1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package template 6 7import ( 8 "errors" 9 "fmt" 10 "internal/fmtsort" 11 "io" 12 "reflect" 13 "runtime" 14 "strings" 15 "text/template/parse" 16) 17 18// maxExecDepth specifies the maximum stack depth of templates within 19// templates. This limit is only practically reached by accidentally 20// recursive template invocations. This limit allows us to return 21// an error instead of triggering a stack overflow. 22var maxExecDepth = initMaxExecDepth() 23 24func initMaxExecDepth() int { 25 if runtime.GOARCH == "wasm" { 26 return 1000 27 } 28 return 100000 29} 30 31// state represents the state of an execution. It's not part of the 32// template so that multiple executions of the same template 33// can execute in parallel. 34type state struct { 35 tmpl *Template 36 wr io.Writer 37 node parse.Node // current node, for errors 38 vars []variable // push-down stack of variable values. 39 depth int // the height of the stack of executing templates. 40} 41 42// variable holds the dynamic value of a variable such as $, $x etc. 43type variable struct { 44 name string 45 value reflect.Value 46} 47 48// push pushes a new variable on the stack. 49func (s *state) push(name string, value reflect.Value) { 50 s.vars = append(s.vars, variable{name, value}) 51} 52 53// mark returns the length of the variable stack. 54func (s *state) mark() int { 55 return len(s.vars) 56} 57 58// pop pops the variable stack up to the mark. 59func (s *state) pop(mark int) { 60 s.vars = s.vars[0:mark] 61} 62 63// setVar overwrites the last declared variable with the given name. 64// Used by variable assignments. 65func (s *state) setVar(name string, value reflect.Value) { 66 for i := s.mark() - 1; i >= 0; i-- { 67 if s.vars[i].name == name { 68 s.vars[i].value = value 69 return 70 } 71 } 72 s.errorf("undefined variable: %s", name) 73} 74 75// setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 76func (s *state) setTopVar(n int, value reflect.Value) { 77 s.vars[len(s.vars)-n].value = value 78} 79 80// varValue returns the value of the named variable. 81func (s *state) varValue(name string) reflect.Value { 82 for i := s.mark() - 1; i >= 0; i-- { 83 if s.vars[i].name == name { 84 return s.vars[i].value 85 } 86 } 87 s.errorf("undefined variable: %s", name) 88 return zero 89} 90 91var zero reflect.Value 92 93type missingValType struct{} 94 95var missingVal = reflect.ValueOf(missingValType{}) 96 97var missingValReflectType = reflect.TypeFor[missingValType]() 98 99func isMissing(v reflect.Value) bool { 100 return v.IsValid() && v.Type() == missingValReflectType 101} 102 103// at marks the state to be on node n, for error reporting. 104func (s *state) at(node parse.Node) { 105 s.node = node 106} 107 108// doublePercent returns the string with %'s replaced by %%, if necessary, 109// so it can be used safely inside a Printf format string. 110func doublePercent(str string) string { 111 return strings.ReplaceAll(str, "%", "%%") 112} 113 114// TODO: It would be nice if ExecError was more broken down, but 115// the way ErrorContext embeds the template name makes the 116// processing too clumsy. 117 118// ExecError is the custom error type returned when Execute has an 119// error evaluating its template. (If a write error occurs, the actual 120// error is returned; it will not be of type ExecError.) 121type ExecError struct { 122 Name string // Name of template. 123 Err error // Pre-formatted error. 124} 125 126func (e ExecError) Error() string { 127 return e.Err.Error() 128} 129 130func (e ExecError) Unwrap() error { 131 return e.Err 132} 133 134// errorf records an ExecError and terminates processing. 135func (s *state) errorf(format string, args ...any) { 136 name := doublePercent(s.tmpl.Name()) 137 if s.node == nil { 138 format = fmt.Sprintf("template: %s: %s", name, format) 139 } else { 140 location, context := s.tmpl.ErrorContext(s.node) 141 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 142 } 143 panic(ExecError{ 144 Name: s.tmpl.Name(), 145 Err: fmt.Errorf(format, args...), 146 }) 147} 148 149// writeError is the wrapper type used internally when Execute has an 150// error writing to its output. We strip the wrapper in errRecover. 