1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package template
6
7import (
8	"errors"
9	"fmt"
10	"internal/fmtsort"
11	"io"
12	"reflect"
13	"runtime"
14	"strings"
15	"text/template/parse"
16)
17
18// maxExecDepth specifies the maximum stack depth of templates within
19// templates. This limit is only practically reached by accidentally
20// recursive template invocations. This limit allows us to return
21// an error instead of triggering a stack overflow.
22var maxExecDepth = initMaxExecDepth()
23
24func initMaxExecDepth() int {
25	if runtime.GOARCH == "wasm" {
26		return 1000
27	}
28	return 100000
29}
30
31// state represents the state of an execution. It's not part of the
32// template so that multiple executions of the same template
33// can execute in parallel.
34type state struct {
35	tmpl  *Template
36	wr    io.Writer
37	node  parse.Node // current node, for errors
38	vars  []variable // push-down stack of variable values.
39	depth int        // the height of the stack of executing templates.
40}
41
42// variable holds the dynamic value of a variable such as $, $x etc.
43type variable struct {
44	name  string
45	value reflect.Value
46}
47
48// push pushes a new variable on the stack.
49func (s *state) push(name string, value reflect.Value) {
50	s.vars = append(s.vars, variable{name, value})
51}
52
53// mark returns the length of the variable stack.
54func (s *state) mark() int {
55	return len(s.vars)
56}
57
58// pop pops the variable stack up to the mark.
59func (s *state) pop(mark int) {
60	s.vars = s.vars[0:mark]
61}
62
63// setVar overwrites the last declared variable with the given name.
64// Used by variable assignments.
65func (s *state) setVar(name string, value reflect.Value) {
66	for i := s.mark() - 1; i >= 0; i-- {
67		if s.vars[i].name == name {
68			s.vars[i].value = value
69			return
70		}
71	}
72	s.errorf("undefined variable: %s", name)
73}
74
75// setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
76func (s *state) setTopVar(n int, value reflect.Value) {
77	s.vars[len(s.vars)-n].value = value
78}
79
80// varValue returns the value of the named variable.
81func (s *state) varValue(name string) reflect.Value {
82	for i := s.mark() - 1; i >= 0; i-- {
83		if s.vars[i].name == name {
84			return s.vars[i].value
85		}
86	}
87	s.errorf("undefined variable: %s", name)
88	return zero
89}
90
91var zero reflect.Value
92
93type missingValType struct{}
94
95var missingVal = reflect.ValueOf(missingValType{})
96
97var missingValReflectType = reflect.TypeFor[missingValType]()
98
99func isMissing(v reflect.Value) bool {
100	return v.IsValid() && v.Type() == missingValReflectType
101}
102
103// at marks the state to be on node n, for error reporting.
104func (s *state) at(node parse.Node) {
105	s.node = node
106}
107
108// doublePercent returns the string with %'s replaced by %%, if necessary,
109// so it can be used safely inside a Printf format string.
110func doublePercent(str string) string {
111	return strings.ReplaceAll(str, "%", "%%")
112}
113
114// TODO: It would be nice if ExecError was more broken down, but
115// the way ErrorContext embeds the template name makes the
116// processing too clumsy.
117
118// ExecError is the custom error type returned when Execute has an
119// error evaluating its template. (If a write error occurs, the actual
120// error is returned; it will not be of type ExecError.)
121type ExecError struct {
122	Name string // Name of template.
123	Err  error  // Pre-formatted error.
124}
125
126func (e ExecError) Error() string {
127	return e.Err.Error()
128}
129
130func (e ExecError) Unwrap() error {
131	return e.Err
132}
133
134// errorf records an ExecError and terminates processing.
135func (s *state) errorf(format string, args ...any) {
136	name := doublePercent(s.tmpl.Name())
137	if s.node == nil {
138		format = fmt.Sprintf("template: %s: %s", name, format)
139	} else {
140		location, context := s.tmpl.ErrorContext(s.node)
141		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
142	}
143	panic(ExecError{
144		Name: s.tmpl.Name(),
145		Err:  fmt.Errorf(format, args...),
146	})
147}
148
149// writeError is the wrapper type used internally when Execute has an
150// error writing to its output. We strip the wrapper in errRecover.
