1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
35 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MD5.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetLoweringObjectFile.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cstddef>
58 #include <iterator>
59 #include <optional>
60 #include <string>
61
62 using namespace llvm;
63
64 #define DEBUG_TYPE "dwarfdebug"
65
66 STATISTIC(NumCSParams, "Number of dbg call site params created");
67
68 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
69 "use-dwarf-ranges-base-address-specifier", cl::Hidden,
70 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
71
72 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
73 cl::Hidden,
74 cl::desc("Generate dwarf aranges"),
75 cl::init(false));
76
77 static cl::opt<bool>
78 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
79 cl::desc("Generate DWARF4 type units."),
80 cl::init(false));
81
82 static cl::opt<bool> SplitDwarfCrossCuReferences(
83 "split-dwarf-cross-cu-references", cl::Hidden,
84 cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
85
86 enum DefaultOnOff { Default, Enable, Disable };
87
88 static cl::opt<DefaultOnOff> UnknownLocations(
89 "use-unknown-locations", cl::Hidden,
90 cl::desc("Make an absence of debug location information explicit."),
91 cl::values(clEnumVal(Default, "At top of block or after label"),
92 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
93 cl::init(Default));
94
95 static cl::opt<AccelTableKind> AccelTables(
96 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
97 cl::values(clEnumValN(AccelTableKind::Default, "Default",
98 "Default for platform"),
99 clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
100 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
101 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
102 cl::init(AccelTableKind::Default));
103
104 static cl::opt<DefaultOnOff>
105 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
106 cl::desc("Use inlined strings rather than string section."),
107 cl::values(clEnumVal(Default, "Default for platform"),
108 clEnumVal(Enable, "Enabled"),
109 clEnumVal(Disable, "Disabled")),
110 cl::init(Default));
111
112 static cl::opt<bool>
113 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
114 cl::desc("Disable emission .debug_ranges section."),
115 cl::init(false));
116
117 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
118 "dwarf-sections-as-references", cl::Hidden,
119 cl::desc("Use sections+offset as references rather than labels."),
120 cl::values(clEnumVal(Default, "Default for platform"),
121 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
122 cl::init(Default));
123
124 static cl::opt<bool>
125 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
126 cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
127 cl::init(false));
128
129 static cl::opt<DefaultOnOff> DwarfOpConvert(
130 "dwarf-op-convert", cl::Hidden,
131 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
132 cl::values(clEnumVal(Default, "Default for platform"),
133 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
134 cl::init(Default));
135
136 enum LinkageNameOption {
137 DefaultLinkageNames,
138 AllLinkageNames,
139 AbstractLinkageNames
140 };
141
142 static cl::opt<LinkageNameOption>
143 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
144 cl::desc("Which DWARF linkage-name attributes to emit."),
145 cl::values(clEnumValN(DefaultLinkageNames, "Default",
146 "Default for platform"),
147 clEnumValN(AllLinkageNames, "All", "All"),
148 clEnumValN(AbstractLinkageNames, "Abstract",
149 "Abstract subprograms")),
150 cl::init(DefaultLinkageNames));
151
152 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
153 "minimize-addr-in-v5", cl::Hidden,
154 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
155 "address pool entry sharing to reduce relocations/object size"),
156 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
157 "Default address minimization strategy"),
158 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
159 "Use rnglists for contiguous ranges if that allows "
160 "using a pre-existing base address"),
161 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
162 "Expressions",
163 "Use exprloc addrx+offset expressions for any "
164 "address with a prior base address"),
165 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
166 "Use addrx+offset extension form for any address "
167 "with a prior base address"),
168 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
169 "Stuff")),
170 cl::init(DwarfDebug::MinimizeAddrInV5::Default));
171
172 static constexpr unsigned ULEB128PadSize = 4;
173
emitOp(uint8_t Op,const char * Comment)174 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
175 getActiveStreamer().emitInt8(
176 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
177 : dwarf::OperationEncodingString(Op));
178 }
179
emitSigned(int64_t Value)180 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
181 getActiveStreamer().emitSLEB128(Value, Twine(Value));
182 }
183
emitUnsigned(uint64_t Value)184 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
185 getActiveStreamer().emitULEB128(Value, Twine(Value));
186 }
187
emitData1(uint8_t Value)188 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
189 getActiveStreamer().emitInt8(Value, Twine(Value));
190 }
191
emitBaseTypeRef(uint64_t Idx)192 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
193 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
194 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
195 }
196
isFrameRegister(const TargetRegisterInfo & TRI,llvm::Register MachineReg)197 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
198 llvm::Register MachineReg) {
199 // This information is not available while emitting .debug_loc entries.
200 return false;
201 }
202
enableTemporaryBuffer()203 void DebugLocDwarfExpression::enableTemporaryBuffer() {
204 assert(!IsBuffering && "Already buffering?");
205 if (!TmpBuf)
206 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
207 IsBuffering = true;
208 }
209
disableTemporaryBuffer()210 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
211
getTemporaryBufferSize()212 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
213 return TmpBuf ? TmpBuf->Bytes.size() : 0;
214 }
215
commitTemporaryBuffer()216 void DebugLocDwarfExpression::commitTemporaryBuffer() {
217 if (!TmpBuf)
218 return;
219 for (auto Byte : enumerate(TmpBuf->Bytes)) {
220 const char *Comment = (Byte.index() < TmpBuf->Comments.size())
221 ? TmpBuf->Comments[Byte.index()].c_str()
222 : "";
223 OutBS.emitInt8(Byte.value(), Comment);
224 }
225 TmpBuf->Bytes.clear();
226 TmpBuf->Comments.clear();
227 }
228
getType() const229 const DIType *DbgVariable::getType() const {
230 return getVariable()->getType();
231 }
232
233 /// Get .debug_loc entry for the instruction range starting at MI.
getDebugLocValue(const MachineInstr * MI)234 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
235 const DIExpression *Expr = MI->getDebugExpression();
236 const bool IsVariadic = MI->isDebugValueList();
237 assert(MI->getNumOperands() >= 3);
238 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
239 for (const MachineOperand &Op : MI->debug_operands()) {
240 if (Op.isReg()) {
241 MachineLocation MLoc(Op.getReg(),
242 MI->isNonListDebugValue() && MI->isDebugOffsetImm());
243 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
244 } else if (Op.isTargetIndex()) {
245 DbgValueLocEntries.push_back(
246 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
247 } else if (Op.isImm())
248 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
249 else if (Op.isFPImm())
250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
251 else if (Op.isCImm())
252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
253 else
254 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
255 }
256 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
257 }
258
initializeDbgValue(const MachineInstr * DbgValue)259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
260 assert(FrameIndexExprs.empty() && "Already initialized?");
261 assert(!ValueLoc.get() && "Already initialized?");
262
263 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
264 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
265 "Wrong inlined-at");
266
267 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
268 if (auto *E = DbgValue->getDebugExpression())
269 if (E->getNumElements())
270 FrameIndexExprs.push_back({0, E});
271 }
272
getFrameIndexExprs() const273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
274 if (FrameIndexExprs.size() == 1)
275 return FrameIndexExprs;
276
277 assert(llvm::all_of(FrameIndexExprs,
278 [](const FrameIndexExpr &A) {
279 return A.Expr->isFragment();
280 }) &&
281 "multiple FI expressions without DW_OP_LLVM_fragment");
282 llvm::sort(FrameIndexExprs,
283 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
284 return A.Expr->getFragmentInfo()->OffsetInBits <
285 B.Expr->getFragmentInfo()->OffsetInBits;
286 });
287
288 return FrameIndexExprs;
289 }
290
addMMIEntry(const DbgVariable & V)291 void DbgVariable::addMMIEntry(const DbgVariable &V) {
292 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
293 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
294 assert(V.getVariable() == getVariable() && "conflicting variable");
295 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
296
297 assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
298 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
299
300 // FIXME: This logic should not be necessary anymore, as we now have proper
301 // deduplication. However, without it, we currently run into the assertion
302 // below, which means that we are likely dealing with broken input, i.e. two
303 // non-fragment entries for the same variable at different frame indices.
304 if (FrameIndexExprs.size()) {
305 auto *Expr = FrameIndexExprs.back().Expr;
306 if (!Expr || !Expr->isFragment())
307 return;
308 }
309
310 for (const auto &FIE : V.FrameIndexExprs)
311 // Ignore duplicate entries.
312 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
313 return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
314 }))
315 FrameIndexExprs.push_back(FIE);
316
317 assert((FrameIndexExprs.size() == 1 ||
318 llvm::all_of(FrameIndexExprs,
319 [](FrameIndexExpr &FIE) {
320 return FIE.Expr && FIE.Expr->isFragment();
321 })) &&
322 "conflicting locations for variable");
323 }
324
computeAccelTableKind(unsigned DwarfVersion,bool GenerateTypeUnits,DebuggerKind Tuning,const Triple & TT)325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
326 bool GenerateTypeUnits,
327 DebuggerKind Tuning,
328 const Triple &TT) {
329 // Honor an explicit request.
330 if (AccelTables != AccelTableKind::Default)
331 return AccelTables;
332
333 // Accelerator tables with type units are currently not supported.
334 if (GenerateTypeUnits)
335 return AccelTableKind::None;
336
337 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
338 // always implies debug_names. For lower standard versions we use apple
339 // accelerator tables on apple platforms and debug_names elsewhere.
340 if (DwarfVersion >= 5)
341 return AccelTableKind::Dwarf;
342 if (Tuning == DebuggerKind::LLDB)
343 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
344 : AccelTableKind::Dwarf;
345 return AccelTableKind::None;
346 }
347
DwarfDebug(AsmPrinter * A)348 DwarfDebug::DwarfDebug(AsmPrinter *A)
349 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
350 InfoHolder(A, "info_string", DIEValueAllocator),
351 SkeletonHolder(A, "skel_string", DIEValueAllocator),
352 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
353 const Triple &TT = Asm->TM.getTargetTriple();
354
355 // Make sure we know our "debugger tuning". The target option takes
356 // precedence; fall back to triple-based defaults.
357 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
358 DebuggerTuning = Asm->TM.Options.DebuggerTuning;
359 else if (IsDarwin)
360 DebuggerTuning = DebuggerKind::LLDB;
361 else if (TT.isPS())
362 DebuggerTuning = DebuggerKind::SCE;
363 else if (TT.isOSAIX())
364 DebuggerTuning = DebuggerKind::DBX;
365 else
366 DebuggerTuning = DebuggerKind::GDB;
367
368 if (DwarfInlinedStrings == Default)
369 UseInlineStrings = TT.isNVPTX() || tuneForDBX();
370 else
371 UseInlineStrings = DwarfInlinedStrings == Enable;
372
373 UseLocSection = !TT.isNVPTX();
374
375 HasAppleExtensionAttributes = tuneForLLDB();
376
377 // Handle split DWARF.
378 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
379
380 // SCE defaults to linkage names only for abstract subprograms.
381 if (DwarfLinkageNames == DefaultLinkageNames)
382 UseAllLinkageNames = !tuneForSCE();
383 else
384 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
385
386 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
387 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
388 : MMI->getModule()->getDwarfVersion();
389 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
390 DwarfVersion =
391 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
392
393 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
394 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations.
395
396 // Support DWARF64
397 // 1: For ELF when requested.
398 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
399 // according to the DWARF64 format for 64-bit assembly, so we must use
400 // DWARF64 in the compiler too for 64-bit mode.
401 Dwarf64 &=
402 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
403 TT.isOSBinFormatELF()) ||
404 TT.isOSBinFormatXCOFF();
405
406 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
407 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
408
409 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
410
411 // Use sections as references. Force for NVPTX.
412 if (DwarfSectionsAsReferences == Default)
413 UseSectionsAsReferences = TT.isNVPTX();
414 else
415 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
416
417 // Don't generate type units for unsupported object file formats.
418 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
419 A->TM.getTargetTriple().isOSBinFormatWasm()) &&
420 GenerateDwarfTypeUnits;
421
422 TheAccelTableKind = computeAccelTableKind(
423 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
424
425 // Work around a GDB bug. GDB doesn't support the standard opcode;
426 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
427 // is defined as of DWARF 3.
428 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
429 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
430 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
431
432 UseDWARF2Bitfields = DwarfVersion < 4;
433
434 // The DWARF v5 string offsets table has - possibly shared - contributions
435 // from each compile and type unit each preceded by a header. The string
436 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
437 // a monolithic string offsets table without any header.
438 UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
439
440 // Emit call-site-param debug info for GDB and LLDB, if the target supports
441 // the debug entry values feature. It can also be enabled explicitly.
442 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
443
444 // It is unclear if the GCC .debug_macro extension is well-specified
445 // for split DWARF. For now, do not allow LLVM to emit it.
446 UseDebugMacroSection =
447 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
448 if (DwarfOpConvert == Default)
449 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
450 else
451 EnableOpConvert = (DwarfOpConvert == Enable);
452
453 // Split DWARF would benefit object size significantly by trading reductions
454 // in address pool usage for slightly increased range list encodings.
455 if (DwarfVersion >= 5) {
456 MinimizeAddr = MinimizeAddrInV5Option;
457 // FIXME: In the future, enable this by default for Split DWARF where the
458 // tradeoff is more pronounced due to being able to offload the range
459 // lists to the dwo file and shrink object files/reduce relocations there.
460 if (MinimizeAddr == MinimizeAddrInV5::Default)
461 MinimizeAddr = MinimizeAddrInV5::Disabled;
462 }
463
464 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
465 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
466 : dwarf::DWARF32);
467 }
468
469 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
470 DwarfDebug::~DwarfDebug() = default;
471
isObjCClass(StringRef Name)472 static bool isObjCClass(StringRef Name) {
473 return Name.startswith("+") || Name.startswith("-");
474 }
475
hasObjCCategory(StringRef Name)476 static bool hasObjCCategory(StringRef Name) {
477 if (!isObjCClass(Name))
478 return false;
479
480 return Name.contains(") ");
481 }
482
getObjCClassCategory(StringRef In,StringRef & Class,StringRef & Category)483 static void getObjCClassCategory(StringRef In, StringRef &Class,
484 StringRef &Category) {
485 if (!hasObjCCategory(In)) {
486 Class = In.slice(In.find('[') + 1, In.find(' '));
487 Category = "";
488 return;
489 }
490
491 Class = In.slice(In.find('[') + 1, In.find('('));
492 Category = In.slice(In.find('[') + 1, In.find(' '));
493 }
494
getObjCMethodName(StringRef In)495 static StringRef getObjCMethodName(StringRef In) {
496 return In.slice(In.find(' ') + 1, In.find(']'));
497 }
498
499 // Add the various names to the Dwarf accelerator table names.
addSubprogramNames(const DICompileUnit & CU,const DISubprogram * SP,DIE & Die)500 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
501 const DISubprogram *SP, DIE &Die) {
502 if (getAccelTableKind() != AccelTableKind::Apple &&
503 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
504 return;
505
506 if (!SP->isDefinition())
507 return;
508
509 if (SP->getName() != "")
510 addAccelName(CU, SP->getName(), Die);
511
512 // If the linkage name is different than the name, go ahead and output that as
513 // well into the name table. Only do that if we are going to actually emit
514 // that name.
515 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
516 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
517 addAccelName(CU, SP->getLinkageName(), Die);
518
519 // If this is an Objective-C selector name add it to the ObjC accelerator
520 // too.
521 if (isObjCClass(SP->getName())) {
522 StringRef Class, Category;
523 getObjCClassCategory(SP->getName(), Class, Category);
524 addAccelObjC(CU, Class, Die);
525 if (Category != "")
526 addAccelObjC(CU, Category, Die);
527 // Also add the base method name to the name table.