151// Note that this is not an implementation of error, so it cannot escape 152// from the package as an error value. 153type writeError struct { 154 Err error // Original error. 155} 156 157func (s *state) writeError(err error) { 158 panic(writeError{ 159 Err: err, 160 }) 161} 162 163// errRecover is the handler that turns panics into returns from the top 164// level of Parse. 165func errRecover(errp *error) { 166 e := recover() 167 if e != nil { 168 switch err := e.(type) { 169 case runtime.Error: 170 panic(e) 171 case writeError: 172 *errp = err.Err // Strip the wrapper. 173 case ExecError: 174 *errp = err // Keep the wrapper. 175 default: 176 panic(e) 177 } 178 } 179} 180 181// ExecuteTemplate applies the template associated with t that has the given name 182// to the specified data object and writes the output to wr. 183// If an error occurs executing the template or writing its output, 184// execution stops, but partial results may already have been written to 185// the output writer. 186// A template may be executed safely in parallel, although if parallel 187// executions share a Writer the output may be interleaved. 188func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error { 189 tmpl := t.Lookup(name) 190 if tmpl == nil { 191 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 192 } 193 return tmpl.Execute(wr, data) 194} 195 196// Execute applies a parsed template to the specified data object, 197// and writes the output to wr. 198// If an error occurs executing the template or writing its output, 199// execution stops, but partial results may already have been written to 200// the output writer. 201// A template may be executed safely in parallel, although if parallel 202// executions share a Writer the output may be interleaved. 203// 204// If data is a [reflect.Value], the template applies to the concrete 205// value that the reflect.Value holds, as in [fmt.Print]. 206func (t *Template) Execute(wr io.Writer, data any) error { 207 return t.execute(wr, data) 208} 209 210func (t *Template) execute(wr io.Writer, data any) (err error) { 211 defer errRecover(&err) 212 value, ok := data.(reflect.Value) 213 if !ok { 214 value = reflect.ValueOf(data) 215 } 216 state := &state{ 217 tmpl: t, 218 wr: wr, 219 vars: []variable{{"$", value}}, 220 } 221 if t.Tree == nil || t.Root == nil { 222 state.errorf("%q is an incomplete or empty template", t.Name()) 223 } 224 state.walk(value, t.Root) 225 return 226} 227 228// DefinedTemplates returns a string listing the defined templates, 229// prefixed by the string "; defined templates are: ". If there are none, 230// it returns the empty string. For generating an error message here 231// and in [html/template]. 232func (t *Template) DefinedTemplates() string { 233 if t.common == nil { 234 return "" 235 } 236 var b strings.Builder 237 t.muTmpl.RLock() 238 defer t.muTmpl.RUnlock() 239 for name, tmpl := range t.tmpl { 240 if tmpl.Tree == nil || tmpl.Root == nil { 241 continue 242 } 243 if b.Len() == 0 { 244 b.WriteString("; defined templates are: ") 245 } else { 246 b.WriteString(", ") 247 } 248 fmt.Fprintf(&b, "%q", name) 249 } 250 return b.String() 251} 252 253// Sentinel errors for use with panic to signal early exits from range loops. 254var ( 255 walkBreak = errors.New("break") 256 walkContinue = errors.New("continue") 257) 258 259// Walk functions step through the major pieces of the template structure, 260// generating output as they go. 261func (s *state) walk(dot reflect.Value, node parse.Node) { 262 s.at(node) 263 switch node := node.(type) { 264 case *parse.ActionNode: 265 // Do not pop variables so they persist until next end. 266 // Also, if the action declares variables, don't print the result. 