151// Note that this is not an implementation of error, so it cannot escape
152// from the package as an error value.
153type writeError struct {
154	Err error // Original error.
155}
156
157func (s *state) writeError(err error) {
158	panic(writeError{
159		Err: err,
160	})
161}
162
163// errRecover is the handler that turns panics into returns from the top
164// level of Parse.
165func errRecover(errp *error) {
166	e := recover()
167	if e != nil {
168		switch err := e.(type) {
169		case runtime.Error:
170			panic(e)
171		case writeError:
172			*errp = err.Err // Strip the wrapper.
173		case ExecError:
174			*errp = err // Keep the wrapper.
175		default:
176			panic(e)
177		}
178	}
179}
180
181// ExecuteTemplate applies the template associated with t that has the given name
182// to the specified data object and writes the output to wr.
183// If an error occurs executing the template or writing its output,
184// execution stops, but partial results may already have been written to
185// the output writer.
186// A template may be executed safely in parallel, although if parallel
187// executions share a Writer the output may be interleaved.
188func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error {
189	tmpl := t.Lookup(name)
190	if tmpl == nil {
191		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
192	}
193	return tmpl.Execute(wr, data)
194}
195
196// Execute applies a parsed template to the specified data object,
197// and writes the output to wr.
198// If an error occurs executing the template or writing its output,
199// execution stops, but partial results may already have been written to
200// the output writer.
201// A template may be executed safely in parallel, although if parallel
202// executions share a Writer the output may be interleaved.
203//
204// If data is a [reflect.Value], the template applies to the concrete
205// value that the reflect.Value holds, as in [fmt.Print].
206func (t *Template) Execute(wr io.Writer, data any) error {
207	return t.execute(wr, data)
208}
209
210func (t *Template) execute(wr io.Writer, data any) (err error) {
211	defer errRecover(&err)
212	value, ok := data.(reflect.Value)
213	if !ok {
214		value = reflect.ValueOf(data)
215	}
216	state := &state{
217		tmpl: t,
218		wr:   wr,
219		vars: []variable{{"$", value}},
220	}
221	if t.Tree == nil || t.Root == nil {
222		state.errorf("%q is an incomplete or empty template", t.Name())
223	}
224	state.walk(value, t.Root)
225	return
226}
227
228// DefinedTemplates returns a string listing the defined templates,
229// prefixed by the string "; defined templates are: ". If there are none,
230// it returns the empty string. For generating an error message here
231// and in [html/template].
232func (t *Template) DefinedTemplates() string {
233	if t.common == nil {
234		return ""
235	}
236	var b strings.Builder
237	t.muTmpl.RLock()
238	defer t.muTmpl.RUnlock()
239	for name, tmpl := range t.tmpl {
240		if tmpl.Tree == nil || tmpl.Root == nil {
241			continue
242		}
243		if b.Len() == 0 {
244			b.WriteString("; defined templates are: ")
245		} else {
246			b.WriteString(", ")
247		}
248		fmt.Fprintf(&b, "%q", name)
249	}
250	return b.String()
251}
252
253// Sentinel errors for use with panic to signal early exits from range loops.
254var (
255	walkBreak    = errors.New("break")
256	walkContinue = errors.New("continue")
257)
258
259// Walk functions step through the major pieces of the template structure,
260// generating output as they go.
261func (s *state) walk(dot reflect.Value, node parse.Node) {
262	s.at(node)
263	switch node := node.(type) {
264	case *parse.ActionNode:
265		// Do not pop variables so they persist until next end.
266		// Also, if the action declares variables, don't print the result.
