULL,
2446                                          ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED,
2447                                          &iview->planes[vplane].lowered_storage_surface_state,
2448                                          &iview->planes[vplane].lowered_storage_image_param);
2449          } else {
2450             /* In this case, we support the format but, because there's no
2451              * SPIR-V format specifier corresponding to it, we only support it
2452              * if the hardware can do it natively.  This is possible for some
2453              * reads but for most writes.  Instead of hanging if someone gets
2454              * it wrong, we give them a NULL descriptor.
2455              */
2456             assert(isl_format_supports_typed_writes(device->info,
2457                                                     format.isl_format));
2458             iview->planes[vplane].lowered_storage_surface_state.state =
2459                device->null_surface_state;
2460          }
2461       }
2462    }
2463 
2464    *pView = anv_image_view_to_handle(iview);
2465 
2466    return VK_SUCCESS;
2467 }
2468 
2469 void
anv_DestroyImageView(VkDevice _device,VkImageView _iview,const VkAllocationCallbacks * pAllocator)2470 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
2471                      const VkAllocationCallbacks *pAllocator)
2472 {
2473    ANV_FROM_HANDLE(anv_device, device, _device);
2474    ANV_FROM_HANDLE(anv_image_view, iview, _iview);
2475 
2476    if (!iview)
2477       return;
2478 
2479    for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
2480       /* Check offset instead of alloc_size because this they might be
2481        * device->null_surface_state which always has offset == 0.  We don't
2482        * own that one so we don't want to accidentally free it.
2483        */
2484       if (iview->planes[plane].optimal_sampler_surface_state.state.offset) {
2485          anv_state_pool_free(&device->surface_state_pool,
2486                              iview->planes[plane].optimal_sampler_surface_state.state);
2487       }
2488 
2489       if (iview->planes[plane].general_sampler_surface_state.state.offset) {
2490          anv_state_pool_free(&device->surface_state_pool,
2491                              iview->planes[plane].general_sampler_surface_state.state);
2492       }
2493 
2494       if (iview->planes[plane].storage_surface_state.state.offset) {
2495          anv_state_pool_free(&device->surface_state_pool,
2496                              iview->planes[plane].storage_surface_state.state);
2497       }
2498 
2499       if (iview->planes[plane].lowered_storage_surface_state.state.offset) {
2500          anv_state_pool_free(&device->surface_state_pool,
2501                              iview->planes[plane].lowered_storage_surface_state.state);
2502       }
2503    }
2504 
2505    vk_image_view_destroy(&device->vk, pAllocator, &iview->vk);
2506 }
2507 
2508 
2509 VkResult
anv_CreateBufferView(VkDevice _device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)2510 anv_CreateBufferView(VkDevice _device,
2511                      const VkBufferViewCreateInfo *pCreateInfo,
2512                      const VkAllocationCallbacks *pAllocator,
2513                      VkBufferView *pView)
2514 {
2515    ANV_FROM_HANDLE(anv_device, device, _device);
2516    ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
2517    struct anv_buffer_view *view;
2518 
2519    view = vk_object_alloc(&device->vk, pAllocator, sizeof(*view),
2520                           VK_OBJECT_TYPE_BUFFER_VIEW);
2521    if (!view)
2522       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2523 
2524    struct anv_format_plane format;
2525    format = anv_get_format_plane(device->info, pCreateInfo->format,
2526                                  0, VK_IMAGE_TILING_LINEAR);
2527 
2528    const uint32_t format_bs = isl_format_get_layout(format.isl_format)->bpb / 8;
2529    view->range = vk_buffer_range(&buffer->vk, pCreateInfo->offset,
2530                                               pCreateInfo->range);
2531    view->range = align_down_npot_u32(view->range, format_bs);
2532 
2533    view->address = anv_address_add(buffer->address, pCreateInfo->offset);
2534 
2535    if (buffer->vk.usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
2536       view->surface_state = alloc_surface_state(device);
2537 
2538       anv_fill_buffer_surface_state(device, view->surface_state,
2539                                     format.isl_format, format.swizzle,
2540                                     ISL_SURF_USAGE_TEXTURE_BIT,
2541                                     view->address, view->range, format_bs);
2542    } else {
2543       view->surface_state = (struct anv_state){ 0 };
2544    }
2545 
2546    if (buffer->vk.usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
2547       view->storage_surface_state = alloc_surface_state(device);
2548       view->lowered_storage_surface_state = alloc_surface_state(device);
2549 
2550       anv_fill_buffer_surface_state(device, view->storage_surface_state,
2551                                     format.isl_format, format.swizzle,
2552                                     ISL_SURF_USAGE_STORAGE_BIT,
2553                                     view->address, view->range, format_bs);
2554 
2555       enum isl_format lowered_format =
2556          isl_has_matching_typed_storage_image_format(device->info,
2557                                                      format.isl_format) ?
2558          isl_lower_storage_image_format(device->info, format.isl_format) :
2559          ISL_FORMAT_RAW;
2560 
2561       /* If we lower the format, we should ensure either they both match in
2562        * bits per channel or that there is no swizzle because we can't use
2563        * the swizzle for a different bit pattern.
2564        */
2565       assert(isl_formats_have_same_bits_per_channel(lowered_format,
2566                                                     format.isl_format) ||
2567              isl_swizzle_is_identity(format.swizzle));
2568 
2569       anv_fill_buffer_surface_state(device, view->lowered_storage_surface_state,
2570                                     lowered_format, format.swizzle,
2571                                     ISL_SURF_USAGE_STORAGE_BIT,
2572                                     view->address, view->range,
2573                                     (lowered_format == ISL_FORMAT_RAW ? 1 :
2574                                      isl_format_get_layout(lowered_format)->bpb / 8));
2575 
2576       isl_buffer_fill_image_param(&device->isl_dev,
2577                                   &view->lowered_storage_image_param,
2578                                   format.isl_format, view->range);
2579    } else {
2580       view->storage_surface_state = (struct anv_state){ 0 };
2581       view->lowered_storage_surface_state = (struct anv_state){ 0 };
2582    }
2583 
2584    *pView = anv_buffer_view_to_handle(view);
2585 
2586    return VK_SUCCESS;
2587 }
2588 
2589 void
anv_DestroyBufferView(VkDevice _device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)2590 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
2591                       const VkAllocationCallbacks *pAllocator)
2592 {
2593    ANV_FROM_HANDLE(anv_device, device, _device);
2594    ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
2595 
2596    if (!view)
2597       return;
2598 
2599    if (view->surface_state.alloc_size > 0)
2600       anv_state_pool_free(&device->surface_state_pool,
2601                           view->surface_state);
2602 
2603    if (view->storage_surface_state.alloc_size > 0)
2604       anv_state_pool_free(&device->surface_state_pool,
2605                           view->storage_surface_state);
2606 
2607    if (view->lowered_storage_surface_state.alloc_size > 0)
2608       anv_state_pool_free(&device->surface_state_pool,
2609                           view->lowered_storage_surface_state);
2610 
2611    vk_object_free(&device->vk, pAllocator, view);
2612 }
2613