xref: /aosp_15_r20/external/libaom/av1/common/mv.h (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_MV_H_
13 #define AOM_AV1_COMMON_MV_H_
14 
15 #include <stdlib.h>
16 
17 #include "av1/common/common.h"
18 #include "av1/common/common_data.h"
19 #include "aom_dsp/aom_filter.h"
20 #include "aom_dsp/flow_estimation/flow_estimation.h"
21 
22 #ifdef __cplusplus
23 extern "C" {
24 #endif
25 
26 #define INVALID_MV 0x80008000
27 #define INVALID_MV_ROW_COL -32768
28 #define GET_MV_RAWPEL(x) (((x) + 3 + ((x) >= 0)) >> 3)
29 #define GET_MV_SUBPEL(x) ((x)*8)
30 
31 #define MARK_MV_INVALID(mv)                \
32   do {                                     \
33     ((int_mv *)(mv))->as_int = INVALID_MV; \
34   } while (0)
35 #define CHECK_MV_EQUAL(x, y) (((x).row == (y).row) && ((x).col == (y).col))
36 
37 // The motion vector in units of full pixel
38 typedef struct fullpel_mv {
39   int16_t row;
40   int16_t col;
41 } FULLPEL_MV;
42 
43 // The motion vector in units of 1/8-pel
44 typedef struct mv {
45   int16_t row;
46   int16_t col;
47 } MV;
48 
49 static const MV kZeroMv = { 0, 0 };
50 static const FULLPEL_MV kZeroFullMv = { 0, 0 };
51 
52 typedef union int_mv {
53   uint32_t as_int;
54   MV as_mv;
55   FULLPEL_MV as_fullmv;
56 } int_mv; /* facilitates faster equality tests and copies */
57 
58 typedef struct mv32 {
59   int32_t row;
60   int32_t col;
61 } MV32;
62 
63 // The mv limit for fullpel mvs
64 typedef struct {
65   int col_min;
66   int col_max;
67   int row_min;
68   int row_max;
69 } FullMvLimits;
70 
71 // The mv limit for subpel mvs
72 typedef struct {
73   int col_min;
74   int col_max;
75   int row_min;
76   int row_max;
77 } SubpelMvLimits;
78 
get_fullmv_from_mv(const MV * subpel_mv)79 static inline FULLPEL_MV get_fullmv_from_mv(const MV *subpel_mv) {
80   const FULLPEL_MV full_mv = { (int16_t)GET_MV_RAWPEL(subpel_mv->row),
81                                (int16_t)GET_MV_RAWPEL(subpel_mv->col) };
82   return full_mv;
83 }
84 
get_mv_from_fullmv(const FULLPEL_MV * full_mv)85 static inline MV get_mv_from_fullmv(const FULLPEL_MV *full_mv) {
86   const MV subpel_mv = { (int16_t)GET_MV_SUBPEL(full_mv->row),
87                          (int16_t)GET_MV_SUBPEL(full_mv->col) };
88   return subpel_mv;
89 }
90 
convert_fullmv_to_mv(int_mv * mv)91 static inline void convert_fullmv_to_mv(int_mv *mv) {
92   mv->as_mv = get_mv_from_fullmv(&mv->as_fullmv);
93 }
94 
95 // Bits of precision used for the model
96 #define WARPEDMODEL_PREC_BITS 16
97 
98 #define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS)
99 #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3))
100 
101 // Bits of subpel precision for warped interpolation
102 #define WARPEDPIXEL_PREC_BITS 6
103 #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS)
104 
105 #define WARP_PARAM_REDUCE_BITS 6
106 
107 #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS)
108 
109 typedef struct {
110   int global_warp_allowed;
111   int local_warp_allowed;
112 } WarpTypesAllowed;
113 
114 // The order of values in the wmmat matrix below is best described
115 // by the affine transformation:
116 //      [x'     (m2 m3 m0   [x
117 //  z .  y'  =   m4 m5 m1 *  y
118 //       1]       0  0 1)    1]
119 typedef struct {
120   int32_t wmmat[MAX_PARAMDIM];
121   int16_t alpha, beta, gamma, delta;
122   TransformationType wmtype;
123   int8_t invalid;
124 } WarpedMotionParams;
125 
126 /* clang-format off */
127 static const WarpedMotionParams default_warp_params = {
128   { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS) },
129   0, 0, 0, 0,
130   IDENTITY,
131   0,
132 };
133 /* clang-format on */
134 
135 // The following constants describe the various precisions
136 // of different parameters in the global motion experiment.