267		val := s.evalPipeline(dot, node.Pipe)
268		if len(node.Pipe.Decl) == 0 {
269			s.printValue(node, val)
270		}
271	case *parse.BreakNode:
272		panic(walkBreak)
273	case *parse.CommentNode:
274	case *parse.ContinueNode:
275		panic(walkContinue)
276	case *parse.IfNode:
277		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
278	case *parse.ListNode:
279		for _, node := range node.Nodes {
280			s.walk(dot, node)
281		}
282	case *parse.RangeNode:
283		s.walkRange(dot, node)
284	case *parse.TemplateNode:
285		s.walkTemplate(dot, node)
286	case *parse.TextNode:
287		if _, err := s.wr.Write(node.Text); err != nil {
288			s.writeError(err)
289		}
290	case *parse.WithNode:
291		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
292	default:
293		s.errorf("unknown node: %s", node)
294	}
295}
296
297// walkIfOrWith walks an 'if' or 'with' node. The two control structures
298// are identical in behavior except that 'with' sets dot.
299func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
300	defer s.pop(s.mark())
301	val := s.evalPipeline(dot, pipe)
302	truth, ok := isTrue(indirectInterface(val))
303	if !ok {
304		s.errorf("if/with can't use %v", val)
305	}
306	if truth {
307		if typ == parse.NodeWith {
308			s.walk(val, list)
309		} else {
310			s.walk(dot, list)
311		}
312	} else if elseList != nil {
313		s.walk(dot, elseList)
314	}
315}
316
317// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
318// and whether the value has a meaningful truth value. This is the definition of
319// truth used by if and other such actions.
320func IsTrue(val any) (truth, ok bool) {
321	return isTrue(reflect.ValueOf(val))
322}
323
324func isTrue(val reflect.Value) (truth, ok bool) {
325	if !val.IsValid() {
326		// Something like var x interface{}, never set. It's a form of nil.
327		return false, true
328	}
329	switch val.Kind() {
330	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
331		truth = val.Len() > 0
332	case reflect.Bool:
333		truth = val.Bool()
334	case reflect.Complex64, reflect.Complex128:
335		truth = val.Complex() != 0
336	case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface:
337		truth = !val.IsNil()
338	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
339		truth = val.Int() != 0
340	case reflect.Float32, reflect.Float64:
341		truth = val.Float() != 0
342	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
343		truth = val.Uint() != 0
344	case reflect.Struct:
345		truth = true // Struct values are always true.
346	default:
347		return
348	}
349	return truth, true
350}
351
352func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
353	s.at(r)
354	defer func() {
355		if r := recover(); r != nil && r != walkBreak {
356			panic(r)
357		}
358	}()
359	defer s.pop(s.mark())
360	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
361	// mark top of stack before any variables in the body are pushed.
362	mark := s.mark()
363	oneIteration := func(index, elem reflect.Value) {
364		if len(r.Pipe.Decl) > 0 {
365			if r.Pipe.IsAssign {
366				// With two variables, index comes first.
367				// With one, we use the element.
368				if len(r.Pipe.Decl) > 1 {
369					s.setVar(r.Pipe.Decl[0].Ident[0], index)
370				} else {
371					s.setVar(r.Pipe.Decl[0].Ident[0], elem)
372				}
373			} else {
374				// Set top var (lexically the second if there
375				// are two) to the element.
376				s.setTopVar(1, elem)
377			}
378		}
379		if len(r.Pipe.Decl) > 1 {
380			if r.Pipe.IsAssign {
381				s.setVar(r.Pipe.Decl[1].Ident[0], elem)
382			} else {
383				// Set next var (lexically the first if there
384				// are two) to the index.