528 addAccelName(CU, getObjCMethodName(SP->getName()), Die);
529 }
530 }
531
532 /// Check whether we should create a DIE for the given Scope, return true
533 /// if we don't create a DIE (the corresponding DIE is null).
isLexicalScopeDIENull(LexicalScope * Scope)534 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
535 if (Scope->isAbstractScope())
536 return false;
537
538 // We don't create a DIE if there is no Range.
539 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
540 if (Ranges.empty())
541 return true;
542
543 if (Ranges.size() > 1)
544 return false;
545
546 // We don't create a DIE if we have a single Range and the end label
547 // is null.
548 return !getLabelAfterInsn(Ranges.front().second);
549 }
550
forBothCUs(DwarfCompileUnit & CU,Func F)551 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
552 F(CU);
553 if (auto *SkelCU = CU.getSkeleton())
554 if (CU.getCUNode()->getSplitDebugInlining())
555 F(*SkelCU);
556 }
557
shareAcrossDWOCUs() const558 bool DwarfDebug::shareAcrossDWOCUs() const {
559 return SplitDwarfCrossCuReferences;
560 }
561
constructAbstractSubprogramScopeDIE(DwarfCompileUnit & SrcCU,LexicalScope * Scope)562 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
563 LexicalScope *Scope) {
564 assert(Scope && Scope->getScopeNode());
565 assert(Scope->isAbstractScope());
566 assert(!Scope->getInlinedAt());
567
568 auto *SP = cast<DISubprogram>(Scope->getScopeNode());
569
570 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
571 // was inlined from another compile unit.
572 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
573 // Avoid building the original CU if it won't be used
574 SrcCU.constructAbstractSubprogramScopeDIE(Scope);
575 else {
576 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
577 if (auto *SkelCU = CU.getSkeleton()) {
578 (shareAcrossDWOCUs() ? CU : SrcCU)
579 .constructAbstractSubprogramScopeDIE(Scope);
580 if (CU.getCUNode()->getSplitDebugInlining())
581 SkelCU->constructAbstractSubprogramScopeDIE(Scope);
582 } else
583 CU.constructAbstractSubprogramScopeDIE(Scope);
584 }
585 }
586
587 /// Represents a parameter whose call site value can be described by applying a
588 /// debug expression to a register in the forwarded register worklist.
589 struct FwdRegParamInfo {
590 /// The described parameter register.
591 unsigned ParamReg;
592
593 /// Debug expression that has been built up when walking through the
594 /// instruction chain that produces the parameter's value.
595 const DIExpression *Expr;
596 };
597
598 /// Register worklist for finding call site values.
599 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
600 /// Container for the set of registers known to be clobbered on the path to a
601 /// call site.
602 using ClobberedRegSet = SmallSet<Register, 16>;
603
604 /// Append the expression \p Addition to \p Original and return the result.
combineDIExpressions(const DIExpression * Original,const DIExpression * Addition)605 static const DIExpression *combineDIExpressions(const DIExpression *Original,
606 const DIExpression *Addition) {
607 std::vector<uint64_t> Elts = Addition->getElements().vec();
608 // Avoid multiple DW_OP_stack_values.
609 if (Original->isImplicit() && Addition->isImplicit())
610 erase_value(Elts, dwarf::DW_OP_stack_value);
611 const DIExpression *CombinedExpr =
612 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
613 return CombinedExpr;
614 }
615
616 /// Emit call site parameter entries that are described by the given value and
617 /// debug expression.
618 template <typename ValT>
finishCallSiteParams(ValT Val,const DIExpression * Expr,ArrayRef<FwdRegParamInfo> DescribedParams,ParamSet & Params)619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
620 ArrayRef<FwdRegParamInfo> DescribedParams,
621 ParamSet &Params) {
622 for (auto Param : DescribedParams) {
623 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
624
625 // TODO: Entry value operations can currently not be combined with any
626 // other expressions, so we can't emit call site entries in those cases.
627 if (ShouldCombineExpressions && Expr->isEntryValue())
628 continue;
629
630 // If a parameter's call site value is produced by a chain of
631 // instructions we may have already created an expression for the
632 // parameter when walking through the instructions. Append that to the
633 // base expression.
634 const DIExpression *CombinedExpr =
635 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
636 : Expr;
637 assert((!CombinedExpr || CombinedExpr->isValid()) &&
638 "Combined debug expression is invalid");
639
640 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
641 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
642 Params.push_back(CSParm);
643 ++NumCSParams;
644 }
645 }
646
647 /// Add \p Reg to the worklist, if it's not already present, and mark that the
648 /// given parameter registers' values can (potentially) be described using
649 /// that register and an debug expression.
addToFwdRegWorklist(FwdRegWorklist & Worklist,unsigned Reg,const DIExpression * Expr,ArrayRef<FwdRegParamInfo> ParamsToAdd)650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
651 const DIExpression *Expr,
652 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
653 auto I = Worklist.insert({Reg, {}});
654 auto &ParamsForFwdReg = I.first->second;
655 for (auto Param : ParamsToAdd) {
656 assert(none_of(ParamsForFwdReg,
657 [Param](const FwdRegParamInfo &D) {
658 return D.ParamReg == Param.ParamReg;
659 }) &&
660 "Same parameter described twice by forwarding reg");
661
662 // If a parameter's call site value is produced by a chain of
663 // instructions we may have already created an expression for the
664 // parameter when walking through the instructions. Append that to the
665 // new expression.
666 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
667 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
668 }
669 }
670
671 /// Interpret values loaded into registers by \p CurMI.
interpretValues(const MachineInstr * CurMI,FwdRegWorklist & ForwardedRegWorklist,ParamSet & Params,ClobberedRegSet & ClobberedRegUnits)672 static void interpretValues(const MachineInstr *CurMI,
673 FwdRegWorklist &ForwardedRegWorklist,
674 ParamSet &Params,
675 ClobberedRegSet &ClobberedRegUnits) {
676
677 const MachineFunction *MF = CurMI->getMF();
678 const DIExpression *EmptyExpr =
679 DIExpression::get(MF->getFunction().getContext(), {});
680 const auto &TRI = *MF->getSubtarget().getRegisterInfo();
681 const auto &TII = *MF->getSubtarget().getInstrInfo();
682 const auto &TLI = *MF->getSubtarget().getTargetLowering();
683
684 // If an instruction defines more than one item in the worklist, we may run
685 // into situations where a worklist register's value is (potentially)
686 // described by the previous value of another register that is also defined
687 // by that instruction.
688 //
689 // This can for example occur in cases like this:
690 //
691 // $r1 = mov 123
692 // $r0, $r1 = mvrr $r1, 456
693 // call @foo, $r0, $r1
694 //
695 // When describing $r1's value for the mvrr instruction, we need to make sure
696 // that we don't finalize an entry value for $r0, as that is dependent on the
697 // previous value of $r1 (123 rather than 456).
698 //
699 // In order to not have to distinguish between those cases when finalizing
700 // entry values, we simply postpone adding new parameter registers to the
701 // worklist, by first keeping them in this temporary container until the
702 // instruction has been handled.
703 FwdRegWorklist TmpWorklistItems;
704
705 // If the MI is an instruction defining one or more parameters' forwarding
706 // registers, add those defines.
707 ClobberedRegSet NewClobberedRegUnits;
708 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
709 SmallSetVector<unsigned, 4> &Defs) {
710 if (MI.isDebugInstr())
711 return;
712
713 for (const MachineOperand &MO : MI.operands()) {
714 if (MO.isReg() && MO.isDef() && MO.getReg().isPhysical()) {
715 for (auto &FwdReg : ForwardedRegWorklist)
716 if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
717 Defs.insert(FwdReg.first);
718 for (MCRegUnitIterator Units(MO.getReg(), &TRI); Units.isValid(); ++Units)
719 NewClobberedRegUnits.insert(*Units);
720 }
721 }
722 };
723
724 // Set of worklist registers that are defined by this instruction.
725 SmallSetVector<unsigned, 4> FwdRegDefs;
726
727 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
728 if (FwdRegDefs.empty()) {
729 // Any definitions by this instruction will clobber earlier reg movements.
730 ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
731 NewClobberedRegUnits.end());
732 return;
733 }
734
735 // It's possible that we find a copy from a non-volatile register to the param
736 // register, which is clobbered in the meantime. Test for clobbered reg unit
737 // overlaps before completing.
738 auto IsRegClobberedInMeantime = [&](Register Reg) -> bool {
739 for (auto &RegUnit : ClobberedRegUnits)
740 if (TRI.hasRegUnit(Reg, RegUnit))
741 return true;
742 return false;
743 };
744
745 for (auto ParamFwdReg : FwdRegDefs) {
746 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
747 if (ParamValue->first.isImm()) {
748 int64_t Val = ParamValue->first.getImm();
749 finishCallSiteParams(Val, ParamValue->second,
750 ForwardedRegWorklist[ParamFwdReg], Params);
751 } else if (ParamValue->first.isReg()) {
752 Register RegLoc = ParamValue->first.getReg();
753 Register SP = TLI.getStackPointerRegisterToSaveRestore();
754 Register FP = TRI.getFrameRegister(*MF);
755 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
756 if (!IsRegClobberedInMeantime(RegLoc) &&
757 (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) {
758 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
759 finishCallSiteParams(MLoc, ParamValue->second,
760 ForwardedRegWorklist[ParamFwdReg], Params);
761 } else {
762 // ParamFwdReg was described by the non-callee saved register
763 // RegLoc. Mark that the call site values for the parameters are
764 // dependent on that register instead of ParamFwdReg. Since RegLoc
765 // may be a register that will be handled in this iteration, we
766 // postpone adding the items to the worklist, and instead keep them
767 // in a temporary container.
768 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
769 ForwardedRegWorklist[ParamFwdReg]);
770 }
771 }
772 }
773 }
774
775 // Remove all registers that this instruction defines from the worklist.
776 for (auto ParamFwdReg : FwdRegDefs)
777 ForwardedRegWorklist.erase(ParamFwdReg);
778
779 // Any definitions by this instruction will clobber earlier reg movements.
780 ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
781 NewClobberedRegUnits.end());
782
783 // Now that we are done handling this instruction, add items from the
784 // temporary worklist to the real one.
785 for (auto &New : TmpWorklistItems)
786 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
787 TmpWorklistItems.clear();
788 }
789
interpretNextInstr(const MachineInstr * CurMI,FwdRegWorklist & ForwardedRegWorklist,ParamSet & Params,ClobberedRegSet & ClobberedRegUnits)790 static bool interpretNextInstr(const MachineInstr *CurMI,
791 FwdRegWorklist &ForwardedRegWorklist,
792 ParamSet &Params,
793 ClobberedRegSet &ClobberedRegUnits) {
794 // Skip bundle headers.
795 if (CurMI->isBundle())
796 return true;
797
798 // If the next instruction is a call we can not interpret parameter's
799 // forwarding registers or we finished the interpretation of all
800 // parameters.
801 if (CurMI->isCall())
802 return false;
803
804 if (ForwardedRegWorklist.empty())
805 return false;
806
807 // Avoid NOP description.
808 if (CurMI->getNumOperands() == 0)
809 return true;
810
811 interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits);
812
813 return true;
814 }
815
816 /// Try to interpret values loaded into registers that forward parameters
817 /// for \p CallMI. Store parameters with interpreted value into \p Params.
collectCallSiteParameters(const MachineInstr * CallMI,ParamSet & Params)818 static void collectCallSiteParameters(const MachineInstr *CallMI,
819 ParamSet &Params) {
820 const MachineFunction *MF = CallMI->getMF();
821 const auto &CalleesMap = MF->getCallSitesInfo();
822 auto CallFwdRegsInfo = CalleesMap.find(CallMI);
823
824 // There is no information for the call instruction.
825 if (CallFwdRegsInfo == CalleesMap.end())
826 return;
827
828 const MachineBasicBlock *MBB = CallMI->getParent();
829
830 // Skip the call instruction.
831 auto I = std::next(CallMI->getReverseIterator());
832
833 FwdRegWorklist ForwardedRegWorklist;
834
835 const DIExpression *EmptyExpr =
836 DIExpression::get(MF->getFunction().getContext(), {});
837
838 // Add all the forwarding registers into the ForwardedRegWorklist.
839 for (const auto &ArgReg : CallFwdRegsInfo->second) {
840 bool InsertedReg =
841 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
842 .second;
843 assert(InsertedReg && "Single register used to forward two arguments?");
844 (void)InsertedReg;
845 }
846
847 // Do not emit CSInfo for undef forwarding registers.
848 for (const auto &MO : CallMI->uses())
849 if (MO.isReg() && MO.isUndef())
850 ForwardedRegWorklist.erase(MO.getReg());
851
852 // We erase, from the ForwardedRegWorklist, those forwarding registers for
853 // which we successfully describe a loaded value (by using
854 // the describeLoadedValue()). For those remaining arguments in the working
855 // list, for which we do not describe a loaded value by
856 // the describeLoadedValue(), we try to generate an entry value expression
857 // for their call site value description, if the call is within the entry MBB.
858 // TODO: Handle situations when call site parameter value can be described
859 // as the entry value within basic blocks other than the first one.
860 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
861
862 // Search for a loading value in forwarding registers inside call delay slot.
863 ClobberedRegSet ClobberedRegUnits;
864 if (CallMI->hasDelaySlot()) {
865 auto Suc = std::next(CallMI->getIterator());
866 // Only one-instruction delay slot is supported.
867 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
868 (void)BundleEnd;
869 assert(std::next(Suc) == BundleEnd &&
870 "More than one instruction in call delay slot");
871 // Try to interpret value loaded by instruction.
872 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits))
873 return;
874 }
875
876 // Search for a loading value in forwarding registers.
877 for (; I != MBB->rend(); ++I) {
878 // Try to interpret values loaded by instruction.
879 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits))
880 return;
881 }
882
883 // Emit the call site parameter's value as an entry value.
884 if (ShouldTryEmitEntryVals) {
885 // Create an expression where the register's entry value is used.
886 DIExpression *EntryExpr = DIExpression::get(
887 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
888 for (auto &RegEntry : ForwardedRegWorklist) {
889 MachineLocation MLoc(RegEntry.first);
890 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
891 }
892 }
893 }
894
constructCallSiteEntryDIEs(const DISubprogram & SP,DwarfCompileUnit & CU,DIE & ScopeDIE,const MachineFunction & MF)895 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
896 DwarfCompileUnit &CU, DIE &ScopeDIE,
897 const MachineFunction &MF) {
898 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
899 // the subprogram is required to have one.
900 if (!SP.areAllCallsDescribed() || !SP.isDefinition())
901 return;
902
903 // Use DW_AT_call_all_calls to express that call site entries are present
904 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
905 // because one of its requirements is not met: call site entries for
906 // optimized-out calls are elided.
907 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
908
909 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
910 assert(TII && "TargetInstrInfo not found: cannot label tail calls");
911
912 // Delay slot support check.
913 auto delaySlotSupported = [&](const MachineInstr &MI) {
914 if (!MI.isBundledWithSucc())
915 return false;
916 auto Suc = std::next(MI.getIterator());
917 auto CallInstrBundle = getBundleStart(MI.getIterator());
918 (void)CallInstrBundle;
919 auto DelaySlotBundle = getBundleStart(Suc);
920 (void)DelaySlotBundle;
921 // Ensure that label after call is following delay slot instruction.
922 // Ex. CALL_INSTRUCTION {
923 // DELAY_SLOT_INSTRUCTION }
924 // LABEL_AFTER_CALL
925 assert(getLabelAfterInsn(&*CallInstrBundle) ==
926 getLabelAfterInsn(&*DelaySlotBundle) &&
927 "Call and its successor instruction don't have same label after.");
928 return true;
929 };
930
931 // Emit call site entries for each call or tail call in the function.
932 for (const MachineBasicBlock &MBB : MF) {
933 for (const MachineInstr &MI : MBB.instrs()) {
934 // Bundles with call in them will pass the isCall() test below but do not
935 // have callee operand information so skip them here. Iterator will
936 // eventually reach the call MI.