137 //
138 // Given the general homography:
139 //      [x'     (a  b  c   [x
140 //  z .  y'  =   d  e  f *  y
141 //       1]      g  h  i)    1]
142 //
143 // Constants using the name ALPHA here are related to parameters
144 // a, b, d, e. Constants using the name TRANS are related
145 // to parameters c and f.
146 //
147 // Anything ending in PREC_BITS is the number of bits of precision
148 // to maintain when converting from double to integer.
149 //
150 // The ABS parameters are used to create an upper and lower bound
151 // for each parameter. In other words, after a parameter is integerized
152 // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS).
153 //
154 // XXX_PREC_DIFF and XXX_DECODE_FACTOR
155 // are computed once here to prevent repetitive
156 // computation on the decoder side. These are
157 // to allow the global motion parameters to be encoded in a lower
158 // precision than the warped model precision. This means that they
159 // need to be changed to warped precision when they are decoded.
160 //
161 // XX_MIN, XX_MAX are also computed to avoid repeated computation
162 
163 #define SUBEXPFIN_K 3
164 #define GM_TRANS_PREC_BITS 6
165 #define GM_ABS_TRANS_BITS 12
166 #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3)
167 #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS)
168 #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3)
169 #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF)
170 #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF)
171 
172 #define GM_ALPHA_PREC_BITS 15
173 #define GM_ABS_ALPHA_BITS 12
174 #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS)
175 #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF)
176 
177 #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS)
178 #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS)
179 
180 #define GM_TRANS_MIN -GM_TRANS_MAX
181 #define GM_ALPHA_MIN -GM_ALPHA_MAX
182 
block_center_x(int mi_col,BLOCK_SIZE bs)183 static inline int block_center_x(int mi_col, BLOCK_SIZE bs) {
184   const int bw = block_size_wide[bs];
185   return mi_col * MI_SIZE + bw / 2 - 1;
186 }
187 
block_center_y(int mi_row,BLOCK_SIZE bs)188 static inline int block_center_y(int mi_row, BLOCK_SIZE bs) {
189   const int bh = block_size_high[bs];
190   return mi_row * MI_SIZE + bh / 2 - 1;
191 }
192 
convert_to_trans_prec(int allow_hp,int coor)193 static inline int convert_to_trans_prec(int allow_hp, int coor) {
194   if (allow_hp)
195     return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3);
196   else
197     return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2;
198 }
integer_mv_precision(MV * mv)199 static inline void integer_mv_precision(MV *mv) {
200   int mod = (mv->row % 8);
201   if (mod != 0) {
202     mv->row -= mod;
203     if (abs(mod) > 4) {
204       if (mod > 0) {
205         mv->row += 8;
206       } else {
207         mv->row -= 8;
208       }
209     }
210   }
211 
212   mod = (mv->col % 8);
213   if (mod != 0) {
214     mv->col -= mod;
215     if (abs(mod) > 4) {
216       if (mod > 0) {
217         mv->col += 8;
218       } else {
219         mv->col -= 8;
220       }
221     }
222   }
223 }
224 // Convert a global motion vector into a motion vector at the centre of the
225 // given block.