385				s.setTopVar(2, index)
386			}
387		}
388		defer s.pop(mark)
389		defer func() {
390			// Consume panic(walkContinue)
391			if r := recover(); r != nil && r != walkContinue {
392				panic(r)
393			}
394		}()
395		s.walk(elem, r.List)
396	}
397	switch val.Kind() {
398	case reflect.Array, reflect.Slice:
399		if val.Len() == 0 {
400			break
401		}
402		for i := 0; i < val.Len(); i++ {
403			oneIteration(reflect.ValueOf(i), val.Index(i))
404		}
405		return
406	case reflect.Map:
407		if val.Len() == 0 {
408			break
409		}
410		om := fmtsort.Sort(val)
411		for _, m := range om {
412			oneIteration(m.Key, m.Value)
413		}
414		return
415	case reflect.Chan:
416		if val.IsNil() {
417			break
418		}
419		if val.Type().ChanDir() == reflect.SendDir {
420			s.errorf("range over send-only channel %v", val)
421			break
422		}
423		i := 0
424		for ; ; i++ {
425			elem, ok := val.Recv()
426			if !ok {
427				break
428			}
429			oneIteration(reflect.ValueOf(i), elem)
430		}
431		if i == 0 {
432			break
433		}
434		return
435	case reflect.Invalid:
436		break // An invalid value is likely a nil map, etc. and acts like an empty map.
437	default:
438		s.errorf("range can't iterate over %v", val)
439	}
440	if r.ElseList != nil {
441		s.walk(dot, r.ElseList)
442	}
443}
444
445func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
446	s.at(t)
447	tmpl := s.tmpl.Lookup(t.Name)
448	if tmpl == nil {
449		s.errorf("template %q not defined", t.Name)
450	}
451	if s.depth == maxExecDepth {
452		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
453	}
454	// Variables declared by the pipeline persist.
455	dot = s.evalPipeline(dot, t.Pipe)
456	newState := *s
457	newState.depth++
458	newState.tmpl = tmpl
459	// No dynamic scoping: template invocations inherit no variables.
460	newState.vars = []variable{{"$", dot}}
461	newState.walk(dot, tmpl.Root)
462}
463
464// Eval functions evaluate pipelines, commands, and their elements and extract
465// values from the data structure by examining fields, calling methods, and so on.
466// The printing of those values happens only through walk functions.
467
468// evalPipeline returns the value acquired by evaluating a pipeline. If the
469// pipeline has a variable declaration, the variable will be pushed on the
470// stack. Callers should therefore pop the stack after they are finished
471// executing commands depending on the pipeline value.
472func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
473	if pipe == nil {
474		return
475	}
476	s.at(pipe)
477	value = missingVal
478	for _, cmd := range pipe.Cmds {
479		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
480		// If the object has type interface{}, dig down one level to the thing inside.
481		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
482			value = value.Elem()
483		}
484	}
485	for _, variable := range pipe.Decl {
486		if pipe.IsAssign {
487			s.setVar(variable.Ident[0], value)
488		} else {
489			s.push(variable.Ident[0], value)
490		}
491	}
492	return value
493}
494
495func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
496	if len(args) > 1 || !isMissing(final) {
497		s.errorf("can't give argument to non-function %s", args[0])
498	}
499}
500
501func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
502	firstWord := cmd.Args[0]
503	switch n := firstWord.(type) {
504	case *parse.FieldNode:
505		return s.evalFieldNode(dot, n, cmd.Args, final)
506	case *parse.ChainNode:
507		return s.evalChainNode(dot, n, cmd.Args, final)
508	case *parse.IdentifierNode:
509		// Must be a function.
510		return s.evalFunction(dot, n, cmd, cmd.Args, final)
511	case *parse.PipeNode:
512		// Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent.
513		s.notAFunction(cmd.Args, final)
514		return s.evalPipeline(dot, n)
515	case *parse.VariableNode:
516		return s.evalVariableNode(dot, n, cmd.Args, final)
517	}
518	s.at(firstWord)
519	s.notAFunction(cmd.Args, final)
520	switch word := firstWord.(type) {
521	case *parse.BoolNode:
522		return reflect.ValueOf(word.True)
523	case *parse.DotNode:
524		return dot
525	case *parse.NilNode:
526		s.errorf("nil is not a command")
527	case *parse.NumberNode:
528		return s.idealConstant(word)
529	case *parse.StringNode:
530		return reflect.ValueOf(word.Text)
531	}
532	s.errorf("can't evaluate command %q", firstWord)
533	panic("not reached")
534}
535
536// idealConstant is called to return the value of a number in a context where
537// we don't know the type. In that case, the syntax of the number tells us
538// its type, and we use Go rules to resolve. Note there is no such thing as
539// a uint ideal constant in this situation - the value must be of int type.
