1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/types.h>
7 
8 #include "gt/intel_gt.h"
9 #include "gt/intel_rps.h"
10 #include "intel_guc_reg.h"
11 #include "intel_huc.h"
12 #include "intel_huc_print.h"
13 #include "i915_drv.h"
14 #include "i915_reg.h"
15 #include "pxp/intel_pxp_cmd_interface_43.h"
16 
17 #include <linux/device/bus.h>
18 #include <linux/mei_aux.h>
19 
20 /**
21  * DOC: HuC
22  *
23  * The HuC is a dedicated microcontroller for usage in media HEVC (High
24  * Efficiency Video Coding) operations. Userspace can directly use the firmware
25  * capabilities by adding HuC specific commands to batch buffers.
26  *
27  * The kernel driver is only responsible for loading the HuC firmware and
28  * triggering its security authentication. This is done differently depending
29  * on the platform:
30  *
31  * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
32  *   and the authentication via GuC
33  * - DG2: load and authentication are both performed via GSC.
34  * - MTL and newer platforms: the load is performed via DMA (same as with
35  *   not-DG2 older platforms), while the authentication is done in 2-steps,
36  *   a first auth for clear-media workloads via GuC and a second one for all
37  *   workloads via GSC.
38  *
39  * On platforms where the GuC does the authentication, to correctly do so the
40  * HuC binary must be loaded before the GuC one.
41  * Loading the HuC is optional; however, not using the HuC might negatively
42  * impact power usage and/or performance of media workloads, depending on the
43  * use-cases.
44  * HuC must be reloaded on events that cause the WOPCM to lose its contents
45  * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
46  * reset, while on newer ones it will survive that.
47  *
48  * See https://github.com/intel/media-driver for the latest details on HuC
49  * functionality.
50  */
51 
52 /**
53  * DOC: HuC Memory Management
54  *
55  * Similarly to the GuC, the HuC can't do any memory allocations on its own,
56  * with the difference being that the allocations for HuC usage are handled by
57  * the userspace driver instead of the kernel one. The HuC accesses the memory
58  * via the PPGTT belonging to the context loaded on the VCS executing the
59  * HuC-specific commands.
60  */
61 
62 /*
63  * MEI-GSC load is an async process. The probing of the exposed aux device
64  * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
65  * on when the kernel schedules it. Unless something goes terribly wrong, we're
66  * guaranteed for this to happen during boot, so the big timeout is a safety net
67  * that we never expect to need.
68  * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
69  * and/or reset, this can take longer. Note that the kernel might schedule
70  * other work between the i915 init/resume and the MEI one, which can add to
71  * the delay.
72  */
73 #define GSC_INIT_TIMEOUT_MS 10000
74 #define PXP_INIT_TIMEOUT_MS 5000
75 
sw_fence_dummy_notify(struct i915_sw_fence * sf,enum i915_sw_fence_notify state)76 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
77 				 enum i915_sw_fence_notify state)
78 {
79 	return NOTIFY_DONE;
80 }
81 
__delayed_huc_load_complete(struct intel_huc * huc)82 static void __delayed_huc_load_complete(struct intel_huc *huc)
83 {
84 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
85 		i915_sw_fence_complete(&huc->delayed_load.fence);
86 }
87 
delayed_huc_load_complete(struct intel_huc * huc)88 static void delayed_huc_load_complete(struct intel_huc *huc)
89 {
90 	hrtimer_cancel(&huc->delayed_load.timer);
91 	__delayed_huc_load_complete(huc);
92 }
93 
__gsc_init_error(struct intel_huc * huc)94 static void __gsc_init_error(struct intel_huc *huc)
95 {
96 	huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
97 	__delayed_huc_load_complete(huc);
98 }
99 
gsc_init_error(struct intel_huc * huc)100 static void gsc_init_error(struct intel_huc *huc)
101 {
102 	hrtimer_cancel(&huc->delayed_load.timer);
103 	__gsc_init_error(huc);
104 }
105 
gsc_init_done(struct intel_huc * huc)106 static void gsc_init_done(struct intel_huc *huc)
107 {
108 	hrtimer_cancel(&huc->delayed_load.timer);