267 val := s.evalPipeline(dot, node.Pipe) 268 if len(node.Pipe.Decl) == 0 { 269 s.printValue(node, val) 270 } 271 case *parse.BreakNode: 272 panic(walkBreak) 273 case *parse.CommentNode: 274 case *parse.ContinueNode: 275 panic(walkContinue) 276 case *parse.IfNode: 277 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 278 case *parse.ListNode: 279 for _, node := range node.Nodes { 280 s.walk(dot, node) 281 } 282 case *parse.RangeNode: 283 s.walkRange(dot, node) 284 case *parse.TemplateNode: 285 s.walkTemplate(dot, node) 286 case *parse.TextNode: 287 if _, err := s.wr.Write(node.Text); err != nil { 288 s.writeError(err) 289 } 290 case *parse.WithNode: 291 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 292 default: 293 s.errorf("unknown node: %s", node) 294 } 295} 296 297// walkIfOrWith walks an 'if' or 'with' node. The two control structures 298// are identical in behavior except that 'with' sets dot. 299func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 300 defer s.pop(s.mark()) 301 val := s.evalPipeline(dot, pipe) 302 truth, ok := isTrue(indirectInterface(val)) 303 if !ok { 304 s.errorf("if/with can't use %v", val) 305 } 306 if truth { 307 if typ == parse.NodeWith { 308 s.walk(val, list) 309 } else { 310 s.walk(dot, list) 311 } 312 } else if elseList != nil { 313 s.walk(dot, elseList) 314 } 315} 316 317// IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 318// and whether the value has a meaningful truth value. This is the definition of 319// truth used by if and other such actions. 320func IsTrue(val any) (truth, ok bool) { 321 return isTrue(reflect.ValueOf(val)) 322} 323 324func isTrue(val reflect.Value) (truth, ok bool) { 325 if !val.IsValid() { 326 // Something like var x interface{}, never set. It's a form of nil. 327 return false, true 328 } 329 switch val.Kind() { 330 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 331 truth = val.Len() > 0 332 case reflect.Bool: 333 truth = val.Bool() 334 case reflect.Complex64, reflect.Complex128: 335 truth = val.Complex() != 0 336 case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface: 337 truth = !val.IsNil() 338 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 339 truth = val.Int() != 0 340 case reflect.Float32, reflect.Float64: 341 truth = val.Float() != 0 342 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 343 truth = val.Uint() != 0 344 case reflect.Struct: 345 truth = true // Struct values are always true. 346 default: 347 return 348 } 349 return truth, true 350} 351 352func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 353 s.at(r) 354 defer func() { 355 if r := recover(); r != nil && r != walkBreak { 356 panic(r) 357 } 358 }() 359 defer s.pop(s.mark()) 360 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 361 // mark top of stack before any variables in the body are pushed. 362 mark := s.mark() 363 oneIteration := func(index, elem reflect.Value) { 364 if len(r.Pipe.Decl) > 0 { 365 if r.Pipe.IsAssign { 366 // With two variables, index comes first. 367 // With one, we use the element. 368 if len(r.Pipe.Decl) > 1 { 369 s.setVar(r.Pipe.Decl[0].Ident[0], index) 370 } else { 371 s.setVar(r.Pipe.Decl[0].Ident[0], elem) 372 } 373 } else { 374 // Set top var (lexically the second if there 375 // are two) to the element. 376 s.setTopVar(1, elem) 377 } 378 } 379 if len(r.Pipe.Decl) > 1 { 380 if r.Pipe.IsAssign { 381 s.setVar(r.Pipe.Decl[1].Ident[0], elem) 382 } else { 383 // Set next var (lexically the first if there 384 // are two) to the index. 385 s.setTopVar(2, index) 386 } 387 } 388 defer s.pop(mark) 389 defer func() { 390 // Consume panic(walkContinue) 391 if r := recover(); r != nil && r != walkContinue { 392 panic(r) 393 } 394 }() 395 s.walk(elem, r.List) 396 } 397 switch val.Kind() { 398 case reflect.Array, reflect.Slice: 399 if val.Len() == 0 { 400 break 401 } 402 for i := 0; i < val.Len(); i++ { 403 oneIteration(reflect.ValueOf(i), val.Index(i)) 404 } 405 return 406 case reflect.Map: 407 if val.Len() == 0 { 408 break 409 } 410 om := fmtsort.Sort(val) 411 for _, m := range om { 412 oneIteration(m.Key, m.Value) 413 } 414 return 415 case reflect.Chan: 416 if val.IsNil() { 417 break 418 } 419 if val.Type().ChanDir() == reflect.SendDir { 420 s.errorf("range over send-only channel %v", val) 421 break 422 } 423 i := 0 424 for ; ; i++ { 425 elem, ok := val.Recv() 426 if !ok { 427 break 428 } 429 