540func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
541	// These are ideal constants but we don't know the type
542	// and we have no context.  (If it was a method argument,
543	// we'd know what we need.) The syntax guides us to some extent.
544	s.at(constant)
545	switch {
546	case constant.IsComplex:
547		return reflect.ValueOf(constant.Complex128) // incontrovertible.
548
549	case constant.IsFloat &&
550		!isHexInt(constant.Text) && !isRuneInt(constant.Text) &&
551		strings.ContainsAny(constant.Text, ".eEpP"):
552		return reflect.ValueOf(constant.Float64)
553
554	case constant.IsInt:
555		n := int(constant.Int64)
556		if int64(n) != constant.Int64 {
557			s.errorf("%s overflows int", constant.Text)
558		}
559		return reflect.ValueOf(n)
560
561	case constant.IsUint:
562		s.errorf("%s overflows int", constant.Text)
563	}
564	return zero
565}
566
567func isRuneInt(s string) bool {
568	return len(s) > 0 && s[0] == '\''
569}
570
571func isHexInt(s string) bool {
572	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP")
573}
574
575func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
576	s.at(field)
577	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
578}
579
580func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
581	s.at(chain)
582	if len(chain.Field) == 0 {
583		s.errorf("internal error: no fields in evalChainNode")
584	}
585	if chain.Node.Type() == parse.NodeNil {
586		s.errorf("indirection through explicit nil in %s", chain)
587	}
588	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
589	pipe := s.evalArg(dot, nil, chain.Node)
590	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
591}
592
593func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
594	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
595	s.at(variable)
596	value := s.varValue(variable.Ident[0])
597	if len(variable.Ident) == 1 {
598		s.notAFunction(args, final)
599		return value
600	}
601	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
602}
603
604// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
605// dot is the environment in which to evaluate arguments, while
606// receiver is the value being walked along the chain.
607func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
608	n := len(ident)
609	for i := 0; i < n-1; i++ {
610		receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
611	}
612	// Now if it's a method, it gets the arguments.
613	return s.evalField(dot, ident[n-1], node, args, final, receiver)
614}
615
616func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
617	s.at(node)
618	name := node.Ident
619	function, isBuiltin, ok := findFunction(name, s.tmpl)
620	if !ok {
621		s.errorf("%q is not a defined function", name)
622	}
623	return s.evalCall(dot, function, isBuiltin, cmd, name, args, final)
624}
625
626// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
627// The 'final' argument represents the return value from the preceding
628// value of the pipeline, if any.
629func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
630	if !receiver.IsValid() {
631		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
632			s.errorf("nil data; no entry for key %q", fieldName)
633		}
634		return zero
635	}
636	typ := receiver.Type()
637	receiver, isNil := indirect(receiver)
638	if receiver.Kind() == reflect.Interface && isNil {
639		// Calling a method on a nil interface can't work. The
640		// MethodByName method call below would panic.
641		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
642		return zero
643	}
644
645	// Unless it's an interface, need to get to a value of type *T to guarantee
646	// we see all methods of T and *T.
647	ptr := receiver
648	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() {
649		ptr = ptr.Addr()
650	}
651	if method := ptr.MethodByName(fieldName); method.IsValid() {
652		return s.evalCall(dot, method, false, node, fieldName, args, final)
653	}
654	hasArgs := len(args) > 1 || !isMissing(final)
655	// It's not a method; must be a field of a struct or an element of a map.
656	switch receiver.Kind() {
657	case reflect.Struct:
658		tField, ok := receiver.Type().FieldByName(fieldName)
659		if ok {
660			field, err := receiver.FieldByIndexErr(tField.Index)
661			if !tField.IsExported() {
662				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
663			}
664			if err != nil {
665				s.errorf("%v", err)
666			}
667			// If it's a function, we must call it.