109 
110 	/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
111 	huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
112 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
113 		hrtimer_start(&huc->delayed_load.timer,
114 			      ms_to_ktime(PXP_INIT_TIMEOUT_MS),
115 			      HRTIMER_MODE_REL);
116 }
117 
huc_delayed_load_timer_callback(struct hrtimer * hrtimer)118 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
119 {
120 	struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
121 
122 	if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
123 		if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
124 			huc_notice(huc, "timed out waiting for MEI GSC\n");
125 		else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
126 			huc_notice(huc, "timed out waiting for MEI PXP\n");
127 		else
128 			MISSING_CASE(huc->delayed_load.status);
129 
130 		__gsc_init_error(huc);
131 	}
132 
133 	return HRTIMER_NORESTART;
134 }
135 
huc_delayed_load_start(struct intel_huc * huc)136 static void huc_delayed_load_start(struct intel_huc *huc)
137 {
138 	ktime_t delay;
139 
140 	GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
141 
142 	/*
143 	 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
144 	 * do need to wait for MEI-PXP to reset & re-bind
145 	 */
146 	switch (huc->delayed_load.status) {
147 	case INTEL_HUC_WAITING_ON_GSC:
148 		delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
149 		break;
150 	case INTEL_HUC_WAITING_ON_PXP:
151 		delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
152 		break;
153 	default:
154 		gsc_init_error(huc);
155 		return;
156 	}
157 
158 	/*
159 	 * This fence is always complete unless we're waiting for the
160 	 * GSC device to come up to load the HuC. We arm the fence here
161 	 * and complete it when we confirm that the HuC is loaded from
162 	 * the PXP bind callback.
163 	 */
164 	GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
165 	i915_sw_fence_fini(&huc->delayed_load.fence);
166 	i915_sw_fence_reinit(&huc->delayed_load.fence);
167 	i915_sw_fence_await(&huc->delayed_load.fence);
168 	i915_sw_fence_commit(&huc->delayed_load.fence);
169 
170 	hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
171 }
172 
gsc_notifier(struct notifier_block * nb,unsigned long action,void * data)173 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
174 {
175 	struct device *dev = data;
176 	struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
177 	struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
178 
179 	if (!intf->adev || &intf->adev->aux_dev.dev != dev)
180 		return 0;
181 
182 	switch (action) {
183 	case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
184 		gsc_init_done(huc);
185 		break;
186 
187 	case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
188 	case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
189 		huc_info(huc, "MEI driver not bound, disabling load\n");
190 		gsc_init_error(huc);
191 		break;
192 	}
193 
194 	return 0;
195 }
196 
intel_huc_register_gsc_notifier(struct intel_huc * huc,const struct bus_type * bus)197 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
198 {
199 	int ret;
200 
201 	if (!intel_huc_is_loaded_by_gsc(huc))
202 		return;
203 
204 	huc->delayed_load.nb.notifier_call = gsc_notifier;
205 	ret = bus_register_notifier(bus, &huc->delayed_load.nb);
206 	if (ret) {
207 		huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
208 		huc->delayed_load.nb.notifier_call = NULL;
209 		gsc_init_error(huc);
210 	}
211 }
212 
intel_huc_unregister_gsc_notifier(struct intel_huc * huc,const struct bus_type * bus)213 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
214 {
215 	if (!huc->delayed_load.nb.notifier_call)
216 		return;
217 
218 	delayed_huc_load_complete(huc);
219 
220 	bus_unregister_notifier(bus, &huc->delayed_load.nb);
221 	huc->delayed_load.nb.notifier_call = NULL;
222 }
223 
delayed_huc_load_init(struct intel_huc * huc)224 static void delayed_huc_load_init(struct intel_huc *huc)
225 {
226 	/*
227 	 * Initialize fence to be complete as this is expected to be complete
228 	 * unless there is a delayed HuC load in progress.