oneIteration(reflect.ValueOf(i), elem) 430 } 431 if i == 0 { 432 break 433 } 434 return 435 case reflect.Invalid: 436 break // An invalid value is likely a nil map, etc. and acts like an empty map. 437 default: 438 s.errorf("range can't iterate over %v", val) 439 } 440 if r.ElseList != nil { 441 s.walk(dot, r.ElseList) 442 } 443} 444 445func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 446 s.at(t) 447 tmpl := s.tmpl.Lookup(t.Name) 448 if tmpl == nil { 449 s.errorf("template %q not defined", t.Name) 450 } 451 if s.depth == maxExecDepth { 452 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 453 } 454 // Variables declared by the pipeline persist. 455 dot = s.evalPipeline(dot, t.Pipe) 456 newState := *s 457 newState.depth++ 458 newState.tmpl = tmpl 459 // No dynamic scoping: template invocations inherit no variables. 460 newState.vars = []variable{{"$", dot}} 461 newState.walk(dot, tmpl.Root) 462} 463 464// Eval functions evaluate pipelines, commands, and their elements and extract 465// values from the data structure by examining fields, calling methods, and so on. 466// The printing of those values happens only through walk functions. 467 468// evalPipeline returns the value acquired by evaluating a pipeline. If the 469// pipeline has a variable declaration, the variable will be pushed on the 470// stack. Callers should therefore pop the stack after they are finished 471// executing commands depending on the pipeline value. 472func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 473 if pipe == nil { 474 return 475 } 476 s.at(pipe) 477 value = missingVal 478 for _, cmd := range pipe.Cmds { 479 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 480 // If the object has type interface{}, dig down one level to the thing inside. 481 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 482 value = value.Elem() 483 } 484 } 485 for _, variable := range pipe.Decl { 486 if pipe.IsAssign { 487 s.setVar(variable.Ident[0], value) 488 } else { 489 s.push(variable.Ident[0], value) 490 } 491 } 492 return value 493} 494 495func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 496 if len(args) > 1 || !isMissing(final) { 497 s.errorf("can't give argument to non-function %s", args[0]) 498 } 499} 500 501func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 502 firstWord := cmd.Args[0] 503 switch n := firstWord.(type) { 504 case *parse.FieldNode: 505 return s.evalFieldNode(dot, n, cmd.Args, final) 506 case *parse.ChainNode: 507 return s.evalChainNode(dot, n, cmd.Args, final) 508 case *parse.IdentifierNode: 509 // Must be a function. 510 return s.evalFunction(dot, n, cmd, cmd.Args, final) 511 case *parse.PipeNode: 512 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 513 s.notAFunction(cmd.Args, final) 514 return s.evalPipeline(dot, n) 515 case *parse.VariableNode: 516 return s.evalVariableNode(dot, n, cmd.Args, final) 517 } 518 s.at(firstWord) 519 s.notAFunction(cmd.Args, final) 520 switch word := firstWord.(type) { 521 case *parse.BoolNode: 522 return reflect.ValueOf(word.True) 523 case *parse.DotNode: 524 return dot 525 case *parse.NilNode: 526 s.errorf("nil is not a command") 527 case *parse.NumberNode: 528 return s.idealConstant(word) 529 case *parse.StringNode: 530 return reflect.ValueOf(word.Text) 531 } 532 s.errorf("can't evaluate command %q", firstWord) 533 panic("not reached") 534} 535 536// idealConstant is called to return the value of a number in a context where 537// we don't know the type. In that case, the syntax of the number tells us 538// its type, and we use Go rules to resolve. Note there is no such thing as 539// a uint ideal constant in this situation - the value must be of int type. 540func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 541 // These are ideal constants but we don't know the type 542 // and we have no context. (If it was a method argument, 543 // we'd know what we need.) The syntax guides us to some extent. 544 s.at(constant) 545 switch { 546 case constant.IsComplex: 547 return reflect.ValueOf(constant.Complex128) // incontrovertible. 