668			if hasArgs {
669				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
670			}
671			return field
672		}
673	case reflect.Map:
674		// If it's a map, attempt to use the field name as a key.
675		nameVal := reflect.ValueOf(fieldName)
676		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
677			if hasArgs {
678				s.errorf("%s is not a method but has arguments", fieldName)
679			}
680			result := receiver.MapIndex(nameVal)
681			if !result.IsValid() {
682				switch s.tmpl.option.missingKey {
683				case mapInvalid:
684					// Just use the invalid value.
685				case mapZeroValue:
686					result = reflect.Zero(receiver.Type().Elem())
687				case mapError:
688					s.errorf("map has no entry for key %q", fieldName)
689				}
690			}
691			return result
692		}
693	case reflect.Pointer:
694		etyp := receiver.Type().Elem()
695		if etyp.Kind() == reflect.Struct {
696			if _, ok := etyp.FieldByName(fieldName); !ok {
697				// If there's no such field, say "can't evaluate"
698				// instead of "nil pointer evaluating".
699				break
700			}
701		}
702		if isNil {
703			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
704		}
705	}
706	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
707	panic("not reached")
708}
709
710var (
711	errorType        = reflect.TypeFor[error]()
712	fmtStringerType  = reflect.TypeFor[fmt.Stringer]()
713	reflectValueType = reflect.TypeFor[reflect.Value]()
714)
715
716// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
717// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
718// as the function itself.
719func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
720	if args != nil {
721		args = args[1:] // Zeroth arg is function name/node; not passed to function.
722	}
723	typ := fun.Type()
724	numIn := len(args)
725	if !isMissing(final) {
726		numIn++
727	}
728	numFixed := len(args)
729	if typ.IsVariadic() {
730		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
731		if numIn < numFixed {
732			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
733		}
734	} else if numIn != typ.NumIn() {
735		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
736	}
737	if err := goodFunc(name, typ); err != nil {
738		s.errorf("%v", err)
739	}
740
741	unwrap := func(v reflect.Value) reflect.Value {
742		if v.Type() == reflectValueType {
743			v = v.Interface().(reflect.Value)
744		}
745		return v
746	}
747
748	// Special case for builtin and/or, which short-circuit.
749	if isBuiltin && (name == "and" || name == "or") {
750		argType := typ.In(0)
751		var v reflect.Value
752		for _, arg := range args {
753			v = s.evalArg(dot, argType, arg).Interface().(reflect.Value)
754			if truth(v) == (name == "or") {
755				// This value was already unwrapped
756				// by the .Interface().(reflect.Value).
757				return v
758			}
759		}
760		if final != missingVal {
761			// The last argument to and/or is coming from
762			// the pipeline. We didn't short circuit on an earlier
763			// argument, so we are going to return this one.
764			// We don't have to evaluate final, but we do
765			// have to check its type. Then, since we are
766			// going to return it, we have to unwrap it.
767			v = unwrap(s.validateType(final, argType))
768		}
769		return v
770	}
771
772	// Build the arg list.
773	argv := make([]reflect.Value, numIn)
774	// Args must be evaluated. Fixed args first.
775	i := 0
776	for ; i < numFixed && i < len(args); i++ {
777		argv[i] = s.evalArg(dot, typ.In(i), args[i])
778	}
779	// Now the ... args.
780	if typ.IsVariadic() {
781		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
782		for ; i < len(args); i++ {
783			argv[i] = s.evalArg(dot, argType, args[i])
784		}
785	}
786	// Add final value if necessary.
787	if !isMissing(final) {
788		t := typ.In(typ.NumIn() - 1)
789		if typ.IsVariadic() {
790			if numIn-1 < numFixed {
791				// The added final argument corresponds to a fixed parameter of the function.
792				// Validate against the type of the actual parameter.
793				t = typ.In(numIn - 1)
794			} else {
795				// The added final argument corresponds to the variadic part.
796				// Validate against the type of the elements of the variadic slice.
797				t = t.Elem()
798			}
799		}
800		argv[i] = s.validateType(final, t)
801	}
802
803	// Special case for the "call" builtin.
