xref: /aosp_15_r20/external/tensorflow/tensorflow/python/data/experimental/ops/lookup_ops.py (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14#==============================================================================
15"""Lookup operations."""
16
17from tensorflow.python.data.experimental.ops.cardinality import assert_cardinality
18from tensorflow.python.framework import dtypes
19from tensorflow.python.framework import ops
20from tensorflow.python.framework import tensor_spec
21from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
22from tensorflow.python.ops import lookup_ops
23from tensorflow.python.ops import math_ops
24from tensorflow.python.util.tf_export import tf_export
25
26
27def _check_table_initializer_element_spec(element_spec):
28  """Raises an error if the given table initializer element spec is invalid."""
29  base_error = ("Datasets used to initialize lookup tables must "
30                "produce elements in the form (key, value), where "
31                "the keys and values are scalar tensors. ")
32  specific_error = None
33  if len(element_spec) != 2:
34    raise ValueError(base_error + "However, the given dataset produces "
35                     f"{len(element_spec)} components instead of two "
36                     "(key, value) components. Full dataset element spec: "
37                     f"{element_spec}.")
38  if not isinstance(element_spec[0], tensor_spec.TensorSpec):
39    raise ValueError(base_error + "However, the given dataset produces "
40                     f"non-Tensor keys of type {type(element_spec[0])}.")
41  if not isinstance(element_spec[1], tensor_spec.TensorSpec):
42    raise ValueError(base_error + "However, the given dataset produces "
43                     f"non-Tensor values of type {type(element_spec[1])}.")
44  if element_spec[0].shape.rank not in (None, 0):
45    raise ValueError(
46        base_error + "However, the given dataset produces "
47        f"non-scalar key Tensors of rank {element_spec[0].shape.rank}.")
48  if element_spec[1].shape.rank not in (None, 0):
49    raise ValueError(
50        base_error + "However, the given dataset produces "
51        f"non-scalar value Tensors of rank {element_spec[1].shape.rank}.")
52
53
54@tf_export("data.experimental.DatasetInitializer")
55class DatasetInitializer(lookup_ops.TableInitializerBase):
56  """Creates a table initializer from a `tf.data.Dataset`.
57
58  Sample usage:
59
60  >>> keys = tf.data.Dataset.range(100)
61  >>> values = tf.data.Dataset.range(100).map(
62  ...     lambda x: tf.strings.as_string(x * 2))
63  >>> ds = tf.data.Dataset.zip((keys, values))
64  >>> init = tf.data.experimental.DatasetInitializer(ds)
65  >>> table = tf.lookup.StaticHashTable(init, "")
66  >>> table.lookup(tf.constant([0, 1, 2], dtype=tf.int64)).numpy()
67  array([b'0', b'2', b'4'], dtype=object)
68
69  Attributes:
70    dataset: A `tf.data.Dataset` object that produces tuples of scalars. The
71      first scalar is treated as a key and the second as value.
72  Raises: ValueError if `dataset` doesn't conform to specifications.
73  """
74
75  def __init__(self, dataset):
76    """Creates a table initializer from a `tf.data.Dataset`.
77
78    Args:
79      dataset: A `tf.data.Dataset` object that produces tuples of scalars. The
80        first scalar is treated as a key and the second as value.
81    Raises: ValueError if `dataset` doesn't conform to specifications.
82    Returns: A `DatasetInitializer` object
83    """
84    # Assert that the dataset element spec is a tuple of TensorSpecs where
85    # each tensor is a scalar.
86    self.dataset = dataset
87    elem_spec = self.dataset.element_spec
88    _check_table_initializer_element_spec(elem_spec)
89
90    key_type = elem_spec[0].dtype
91    value_type = elem_spec[1].dtype
92    super(DatasetInitializer, self).__init__(key_type, value_type)
93
94  def initialize(self, table):
95    lookup_ops.check_table_dtypes(table, self._key_dtype, self._value_dtype)
96    init_op = ged_ops.initialize_table_from_dataset(
97        table.resource_handle, self.dataset._variant_tensor)  # pylint: disable=protected-access
98    ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op)
99    return init_op
100
101
102@tf_export("data.experimental.table_from_dataset")
103def table_from_dataset(dataset=None,
104                       num_oov_buckets=0,
105                       vocab_size=None,
106                       default_value=None,
107                       hasher_spec=lookup_ops.FastHashSpec,
108                       key_dtype=dtypes.string,
109                       name=None):
110  """Returns a lookup table based on the given dataset.
111
112  This operation constructs a lookup table based on the given dataset of pairs
113  of (key, value).
114
115  Any lookup of an out-of-vocabulary token will return a bucket ID based on its
116  hash if `num_oov_buckets` is greater than zero. Otherwise it is assigned the
117  `default_value`.
118  The bucket ID range is
119  `[vocabulary size, vocabulary size + num_oov_buckets - 1]`.