937 if (MI.isBundle())
938 continue;
939
940 // Skip instructions which aren't calls. Both calls and tail-calling jump
941 // instructions (e.g TAILJMPd64) are classified correctly here.
942 if (!MI.isCandidateForCallSiteEntry())
943 continue;
944
945 // Skip instructions marked as frame setup, as they are not interesting to
946 // the user.
947 if (MI.getFlag(MachineInstr::FrameSetup))
948 continue;
949
950 // Check if delay slot support is enabled.
951 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
952 return;
953
954 // If this is a direct call, find the callee's subprogram.
955 // In the case of an indirect call find the register that holds
956 // the callee.
957 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
958 if (!CalleeOp.isGlobal() &&
959 (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical()))
960 continue;
961
962 unsigned CallReg = 0;
963 const DISubprogram *CalleeSP = nullptr;
964 const Function *CalleeDecl = nullptr;
965 if (CalleeOp.isReg()) {
966 CallReg = CalleeOp.getReg();
967 if (!CallReg)
968 continue;
969 } else {
970 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
971 if (!CalleeDecl || !CalleeDecl->getSubprogram())
972 continue;
973 CalleeSP = CalleeDecl->getSubprogram();
974 }
975
976 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
977
978 bool IsTail = TII->isTailCall(MI);
979
980 // If MI is in a bundle, the label was created after the bundle since
981 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
982 // to search for that label below.
983 const MachineInstr *TopLevelCallMI =
984 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
985
986 // For non-tail calls, the return PC is needed to disambiguate paths in
987 // the call graph which could lead to some target function. For tail
988 // calls, no return PC information is needed, unless tuning for GDB in
989 // DWARF4 mode in which case we fake a return PC for compatibility.
990 const MCSymbol *PCAddr =
991 (!IsTail || CU.useGNUAnalogForDwarf5Feature())
992 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
993 : nullptr;
994
995 // For tail calls, it's necessary to record the address of the branch
996 // instruction so that the debugger can show where the tail call occurred.
997 const MCSymbol *CallAddr =
998 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
999
1000 assert((IsTail || PCAddr) && "Non-tail call without return PC");
1001
1002 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
1003 << (CalleeDecl ? CalleeDecl->getName()
1004 : StringRef(MF.getSubtarget()
1005 .getRegisterInfo()
1006 ->getName(CallReg)))
1007 << (IsTail ? " [IsTail]" : "") << "\n");
1008
1009 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
1010 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
1011
1012 // Optionally emit call-site-param debug info.
1013 if (emitDebugEntryValues()) {
1014 ParamSet Params;
1015 // Try to interpret values of call site parameters.
1016 collectCallSiteParameters(&MI, Params);
1017 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
1018 }
1019 }
1020 }
1021 }
1022
addGnuPubAttributes(DwarfCompileUnit & U,DIE & D) const1023 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1024 if (!U.hasDwarfPubSections())
1025 return;
1026
1027 U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1028 }
1029
finishUnitAttributes(const DICompileUnit * DIUnit,DwarfCompileUnit & NewCU)1030 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1031 DwarfCompileUnit &NewCU) {
1032 DIE &Die = NewCU.getUnitDie();
1033 StringRef FN = DIUnit->getFilename();
1034
1035 StringRef Producer = DIUnit->getProducer();
1036 StringRef Flags = DIUnit->getFlags();
1037 if (!Flags.empty() && !useAppleExtensionAttributes()) {
1038 std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1039 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1040 } else
1041 NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1042
1043 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1044 DIUnit->getSourceLanguage());
1045 NewCU.addString(Die, dwarf::DW_AT_name, FN);
1046 StringRef SysRoot = DIUnit->getSysRoot();
1047 if (!SysRoot.empty())
1048 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1049 StringRef SDK = DIUnit->getSDK();
1050 if (!SDK.empty())
1051 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1052
1053 // Add DW_str_offsets_base to the unit DIE, except for split units.
1054 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1055 NewCU.addStringOffsetsStart();
1056
1057 if (!useSplitDwarf()) {
1058 NewCU.initStmtList();
1059
1060 // If we're using split dwarf the compilation dir is going to be in the
1061 // skeleton CU and so we don't need to duplicate it here.
1062 if (!CompilationDir.empty())
1063 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1064 addGnuPubAttributes(NewCU, Die);
1065 }
1066
1067 if (useAppleExtensionAttributes()) {
1068 if (DIUnit->isOptimized())
1069 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1070
1071 StringRef Flags = DIUnit->getFlags();
1072 if (!Flags.empty())
1073 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1074
1075 if (unsigned RVer = DIUnit->getRuntimeVersion())
1076 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1077 dwarf::DW_FORM_data1, RVer);
1078 }
1079
1080 if (DIUnit->getDWOId()) {
1081 // This CU is either a clang module DWO or a skeleton CU.
1082 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1083 DIUnit->getDWOId());
1084 if (!DIUnit->getSplitDebugFilename().empty()) {
1085 // This is a prefabricated skeleton CU.
1086 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1087 ? dwarf::DW_AT_dwo_name
1088 : dwarf::DW_AT_GNU_dwo_name;
1089 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1090 }
1091 }
1092 }
1093 // Create new DwarfCompileUnit for the given metadata node with tag
1094 // DW_TAG_compile_unit.
1095 DwarfCompileUnit &
getOrCreateDwarfCompileUnit(const DICompileUnit * DIUnit)1096 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1097 if (auto *CU = CUMap.lookup(DIUnit))
1098 return *CU;
1099
1100 CompilationDir = DIUnit->getDirectory();
1101
1102 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1103 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1104 DwarfCompileUnit &NewCU = *OwnedUnit;
1105 InfoHolder.addUnit(std::move(OwnedUnit));
1106
1107 for (auto *IE : DIUnit->getImportedEntities())
1108 NewCU.addImportedEntity(IE);
1109
1110 // LTO with assembly output shares a single line table amongst multiple CUs.
1111 // To avoid the compilation directory being ambiguous, let the line table
1112 // explicitly describe the directory of all files, never relying on the
1113 // compilation directory.
1114 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1115 Asm->OutStreamer->emitDwarfFile0Directive(
1116 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1117 DIUnit->getSource(), NewCU.getUniqueID());
1118
1119 if (useSplitDwarf()) {
1120 NewCU.setSkeleton(constructSkeletonCU(NewCU));
1121 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1122 } else {
1123 finishUnitAttributes(DIUnit, NewCU);
1124 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1125 }
1126
1127 CUMap.insert({DIUnit, &NewCU});
1128 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1129 return NewCU;
1130 }
1131
constructAndAddImportedEntityDIE(DwarfCompileUnit & TheCU,const DIImportedEntity * N)1132 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1133 const DIImportedEntity *N) {
1134 if (isa<DILocalScope>(N->getScope()))
1135 return;
1136 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1137 D->addChild(TheCU.constructImportedEntityDIE(N));
1138 }
1139
1140 /// Sort and unique GVEs by comparing their fragment offset.
1141 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & GVEs)1142 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1143 llvm::sort(
1144 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1145 // Sort order: first null exprs, then exprs without fragment
1146 // info, then sort by fragment offset in bits.
1147 // FIXME: Come up with a more comprehensive comparator so
1148 // the sorting isn't non-deterministic, and so the following
1149 // std::unique call works correctly.
1150 if (!A.Expr || !B.Expr)
1151 return !!B.Expr;
1152 auto FragmentA = A.Expr->getFragmentInfo();
1153 auto FragmentB = B.Expr->getFragmentInfo();
1154 if (!FragmentA || !FragmentB)
1155 return !!FragmentB;
1156 return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1157 });
1158 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1159 [](DwarfCompileUnit::GlobalExpr A,
1160 DwarfCompileUnit::GlobalExpr B) {
1161 return A.Expr == B.Expr;
1162 }),
1163 GVEs.end());
1164 return GVEs;
1165 }
1166
1167 // Emit all Dwarf sections that should come prior to the content. Create
1168 // global DIEs and emit initial debug info sections. This is invoked by
1169 // the target AsmPrinter.
beginModule(Module * M)1170 void DwarfDebug::beginModule(Module *M) {
1171 DebugHandlerBase::beginModule(M);
1172
1173 if (!Asm || !MMI->hasDebugInfo())
1174 return;
1175
1176 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1177 M->debug_compile_units_end());
1178 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1179 assert(MMI->hasDebugInfo() &&
1180 "DebugInfoAvailabilty unexpectedly not initialized");
1181 SingleCU = NumDebugCUs == 1;
1182 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1183 GVMap;
1184 for (const GlobalVariable &Global : M->globals()) {
1185 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1186 Global.getDebugInfo(GVs);
1187 for (auto *GVE : GVs)
1188 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1189 }
1190
1191 // Create the symbol that designates the start of the unit's contribution
1192 // to the string offsets table. In a split DWARF scenario, only the skeleton
1193 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1194 if (useSegmentedStringOffsetsTable())
1195 (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1196 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1197
1198
1199 // Create the symbols that designates the start of the DWARF v5 range list
1200 // and locations list tables. They are located past the table headers.
1201 if (getDwarfVersion() >= 5) {
1202 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1203 Holder.setRnglistsTableBaseSym(
1204 Asm->createTempSymbol("rnglists_table_base"));
1205
1206 if (useSplitDwarf())
1207 InfoHolder.setRnglistsTableBaseSym(
1208 Asm->createTempSymbol("rnglists_dwo_table_base"));
1209 }
1210
1211 // Create the symbol that points to the first entry following the debug
1212 // address table (.debug_addr) header.
1213 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1214 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1215
1216 for (DICompileUnit *CUNode : M->debug_compile_units()) {
1217 // FIXME: Move local imported entities into a list attached to the
1218 // subprogram, then this search won't be needed and a
1219 // getImportedEntities().empty() test should go below with the rest.
1220 bool HasNonLocalImportedEntities = llvm::any_of(
1221 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1222 return !isa<DILocalScope>(IE->getScope());
1223 });
1224
1225 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1226 CUNode->getRetainedTypes().empty() &&
1227 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1228 continue;
1229
1230 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1231
1232 // Global Variables.
1233 for (auto *GVE : CUNode->getGlobalVariables()) {
1234 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1235 // already know about the variable and it isn't adding a constant
1236 // expression.
1237 auto &GVMapEntry = GVMap[GVE->getVariable()];
1238 auto *Expr = GVE->getExpression();
1239 if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1240 GVMapEntry.push_back({nullptr, Expr});
1241 }
1242
1243 DenseSet<DIGlobalVariable *> Processed;
1244 for (auto *GVE : CUNode->getGlobalVariables()) {
1245 DIGlobalVariable *GV = GVE->getVariable();
1246 if (Processed.insert(GV).second)
1247 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1248 }
1249
1250 for (auto *Ty : CUNode->getEnumTypes())
1251 CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1252
1253 for (auto *Ty : CUNode->getRetainedTypes()) {
1254 // The retained types array by design contains pointers to
1255 // MDNodes rather than DIRefs. Unique them here.
1256 if (DIType *RT = dyn_cast<DIType>(Ty))
1257 // There is no point in force-emitting a forward declaration.
1258 CU.getOrCreateTypeDIE(RT);
1259 }
1260 // Emit imported_modules last so that the relevant context is already
1261 // available.
1262 for (auto *IE : CUNode->getImportedEntities())
1263 constructAndAddImportedEntityDIE(CU, IE);
1264 }
1265 }
1266
finishEntityDefinitions()1267 void DwarfDebug::finishEntityDefinitions() {
1268 for (const auto &Entity : ConcreteEntities) {
1269 DIE *Die = Entity->getDIE();
1270 assert(Die);
1271 // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1272 // in the ConcreteEntities list, rather than looking it up again here.
1273 // DIE::getUnit isn't simple - it walks parent pointers, etc.
1274 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1275 assert(Unit);
1276 Unit->finishEntityDefinition(Entity.get());
1277 }
1278 }
1279
finishSubprogramDefinitions()1280 void DwarfDebug::finishSubprogramDefinitions() {
1281 for (const DISubprogram *SP : ProcessedSPNodes) {
1282 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1283 forBothCUs(
1284 getOrCreateDwarfCompileUnit(SP->getUnit()),
1285 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1286 }
1287 }
1288
finalizeModuleInfo()1289 void DwarfDebug::finalizeModuleInfo() {
1290 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1291
1292 finishSubprogramDefinitions();
1293
1294 finishEntityDefinitions();
1295
1296 // Include the DWO file name in the hash if there's more than one CU.
1297 // This handles ThinLTO's situation where imported CUs may very easily be
1298 // duplicate with the same CU partially imported into another ThinLTO unit.
1299 StringRef DWOName;
1300 if (CUMap.size() > 1)
1301 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1302
1303 // Handle anything that needs to be done on a per-unit basis after
1304 // all other generation.
1305 for (const auto &P : CUMap) {
1306 auto &TheCU = *P.second;
1307 if (TheCU.getCUNode()->isDebugDirectivesOnly())
1308 continue;
1309 // Emit DW_AT_containing_type attribute to connect types with their
1310 // vtable holding type.
1311 TheCU.constructContainingTypeDIEs();
1312
1313 // Add CU specific attributes if we need to add any.
1314 // If we're splitting the dwarf out now that we've got the entire
1315 // CU then add the dwo id to it.
1316 auto *SkCU = TheCU.getSkeleton();
1317
1318 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1319
1320 if (HasSplitUnit) {
1321 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1322 ? dwarf::DW_AT_dwo_name
1323 : dwarf::DW_AT_GNU_dwo_name;
1324 finishUnitAttributes(TheCU.getCUNode(), TheCU);
1325 TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1326 Asm->TM.Options.MCOptions.SplitDwarfFile);
1327 SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1328 Asm->TM.Options.MCOptions.SplitDwarfFile);
1329 // Emit a unique identifier for this CU.
1330 uint64_t ID =
1331 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1332 if (getDwarfVersion() >= 5) {
1333 TheCU.setDWOId(ID);
1334 SkCU->setDWOId(ID);
1335 } else {
1336 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1337 dwarf::DW_FORM_data8, ID);
1338 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1339 dwarf::DW_FORM_data8, ID);
1340 }
1341
1342 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1343 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1344 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1345 Sym, Sym);
1346 }
1347 } else if (SkCU) {
1348 finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1349 }
1350
1351 // If we have code split among multiple sections or non-contiguous
1352 // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1353 // remain in the .o file, otherwise add a DW_AT_low_pc.
1354 // FIXME: We should use ranges allow reordering of code ala
1355 // .subsections_via_symbols in mach-o. This would mean turning on
1356 // ranges for all subprogram DIEs for mach-o.
1357 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1358
1359 if (unsigned NumRanges = TheCU.getRanges().size()) {
1360 if (NumRanges > 1 && useRangesSection())
1361 // A DW_AT_low_pc attribute may also be specified in combination with
1362 // DW_AT_ranges to specify the default base address for use in
1363 // location lists (see Section 2.6.2) and range lists (see Section
1364 // 2.17.3).
1365 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1366 else
1367 U.setBaseAddress(TheCU.getRanges().front().Begin);
1368 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1369 }
1370
1371 // We don't keep track of which addresses are used in which CU so this
1372 // is a bit pessimistic under LTO.
1373 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1374 U.addAddrTableBase();
1375
1376 if (getDwarfVersion() >= 5) {
1377 if (U.hasRangeLists())
1378 U.addRnglistsBase();
1379
1380 if (!DebugLocs.getLists().empty()) {
1381 if (!useSplitDwarf())
1382 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1383 DebugLocs.getSym(),
1384 TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1385 }
1386 }
1387
1388 auto *CUNode = cast<DICompileUnit>(P.first);
1389 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1390 // attribute.