804	// Insert the name of the callee function as the first argument.
805	if isBuiltin && name == "call" {
806		calleeName := args[0].String()
807		argv = append([]reflect.Value{reflect.ValueOf(calleeName)}, argv...)
808		fun = reflect.ValueOf(call)
809	}
810
811	v, err := safeCall(fun, argv)
812	// If we have an error that is not nil, stop execution and return that
813	// error to the caller.
814	if err != nil {
815		s.at(node)
816		s.errorf("error calling %s: %w", name, err)
817	}
818	return unwrap(v)
819}
820
821// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
822func canBeNil(typ reflect.Type) bool {
823	switch typ.Kind() {
824	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice:
825		return true
826	case reflect.Struct:
827		return typ == reflectValueType
828	}
829	return false
830}
831
832// validateType guarantees that the value is valid and assignable to the type.
833func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
834	if !value.IsValid() {
835		if typ == nil {
836			// An untyped nil interface{}. Accept as a proper nil value.
837			return reflect.ValueOf(nil)
838		}
839		if canBeNil(typ) {
840			// Like above, but use the zero value of the non-nil type.
841			return reflect.Zero(typ)
842		}
843		s.errorf("invalid value; expected %s", typ)
844	}
845	if typ == reflectValueType && value.Type() != typ {
846		return reflect.ValueOf(value)
847	}
848	if typ != nil && !value.Type().AssignableTo(typ) {
849		if value.Kind() == reflect.Interface && !value.IsNil() {
850			value = value.Elem()
851			if value.Type().AssignableTo(typ) {
852				return value
853			}
854			// fallthrough
855		}
856		// Does one dereference or indirection work? We could do more, as we
857		// do with method receivers, but that gets messy and method receivers
858		// are much more constrained, so it makes more sense there than here.
859		// Besides, one is almost always all you need.
860		switch {
861		case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ):
862			value = value.Elem()
863			if !value.IsValid() {
864				s.errorf("dereference of nil pointer of type %s", typ)
865			}
866		case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr():
867			value = value.Addr()
868		default:
869			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
870		}
871	}
872	return value
873}
874
875func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
876	s.at(n)
877	switch arg := n.(type) {
878	case *parse.DotNode:
879		return s.validateType(dot, typ)
880	case *parse.NilNode:
881		if canBeNil(typ) {
882			return reflect.Zero(typ)
883		}
884		s.errorf("cannot assign nil to %s", typ)
885	case *parse.FieldNode:
886		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
887	case *parse.VariableNode:
888		return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
889	case *parse.PipeNode:
890		return s.validateType(s.evalPipeline(dot, arg), typ)
891	case *parse.IdentifierNode:
892		return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
893	case *parse.ChainNode:
894		return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
895	}
896	switch typ.Kind() {
897	case reflect.Bool:
898		return s.evalBool(typ, n)
899	case reflect.Complex64, reflect.Complex128:
900		return s.evalComplex(typ, n)
901	case reflect.Float32, reflect.Float64:
902		return s.evalFloat(typ, n)
903	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
904		return s.evalInteger(typ, n)
905	case reflect.Interface:
906		if typ.NumMethod() == 0 {
907			return s.evalEmptyInterface(dot, n)
908		}
909	case reflect.Struct:
910		if typ == reflectValueType {
911			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
912		}
913	case reflect.String:
914		return s.evalString(typ, n)
915	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
916		return s.evalUnsignedInteger(typ, n)
917	}
918	s.errorf("can't handle %s for arg of type %s", n, typ)
919	panic("not reached")
920}
921
922func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
923	s.at(n)
924	if n, ok := n.(*parse.BoolNode); ok {
925		value := reflect.New(typ).Elem()
926		value.SetBool(n.True)
927		return value
928	}
929	s.errorf("expected bool; found %s", n)
930	panic("not reached")
931}
932
933func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
934	s.at(n)