548 549 case constant.IsFloat && 550 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 551 strings.ContainsAny(constant.Text, ".eEpP"): 552 return reflect.ValueOf(constant.Float64) 553 554 case constant.IsInt: 555 n := int(constant.Int64) 556 if int64(n) != constant.Int64 { 557 s.errorf("%s overflows int", constant.Text) 558 } 559 return reflect.ValueOf(n) 560 561 case constant.IsUint: 562 s.errorf("%s overflows int", constant.Text) 563 } 564 return zero 565} 566 567func isRuneInt(s string) bool { 568 return len(s) > 0 && s[0] == '\'' 569} 570 571func isHexInt(s string) bool { 572 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 573} 574 575func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 576 s.at(field) 577 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 578} 579 580func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 581 s.at(chain) 582 if len(chain.Field) == 0 { 583 s.errorf("internal error: no fields in evalChainNode") 584 } 585 if chain.Node.Type() == parse.NodeNil { 586 s.errorf("indirection through explicit nil in %s", chain) 587 } 588 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 589 pipe := s.evalArg(dot, nil, chain.Node) 590 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 591} 592 593func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 594 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 595 s.at(variable) 596 value := s.varValue(variable.Ident[0]) 597 if len(variable.Ident) == 1 { 598 s.notAFunction(args, final) 599 return value 600 } 601 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 602} 603 604// evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 605// dot is the environment in which to evaluate arguments, while 606// receiver is the value being walked along the chain. 607func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 608 n := len(ident) 609 for i := 0; i < n-1; i++ { 610 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 611 } 612 // Now if it's a method, it gets the arguments. 613 return s.evalField(dot, ident[n-1], node, args, final, receiver) 614} 615 616func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 617 s.at(node) 618 name := node.Ident 619 function, isBuiltin, ok := findFunction(name, s.tmpl) 620 if !ok { 621 s.errorf("%q is not a defined function", name) 622 } 623 return s.evalCall(dot, function, isBuiltin, cmd, name, args, final) 624} 625 626// evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 627// The 'final' argument represents the return value from the preceding 628// value of the pipeline, if any. 629func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 630 if !receiver.IsValid() { 631 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 632 s.errorf("nil data; no entry for key %q", fieldName) 633 } 634 return zero 635 } 636 typ := receiver.Type() 637 receiver, isNil := indirect(receiver) 638 if receiver.Kind() == reflect.Interface && isNil { 639 // Calling a method on a nil interface can't work. The 640 // MethodByName method call below would panic. 641 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 642 return zero 643 } 644 645 // Unless it's an interface, need to get to a value of type *T to guarantee 646 // we see all methods of T and *T. 647 ptr := receiver 648 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() { 649 ptr = ptr.Addr() 650 } 651 if method := ptr.MethodByName(fieldName); method.IsValid() { 652 return s.evalCall(dot, method, false, node, fieldName, args, final) 653 } 654 hasArgs := len(args) > 1 || !isMissing(final) 655 // It's not a method; must be a field of a struct or an element of a map. 656 switch receiver.Kind() { 657 case reflect.Struct: 658 tField, ok := receiver.Type().FieldByName(fieldName) 659 if ok { 660 field, err := receiver.FieldByIndexErr(tField.Index) 661 if !tField.IsExported() { 662 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 663 } 664 if err != nil { 665 s.errorf("%v", err) 666 } 667 // If it's a function, we must call it. 668 if hasArgs { 669 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 670 } 671 return field 672 } 673 case reflect.Map: 674 // If it's a map, attempt to use the field name as a key. 675 nameVal := reflect.ValueOf(fieldName) 676 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 677 if hasArgs { 678 s.errorf("%s is not a method but has arguments", fieldName) 679 } 680 result := receiver.MapIndex(nameVal) 681 if !result.IsValid() { 682 switch s.tmpl.option.missingKey { 683 case mapInvalid: 684 // Just use the invalid value. 