1391 if (CUNode->getMacros()) {
1392 if (UseDebugMacroSection) {
1393 if (useSplitDwarf())
1394 TheCU.addSectionDelta(
1395 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1396 TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1397 else {
1398 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1399 ? dwarf::DW_AT_macros
1400 : dwarf::DW_AT_GNU_macros;
1401 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1402 TLOF.getDwarfMacroSection()->getBeginSymbol());
1403 }
1404 } else {
1405 if (useSplitDwarf())
1406 TheCU.addSectionDelta(
1407 TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1408 U.getMacroLabelBegin(),
1409 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1410 else
1411 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1412 U.getMacroLabelBegin(),
1413 TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1414 }
1415 }
1416 }
1417
1418 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1419 for (auto *CUNode : MMI->getModule()->debug_compile_units())
1420 if (CUNode->getDWOId())
1421 getOrCreateDwarfCompileUnit(CUNode);
1422
1423 // Compute DIE offsets and sizes.
1424 InfoHolder.computeSizeAndOffsets();
1425 if (useSplitDwarf())
1426 SkeletonHolder.computeSizeAndOffsets();
1427 }
1428
1429 // Emit all Dwarf sections that should come after the content.
endModule()1430 void DwarfDebug::endModule() {
1431 // Terminate the pending line table.
1432 if (PrevCU)
1433 terminateLineTable(PrevCU);
1434 PrevCU = nullptr;
1435 assert(CurFn == nullptr);
1436 assert(CurMI == nullptr);
1437
1438 for (const auto &P : CUMap) {
1439 auto &CU = *P.second;
1440 CU.createBaseTypeDIEs();
1441 }
1442
1443 // If we aren't actually generating debug info (check beginModule -
1444 // conditionalized on the presence of the llvm.dbg.cu metadata node)
1445 if (!Asm || !MMI->hasDebugInfo())
1446 return;
1447
1448 // Finalize the debug info for the module.
1449 finalizeModuleInfo();
1450
1451 if (useSplitDwarf())
1452 // Emit debug_loc.dwo/debug_loclists.dwo section.
1453 emitDebugLocDWO();
1454 else
1455 // Emit debug_loc/debug_loclists section.
1456 emitDebugLoc();
1457
1458 // Corresponding abbreviations into a abbrev section.
1459 emitAbbreviations();
1460
1461 // Emit all the DIEs into a debug info section.
1462 emitDebugInfo();
1463
1464 // Emit info into a debug aranges section.
1465 if (GenerateARangeSection)
1466 emitDebugARanges();
1467
1468 // Emit info into a debug ranges section.
1469 emitDebugRanges();
1470
1471 if (useSplitDwarf())
1472 // Emit info into a debug macinfo.dwo section.
1473 emitDebugMacinfoDWO();
1474 else
1475 // Emit info into a debug macinfo/macro section.
1476 emitDebugMacinfo();
1477
1478 emitDebugStr();
1479
1480 if (useSplitDwarf()) {
1481 emitDebugStrDWO();
1482 emitDebugInfoDWO();
1483 emitDebugAbbrevDWO();
1484 emitDebugLineDWO();
1485 emitDebugRangesDWO();
1486 }
1487
1488 emitDebugAddr();
1489
1490 // Emit info into the dwarf accelerator table sections.
1491 switch (getAccelTableKind()) {
1492 case AccelTableKind::Apple:
1493 emitAccelNames();
1494 emitAccelObjC();
1495 emitAccelNamespaces();
1496 emitAccelTypes();
1497 break;
1498 case AccelTableKind::Dwarf:
1499 emitAccelDebugNames();
1500 break;
1501 case AccelTableKind::None:
1502 break;
1503 case AccelTableKind::Default:
1504 llvm_unreachable("Default should have already been resolved.");
1505 }
1506
1507 // Emit the pubnames and pubtypes sections if requested.
1508 emitDebugPubSections();
1509
1510 // clean up.
1511 // FIXME: AbstractVariables.clear();
1512 }
1513
ensureAbstractEntityIsCreated(DwarfCompileUnit & CU,const DINode * Node,const MDNode * ScopeNode)1514 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1515 const DINode *Node,
1516 const MDNode *ScopeNode) {
1517 if (CU.getExistingAbstractEntity(Node))
1518 return;
1519
1520 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1521 cast<DILocalScope>(ScopeNode)));
1522 }
1523
ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit & CU,const DINode * Node,const MDNode * ScopeNode)1524 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1525 const DINode *Node, const MDNode *ScopeNode) {
1526 if (CU.getExistingAbstractEntity(Node))
1527 return;
1528
1529 if (LexicalScope *Scope =
1530 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1531 CU.createAbstractEntity(Node, Scope);
1532 }
1533
1534 // Collect variable information from side table maintained by MF.
collectVariableInfoFromMFTable(DwarfCompileUnit & TheCU,DenseSet<InlinedEntity> & Processed)1535 void DwarfDebug::collectVariableInfoFromMFTable(
1536 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1537 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1538 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1539 for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1540 if (!VI.Var)
1541 continue;
1542 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1543 "Expected inlined-at fields to agree");
1544
1545 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1546 Processed.insert(Var);
1547 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1548
1549 // If variable scope is not found then skip this variable.
1550 if (!Scope) {
1551 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1552 << ", no variable scope found\n");
1553 continue;
1554 }
1555
1556 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1557 auto RegVar = std::make_unique<DbgVariable>(
1558 cast<DILocalVariable>(Var.first), Var.second);
1559 RegVar->initializeMMI(VI.Expr, VI.Slot);
1560 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1561 << "\n");
1562
1563 if (DbgVariable *DbgVar = MFVars.lookup(Var))
1564 DbgVar->addMMIEntry(*RegVar);
1565 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1566 MFVars.insert({Var, RegVar.get()});
1567 ConcreteEntities.push_back(std::move(RegVar));
1568 }
1569 }
1570 }
1571
1572 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1573 /// enclosing lexical scope. The check ensures there are no other instructions
1574 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1575 /// either open or otherwise rolls off the end of the scope.
validThroughout(LexicalScopes & LScopes,const MachineInstr * DbgValue,const MachineInstr * RangeEnd,const InstructionOrdering & Ordering)1576 static bool validThroughout(LexicalScopes &LScopes,
1577 const MachineInstr *DbgValue,
1578 const MachineInstr *RangeEnd,
1579 const InstructionOrdering &Ordering) {
1580 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1581 auto MBB = DbgValue->getParent();
1582 auto DL = DbgValue->getDebugLoc();
1583 auto *LScope = LScopes.findLexicalScope(DL);
1584 // Scope doesn't exist; this is a dead DBG_VALUE.
1585 if (!LScope)
1586 return false;
1587 auto &LSRange = LScope->getRanges();
1588 if (LSRange.size() == 0)
1589 return false;
1590
1591 const MachineInstr *LScopeBegin = LSRange.front().first;
1592 // If the scope starts before the DBG_VALUE then we may have a negative
1593 // result. Otherwise the location is live coming into the scope and we
1594 // can skip the following checks.
1595 if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1596 // Exit if the lexical scope begins outside of the current block.
1597 if (LScopeBegin->getParent() != MBB)
1598 return false;
1599
1600 MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1601 for (++Pred; Pred != MBB->rend(); ++Pred) {
1602 if (Pred->getFlag(MachineInstr::FrameSetup))
1603 break;
1604 auto PredDL = Pred->getDebugLoc();
1605 if (!PredDL || Pred->isMetaInstruction())
1606 continue;
1607 // Check whether the instruction preceding the DBG_VALUE is in the same
1608 // (sub)scope as the DBG_VALUE.
1609 if (DL->getScope() == PredDL->getScope())
1610 return false;
1611 auto *PredScope = LScopes.findLexicalScope(PredDL);
1612 if (!PredScope || LScope->dominates(PredScope))
1613 return false;
1614 }
1615 }
1616
1617 // If the range of the DBG_VALUE is open-ended, report success.
1618 if (!RangeEnd)
1619 return true;
1620
1621 // Single, constant DBG_VALUEs in the prologue are promoted to be live
1622 // throughout the function. This is a hack, presumably for DWARF v2 and not
1623 // necessarily correct. It would be much better to use a dbg.declare instead
1624 // if we know the constant is live throughout the scope.
1625 if (MBB->pred_empty() &&
1626 all_of(DbgValue->debug_operands(),
1627 [](const MachineOperand &Op) { return Op.isImm(); }))
1628 return true;
1629
1630 // Test if the location terminates before the end of the scope.
1631 const MachineInstr *LScopeEnd = LSRange.back().second;
1632 if (Ordering.isBefore(RangeEnd, LScopeEnd))
1633 return false;
1634
1635 // There's a single location which starts at the scope start, and ends at or
1636 // after the scope end.
1637 return true;
1638 }
1639
1640 /// Build the location list for all DBG_VALUEs in the function that
1641 /// describe the same variable. The resulting DebugLocEntries will have
1642 /// strict monotonically increasing begin addresses and will never
1643 /// overlap. If the resulting list has only one entry that is valid
1644 /// throughout variable's scope return true.
1645 //
1646 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1647 // different kinds of history map entries. One thing to be aware of is that if
1648 // a debug value is ended by another entry (rather than being valid until the
1649 // end of the function), that entry's instruction may or may not be included in
1650 // the range, depending on if the entry is a clobbering entry (it has an
1651 // instruction that clobbers one or more preceding locations), or if it is an
1652 // (overlapping) debug value entry. This distinction can be seen in the example
1653 // below. The first debug value is ended by the clobbering entry 2, and the
1654 // second and third debug values are ended by the overlapping debug value entry
1655 // 4.
1656 //
1657 // Input:
1658 //
1659 // History map entries [type, end index, mi]
1660 //
1661 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1662 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1663 // 2 | | [Clobber, $reg0 = [...], -, -]
1664 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1665 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1666 //
1667 // Output [start, end) [Value...]:
1668 //
1669 // [0-1) [(reg0, fragment 0, 32)]
1670 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1671 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1672 // [4-) [(@g, fragment 0, 96)]
buildLocationList(SmallVectorImpl<DebugLocEntry> & DebugLoc,const DbgValueHistoryMap::Entries & Entries)1673 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1674 const DbgValueHistoryMap::Entries &Entries) {
1675 using OpenRange =
1676 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1677 SmallVector<OpenRange, 4> OpenRanges;
1678 bool isSafeForSingleLocation = true;
1679 const MachineInstr *StartDebugMI = nullptr;
1680 const MachineInstr *EndMI = nullptr;
1681
1682 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1683 const MachineInstr *Instr = EI->getInstr();
1684
1685 // Remove all values that are no longer live.
1686 size_t Index = std::distance(EB, EI);
1687 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1688
1689 // If we are dealing with a clobbering entry, this iteration will result in
1690 // a location list entry starting after the clobbering instruction.
1691 const MCSymbol *StartLabel =
1692 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1693 assert(StartLabel &&
1694 "Forgot label before/after instruction starting a range!");
1695
1696 const MCSymbol *EndLabel;
1697 if (std::next(EI) == Entries.end()) {
1698 const MachineBasicBlock &EndMBB = Asm->MF->back();
1699 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1700 if (EI->isClobber())
1701 EndMI = EI->getInstr();
1702 }
1703 else if (std::next(EI)->isClobber())
1704 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1705 else
1706 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1707 assert(EndLabel && "Forgot label after instruction ending a range!");
1708
1709 if (EI->isDbgValue())
1710 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1711
1712 // If this history map entry has a debug value, add that to the list of
1713 // open ranges and check if its location is valid for a single value
1714 // location.
1715 if (EI->isDbgValue()) {
1716 // Do not add undef debug values, as they are redundant information in
1717 // the location list entries. An undef debug results in an empty location
1718 // description. If there are any non-undef fragments then padding pieces
1719 // with empty location descriptions will automatically be inserted, and if
1720 // all fragments are undef then the whole location list entry is
1721 // redundant.
1722 if (!Instr->isUndefDebugValue()) {
1723 auto Value = getDebugLocValue(Instr);
1724 OpenRanges.emplace_back(EI->getEndIndex(), Value);
1725
1726 // TODO: Add support for single value fragment locations.
1727 if (Instr->getDebugExpression()->isFragment())
1728 isSafeForSingleLocation = false;
1729
1730 if (!StartDebugMI)
1731 StartDebugMI = Instr;
1732 } else {
1733 isSafeForSingleLocation = false;
1734 }
1735 }
1736
1737 // Location list entries with empty location descriptions are redundant
1738 // information in DWARF, so do not emit those.
1739 if (OpenRanges.empty())
1740 continue;
1741
1742 // Omit entries with empty ranges as they do not have any effect in DWARF.
1743 if (StartLabel == EndLabel) {
1744 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1745 continue;
1746 }
1747
1748 SmallVector<DbgValueLoc, 4> Values;
1749 for (auto &R : OpenRanges)
1750 Values.push_back(R.second);
1751
1752 // With Basic block sections, it is posssible that the StartLabel and the
1753 // Instr are not in the same section. This happens when the StartLabel is
1754 // the function begin label and the dbg value appears in a basic block
1755 // that is not the entry. In this case, the range needs to be split to
1756 // span each individual section in the range from StartLabel to EndLabel.
1757 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1758 !Instr->getParent()->sameSection(&Asm->MF->front())) {
1759 const MCSymbol *BeginSectionLabel = StartLabel;
1760
1761 for (const MachineBasicBlock &MBB : *Asm->MF) {
1762 if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1763 BeginSectionLabel = MBB.getSymbol();
1764
1765 if (MBB.sameSection(Instr->getParent())) {
1766 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1767 break;
1768 }
1769 if (MBB.isEndSection())
1770 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1771 }
1772 } else {
1773 DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1774 }
1775
1776 // Attempt to coalesce the ranges of two otherwise identical
1777 // DebugLocEntries.
1778 auto CurEntry = DebugLoc.rbegin();
1779 LLVM_DEBUG({
1780 dbgs() << CurEntry->getValues().size() << " Values:\n";
1781 for (auto &Value : CurEntry->getValues())
1782 Value.dump();
1783 dbgs() << "-----\n";
1784 });
1785
1786 auto PrevEntry = std::next(CurEntry);
1787 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1788 DebugLoc.pop_back();
1789 }
1790
1791 if (!isSafeForSingleLocation ||
1792 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1793 return false;
1794
1795 if (DebugLoc.size() == 1)
1796 return true;
1797
1798 if (!Asm->MF->hasBBSections())
1799 return false;
1800
1801 // Check here to see if loclist can be merged into a single range. If not,
1802 // we must keep the split loclists per section. This does exactly what
1803 // MergeRanges does without sections. We don't actually merge the ranges
1804 // as the split ranges must be kept intact if this cannot be collapsed
1805 // into a single range.
1806 const MachineBasicBlock *RangeMBB = nullptr;
1807 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1808 RangeMBB = &Asm->MF->front();
1809 else
1810 RangeMBB = Entries.begin()->getInstr()->getParent();
1811 auto *CurEntry = DebugLoc.begin();
1812 auto *NextEntry = std::next(CurEntry);
1813 while (NextEntry != DebugLoc.end()) {
1814 // Get the last machine basic block of this section.
1815 while (!RangeMBB->isEndSection())
1816 RangeMBB = RangeMBB->getNextNode();
1817 if (!RangeMBB->getNextNode())
1818 return false;
1819 // CurEntry should end the current section and NextEntry should start
1820 // the next section and the Values must match for these two ranges to be
1821 // merged.