935	if n, ok := n.(*parse.StringNode); ok {
936		value := reflect.New(typ).Elem()
937		value.SetString(n.Text)
938		return value
939	}
940	s.errorf("expected string; found %s", n)
941	panic("not reached")
942}
943
944func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
945	s.at(n)
946	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
947		value := reflect.New(typ).Elem()
948		value.SetInt(n.Int64)
949		return value
950	}
951	s.errorf("expected integer; found %s", n)
952	panic("not reached")
953}
954
955func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
956	s.at(n)
957	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
958		value := reflect.New(typ).Elem()
959		value.SetUint(n.Uint64)
960		return value
961	}
962	s.errorf("expected unsigned integer; found %s", n)
963	panic("not reached")
964}
965
966func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
967	s.at(n)
968	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
969		value := reflect.New(typ).Elem()
970		value.SetFloat(n.Float64)
971		return value
972	}
973	s.errorf("expected float; found %s", n)
974	panic("not reached")
975}
976
977func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
978	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
979		value := reflect.New(typ).Elem()
980		value.SetComplex(n.Complex128)
981		return value
982	}
983	s.errorf("expected complex; found %s", n)
984	panic("not reached")
985}
986
987func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
988	s.at(n)
989	switch n := n.(type) {
990	case *parse.BoolNode:
991		return reflect.ValueOf(n.True)
992	case *parse.DotNode:
993		return dot
994	case *parse.FieldNode:
995		return s.evalFieldNode(dot, n, nil, missingVal)
996	case *parse.IdentifierNode:
997		return s.evalFunction(dot, n, n, nil, missingVal)
998	case *parse.NilNode:
999		// NilNode is handled in evalArg, the only place that calls here.
1000		s.errorf("evalEmptyInterface: nil (can't happen)")
1001	case *parse.NumberNode:
1002		return s.idealConstant(n)
1003	case *parse.StringNode:
1004		return reflect.ValueOf(n.Text)
1005	case *parse.VariableNode:
1006		return s.evalVariableNode(dot, n, nil, missingVal)
1007	case *parse.PipeNode:
1008		return s.evalPipeline(dot, n)
1009	}
1010	s.errorf("can't handle assignment of %s to empty interface argument", n)
1011	panic("not reached")
1012}
1013
1014// indirect returns the item at the end of indirection, and a bool to indicate
1015// if it's nil. If the returned bool is true, the returned value's kind will be
1016// either a pointer or interface.
1017func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
1018	for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() {
1019		if v.IsNil() {
1020			return v, true
1021		}
1022	}
1023	return v, false
1024}
1025
1026// indirectInterface returns the concrete value in an interface value,
1027// or else the zero reflect.Value.
1028// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
1029// the fact that x was an interface value is forgotten.
1030func indirectInterface(v reflect.Value) reflect.Value {
1031	if v.Kind() != reflect.Interface {
1032		return v
1033	}
1034	if v.IsNil() {
1035		return reflect.Value{}
1036	}
1037	return v.Elem()
1038}
1039
1040// printValue writes the textual representation of the value to the output of
1041// the template.
1042func (s *state) printValue(n parse.Node, v reflect.Value) {
1043	s.at(n)
1044	iface, ok := printableValue(v)
1045	if !ok {
1046		s.errorf("can't print %s of type %s", n, v.Type())
1047	}
1048	_, err := fmt.Fprint(s.wr, iface)
1049	if err != nil {
1050		s.writeError(err)
1051	}
1052}
1053
1054// printableValue returns the, possibly indirected, interface value inside v that
1055// is best for a call to formatted printer.
1056func printableValue(v reflect.Value) (any, bool) {
1057	if v.Kind() == reflect.Pointer {
1058		v, _ = indirect(v) // fmt.Fprint handles nil.
1059	}
1060	if !v.IsValid() {
1061		return "<no value>", true
1062	}
1063
1064	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
1065		if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) {
1066			v = v.Addr()
1067		} else {
1068			switch v.Kind() {
1069			case reflect.Chan, reflect.Func:
1070				return nil, false
1071			}
1072		}
1073	}
1074	return v.Interface(), true
1075}
1076