120
121  Sample Usages:
122
123  >>> keys = tf.data.Dataset.range(100)
124  >>> values = tf.data.Dataset.range(100).map(
125  ...     lambda x: tf.strings.as_string(x * 2))
126  >>> ds = tf.data.Dataset.zip((keys, values))
127  >>> table = tf.data.experimental.table_from_dataset(
128  ...                               ds, default_value='n/a', key_dtype=tf.int64)
129  >>> table.lookup(tf.constant([0, 1, 2], dtype=tf.int64)).numpy()
130  array([b'0', b'2', b'4'], dtype=object)
131
132  Args:
133    dataset: A dataset containing (key, value) pairs.
134    num_oov_buckets: The number of out-of-vocabulary buckets.
135    vocab_size: Number of the elements in the vocabulary, if known.
136    default_value: The value to use for out-of-vocabulary feature values.
137      Defaults to -1.
138    hasher_spec: A `HasherSpec` to specify the hash function to use for
139      assignation of out-of-vocabulary buckets.
140    key_dtype: The `key` data type.
141    name: A name for this op (optional).
142
143  Returns:
144    The lookup table based on the given dataset.
145
146  Raises:
147    ValueError: If
148      * `dataset` does not contain pairs
149      * The 2nd item in the `dataset` pairs has a dtype which is incompatible
150        with `default_value`
151      * `num_oov_buckets` is negative
152      * `vocab_size` is not greater than zero
153      * The `key_dtype` is not integer or string
154  """
155  elem_spec = dataset.element_spec
156  _check_table_initializer_element_spec(elem_spec)
157  if default_value is None:
158    default_value = -1
159    if not (elem_spec[1].dtype.is_integer or elem_spec[1].dtype.is_floating):
160      raise ValueError("`default_value` must be specified when creating a "
161                       "table from a dataset that produces values of type "
162                       f"{elem_spec[1].dtype}.")
163  if num_oov_buckets < 0:
164    raise ValueError("`num_oov_buckets` must be greater than or equal to 0, "
165                     f"got {num_oov_buckets}.")
166  if (not isinstance(vocab_size, ops.Tensor) and vocab_size is not None and
167      vocab_size < 1):
168    raise ValueError(f"`vocab_size` must be greater than 0, got {vocab_size}.")
169  if (not key_dtype.is_integer) and (dtypes.string != key_dtype.base_dtype):
170    raise TypeError("`key_dtype` must be either an integer or string type, "
171                    f"but got {key_dtype}")
172  if vocab_size is not None:
173    if isinstance(vocab_size, ops.Tensor):
174      vocab_size = math_ops.cast(vocab_size, dtypes.int64)
175    dataset = dataset.take(vocab_size)
176    dataset = dataset.apply(assert_cardinality(vocab_size))
177  with ops.name_scope(name, "string_to_index"):
178    initializer = DatasetInitializer(dataset)
179    with ops.name_scope(None, "hash_table"):
180      table = lookup_ops.StaticHashTableV1(initializer, default_value)
181      if num_oov_buckets:
182        table = lookup_ops.IdTableWithHashBuckets(
183            table,
184            num_oov_buckets=num_oov_buckets,
185            hasher_spec=hasher_spec,
186            key_dtype=key_dtype)
187      return table
188
189
190@tf_export("data.experimental.index_table_from_dataset")
191def index_table_from_dataset(dataset=None,
192                             num_oov_buckets=0,
193                             vocab_size=None,
194                             default_value=-1,
195                             hasher_spec=lookup_ops.FastHashSpec,
196                             key_dtype=dtypes.string,
197                             name=None):
198  """Returns an index lookup table based on the given dataset.
199
200  This operation constructs a lookup table based on the given dataset of keys.
201
202  Any lookup of an out-of-vocabulary token will return a bucket ID based on its
203  hash if `num_oov_buckets` is greater than zero. Otherwise it is assigned the
204  `default_value`.
205  The bucket ID range is
206  `[vocabulary size, vocabulary size + num_oov_buckets - 1]`.
207
208  Sample Usages:
209
210  >>> ds = tf.data.Dataset.range(100).map(lambda x: tf.strings.as_string(x * 2))
211  >>> table = tf.data.experimental.index_table_from_dataset(
212  ...                                     ds, key_dtype=dtypes.int64)
213  >>> table.lookup(tf.constant(['0', '2', '4'], dtype=tf.string)).numpy()
214  array([0, 1, 2])
215
216  Args:
217    dataset: A dataset of keys.
218    num_oov_buckets: The number of out-of-vocabulary buckets.
219    vocab_size: Number of the elements in the vocabulary, if known.
220    default_value: The value to use for out-of-vocabulary feature values.
221      Defaults to -1.
222    hasher_spec: A `HasherSpec` to specify the hash function to use for
223      assignation of out-of-vocabulary buckets.
224    key_dtype: The `key` data type.
225    name: A name for this op (optional).
226
227  Returns:
228    The lookup table based on the given dataset.
229
230  Raises:
231    ValueError: If
232      * `num_oov_buckets` is negative
233      * `vocab_size` is not greater than zero
234      * The `key_dtype` is not integer or string
235  """
236  return table_from_dataset(dataset.enumerate().map(lambda v, k: (k, v)),
237                            num_oov_buckets, vocab_size, default_value,
238                            hasher_spec, key_dtype, name)
239