685 case mapZeroValue: 686 result = reflect.Zero(receiver.Type().Elem()) 687 case mapError: 688 s.errorf("map has no entry for key %q", fieldName) 689 } 690 } 691 return result 692 } 693 case reflect.Pointer: 694 etyp := receiver.Type().Elem() 695 if etyp.Kind() == reflect.Struct { 696 if _, ok := etyp.FieldByName(fieldName); !ok { 697 // If there's no such field, say "can't evaluate" 698 // instead of "nil pointer evaluating". 699 break 700 } 701 } 702 if isNil { 703 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 704 } 705 } 706 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 707 panic("not reached") 708} 709 710var ( 711 errorType = reflect.TypeFor[error]() 712 fmtStringerType = reflect.TypeFor[fmt.Stringer]() 713 reflectValueType = reflect.TypeFor[reflect.Value]() 714) 715 716// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 717// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 718// as the function itself. 719func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 720 if args != nil { 721 args = args[1:] // Zeroth arg is function name/node; not passed to function. 722 } 723 typ := fun.Type() 724 numIn := len(args) 725 if !isMissing(final) { 726 numIn++ 727 } 728 numFixed := len(args) 729 if typ.IsVariadic() { 730 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 731 if numIn < numFixed { 732 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 733 } 734 } else if numIn != typ.NumIn() { 735 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 736 } 737 if err := goodFunc(name, typ); err != nil { 738 s.errorf("%v", err) 739 } 740 741 unwrap := func(v reflect.Value) reflect.Value { 742 if v.Type() == reflectValueType { 743 v = v.Interface().(reflect.Value) 744 } 745 return v 746 } 747 748 // Special case for builtin and/or, which short-circuit. 749 if isBuiltin && (name == "and" || name == "or") { 750 argType := typ.In(0) 751 var v reflect.Value 752 for _, arg := range args { 753 v = s.evalArg(dot, argType, arg).Interface().(reflect.Value) 754 if truth(v) == (name == "or") { 755 // This value was already unwrapped 756 // by the .Interface().(reflect.Value). 757 return v 758 } 759 } 760 if final != missingVal { 761 // The last argument to and/or is coming from 762 // the pipeline. We didn't short circuit on an earlier 763 // argument, so we are going to return this one. 764 // We don't have to evaluate final, but we do 765 // have to check its type. Then, since we are 766 // going to return it, we have to unwrap it. 767 v = unwrap(s.validateType(final, argType)) 768 } 769 return v 770 } 771 772 // Build the arg list. 773 argv := make([]reflect.Value, numIn) 774 // Args must be evaluated. Fixed args first. 775 i := 0 776 for ; i < numFixed && i < len(args); i++ { 777 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 778 } 779 // Now the ... args. 780 if typ.IsVariadic() { 781 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 782 for ; i < len(args); i++ { 783 argv[i] = s.evalArg(dot, argType, args[i]) 784 } 785 } 786 // Add final value if necessary. 787 if !isMissing(final) { 788 t := typ.In(typ.NumIn() - 1) 789 if typ.IsVariadic() { 790 if numIn-1 < numFixed { 791 // The added final argument corresponds to a fixed parameter of the function. 792 // Validate against the type of the actual parameter. 793 t = typ.In(numIn - 1) 794 } else { 795 // The added final argument corresponds to the variadic part. 796 // Validate against the type of the elements of the variadic slice. 797 t = t.Elem() 798 } 799 } 800 argv[i] = s.validateType(final, t) 801 } 802 803 // Special case for the "call" builtin. 804 // Insert the name of the callee function as the first argument. 