1822 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1823 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1824 CurEntry->getValues() != NextEntry->getValues())
1825 return false;
1826 RangeMBB = RangeMBB->getNextNode();
1827 CurEntry = NextEntry;
1828 NextEntry = std::next(CurEntry);
1829 }
1830 return true;
1831 }
1832
createConcreteEntity(DwarfCompileUnit & TheCU,LexicalScope & Scope,const DINode * Node,const DILocation * Location,const MCSymbol * Sym)1833 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1834 LexicalScope &Scope,
1835 const DINode *Node,
1836 const DILocation *Location,
1837 const MCSymbol *Sym) {
1838 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1839 if (isa<const DILocalVariable>(Node)) {
1840 ConcreteEntities.push_back(
1841 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1842 Location));
1843 InfoHolder.addScopeVariable(&Scope,
1844 cast<DbgVariable>(ConcreteEntities.back().get()));
1845 } else if (isa<const DILabel>(Node)) {
1846 ConcreteEntities.push_back(
1847 std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1848 Location, Sym));
1849 InfoHolder.addScopeLabel(&Scope,
1850 cast<DbgLabel>(ConcreteEntities.back().get()));
1851 }
1852 return ConcreteEntities.back().get();
1853 }
1854
1855 // Find variables for each lexical scope.
collectEntityInfo(DwarfCompileUnit & TheCU,const DISubprogram * SP,DenseSet<InlinedEntity> & Processed)1856 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1857 const DISubprogram *SP,
1858 DenseSet<InlinedEntity> &Processed) {
1859 // Grab the variable info that was squirreled away in the MMI side-table.
1860 collectVariableInfoFromMFTable(TheCU, Processed);
1861
1862 for (const auto &I : DbgValues) {
1863 InlinedEntity IV = I.first;
1864 if (Processed.count(IV))
1865 continue;
1866
1867 // Instruction ranges, specifying where IV is accessible.
1868 const auto &HistoryMapEntries = I.second;
1869
1870 // Try to find any non-empty variable location. Do not create a concrete
1871 // entity if there are no locations.
1872 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1873 continue;
1874
1875 LexicalScope *Scope = nullptr;
1876 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1877 if (const DILocation *IA = IV.second)
1878 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1879 else
1880 Scope = LScopes.findLexicalScope(LocalVar->getScope());
1881 // If variable scope is not found then skip this variable.
1882 if (!Scope)
1883 continue;
1884
1885 Processed.insert(IV);
1886 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1887 *Scope, LocalVar, IV.second));
1888
1889 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1890 assert(MInsn->isDebugValue() && "History must begin with debug value");
1891
1892 // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1893 // If the history map contains a single debug value, there may be an
1894 // additional entry which clobbers the debug value.
1895 size_t HistSize = HistoryMapEntries.size();
1896 bool SingleValueWithClobber =
1897 HistSize == 2 && HistoryMapEntries[1].isClobber();
1898 if (HistSize == 1 || SingleValueWithClobber) {
1899 const auto *End =
1900 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1901 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1902 RegVar->initializeDbgValue(MInsn);
1903 continue;
1904 }
1905 }
1906
1907 // Do not emit location lists if .debug_loc secton is disabled.
1908 if (!useLocSection())
1909 continue;
1910
1911 // Handle multiple DBG_VALUE instructions describing one variable.
1912 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1913
1914 // Build the location list for this variable.
1915 SmallVector<DebugLocEntry, 8> Entries;
1916 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1917
1918 // Check whether buildLocationList managed to merge all locations to one
1919 // that is valid throughout the variable's scope. If so, produce single
1920 // value location.
1921 if (isValidSingleLocation) {
1922 RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1923 continue;
1924 }
1925
1926 // If the variable has a DIBasicType, extract it. Basic types cannot have
1927 // unique identifiers, so don't bother resolving the type with the
1928 // identifier map.
1929 const DIBasicType *BT = dyn_cast<DIBasicType>(
1930 static_cast<const Metadata *>(LocalVar->getType()));
1931
1932 // Finalize the entry by lowering it into a DWARF bytestream.
1933 for (auto &Entry : Entries)
1934 Entry.finalize(*Asm, List, BT, TheCU);
1935 }
1936
1937 // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1938 // DWARF-related DbgLabel.
1939 for (const auto &I : DbgLabels) {
1940 InlinedEntity IL = I.first;
1941 const MachineInstr *MI = I.second;
1942 if (MI == nullptr)
1943 continue;
1944
1945 LexicalScope *Scope = nullptr;
1946 const DILabel *Label = cast<DILabel>(IL.first);
1947 // The scope could have an extra lexical block file.
1948 const DILocalScope *LocalScope =
1949 Label->getScope()->getNonLexicalBlockFileScope();
1950 // Get inlined DILocation if it is inlined label.
1951 if (const DILocation *IA = IL.second)
1952 Scope = LScopes.findInlinedScope(LocalScope, IA);
1953 else
1954 Scope = LScopes.findLexicalScope(LocalScope);
1955 // If label scope is not found then skip this label.
1956 if (!Scope)
1957 continue;
1958
1959 Processed.insert(IL);
1960 /// At this point, the temporary label is created.
1961 /// Save the temporary label to DbgLabel entity to get the
1962 /// actually address when generating Dwarf DIE.
1963 MCSymbol *Sym = getLabelBeforeInsn(MI);
1964 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1965 }
1966
1967 // Collect info for variables/labels that were optimized out.
1968 for (const DINode *DN : SP->getRetainedNodes()) {
1969 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1970 continue;
1971 LexicalScope *Scope = nullptr;
1972 if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1973 Scope = LScopes.findLexicalScope(DV->getScope());
1974 } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1975 Scope = LScopes.findLexicalScope(DL->getScope());
1976 }
1977
1978 if (Scope)
1979 createConcreteEntity(TheCU, *Scope, DN, nullptr);
1980 }
1981 }
1982
1983 // Process beginning of an instruction.
beginInstruction(const MachineInstr * MI)1984 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1985 const MachineFunction &MF = *MI->getMF();
1986 const auto *SP = MF.getFunction().getSubprogram();
1987 bool NoDebug =
1988 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1989
1990 // Delay slot support check.
1991 auto delaySlotSupported = [](const MachineInstr &MI) {
1992 if (!MI.isBundledWithSucc())
1993 return false;
1994 auto Suc = std::next(MI.getIterator());
1995 (void)Suc;
1996 // Ensure that delay slot instruction is successor of the call instruction.
1997 // Ex. CALL_INSTRUCTION {
1998 // DELAY_SLOT_INSTRUCTION }
1999 assert(Suc->isBundledWithPred() &&
2000 "Call bundle instructions are out of order");
2001 return true;
2002 };
2003
2004 // When describing calls, we need a label for the call instruction.
2005 if (!NoDebug && SP->areAllCallsDescribed() &&
2006 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
2007 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
2008 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2009 bool IsTail = TII->isTailCall(*MI);
2010 // For tail calls, we need the address of the branch instruction for
2011 // DW_AT_call_pc.
2012 if (IsTail)
2013 requestLabelBeforeInsn(MI);
2014 // For non-tail calls, we need the return address for the call for
2015 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
2016 // tail calls as well.
2017 requestLabelAfterInsn(MI);
2018 }
2019
2020 DebugHandlerBase::beginInstruction(MI);
2021 if (!CurMI)
2022 return;
2023
2024 if (NoDebug)
2025 return;
2026
2027 // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2028 // If the instruction is part of the function frame setup code, do not emit
2029 // any line record, as there is no correspondence with any user code.
2030 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2031 return;
2032 const DebugLoc &DL = MI->getDebugLoc();
2033 unsigned Flags = 0;
2034
2035 if (MI->getFlag(MachineInstr::FrameDestroy) && DL) {
2036 const MachineBasicBlock *MBB = MI->getParent();
2037 if (MBB && (MBB != EpilogBeginBlock)) {
2038 // First time FrameDestroy has been seen in this basic block
2039 EpilogBeginBlock = MBB;
2040 Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
2041 }
2042 }
2043
2044 // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2045 // the last line number actually emitted, to see if it was line 0.
2046 unsigned LastAsmLine =
2047 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2048
2049 if (DL == PrevInstLoc) {
2050 // If we have an ongoing unspecified location, nothing to do here.
2051 if (!DL)
2052 return;
2053 // We have an explicit location, same as the previous location.
2054 // But we might be coming back to it after a line 0 record.
2055 if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) {
2056 // Reinstate the source location but not marked as a statement.
2057 const MDNode *Scope = DL.getScope();
2058 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2059 }
2060 return;
2061 }
2062
2063 if (!DL) {
2064 // We have an unspecified location, which might want to be line 0.
2065 // If we have already emitted a line-0 record, don't repeat it.
2066 if (LastAsmLine == 0)
2067 return;
2068 // If user said Don't Do That, don't do that.
2069 if (UnknownLocations == Disable)
2070 return;
2071 // See if we have a reason to emit a line-0 record now.
2072 // Reasons to emit a line-0 record include:
2073 // - User asked for it (UnknownLocations).
2074 // - Instruction has a label, so it's referenced from somewhere else,
2075 // possibly debug information; we want it to have a source location.
2076 // - Instruction is at the top of a block; we don't want to inherit the
2077 // location from the physically previous (maybe unrelated) block.
2078 if (UnknownLocations == Enable || PrevLabel ||
2079 (PrevInstBB && PrevInstBB != MI->getParent())) {
2080 // Preserve the file and column numbers, if we can, to save space in
2081 // the encoded line table.
2082 // Do not update PrevInstLoc, it remembers the last non-0 line.
2083 const MDNode *Scope = nullptr;
2084 unsigned Column = 0;
2085 if (PrevInstLoc) {
2086 Scope = PrevInstLoc.getScope();
2087 Column = PrevInstLoc.getCol();
2088 }
2089 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2090 }
2091 return;
2092 }
2093
2094 // We have an explicit location, different from the previous location.
2095 // Don't repeat a line-0 record, but otherwise emit the new location.
2096 // (The new location might be an explicit line 0, which we do emit.)
2097 if (DL.getLine() == 0 && LastAsmLine == 0)
2098 return;
2099 if (DL == PrologEndLoc) {
2100 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2101 PrologEndLoc = DebugLoc();
2102 }
2103 // If the line changed, we call that a new statement; unless we went to
2104 // line 0 and came back, in which case it is not a new statement.
2105 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2106 if (DL.getLine() && DL.getLine() != OldLine)
2107 Flags |= DWARF2_FLAG_IS_STMT;
2108
2109 const MDNode *Scope = DL.getScope();
2110 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2111
2112 // If we're not at line 0, remember this location.
2113 if (DL.getLine())
2114 PrevInstLoc = DL;
2115 }
2116
findPrologueEndLoc(const MachineFunction * MF)2117 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2118 // First known non-DBG_VALUE and non-frame setup location marks
2119 // the beginning of the function body.
2120 DebugLoc LineZeroLoc;
2121 for (const auto &MBB : *MF) {
2122 for (const auto &MI : MBB) {
2123 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2124 MI.getDebugLoc()) {
2125 // Scan forward to try to find a non-zero line number. The prologue_end
2126 // marks the first breakpoint in the function after the frame setup, and
2127 // a compiler-generated line 0 location is not a meaningful breakpoint.
2128 // If none is found, return the first location after the frame setup.
2129 if (MI.getDebugLoc().getLine())
2130 return MI.getDebugLoc();
2131 LineZeroLoc = MI.getDebugLoc();
2132 }
2133 }
2134 }
2135 return LineZeroLoc;
2136 }
2137
2138 /// Register a source line with debug info. Returns the unique label that was
2139 /// emitted and which provides correspondence to the source line list.
recordSourceLine(AsmPrinter & Asm,unsigned Line,unsigned Col,const MDNode * S,unsigned Flags,unsigned CUID,uint16_t DwarfVersion,ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs)2140 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2141 const MDNode *S, unsigned Flags, unsigned CUID,
2142 uint16_t DwarfVersion,
2143 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2144 StringRef Fn;
2145 unsigned FileNo = 1;
2146 unsigned Discriminator = 0;
2147 if (auto *Scope = cast_or_null<DIScope>(S)) {
2148 Fn = Scope->getFilename();
2149 if (Line != 0 && DwarfVersion >= 4)
2150 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2151 Discriminator = LBF->getDiscriminator();
2152
2153 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2154 .getOrCreateSourceID(Scope->getFile());
2155 }
2156 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2157 Discriminator, Fn);
2158 }
2159
emitInitialLocDirective(const MachineFunction & MF,unsigned CUID)2160 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2161 unsigned CUID) {
2162 // Get beginning of function.
2163 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2164 // Ensure the compile unit is created if the function is called before
2165 // beginFunction().
2166 (void)getOrCreateDwarfCompileUnit(
2167 MF.getFunction().getSubprogram()->getUnit());
2168 // We'd like to list the prologue as "not statements" but GDB behaves
2169 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2170 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2171 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2172 CUID, getDwarfVersion(), getUnits());
2173 return PrologEndLoc;
2174 }
2175 return DebugLoc();
2176 }
2177
2178 // Gather pre-function debug information. Assumes being called immediately
2179 // after the function entry point has been emitted.
beginFunctionImpl(const MachineFunction * MF)2180 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2181 CurFn = MF;
2182
2183 auto *SP = MF->getFunction().getSubprogram();
2184 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2185 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2186 return;
2187
2188 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2189
2190 Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2191 getDwarfCompileUnitIDForLineTable(CU));
2192
2193 // Record beginning of function.
2194 PrologEndLoc = emitInitialLocDirective(
2195 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2196 }
2197
2198 unsigned
getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit & CU)2199 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2200 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2201 // belongs to so that we add to the correct per-cu line table in the
2202 // non-asm case.
2203 if (Asm->OutStreamer->hasRawTextSupport())
2204 // Use a single line table if we are generating assembly.
2205 return 0;
2206 else
2207 return CU.getUniqueID();
2208 }
2209
terminateLineTable(const DwarfCompileUnit * CU)2210 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) {
2211 const auto &CURanges = CU->getRanges();
2212 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable(
2213 getDwarfCompileUnitIDForLineTable(*CU));
2214 // Add the last range label for the given CU.
2215 LineTable.getMCLineSections().addEndEntry(
2216 const_cast<MCSymbol *>(CURanges.back().End));
2217 }
2218
skippedNonDebugFunction()2219 void DwarfDebug::skippedNonDebugFunction() {
2220 // If we don't have a subprogram for this function then there will be a hole
2221 // in the range information. Keep note of this by setting the previously used
2222 // section to nullptr.
2223 // Terminate the pending line table.
2224 if (PrevCU)
2225 terminateLineTable(PrevCU);
2226 PrevCU = nullptr;
2227 CurFn = nullptr;
2228 }
2229
2230 // Gather and emit post-function debug information.
endFunctionImpl(const MachineFunction * MF)2231 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2232 const DISubprogram *SP = MF->getFunction().getSubprogram();
2233
2234 assert(CurFn == MF &&
2235 "endFunction should be called with the same function as beginFunction");
2236
2237 // Set DwarfDwarfCompileUnitID in MCContext to default value.
2238 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2239
2240 LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2241 assert(!FnScope || SP == FnScope->getScopeNode());
2242 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2243 if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2244 PrevLabel = nullptr;
2245 CurFn = nullptr;
2246 return;
2247 }
2248
2249 DenseSet<InlinedEntity> Processed;
2250 collectEntityInfo(TheCU, SP, Processed);
2251
2252 // Add the range of this function to the list of ranges for the CU.
2253 // With basic block sections, add ranges for all basic block sections.
2254 for (const auto &R : Asm->MBBSectionRanges)
2255 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2256
2257 // Under -gmlt, skip building the subprogram if there are no inlined
2258 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2259 // is still needed as we need its source location.
2260 if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2261 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2262 LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2263 assert(InfoHolder.getScopeVariables().empty());
2264 PrevLabel = nullptr;
2265 CurFn = nullptr;
2266 return;
2267 }
2268
2269 #ifndef NDEBUG
2270 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2271 #endif
2272 // Construct abstract scopes.