229 	 */
230 	i915_sw_fence_init(&huc->delayed_load.fence,
231 			   sw_fence_dummy_notify);
232 	i915_sw_fence_commit(&huc->delayed_load.fence);
233 
234 	hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
235 	huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
236 }
237 
delayed_huc_load_fini(struct intel_huc * huc)238 static void delayed_huc_load_fini(struct intel_huc *huc)
239 {
240 	/*
241 	 * the fence is initialized in init_early, so we need to clean it up
242 	 * even if HuC loading is off.
243 	 */
244 	delayed_huc_load_complete(huc);
245 	i915_sw_fence_fini(&huc->delayed_load.fence);
246 }
247 
intel_huc_sanitize(struct intel_huc * huc)248 int intel_huc_sanitize(struct intel_huc *huc)
249 {
250 	delayed_huc_load_complete(huc);
251 	intel_uc_fw_sanitize(&huc->fw);
252 	return 0;
253 }
254 
vcs_supported(struct intel_gt * gt)255 static bool vcs_supported(struct intel_gt *gt)
256 {
257 	intel_engine_mask_t mask = gt->info.engine_mask;
258 
259 	/*
260 	 * We reach here from i915_driver_early_probe for the primary GT before
261 	 * its engine mask is set, so we use the device info engine mask for it;
262 	 * this means we're not taking VCS fusing into account, but if the
263 	 * primary GT supports VCS engines we expect at least one of them to
264 	 * remain unfused so we're fine.
265 	 * For other GTs we expect the GT-specific mask to be set before we
266 	 * call this function.
267 	 */
268 	GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
269 
270 	if (gt_is_root(gt))
271 		mask = INTEL_INFO(gt->i915)->platform_engine_mask;
272 	else
273 		mask = gt->info.engine_mask;
274 
275 	return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
276 }
277 
intel_huc_init_early(struct intel_huc * huc)278 void intel_huc_init_early(struct intel_huc *huc)
279 {
280 	struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
281 	struct intel_gt *gt = huc_to_gt(huc);
282 
283 	intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
284 
285 	/*
286 	 * we always init the fence as already completed, even if HuC is not
287 	 * supported. This way we don't have to distinguish between HuC not
288 	 * supported/disabled or already loaded, and can focus on if the load
289 	 * is currently in progress (fence not complete) or not, which is what
290 	 * we care about for stalling userspace submissions.
291 	 */
292 	delayed_huc_load_init(huc);
293 
294 	if (!vcs_supported(gt)) {
295 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
296 		return;
297 	}
298 
299 	if (GRAPHICS_VER(i915) >= 11) {
300 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
301 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
302 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
303 	} else {
304 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
305 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
306 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
307 	}
308 
309 	if (IS_DG2(i915)) {
310 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
311 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
312 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
313 	} else {
314 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
315 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
316 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
317 	}
318 }
319 
intel_huc_fini_late(struct intel_huc * huc)320 void intel_huc_fini_late(struct intel_huc *huc)
321 {
322 	delayed_huc_load_fini(huc);
323 }
324 
325 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
check_huc_loading_mode(struct intel_huc * huc)326 static int check_huc_loading_mode(struct intel_huc *huc)
327 {
328 	struct intel_gt *gt = huc_to_gt(huc);
329 	bool gsc_enabled = huc->fw.has_gsc_headers;
330 
331 	/*
332 	 * The fuse for HuC load via GSC is only valid on platforms that have
333 	 * GuC deprivilege.
334 	 */
335 	if (HAS_GUC_DEPRIVILEGE(gt->i915))
336 		huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
337 				      GSC_LOADS_HUC;
338 
339 	if (huc->loaded_via_gsc && !gsc_enabled) {
340 		huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
341 		return -ENOEXEC;
342 	}
343 
344 	/*
345 	 * On newer platforms we have GSC-enabled binaries but we load the HuC
346 	 * via DMA. To do so we need to find the location of the legacy-style
347 	 * binary inside the GSC-enabled one, which we do at fetch time. Make
348 	 * sure that we were able to do so if the fuse says we need to load via
349 	 * DMA and the binary is GSC-enabled.