226 //
227 // The resulting motion vector will have three fractional bits of precision. If
228 // allow_hp is zero, the bottom bit will always be zero. If CONFIG_AMVR and
229 // is_integer is true, the bottom three bits will be zero (so the motion vector
230 // represents an integer)
gm_get_motion_vector(const WarpedMotionParams * gm,int allow_hp,BLOCK_SIZE bsize,int mi_col,int mi_row,int is_integer)231 static inline int_mv gm_get_motion_vector(const WarpedMotionParams *gm,
232                                           int allow_hp, BLOCK_SIZE bsize,
233                                           int mi_col, int mi_row,
234                                           int is_integer) {
235   int_mv res;
236 
237   if (gm->wmtype == IDENTITY) {
238     res.as_int = 0;
239     return res;
240   }
241 
242   const int32_t *mat = gm->wmmat;
243   int x, y, tx, ty;
244 
245   if (gm->wmtype == TRANSLATION) {
246     // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16)
247     // bits of fractional precision. The offset for a translation is stored in
248     // entries 0 and 1. For translations, all but the top three (two if
249     // cm->features.allow_high_precision_mv is false) fractional bits are always
250     // zero.
251     //
252     // After the right shifts, there are 3 fractional bits of precision. If
253     // allow_hp is false, the bottom bit is always zero (so we don't need a
254     // call to convert_to_trans_prec here)
255     //
256     // Note: There is an AV1 specification bug here:
257     //
258     // gm->wmmat[0] is supposed to be the horizontal translation, and so should
259     // go into res.as_mv.col, and gm->wmmat[1] is supposed to be the vertical
260     // translation and so should go into res.as_mv.row
261     //
262     // However, in the spec, these assignments are accidentally reversed, and so
263     // we must keep this incorrect logic to match the spec.
264     //
265     // See also: https://crbug.com/aomedia/3328
266     res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF;
267     res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF;
268     assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), allow_hp));
269     if (is_integer) {
270       integer_mv_precision(&res.as_mv);
271     }
272     return res;
273   }
274 
275   x = block_center_x(mi_col, bsize);
276   y = block_center_y(mi_row, bsize);
277 
278   if (gm->wmtype == ROTZOOM) {
279     assert(gm->wmmat[5] == gm->wmmat[2]);
280     assert(gm->wmmat[4] == -gm->wmmat[3]);
281   }
282 
283   const int xc =
284       (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0];
285   const int yc =
286       mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1];
287   tx = convert_to_trans_prec(allow_hp, xc);
288   ty = convert_to_trans_prec(allow_hp, yc);
289 
290   res.as_mv.row = ty;
291   res.as_mv.col = tx;
292 
293   if (is_integer) {
294     integer_mv_precision(&res.as_mv);
295   }
296   return res;
297 }
298 
get_wmtype(const WarpedMotionParams * gm)299 static inline TransformationType get_wmtype(const WarpedMotionParams *gm) {
300   if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] &&
301       gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) {
302     return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION);
303   }
304   if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4])
305     return ROTZOOM;
306   else
307     return AFFINE;
308 }
309 
310 typedef struct candidate_mv {
311   int_mv this_mv;
312   int_mv comp_mv;
313 } CANDIDATE_MV;
314 
is_zero_mv(const MV * mv)315 static inline int is_zero_mv(const MV *mv) {
316   return *((const uint32_t *)mv) == 0;
317 }
318 
is_equal_mv(const MV * a,const MV * b)319 static inline int is_equal_mv(const MV *a, const MV *b) {
320   return *((const uint32_t *)a) == *((const uint32_t *)b);
321 }
322 
clamp_mv(MV * mv,const SubpelMvLimits * mv_limits)323 static inline void clamp_mv(MV *mv, const SubpelMvLimits *mv_limits) {
324   mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max);
325   mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max);
326 }
327 
clamp_fullmv(FULLPEL_MV * mv,const FullMvLimits * mv_limits)328 static inline void clamp_fullmv(FULLPEL_MV *mv, const FullMvLimits *mv_limits) {
329   mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max);
330   mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max);
331 }
332 
333 #ifdef __cplusplus
334 }  // extern "C"
335 #endif
336 
337 #endif  // AOM_AV1_COMMON_MV_H_
338