2273 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2274 const auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2275 for (const DINode *DN : SP->getRetainedNodes()) {
2276 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2277 continue;
2278
2279 const MDNode *Scope = nullptr;
2280 if (auto *DV = dyn_cast<DILocalVariable>(DN))
2281 Scope = DV->getScope();
2282 else if (auto *DL = dyn_cast<DILabel>(DN))
2283 Scope = DL->getScope();
2284 else
2285 llvm_unreachable("Unexpected DI type!");
2286
2287 // Collect info for variables/labels that were optimized out.
2288 ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2289 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2290 && "ensureAbstractEntityIsCreated inserted abstract scopes");
2291 }
2292 constructAbstractSubprogramScopeDIE(TheCU, AScope);
2293 }
2294
2295 ProcessedSPNodes.insert(SP);
2296 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2297 if (auto *SkelCU = TheCU.getSkeleton())
2298 if (!LScopes.getAbstractScopesList().empty() &&
2299 TheCU.getCUNode()->getSplitDebugInlining())
2300 SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2301
2302 // Construct call site entries.
2303 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2304
2305 // Clear debug info
2306 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2307 // DbgVariables except those that are also in AbstractVariables (since they
2308 // can be used cross-function)
2309 InfoHolder.getScopeVariables().clear();
2310 InfoHolder.getScopeLabels().clear();
2311 PrevLabel = nullptr;
2312 CurFn = nullptr;
2313 }
2314
2315 // Register a source line with debug info. Returns the unique label that was
2316 // emitted and which provides correspondence to the source line list.
recordSourceLine(unsigned Line,unsigned Col,const MDNode * S,unsigned Flags)2317 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2318 unsigned Flags) {
2319 ::recordSourceLine(*Asm, Line, Col, S, Flags,
2320 Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2321 getDwarfVersion(), getUnits());
2322 }
2323
2324 //===----------------------------------------------------------------------===//
2325 // Emit Methods
2326 //===----------------------------------------------------------------------===//
2327
2328 // Emit the debug info section.
emitDebugInfo()2329 void DwarfDebug::emitDebugInfo() {
2330 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2331 Holder.emitUnits(/* UseOffsets */ false);
2332 }
2333
2334 // Emit the abbreviation section.
emitAbbreviations()2335 void DwarfDebug::emitAbbreviations() {
2336 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2337
2338 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2339 }
2340
emitStringOffsetsTableHeader()2341 void DwarfDebug::emitStringOffsetsTableHeader() {
2342 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2343 Holder.getStringPool().emitStringOffsetsTableHeader(
2344 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2345 Holder.getStringOffsetsStartSym());
2346 }
2347
2348 template <typename AccelTableT>
emitAccel(AccelTableT & Accel,MCSection * Section,StringRef TableName)2349 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2350 StringRef TableName) {
2351 Asm->OutStreamer->switchSection(Section);
2352
2353 // Emit the full data.
2354 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2355 }
2356
emitAccelDebugNames()2357 void DwarfDebug::emitAccelDebugNames() {
2358 // Don't emit anything if we have no compilation units to index.
2359 if (getUnits().empty())
2360 return;
2361
2362 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2363 }
2364
2365 // Emit visible names into a hashed accelerator table section.
emitAccelNames()2366 void DwarfDebug::emitAccelNames() {
2367 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2368 "Names");
2369 }
2370
2371 // Emit objective C classes and categories into a hashed accelerator table
2372 // section.
emitAccelObjC()2373 void DwarfDebug::emitAccelObjC() {
2374 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2375 "ObjC");
2376 }
2377
2378 // Emit namespace dies into a hashed accelerator table.
emitAccelNamespaces()2379 void DwarfDebug::emitAccelNamespaces() {
2380 emitAccel(AccelNamespace,
2381 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2382 "namespac");
2383 }
2384
2385 // Emit type dies into a hashed accelerator table.
emitAccelTypes()2386 void DwarfDebug::emitAccelTypes() {
2387 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2388 "types");
2389 }
2390
2391 // Public name handling.
2392 // The format for the various pubnames:
2393 //
2394 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2395 // for the DIE that is named.
2396 //
2397 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2398 // into the CU and the index value is computed according to the type of value
2399 // for the DIE that is named.
2400 //
2401 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2402 // it's the offset within the debug_info/debug_types dwo section, however, the
2403 // reference in the pubname header doesn't change.
2404
2405 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
computeIndexValue(DwarfUnit * CU,const DIE * Die)2406 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2407 const DIE *Die) {
2408 // Entities that ended up only in a Type Unit reference the CU instead (since
2409 // the pub entry has offsets within the CU there's no real offset that can be
2410 // provided anyway). As it happens all such entities (namespaces and types,
2411 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2412 // not to be true it would be necessary to persist this information from the
2413 // point at which the entry is added to the index data structure - since by
2414 // the time the index is built from that, the original type/namespace DIE in a
2415 // type unit has already been destroyed so it can't be queried for properties
2416 // like tag, etc.
2417 if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2418 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2419 dwarf::GIEL_EXTERNAL);
2420 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2421
2422 // We could have a specification DIE that has our most of our knowledge,
2423 // look for that now.
2424 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2425 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2426 if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2427 Linkage = dwarf::GIEL_EXTERNAL;
2428 } else if (Die->findAttribute(dwarf::DW_AT_external))
2429 Linkage = dwarf::GIEL_EXTERNAL;
2430
2431 switch (Die->getTag()) {
2432 case dwarf::DW_TAG_class_type:
2433 case dwarf::DW_TAG_structure_type:
2434 case dwarf::DW_TAG_union_type:
2435 case dwarf::DW_TAG_enumeration_type:
2436 return dwarf::PubIndexEntryDescriptor(
2437 dwarf::GIEK_TYPE,
2438 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2439 ? dwarf::GIEL_EXTERNAL
2440 : dwarf::GIEL_STATIC);
2441 case dwarf::DW_TAG_typedef:
2442 case dwarf::DW_TAG_base_type:
2443 case dwarf::DW_TAG_subrange_type:
2444 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2445 case dwarf::DW_TAG_namespace:
2446 return dwarf::GIEK_TYPE;
2447 case dwarf::DW_TAG_subprogram:
2448 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2449 case dwarf::DW_TAG_variable:
2450 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2451 case dwarf::DW_TAG_enumerator:
2452 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2453 dwarf::GIEL_STATIC);
2454 default:
2455 return dwarf::GIEK_NONE;
2456 }
2457 }
2458
2459 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2460 /// pubtypes sections.
emitDebugPubSections()2461 void DwarfDebug::emitDebugPubSections() {
2462 for (const auto &NU : CUMap) {
2463 DwarfCompileUnit *TheU = NU.second;
2464 if (!TheU->hasDwarfPubSections())
2465 continue;
2466
2467 bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2468 DICompileUnit::DebugNameTableKind::GNU;
2469
2470 Asm->OutStreamer->switchSection(
2471 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2472 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2473 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2474
2475 Asm->OutStreamer->switchSection(
2476 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2477 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2478 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2479 }
2480 }
2481
emitSectionReference(const DwarfCompileUnit & CU)2482 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2483 if (useSectionsAsReferences())
2484 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2485 CU.getDebugSectionOffset());
2486 else
2487 Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2488 }
2489
emitDebugPubSection(bool GnuStyle,StringRef Name,DwarfCompileUnit * TheU,const StringMap<const DIE * > & Globals)2490 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2491 DwarfCompileUnit *TheU,
2492 const StringMap<const DIE *> &Globals) {
2493 if (auto *Skeleton = TheU->getSkeleton())
2494 TheU = Skeleton;
2495
2496 // Emit the header.
2497 MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2498 "pub" + Name, "Length of Public " + Name + " Info");
2499
2500 Asm->OutStreamer->AddComment("DWARF Version");
2501 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2502
2503 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2504 emitSectionReference(*TheU);
2505
2506 Asm->OutStreamer->AddComment("Compilation Unit Length");
2507 Asm->emitDwarfLengthOrOffset(TheU->getLength());
2508
2509 // Emit the pubnames for this compilation unit.
2510 for (const auto &GI : Globals) {
2511 const char *Name = GI.getKeyData();
2512 const DIE *Entity = GI.second;
2513
2514 Asm->OutStreamer->AddComment("DIE offset");
2515 Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2516
2517 if (GnuStyle) {
2518 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2519 Asm->OutStreamer->AddComment(
2520 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2521 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2522 Asm->emitInt8(Desc.toBits());
2523 }
2524
2525 Asm->OutStreamer->AddComment("External Name");
2526 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2527 }
2528
2529 Asm->OutStreamer->AddComment("End Mark");
2530 Asm->emitDwarfLengthOrOffset(0);
2531 Asm->OutStreamer->emitLabel(EndLabel);
2532 }
2533
2534 /// Emit null-terminated strings into a debug str section.
emitDebugStr()2535 void DwarfDebug::emitDebugStr() {
2536 MCSection *StringOffsetsSection = nullptr;
2537 if (useSegmentedStringOffsetsTable()) {
2538 emitStringOffsetsTableHeader();
2539 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2540 }
2541 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2542 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2543 StringOffsetsSection, /* UseRelativeOffsets = */ true);
2544 }
2545
emitDebugLocEntry(ByteStreamer & Streamer,const DebugLocStream::Entry & Entry,const DwarfCompileUnit * CU)2546 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2547 const DebugLocStream::Entry &Entry,
2548 const DwarfCompileUnit *CU) {
2549 auto &&Comments = DebugLocs.getComments(Entry);
2550 auto Comment = Comments.begin();
2551 auto End = Comments.end();
2552
2553 // The expressions are inserted into a byte stream rather early (see
2554 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2555 // need to reference a base_type DIE the offset of that DIE is not yet known.
2556 // To deal with this we instead insert a placeholder early and then extract
2557 // it here and replace it with the real reference.
2558 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2559 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2560 DebugLocs.getBytes(Entry).size()),
2561 Asm->getDataLayout().isLittleEndian(), PtrSize);
2562 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2563
2564 using Encoding = DWARFExpression::Operation::Encoding;
2565 uint64_t Offset = 0;
2566 for (const auto &Op : Expr) {
2567 assert(Op.getCode() != dwarf::DW_OP_const_type &&
2568 "3 operand ops not yet supported");
2569 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2570 Offset++;
2571 for (unsigned I = 0; I < 2; ++I) {
2572 if (Op.getDescription().Op[I] == Encoding::SizeNA)
2573 continue;
2574 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2575 unsigned Length =
2576 Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die);
2577 // Make sure comments stay aligned.
2578 for (unsigned J = 0; J < Length; ++J)
2579 if (Comment != End)
2580 Comment++;
2581 } else {
2582 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2583 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2584 }
2585 Offset = Op.getOperandEndOffset(I);
2586 }
2587 assert(Offset == Op.getEndOffset());
2588 }
2589 }
2590
emitDebugLocValue(const AsmPrinter & AP,const DIBasicType * BT,const DbgValueLoc & Value,DwarfExpression & DwarfExpr)2591 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2592 const DbgValueLoc &Value,
2593 DwarfExpression &DwarfExpr) {
2594 auto *DIExpr = Value.getExpression();
2595 DIExpressionCursor ExprCursor(DIExpr);
2596 DwarfExpr.addFragmentOffset(DIExpr);
2597
2598 // If the DIExpr is is an Entry Value, we want to follow the same code path
2599 // regardless of whether the DBG_VALUE is variadic or not.
2600 if (DIExpr && DIExpr->isEntryValue()) {
2601 // Entry values can only be a single register with no additional DIExpr,
2602 // so just add it directly.
2603 assert(Value.getLocEntries().size() == 1);
2604 assert(Value.getLocEntries()[0].isLocation());
2605 MachineLocation Location = Value.getLocEntries()[0].getLoc();
2606 DwarfExpr.setLocation(Location, DIExpr);
2607
2608 DwarfExpr.beginEntryValueExpression(ExprCursor);
2609
2610 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2611 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2612 return;
2613 return DwarfExpr.addExpression(std::move(ExprCursor));
2614 }
2615
2616 // Regular entry.
2617 auto EmitValueLocEntry = [&DwarfExpr, &BT,
2618 &AP](const DbgValueLocEntry &Entry,
2619 DIExpressionCursor &Cursor) -> bool {
2620 if (Entry.isInt()) {
2621 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2622 BT->getEncoding() == dwarf::DW_ATE_signed_char))
2623 DwarfExpr.addSignedConstant(Entry.getInt());
2624 else
2625 DwarfExpr.addUnsignedConstant(Entry.getInt());
2626 } else if (Entry.isLocation()) {
2627 MachineLocation Location = Entry.getLoc();
2628 if (Location.isIndirect())
2629 DwarfExpr.setMemoryLocationKind();
2630
2631 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2632 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2633 return false;
2634 } else if (Entry.isTargetIndexLocation()) {
2635 TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2636 // TODO TargetIndexLocation is a target-independent. Currently only the
2637 // WebAssembly-specific encoding is supported.
2638 assert(AP.TM.getTargetTriple().isWasm());
2639 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2640 } else if (Entry.isConstantFP()) {
2641 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2642 !Cursor) {
2643 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2644 } else if (Entry.getConstantFP()
2645 ->getValueAPF()
2646 .bitcastToAPInt()
2647 .getBitWidth() <= 64 /*bits*/) {
2648 DwarfExpr.addUnsignedConstant(
2649 Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2650 } else {
2651 LLVM_DEBUG(
2652 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2653 << Entry.getConstantFP()
2654 ->getValueAPF()
2655 .bitcastToAPInt()
2656 .getBitWidth()
2657 << " bits\n");
2658 return false;
2659 }
2660 }
2661 return true;
2662 };
2663
2664 if (!Value.isVariadic()) {
2665 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2666 return;
2667 DwarfExpr.addExpression(std::move(ExprCursor));
2668 return;
2669 }
2670
2671 // If any of the location entries are registers with the value 0, then the
2672 // location is undefined.
2673 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2674 return Entry.isLocation() && !Entry.getLoc().getReg();
2675 }))
2676 return;
2677
2678 DwarfExpr.addExpression(
2679 std::move(ExprCursor),
2680 [EmitValueLocEntry, &Value](unsigned Idx,
2681 DIExpressionCursor &Cursor) -> bool {
2682 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2683 });
2684 }
2685
finalize(const AsmPrinter & AP,DebugLocStream::ListBuilder & List,const DIBasicType * BT,DwarfCompileUnit & TheCU)2686 void DebugLocEntry::finalize(const AsmPrinter &AP,
2687 DebugLocStream::ListBuilder &List,
2688 const DIBasicType *BT,
2689 DwarfCompileUnit &TheCU) {
2690 assert(!Values.empty() &&
2691 "location list entries without values are redundant");
2692 assert(Begin != End && "unexpected location list entry with empty range");
2693 DebugLocStream::EntryBuilder Entry(List, Begin, End);
2694 BufferByteStreamer Streamer = Entry.getStreamer();
2695 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2696 const DbgValueLoc &Value = Values[0];
2697 if (Value.isFragment()) {
2698 // Emit all fragments that belong to the same variable and range.
2699 assert(llvm::all_of(Values, [](DbgValueLoc P) {
2700 return P.isFragment();
2701 }) && "all values are expected to be fragments");
2702 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2703
2704 for (const auto &Fragment : Values)
2705 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2706
2707 } else {
2708 assert(Values.size() == 1 && "only fragments may have >1 value");
2709 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2710 }
2711 DwarfExpr.finalize();
2712 if (DwarfExpr.TagOffset)
2713 List.setTagOffset(*DwarfExpr.TagOffset);
2714 }
2715
emitDebugLocEntryLocation(const DebugLocStream::Entry & Entry,const DwarfCompileUnit * CU)2716 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2717 const DwarfCompileUnit *CU) {
2718 // Emit the size.
2719 Asm->OutStreamer->AddComment("Loc expr size");
2720 if (getDwarfVersion() >= 5)
2721 Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2722 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2723 Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2724 else {
2725 // The entry is too big to fit into 16 bit, drop it as there is nothing we
2726 // can do.