350 	 */
351 	if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
352 		huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
353 		return -ENOEXEC;
354 	}
355 
356 	/*
357 	 * If the HuC is loaded via GSC, we need to be able to access the GSC.
358 	 * On DG2 this is done via the mei components, while on newer platforms
359 	 * it is done via the GSCCS,
360 	 */
361 	if (huc->loaded_via_gsc) {
362 		if (IS_DG2(gt->i915)) {
363 			if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
364 			    !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
365 				huc_info(huc, "can't load due to missing mei modules\n");
366 				return -EIO;
367 			}
368 		} else {
369 			if (!HAS_ENGINE(gt, GSC0)) {
370 				huc_info(huc, "can't load due to missing GSCCS\n");
371 				return -EIO;
372 			}
373 		}
374 	}
375 
376 	huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
377 
378 	return 0;
379 }
380 
intel_huc_init(struct intel_huc * huc)381 int intel_huc_init(struct intel_huc *huc)
382 {
383 	struct intel_gt *gt = huc_to_gt(huc);
384 	int err;
385 
386 	err = check_huc_loading_mode(huc);
387 	if (err)
388 		goto out;
389 
390 	if (HAS_ENGINE(gt, GSC0)) {
391 		struct i915_vma *vma;
392 
393 		vma = intel_guc_allocate_vma(gt_to_guc(gt), PXP43_HUC_AUTH_INOUT_SIZE * 2);
394 		if (IS_ERR(vma)) {
395 			err = PTR_ERR(vma);
396 			huc_info(huc, "Failed to allocate heci pkt\n");
397 			goto out;
398 		}
399 
400 		huc->heci_pkt = vma;
401 	}
402 
403 	err = intel_uc_fw_init(&huc->fw);
404 	if (err)
405 		goto out_pkt;
406 
407 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
408 
409 	return 0;
410 
411 out_pkt:
412 	if (huc->heci_pkt)
413 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
414 out:
415 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
416 	huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
417 	return err;
418 }
419 
intel_huc_fini(struct intel_huc * huc)420 void intel_huc_fini(struct intel_huc *huc)
421 {
422 	if (huc->heci_pkt)
423 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
424 
425 	if (intel_uc_fw_is_loadable(&huc->fw))
426 		intel_uc_fw_fini(&huc->fw);
427 }
428 
auth_mode_string(struct intel_huc * huc,enum intel_huc_authentication_type type)429 static const char *auth_mode_string(struct intel_huc *huc,
430 				    enum intel_huc_authentication_type type)
431 {
432 	bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
433 
434 	return partial ? "clear media" : "all workloads";
435 }
436 
437 /*
438  * Use a longer timeout for debug builds so that problems can be detected
439  * and analysed. But a shorter timeout for releases so that user's don't
440  * wait forever to find out there is a problem. Note that the only reason
441  * an end user should hit the timeout is in case of extreme thermal throttling.
442  * And a system that is that hot during boot is probably dead anyway!
443  */
444 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
445 #define HUC_LOAD_RETRY_LIMIT   20
446 #else
447 #define HUC_LOAD_RETRY_LIMIT   3
448 #endif
449 
intel_huc_wait_for_auth_complete(struct intel_huc * huc,enum intel_huc_authentication_type type)450 int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
451 				     enum intel_huc_authentication_type type)
452 {
453 	struct intel_gt *gt = huc_to_gt(huc);
454 	struct intel_uncore *uncore = gt->uncore;
455 	ktime_t before, after, delta;
456 	int ret, count;
457 	u64 delta_ms;
458 	u32 before_freq;
459 
460 	/*
461 	 * The KMD requests maximum frequency during driver load, however thermal
462 	 * throttling can force the frequency down to minimum (although the board
463 	 * really should never get that hot in real life!). IFWI  issues have been
464 	 * seen to cause sporadic failures to grant the higher frequency. And at
465 	 * minimum frequency, the authentication time can be in the seconds range.