805 if isBuiltin && name == "call" { 806 calleeName := args[0].String() 807 argv = append([]reflect.Value{reflect.ValueOf(calleeName)}, argv...) 808 fun = reflect.ValueOf(call) 809 } 810 811 v, err := safeCall(fun, argv) 812 // If we have an error that is not nil, stop execution and return that 813 // error to the caller. 814 if err != nil { 815 s.at(node) 816 s.errorf("error calling %s: %w", name, err) 817 } 818 return unwrap(v) 819} 820 821// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 822func canBeNil(typ reflect.Type) bool { 823 switch typ.Kind() { 824 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice: 825 return true 826 case reflect.Struct: 827 return typ == reflectValueType 828 } 829 return false 830} 831 832// validateType guarantees that the value is valid and assignable to the type. 833func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 834 if !value.IsValid() { 835 if typ == nil { 836 // An untyped nil interface{}. Accept as a proper nil value. 837 return reflect.ValueOf(nil) 838 } 839 if canBeNil(typ) { 840 // Like above, but use the zero value of the non-nil type. 841 return reflect.Zero(typ) 842 } 843 s.errorf("invalid value; expected %s", typ) 844 } 845 if typ == reflectValueType && value.Type() != typ { 846 return reflect.ValueOf(value) 847 } 848 if typ != nil && !value.Type().AssignableTo(typ) { 849 if value.Kind() == reflect.Interface && !value.IsNil() { 850 value = value.Elem() 851 if value.Type().AssignableTo(typ) { 852 return value 853 } 854 // fallthrough 855 } 856 // Does one dereference or indirection work? We could do more, as we 857 // do with method receivers, but that gets messy and method receivers 858 // are much more constrained, so it makes more sense there than here. 859 // Besides, one is almost always all you need. 860 switch { 861 case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ): 862 value = value.Elem() 863 if !value.IsValid() { 864 s.errorf("dereference of nil pointer of type %s", typ) 865 } 866 case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 867 value = value.Addr() 868 default: 869 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 870 } 871 } 872 return value 873} 874 875func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 876 s.at(n) 877 switch arg := n.(type) { 878 case *parse.DotNode: 879 return s.validateType(dot, typ) 880 case *parse.NilNode: 881 if canBeNil(typ) { 882 return reflect.Zero(typ) 883 } 884 s.errorf("cannot assign nil to %s", typ) 885 case *parse.FieldNode: 886 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 887 case *parse.VariableNode: 888 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 889 case *parse.PipeNode: 890 return s.validateType(s.evalPipeline(dot, arg), typ) 891 case *parse.IdentifierNode: 892 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 893 case *parse.ChainNode: 894 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 895 } 896 switch typ.Kind() { 897 case reflect.Bool: 898 return s.evalBool(typ, n) 899 case reflect.Complex64, reflect.Complex128: 900 return s.evalComplex(typ, n) 901 case reflect.Float32, reflect.Float64: 902 return s.evalFloat(typ, n) 903 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 904 return s.evalInteger(typ, n) 905 case reflect.Interface: 906 if typ.NumMethod() == 0 { 907 return s.evalEmptyInterface(dot, n) 908 } 909 case reflect.Struct: 910 if typ == reflectValueType { 911 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 912 } 913 case reflect.String: 914 return s.evalString(typ, n) 915 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 916 return s.evalUnsignedInteger(typ, n) 917 } 918 s.errorf("can't handle %s for arg of type %s", n, typ) 919 panic("not reached") 920} 921 922func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 923 s.at(n) 924 if n, ok := n.(*parse.BoolNode); ok { 925 value := reflect.New(typ).Elem() 926 value.SetBool(n.True) 927 return value 928 } 929 s.errorf("expected bool; found %s", n) 930 panic("not reached") 931} 932 933func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 934 s.at(n) 935 if n, ok := n.