2727 Asm->emitInt16(0);
2728 return;
2729 }
2730 // Emit the entry.
2731 APByteStreamer Streamer(*Asm);
2732 emitDebugLocEntry(Streamer, Entry, CU);
2733 }
2734
2735 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2736 // that designates the end of the table for the caller to emit when the table is
2737 // complete.
emitRnglistsTableHeader(AsmPrinter * Asm,const DwarfFile & Holder)2738 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2739 const DwarfFile &Holder) {
2740 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2741
2742 Asm->OutStreamer->AddComment("Offset entry count");
2743 Asm->emitInt32(Holder.getRangeLists().size());
2744 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2745
2746 for (const RangeSpanList &List : Holder.getRangeLists())
2747 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2748 Asm->getDwarfOffsetByteSize());
2749
2750 return TableEnd;
2751 }
2752
2753 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2754 // designates the end of the table for the caller to emit when the table is
2755 // complete.
emitLoclistsTableHeader(AsmPrinter * Asm,const DwarfDebug & DD)2756 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2757 const DwarfDebug &DD) {
2758 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2759
2760 const auto &DebugLocs = DD.getDebugLocs();
2761
2762 Asm->OutStreamer->AddComment("Offset entry count");
2763 Asm->emitInt32(DebugLocs.getLists().size());
2764 Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2765
2766 for (const auto &List : DebugLocs.getLists())
2767 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2768 Asm->getDwarfOffsetByteSize());
2769
2770 return TableEnd;
2771 }
2772
2773 template <typename Ranges, typename PayloadEmitter>
emitRangeList(DwarfDebug & DD,AsmPrinter * Asm,MCSymbol * Sym,const Ranges & R,const DwarfCompileUnit & CU,unsigned BaseAddressx,unsigned OffsetPair,unsigned StartxLength,unsigned EndOfList,StringRef (* StringifyEnum)(unsigned),bool ShouldUseBaseAddress,PayloadEmitter EmitPayload)2774 static void emitRangeList(
2775 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2776 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2777 unsigned StartxLength, unsigned EndOfList,
2778 StringRef (*StringifyEnum)(unsigned),
2779 bool ShouldUseBaseAddress,
2780 PayloadEmitter EmitPayload) {
2781
2782 auto Size = Asm->MAI->getCodePointerSize();
2783 bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2784
2785 // Emit our symbol so we can find the beginning of the range.
2786 Asm->OutStreamer->emitLabel(Sym);
2787
2788 // Gather all the ranges that apply to the same section so they can share
2789 // a base address entry.
2790 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2791
2792 for (const auto &Range : R)
2793 SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2794
2795 const MCSymbol *CUBase = CU.getBaseAddress();
2796 bool BaseIsSet = false;
2797 for (const auto &P : SectionRanges) {
2798 auto *Base = CUBase;
2799 if (!Base && ShouldUseBaseAddress) {
2800 const MCSymbol *Begin = P.second.front()->Begin;
2801 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2802 if (!UseDwarf5) {
2803 Base = NewBase;
2804 BaseIsSet = true;
2805 Asm->OutStreamer->emitIntValue(-1, Size);
2806 Asm->OutStreamer->AddComment(" base address");
2807 Asm->OutStreamer->emitSymbolValue(Base, Size);
2808 } else if (NewBase != Begin || P.second.size() > 1) {
2809 // Only use a base address if
2810 // * the existing pool address doesn't match (NewBase != Begin)
2811 // * or, there's more than one entry to share the base address
2812 Base = NewBase;
2813 BaseIsSet = true;
2814 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2815 Asm->emitInt8(BaseAddressx);
2816 Asm->OutStreamer->AddComment(" base address index");
2817 Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2818 }
2819 } else if (BaseIsSet && !UseDwarf5) {
2820 BaseIsSet = false;
2821 assert(!Base);
2822 Asm->OutStreamer->emitIntValue(-1, Size);
2823 Asm->OutStreamer->emitIntValue(0, Size);
2824 }
2825
2826 for (const auto *RS : P.second) {
2827 const MCSymbol *Begin = RS->Begin;
2828 const MCSymbol *End = RS->End;
2829 assert(Begin && "Range without a begin symbol?");
2830 assert(End && "Range without an end symbol?");
2831 if (Base) {
2832 if (UseDwarf5) {
2833 // Emit offset_pair when we have a base.
2834 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2835 Asm->emitInt8(OffsetPair);
2836 Asm->OutStreamer->AddComment(" starting offset");
2837 Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2838 Asm->OutStreamer->AddComment(" ending offset");
2839 Asm->emitLabelDifferenceAsULEB128(End, Base);
2840 } else {
2841 Asm->emitLabelDifference(Begin, Base, Size);
2842 Asm->emitLabelDifference(End, Base, Size);
2843 }
2844 } else if (UseDwarf5) {
2845 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2846 Asm->emitInt8(StartxLength);
2847 Asm->OutStreamer->AddComment(" start index");
2848 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2849 Asm->OutStreamer->AddComment(" length");
2850 Asm->emitLabelDifferenceAsULEB128(End, Begin);
2851 } else {
2852 Asm->OutStreamer->emitSymbolValue(Begin, Size);
2853 Asm->OutStreamer->emitSymbolValue(End, Size);
2854 }
2855 EmitPayload(*RS);
2856 }
2857 }
2858
2859 if (UseDwarf5) {
2860 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2861 Asm->emitInt8(EndOfList);
2862 } else {
2863 // Terminate the list with two 0 values.
2864 Asm->OutStreamer->emitIntValue(0, Size);
2865 Asm->OutStreamer->emitIntValue(0, Size);
2866 }
2867 }
2868
2869 // Handles emission of both debug_loclist / debug_loclist.dwo
emitLocList(DwarfDebug & DD,AsmPrinter * Asm,const DebugLocStream::List & List)2870 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2871 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2872 *List.CU, dwarf::DW_LLE_base_addressx,
2873 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2874 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2875 /* ShouldUseBaseAddress */ true,
2876 [&](const DebugLocStream::Entry &E) {
2877 DD.emitDebugLocEntryLocation(E, List.CU);
2878 });
2879 }
2880
emitDebugLocImpl(MCSection * Sec)2881 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2882 if (DebugLocs.getLists().empty())
2883 return;
2884
2885 Asm->OutStreamer->switchSection(Sec);
2886
2887 MCSymbol *TableEnd = nullptr;
2888 if (getDwarfVersion() >= 5)
2889 TableEnd = emitLoclistsTableHeader(Asm, *this);
2890
2891 for (const auto &List : DebugLocs.getLists())
2892 emitLocList(*this, Asm, List);
2893
2894 if (TableEnd)
2895 Asm->OutStreamer->emitLabel(TableEnd);
2896 }
2897
2898 // Emit locations into the .debug_loc/.debug_loclists section.
emitDebugLoc()2899 void DwarfDebug::emitDebugLoc() {
2900 emitDebugLocImpl(
2901 getDwarfVersion() >= 5
2902 ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2903 : Asm->getObjFileLowering().getDwarfLocSection());
2904 }
2905
2906 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
emitDebugLocDWO()2907 void DwarfDebug::emitDebugLocDWO() {
2908 if (getDwarfVersion() >= 5) {
2909 emitDebugLocImpl(
2910 Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2911
2912 return;
2913 }
2914
2915 for (const auto &List : DebugLocs.getLists()) {
2916 Asm->OutStreamer->switchSection(
2917 Asm->getObjFileLowering().getDwarfLocDWOSection());
2918 Asm->OutStreamer->emitLabel(List.Label);
2919
2920 for (const auto &Entry : DebugLocs.getEntries(List)) {
2921 // GDB only supports startx_length in pre-standard split-DWARF.
2922 // (in v5 standard loclists, it currently* /only/ supports base_address +
2923 // offset_pair, so the implementations can't really share much since they
2924 // need to use different representations)
2925 // * as of October 2018, at least
2926 //
2927 // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2928 // addresses in the address pool to minimize object size/relocations.
2929 Asm->emitInt8(dwarf::DW_LLE_startx_length);
2930 unsigned idx = AddrPool.getIndex(Entry.Begin);
2931 Asm->emitULEB128(idx);
2932 // Also the pre-standard encoding is slightly different, emitting this as
2933 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2934 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2935 emitDebugLocEntryLocation(Entry, List.CU);
2936 }
2937 Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2938 }
2939 }
2940
2941 struct ArangeSpan {
2942 const MCSymbol *Start, *End;
2943 };
2944
2945 // Emit a debug aranges section, containing a CU lookup for any
2946 // address we can tie back to a CU.
emitDebugARanges()2947 void DwarfDebug::emitDebugARanges() {
2948 // Provides a unique id per text section.
2949 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2950
2951 // Filter labels by section.
2952 for (const SymbolCU &SCU : ArangeLabels) {
2953 if (SCU.Sym->isInSection()) {
2954 // Make a note of this symbol and it's section.
2955 MCSection *Section = &SCU.Sym->getSection();
2956 if (!Section->getKind().isMetadata())
2957 SectionMap[Section].push_back(SCU);
2958 } else {
2959 // Some symbols (e.g. common/bss on mach-o) can have no section but still
2960 // appear in the output. This sucks as we rely on sections to build
2961 // arange spans. We can do it without, but it's icky.
2962 SectionMap[nullptr].push_back(SCU);
2963 }
2964 }
2965
2966 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2967
2968 for (auto &I : SectionMap) {
2969 MCSection *Section = I.first;
2970 SmallVector<SymbolCU, 8> &List = I.second;
2971 if (List.size() < 1)
2972 continue;
2973
2974 // If we have no section (e.g. common), just write out
2975 // individual spans for each symbol.
2976 if (!Section) {
2977 for (const SymbolCU &Cur : List) {
2978 ArangeSpan Span;
2979 Span.Start = Cur.Sym;
2980 Span.End = nullptr;
2981 assert(Cur.CU);
2982 Spans[Cur.CU].push_back(Span);
2983 }
2984 continue;
2985 }
2986
2987 // Sort the symbols by offset within the section.
2988 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2989 unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0;
2990 unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0;
2991
2992 // Symbols with no order assigned should be placed at the end.
2993 // (e.g. section end labels)
2994 if (IA == 0)
2995 return false;
2996 if (IB == 0)
2997 return true;
2998 return IA < IB;
2999 });
3000
3001 // Insert a final terminator.
3002 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
3003
3004 // Build spans between each label.
3005 const MCSymbol *StartSym = List[0].Sym;
3006 for (size_t n = 1, e = List.size(); n < e; n++) {
3007 const SymbolCU &Prev = List[n - 1];
3008 const SymbolCU &Cur = List[n];
3009
3010 // Try and build the longest span we can within the same CU.
3011 if (Cur.CU != Prev.CU) {
3012 ArangeSpan Span;
3013 Span.Start = StartSym;
3014 Span.End = Cur.Sym;
3015 assert(Prev.CU);
3016 Spans[Prev.CU].push_back(Span);
3017 StartSym = Cur.Sym;
3018 }
3019 }
3020 }
3021
3022 // Start the dwarf aranges section.
3023 Asm->OutStreamer->switchSection(
3024 Asm->getObjFileLowering().getDwarfARangesSection());
3025
3026 unsigned PtrSize = Asm->MAI->getCodePointerSize();
3027
3028 // Build a list of CUs used.
3029 std::vector<DwarfCompileUnit *> CUs;
3030 for (const auto &it : Spans) {
3031 DwarfCompileUnit *CU = it.first;
3032 CUs.push_back(CU);
3033 }
3034
3035 // Sort the CU list (again, to ensure consistent output order).
3036 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
3037 return A->getUniqueID() < B->getUniqueID();
3038 });
3039
3040 // Emit an arange table for each CU we used.
3041 for (DwarfCompileUnit *CU : CUs) {
3042 std::vector<ArangeSpan> &List = Spans[CU];
3043
3044 // Describe the skeleton CU's offset and length, not the dwo file's.
3045 if (auto *Skel = CU->getSkeleton())
3046 CU = Skel;
3047
3048 // Emit size of content not including length itself.
3049 unsigned ContentSize =
3050 sizeof(int16_t) + // DWARF ARange version number
3051 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3052 // section
3053 sizeof(int8_t) + // Pointer Size (in bytes)
3054 sizeof(int8_t); // Segment Size (in bytes)
3055
3056 unsigned TupleSize = PtrSize * 2;
3057
3058 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3059 unsigned Padding = offsetToAlignment(
3060 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3061
3062 ContentSize += Padding;
3063 ContentSize += (List.size() + 1) * TupleSize;
3064
3065 // For each compile unit, write the list of spans it covers.
3066 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3067 Asm->OutStreamer->AddComment("DWARF Arange version number");
3068 Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3069 Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3070 emitSectionReference(*CU);
3071 Asm->OutStreamer->AddComment("Address Size (in bytes)");
3072 Asm->emitInt8(PtrSize);
3073 Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3074 Asm->emitInt8(0);
3075
3076 Asm->OutStreamer->emitFill(Padding, 0xff);
3077
3078 for (const ArangeSpan &Span : List) {
3079 Asm->emitLabelReference(Span.Start, PtrSize);
3080
3081 // Calculate the size as being from the span start to its end.
3082 //
3083 // If the size is zero, then round it up to one byte. The DWARF
3084 // specification requires that entries in this table have nonzero
3085 // lengths.
3086 auto SizeRef = SymSize.find(Span.Start);
3087 if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) {
3088 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3089 } else {
3090 // For symbols without an end marker (e.g. common), we
3091 // write a single arange entry containing just that one symbol.
3092 uint64_t Size;
3093 if (SizeRef == SymSize.end() || SizeRef->second == 0)
3094 Size = 1;
3095 else
3096 Size = SizeRef->second;
3097
3098 Asm->OutStreamer->emitIntValue(Size, PtrSize);
3099 }
3100 }
3101
3102 Asm->OutStreamer->AddComment("ARange terminator");
3103 Asm->OutStreamer->emitIntValue(0, PtrSize);
3104 Asm->OutStreamer->emitIntValue(0, PtrSize);
3105 }
3106 }
3107
3108 /// Emit a single range list. We handle both DWARF v5 and earlier.
emitRangeList(DwarfDebug & DD,AsmPrinter * Asm,const RangeSpanList & List)3109 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3110 const RangeSpanList &List) {
3111 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3112 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3113 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3114 llvm::dwarf::RangeListEncodingString,
3115 List.CU->getCUNode()->getRangesBaseAddress() ||
3116 DD.getDwarfVersion() >= 5,
3117 [](auto) {});
3118 }
3119
emitDebugRangesImpl(const DwarfFile & Holder,MCSection * Section)3120 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3121 if (Holder.getRangeLists().empty())
3122 return;
3123
3124 assert(useRangesSection());
3125 assert(!CUMap.empty());
3126 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3127 return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3128 }));
3129
3130 Asm->OutStreamer->switchSection(Section);
3131
3132 MCSymbol *TableEnd = nullptr;
3133 if (getDwarfVersion() >= 5)
3134 TableEnd = emitRnglistsTableHeader(Asm, Holder);
3135
3136 for (const RangeSpanList &List : Holder.getRangeLists())
3137 emitRangeList(*this, Asm, List);
3138
3139 if (TableEnd)
3140 Asm->OutStreamer->emitLabel(TableEnd);
3141 }
3142
3143 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3144 /// .debug_rnglists section.
emitDebugRanges()3145 void DwarfDebug::emitDebugRanges() {
3146 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3147
3148 emitDebugRangesImpl(Holder,
3149 getDwarfVersion() >= 5
3150 ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3151 : Asm->getObjFileLowering().getDwarfRangesSection());
3152 }
3153
emitDebugRangesDWO()3154 void DwarfDebug::emitDebugRangesDWO() {
3155 emitDebugRangesImpl(InfoHolder,
3156 Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3157 }
3158
3159 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3160 /// DWARF 4.
emitMacroHeader(AsmPrinter * Asm,const DwarfDebug & DD,const DwarfCompileUnit & CU,uint16_t DwarfVersion)3161 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3162 const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3163 enum HeaderFlagMask {
3164 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3165 #include "llvm/BinaryFormat/Dwarf.def"
3166 };
3167 Asm->OutStreamer->AddComment("Macro information version");
3168 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3169 // We emit the line offset flag unconditionally here, since line offset should
3170 // be mostly present.