466 	 * Note that there is a limit on how long an individual wait_for() can wait.
467 	 * So wrap it in a loop.
468 	 */
469 	before_freq = intel_rps_read_actual_frequency(&gt->rps);
470 	before = ktime_get();
471 	for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) {
472 		ret = __intel_wait_for_register(gt->uncore,
473 						huc->status[type].reg,
474 						huc->status[type].mask,
475 						huc->status[type].value,
476 						2, 1000, NULL);
477 		if (!ret)
478 			break;
479 
480 		huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n",
481 			count, intel_rps_read_actual_frequency(&gt->rps),
482 			huc->status[type].reg.reg);
483 	}
484 	after = ktime_get();
485 	delta = ktime_sub(after, before);
486 	delta_ms = ktime_to_ms(delta);
487 
488 	if (delta_ms > 50) {
489 		huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
490 			 delta_ms, huc->status[type].reg.reg, count, ret);
491 		huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
492 			 intel_rps_read_actual_frequency(&gt->rps), before_freq,
493 			 intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
494 	} else {
495 		huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
496 			delta_ms, intel_rps_read_actual_frequency(&gt->rps),
497 			before_freq, huc->status[type].reg.reg, count, ret);
498 	}
499 
500 	/* mark the load process as complete even if the wait failed */
501 	delayed_huc_load_complete(huc);
502 
503 	if (ret) {
504 		huc_err(huc, "firmware not verified for %s: %pe\n",
505 			auth_mode_string(huc, type), ERR_PTR(ret));
506 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
507 		return ret;
508 	}
509 
510 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
511 	huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
512 	return 0;
513 }
514 
515 /**
516  * intel_huc_auth() - Authenticate HuC uCode
517  * @huc: intel_huc structure
518  * @type: authentication type (via GuC or via GSC)
519  *
520  * Called after HuC and GuC firmware loading during intel_uc_init_hw().
521  *
522  * This function invokes the GuC action to authenticate the HuC firmware,
523  * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
524  * waits for up to 50ms for firmware verification ACK.
525  */
intel_huc_auth(struct intel_huc * huc,enum intel_huc_authentication_type type)526 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
527 {
528 	struct intel_gt *gt = huc_to_gt(huc);
529 	struct intel_guc *guc = gt_to_guc(gt);
530 	int ret;
531 
532 	if (!intel_uc_fw_is_loaded(&huc->fw))
533 		return -ENOEXEC;
534 
535 	/* GSC will do the auth with the load */
536 	if (intel_huc_is_loaded_by_gsc(huc))
537 		return -ENODEV;
538 
539 	if (intel_huc_is_authenticated(huc, type))
540 		return -EEXIST;
541 
542 	ret = i915_inject_probe_error(gt->i915, -ENXIO);
543 	if (ret)
544 		goto fail;
545 
546 	switch (type) {
547 	case INTEL_HUC_AUTH_BY_GUC:
548 		ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
549 		break;
550 	case INTEL_HUC_AUTH_BY_GSC:
551 		ret = intel_huc_fw_auth_via_gsccs(huc);
552 		break;
553 	default:
554 		MISSING_CASE(type);
555 		ret = -EINVAL;
556 	}
557 	if (ret)
558 		goto fail;
559 
560 	/* Check authentication status, it should be done by now */
561 	ret = intel_huc_wait_for_auth_complete(huc, type);
562 	if (ret)
563 		goto fail;
564 
565 	return 0;
566 
567 fail:
568 	huc_probe_error(huc, "%s authentication failed %pe\n",
569 			auth_mode_string(huc, type), ERR_PTR(ret));
570 	return ret;
571 }
572 
intel_huc_is_authenticated(struct intel_huc * huc,enum intel_huc_authentication_type type)573 bool intel_huc_is_authenticated(struct intel_huc *huc,
574 				enum intel_huc_authentication_type type)
575 {
576 	struct intel_gt *gt = huc_to_gt(huc);
577 	intel_wakeref_t wakeref;
578 	u32 status = 0;
579 
580 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
581 		status = intel_uncore_read(gt->uncore, huc->status[type].reg);
582 
583 	return (status & huc->status[type].mask) == huc->status[type].value;
584 }
585 
huc_is_fully_authenticated(struct intel_huc * huc)586 static bool huc_is_fully_authenticated(struct intel_huc *huc)
587 {
588 	struct intel_uc_fw *huc_fw = &huc->fw;
589 
590 	if (!huc_fw->has_gsc_headers)
591 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
592 	else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
593 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
594 	else
595 		return false;
596 }
597 
598 /**
599  * intel_huc_check_status() - check HuC status
600  * @huc: intel_huc structure
601  *
602  * This function reads status register to verify if HuC
603  * firmware was successfully loaded.