(*parse.StringNode); ok { 936 value := reflect.New(typ).Elem() 937 value.SetString(n.Text) 938 return value 939 } 940 s.errorf("expected string; found %s", n) 941 panic("not reached") 942} 943 944func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 945 s.at(n) 946 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 947 value := reflect.New(typ).Elem() 948 value.SetInt(n.Int64) 949 return value 950 } 951 s.errorf("expected integer; found %s", n) 952 panic("not reached") 953} 954 955func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 956 s.at(n) 957 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 958 value := reflect.New(typ).Elem() 959 value.SetUint(n.Uint64) 960 return value 961 } 962 s.errorf("expected unsigned integer; found %s", n) 963 panic("not reached") 964} 965 966func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 967 s.at(n) 968 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 969 value := reflect.New(typ).Elem() 970 value.SetFloat(n.Float64) 971 return value 972 } 973 s.errorf("expected float; found %s", n) 974 panic("not reached") 975} 976 977func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 978 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 979 value := reflect.New(typ).Elem() 980 value.SetComplex(n.Complex128) 981 return value 982 } 983 s.errorf("expected complex; found %s", n) 984 panic("not reached") 985} 986 987func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 988 s.at(n) 989 switch n := n.(type) { 990 case *parse.BoolNode: 991 return reflect.ValueOf(n.True) 992 case *parse.DotNode: 993 return dot 994 case *parse.FieldNode: 995 return s.evalFieldNode(dot, n, nil, missingVal) 996 case *parse.IdentifierNode: 997 return s.evalFunction(dot, n, n, nil, missingVal) 998 case *parse.NilNode: 999 // NilNode is handled in evalArg, the only place that calls here. 1000 s.errorf("evalEmptyInterface: nil (can't happen)") 1001 case *parse.NumberNode: 1002 return s.idealConstant(n) 1003 case *parse.StringNode: 1004 return reflect.ValueOf(n.Text) 1005 case *parse.VariableNode: 1006 return s.evalVariableNode(dot, n, nil, missingVal) 1007 case *parse.PipeNode: 1008 return s.evalPipeline(dot, n) 1009 } 1010 s.errorf("can't handle assignment of %s to empty interface argument", n) 1011 panic("not reached") 1012} 1013 1014// indirect returns the item at the end of indirection, and a bool to indicate 1015// if it's nil. If the returned bool is true, the returned value's kind will be 1016// either a pointer or interface. 1017func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 1018 for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() { 1019 if v.IsNil() { 1020 return v, true 1021 } 1022 } 1023 return v, false 1024} 1025 1026// indirectInterface returns the concrete value in an interface value, 1027// or else the zero reflect.Value. 1028// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 1029// the fact that x was an interface value is forgotten. 1030func indirectInterface(v reflect.Value) reflect.Value { 1031 if v.Kind() != reflect.Interface { 1032 return v 1033 } 1034 if v.IsNil() { 1035 return reflect.Value{} 1036 } 1037 return v.Elem() 1038} 1039 1040// printValue writes the textual representation of the value to the output of 1041// the template. 1042func (s *state) printValue(n parse.Node, v reflect.Value) { 1043 s.at(n) 1044 iface, ok := printableValue(v) 1045 if !ok { 1046 s.errorf("can't print %s of type %s", n, v.Type()) 1047 } 1048 _, err := fmt.Fprint(s.wr, iface) 1049 if err != nil { 1050 s.writeError(err) 1051 } 1052} 1053 1054// printableValue returns the, possibly indirected, interface value inside v that 1055// is best for a call to formatted printer. 1056func printableValue(v reflect.Value) (any, bool) { 1057 if v.Kind() == reflect.Pointer { 1058 v, _ = indirect(v) // fmt.Fprint handles nil. 1059 } 1060 if !v.IsValid() { 1061 return "<no value>", true 1062 } 1063 1064 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 1065 if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) { 1066 v = v.Addr() 1067 } else { 1068 switch v.Kind() { 1069 case reflect.Chan, reflect.Func: 1070 return nil, false 1071 } 1072 } 1073 } 1074 return v.Interface(), true 1075} 1076