3171 if (Asm->isDwarf64()) {
3172 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3173 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3174 } else {
3175 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3176 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3177 }
3178 Asm->OutStreamer->AddComment("debug_line_offset");
3179 if (DD.useSplitDwarf())
3180 Asm->emitDwarfLengthOrOffset(0);
3181 else
3182 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3183 }
3184
handleMacroNodes(DIMacroNodeArray Nodes,DwarfCompileUnit & U)3185 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3186 for (auto *MN : Nodes) {
3187 if (auto *M = dyn_cast<DIMacro>(MN))
3188 emitMacro(*M);
3189 else if (auto *F = dyn_cast<DIMacroFile>(MN))
3190 emitMacroFile(*F, U);
3191 else
3192 llvm_unreachable("Unexpected DI type!");
3193 }
3194 }
3195
emitMacro(DIMacro & M)3196 void DwarfDebug::emitMacro(DIMacro &M) {
3197 StringRef Name = M.getName();
3198 StringRef Value = M.getValue();
3199
3200 // There should be one space between the macro name and the macro value in
3201 // define entries. In undef entries, only the macro name is emitted.
3202 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3203
3204 if (UseDebugMacroSection) {
3205 if (getDwarfVersion() >= 5) {
3206 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3207 ? dwarf::DW_MACRO_define_strx
3208 : dwarf::DW_MACRO_undef_strx;
3209 Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3210 Asm->emitULEB128(Type);
3211 Asm->OutStreamer->AddComment("Line Number");
3212 Asm->emitULEB128(M.getLine());
3213 Asm->OutStreamer->AddComment("Macro String");
3214 Asm->emitULEB128(
3215 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3216 } else {
3217 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3218 ? dwarf::DW_MACRO_GNU_define_indirect
3219 : dwarf::DW_MACRO_GNU_undef_indirect;
3220 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3221 Asm->emitULEB128(Type);
3222 Asm->OutStreamer->AddComment("Line Number");
3223 Asm->emitULEB128(M.getLine());
3224 Asm->OutStreamer->AddComment("Macro String");
3225 Asm->emitDwarfSymbolReference(
3226 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3227 }
3228 } else {
3229 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3230 Asm->emitULEB128(M.getMacinfoType());
3231 Asm->OutStreamer->AddComment("Line Number");
3232 Asm->emitULEB128(M.getLine());
3233 Asm->OutStreamer->AddComment("Macro String");
3234 Asm->OutStreamer->emitBytes(Str);
3235 Asm->emitInt8('\0');
3236 }
3237 }
3238
emitMacroFileImpl(DIMacroFile & MF,DwarfCompileUnit & U,unsigned StartFile,unsigned EndFile,StringRef (* MacroFormToString)(unsigned Form))3239 void DwarfDebug::emitMacroFileImpl(
3240 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3241 StringRef (*MacroFormToString)(unsigned Form)) {
3242
3243 Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3244 Asm->emitULEB128(StartFile);
3245 Asm->OutStreamer->AddComment("Line Number");
3246 Asm->emitULEB128(MF.getLine());
3247 Asm->OutStreamer->AddComment("File Number");
3248 DIFile &F = *MF.getFile();
3249 if (useSplitDwarf())
3250 Asm->emitULEB128(getDwoLineTable(U)->getFile(
3251 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3252 Asm->OutContext.getDwarfVersion(), F.getSource()));
3253 else
3254 Asm->emitULEB128(U.getOrCreateSourceID(&F));
3255 handleMacroNodes(MF.getElements(), U);
3256 Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3257 Asm->emitULEB128(EndFile);
3258 }
3259
emitMacroFile(DIMacroFile & F,DwarfCompileUnit & U)3260 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3261 // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3262 // so for readibility/uniformity, We are explicitly emitting those.
3263 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3264 if (UseDebugMacroSection)
3265 emitMacroFileImpl(
3266 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3267 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3268 else
3269 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3270 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3271 }
3272
emitDebugMacinfoImpl(MCSection * Section)3273 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3274 for (const auto &P : CUMap) {
3275 auto &TheCU = *P.second;
3276 auto *SkCU = TheCU.getSkeleton();
3277 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3278 auto *CUNode = cast<DICompileUnit>(P.first);
3279 DIMacroNodeArray Macros = CUNode->getMacros();
3280 if (Macros.empty())
3281 continue;
3282 Asm->OutStreamer->switchSection(Section);
3283 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3284 if (UseDebugMacroSection)
3285 emitMacroHeader(Asm, *this, U, getDwarfVersion());
3286 handleMacroNodes(Macros, U);
3287 Asm->OutStreamer->AddComment("End Of Macro List Mark");
3288 Asm->emitInt8(0);
3289 }
3290 }
3291
3292 /// Emit macros into a debug macinfo/macro section.
emitDebugMacinfo()3293 void DwarfDebug::emitDebugMacinfo() {
3294 auto &ObjLower = Asm->getObjFileLowering();
3295 emitDebugMacinfoImpl(UseDebugMacroSection
3296 ? ObjLower.getDwarfMacroSection()
3297 : ObjLower.getDwarfMacinfoSection());
3298 }
3299
emitDebugMacinfoDWO()3300 void DwarfDebug::emitDebugMacinfoDWO() {
3301 auto &ObjLower = Asm->getObjFileLowering();
3302 emitDebugMacinfoImpl(UseDebugMacroSection
3303 ? ObjLower.getDwarfMacroDWOSection()
3304 : ObjLower.getDwarfMacinfoDWOSection());
3305 }
3306
3307 // DWARF5 Experimental Separate Dwarf emitters.
3308
initSkeletonUnit(const DwarfUnit & U,DIE & Die,std::unique_ptr<DwarfCompileUnit> NewU)3309 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3310 std::unique_ptr<DwarfCompileUnit> NewU) {
3311
3312 if (!CompilationDir.empty())
3313 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3314 addGnuPubAttributes(*NewU, Die);
3315
3316 SkeletonHolder.addUnit(std::move(NewU));
3317 }
3318
constructSkeletonCU(const DwarfCompileUnit & CU)3319 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3320
3321 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3322 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3323 UnitKind::Skeleton);
3324 DwarfCompileUnit &NewCU = *OwnedUnit;
3325 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3326
3327 NewCU.initStmtList();
3328
3329 if (useSegmentedStringOffsetsTable())
3330 NewCU.addStringOffsetsStart();
3331
3332 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3333
3334 return NewCU;
3335 }
3336
3337 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3338 // compile units that would normally be in debug_info.
emitDebugInfoDWO()3339 void DwarfDebug::emitDebugInfoDWO() {
3340 assert(useSplitDwarf() && "No split dwarf debug info?");
3341 // Don't emit relocations into the dwo file.
3342 InfoHolder.emitUnits(/* UseOffsets */ true);
3343 }
3344
3345 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3346 // abbreviations for the .debug_info.dwo section.
emitDebugAbbrevDWO()3347 void DwarfDebug::emitDebugAbbrevDWO() {
3348 assert(useSplitDwarf() && "No split dwarf?");
3349 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3350 }
3351
emitDebugLineDWO()3352 void DwarfDebug::emitDebugLineDWO() {
3353 assert(useSplitDwarf() && "No split dwarf?");
3354 SplitTypeUnitFileTable.Emit(
3355 *Asm->OutStreamer, MCDwarfLineTableParams(),
3356 Asm->getObjFileLowering().getDwarfLineDWOSection());
3357 }
3358
emitStringOffsetsTableHeaderDWO()3359 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3360 assert(useSplitDwarf() && "No split dwarf?");
3361 InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3362 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3363 InfoHolder.getStringOffsetsStartSym());
3364 }
3365
3366 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3367 // string section and is identical in format to traditional .debug_str
3368 // sections.
emitDebugStrDWO()3369 void DwarfDebug::emitDebugStrDWO() {
3370 if (useSegmentedStringOffsetsTable())
3371 emitStringOffsetsTableHeaderDWO();
3372 assert(useSplitDwarf() && "No split dwarf?");
3373 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3374 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3375 OffSec, /* UseRelativeOffsets = */ false);
3376 }
3377
3378 // Emit address pool.
emitDebugAddr()3379 void DwarfDebug::emitDebugAddr() {
3380 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3381 }
3382
getDwoLineTable(const DwarfCompileUnit & CU)3383 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3384 if (!useSplitDwarf())
3385 return nullptr;
3386 const DICompileUnit *DIUnit = CU.getCUNode();
3387 SplitTypeUnitFileTable.maybeSetRootFile(
3388 DIUnit->getDirectory(), DIUnit->getFilename(),
3389 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3390 return &SplitTypeUnitFileTable;
3391 }
3392
makeTypeSignature(StringRef Identifier)3393 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3394 MD5 Hash;
3395 Hash.update(Identifier);
3396 // ... take the least significant 8 bytes and return those. Our MD5
3397 // implementation always returns its results in little endian, so we actually
3398 // need the "high" word.
3399 MD5::MD5Result Result;
3400 Hash.final(Result);
3401 return Result.high();
3402 }
3403
addDwarfTypeUnitType(DwarfCompileUnit & CU,StringRef Identifier,DIE & RefDie,const DICompositeType * CTy)3404 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3405 StringRef Identifier, DIE &RefDie,
3406 const DICompositeType *CTy) {
3407 // Fast path if we're building some type units and one has already used the
3408 // address pool we know we're going to throw away all this work anyway, so
3409 // don't bother building dependent types.
3410 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3411 return;
3412
3413 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3414 if (!Ins.second) {
3415 CU.addDIETypeSignature(RefDie, Ins.first->second);
3416 return;
3417 }
3418
3419 bool TopLevelType = TypeUnitsUnderConstruction.empty();
3420 AddrPool.resetUsedFlag();
3421
3422 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3423 getDwoLineTable(CU));
3424 DwarfTypeUnit &NewTU = *OwnedUnit;
3425 DIE &UnitDie = NewTU.getUnitDie();
3426 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3427
3428 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3429 CU.getLanguage());
3430
3431 uint64_t Signature = makeTypeSignature(Identifier);
3432 NewTU.setTypeSignature(Signature);
3433 Ins.first->second = Signature;
3434
3435 if (useSplitDwarf()) {
3436 MCSection *Section =
3437 getDwarfVersion() <= 4
3438 ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3439 : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3440 NewTU.setSection(Section);
3441 } else {
3442 MCSection *Section =
3443 getDwarfVersion() <= 4
3444 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3445 : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3446 NewTU.setSection(Section);
3447 // Non-split type units reuse the compile unit's line table.
3448 CU.applyStmtList(UnitDie);
3449 }
3450
3451 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3452 // units.
3453 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3454 NewTU.addStringOffsetsStart();
3455
3456 NewTU.setType(NewTU.createTypeDIE(CTy));
3457
3458 if (TopLevelType) {
3459 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3460 TypeUnitsUnderConstruction.clear();
3461
3462 // Types referencing entries in the address table cannot be placed in type
3463 // units.
3464 if (AddrPool.hasBeenUsed()) {
3465
3466 // Remove all the types built while building this type.
3467 // This is pessimistic as some of these types might not be dependent on
3468 // the type that used an address.
3469 for (const auto &TU : TypeUnitsToAdd)
3470 TypeSignatures.erase(TU.second);
3471
3472 // Construct this type in the CU directly.
3473 // This is inefficient because all the dependent types will be rebuilt
3474 // from scratch, including building them in type units, discovering that
3475 // they depend on addresses, throwing them out and rebuilding them.
3476 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3477 return;
3478 }
3479
3480 // If the type wasn't dependent on fission addresses, finish adding the type
3481 // and all its dependent types.
3482 for (auto &TU : TypeUnitsToAdd) {
3483 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3484 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3485 }
3486 }
3487 CU.addDIETypeSignature(RefDie, Signature);
3488 }
3489
3490 // Add the Name along with its companion DIE to the appropriate accelerator
3491 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3492 // AccelTableKind::Apple, we use the table we got as an argument). If
3493 // accelerator tables are disabled, this function does nothing.
3494 template <typename DataT>
addAccelNameImpl(const DICompileUnit & CU,AccelTable<DataT> & AppleAccel,StringRef Name,const DIE & Die)3495 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3496 AccelTable<DataT> &AppleAccel, StringRef Name,
3497 const DIE &Die) {
3498 if (getAccelTableKind() == AccelTableKind::None)
3499 return;
3500
3501 if (getAccelTableKind() != AccelTableKind::Apple &&
3502 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3503 return;
3504
3505 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3506 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3507
3508 switch (getAccelTableKind()) {
3509 case AccelTableKind::Apple:
3510 AppleAccel.addName(Ref, Die);
3511 break;
3512 case AccelTableKind::Dwarf:
3513 AccelDebugNames.addName(Ref, Die);
3514 break;
3515 case AccelTableKind::Default:
3516 llvm_unreachable("Default should have already been resolved.");
3517 case AccelTableKind::None:
3518 llvm_unreachable("None handled above");
3519 }
3520 }
3521
addAccelName(const DICompileUnit & CU,StringRef Name,const DIE & Die)3522 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3523 const DIE &Die) {
3524 addAccelNameImpl(CU, AccelNames, Name, Die);
3525 }
3526
addAccelObjC(const DICompileUnit & CU,StringRef Name,const DIE & Die)3527 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3528 const DIE &Die) {
3529 // ObjC names go only into the Apple accelerator tables.
3530 if (getAccelTableKind() == AccelTableKind::Apple)
3531 addAccelNameImpl(CU, AccelObjC, Name, Die);
3532 }
3533
addAccelNamespace(const DICompileUnit & CU,StringRef Name,const DIE & Die)3534 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3535 const DIE &Die) {
3536 addAccelNameImpl(CU, AccelNamespace, Name, Die);
3537 }
3538
addAccelType(const DICompileUnit & CU,StringRef Name,const DIE & Die,char Flags)3539 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3540 const DIE &Die, char Flags) {
3541 addAccelNameImpl(CU, AccelTypes, Name, Die);
3542 }
3543
getDwarfVersion() const3544 uint16_t DwarfDebug::getDwarfVersion() const {
3545 return Asm->OutStreamer->getContext().getDwarfVersion();
3546 }
3547
getDwarfSectionOffsetForm() const3548 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3549 if (Asm->getDwarfVersion() >= 4)
3550 return dwarf::Form::DW_FORM_sec_offset;
3551 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3552 "DWARF64 is not defined prior DWARFv3");
3553 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3554 : dwarf::Form::DW_FORM_data4;
3555 }
3556
getSectionLabel(const MCSection * S)3557 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3558 auto I = SectionLabels.find(S);
3559 if (I == SectionLabels.end())
3560 return nullptr;
3561 return I->second;
3562 }
insertSectionLabel(const MCSymbol * S)3563 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3564 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3565 if (useSplitDwarf() || getDwarfVersion() >= 5)
3566 AddrPool.getIndex(S);
3567 }
3568
3569 std::optional<MD5::MD5Result>
getMD5AsBytes(const DIFile * File) const3570 DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3571 assert(File);
3572 if (getDwarfVersion() < 5)
3573 return std::nullopt;
3574 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3575 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3576 return std::nullopt;
3577
3578 // Convert the string checksum to an MD5Result for the streamer.
3579 // The verifier validates the checksum so we assume it's okay.
3580 // An MD5 checksum is 16 bytes.
3581 std::string ChecksumString = fromHex(Checksum->Value);
3582 MD5::MD5Result CKMem;
3583 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data());
3584 return CKMem;
3585 }
3586