604  *
605  * The return values match what is expected for the I915_PARAM_HUC_STATUS
606  * getparam.
607  */
intel_huc_check_status(struct intel_huc * huc)608 int intel_huc_check_status(struct intel_huc *huc)
609 {
610 	struct intel_uc_fw *huc_fw = &huc->fw;
611 
612 	switch (__intel_uc_fw_status(huc_fw)) {
613 	case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
614 		return -ENODEV;
615 	case INTEL_UC_FIRMWARE_DISABLED:
616 		return -EOPNOTSUPP;
617 	case INTEL_UC_FIRMWARE_MISSING:
618 		return -ENOPKG;
619 	case INTEL_UC_FIRMWARE_ERROR:
620 		return -ENOEXEC;
621 	case INTEL_UC_FIRMWARE_INIT_FAIL:
622 		return -ENOMEM;
623 	case INTEL_UC_FIRMWARE_LOAD_FAIL:
624 		return -EIO;
625 	default:
626 		break;
627 	}
628 
629 	/*
630 	 * GSC-enabled binaries loaded via DMA are first partially
631 	 * authenticated by GuC and then fully authenticated by GSC
632 	 */
633 	if (huc_is_fully_authenticated(huc))
634 		return 1; /* full auth */
635 	else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
636 		 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
637 		return 2; /* clear media only */
638 	else
639 		return 0;
640 }
641 
huc_has_delayed_load(struct intel_huc * huc)642 static bool huc_has_delayed_load(struct intel_huc *huc)
643 {
644 	return intel_huc_is_loaded_by_gsc(huc) &&
645 	       (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
646 }
647 
intel_huc_update_auth_status(struct intel_huc * huc)648 void intel_huc_update_auth_status(struct intel_huc *huc)
649 {
650 	if (!intel_uc_fw_is_loadable(&huc->fw))
651 		return;
652 
653 	if (!huc->fw.has_gsc_headers)
654 		return;
655 
656 	if (huc_is_fully_authenticated(huc))
657 		intel_uc_fw_change_status(&huc->fw,
658 					  INTEL_UC_FIRMWARE_RUNNING);
659 	else if (huc_has_delayed_load(huc))
660 		huc_delayed_load_start(huc);
661 }
662 
663 /**
664  * intel_huc_load_status - dump information about HuC load status
665  * @huc: the HuC
666  * @p: the &drm_printer
667  *
668  * Pretty printer for HuC load status.
669  */
intel_huc_load_status(struct intel_huc * huc,struct drm_printer * p)670 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
671 {
672 	struct intel_gt *gt = huc_to_gt(huc);
673 	intel_wakeref_t wakeref;
674 
675 	if (!intel_huc_is_supported(huc)) {
676 		drm_printf(p, "HuC not supported\n");
677 		return;
678 	}
679 
680 	if (!intel_huc_is_wanted(huc)) {
681 		drm_printf(p, "HuC disabled\n");
682 		return;
683 	}
684 
685 	intel_uc_fw_dump(&huc->fw, p);
686 
687 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
688 		drm_printf(p, "HuC status: 0x%08x\n",
689 			   intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
690 }
691