1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016-2019 Intel Corporation
4 */
5
6 #include <linux/types.h>
7
8 #include "gt/intel_gt.h"
9 #include "gt/intel_rps.h"
10 #include "intel_guc_reg.h"
11 #include "intel_huc.h"
12 #include "intel_huc_print.h"
13 #include "i915_drv.h"
14 #include "i915_reg.h"
15 #include "pxp/intel_pxp_cmd_interface_43.h"
16
17 #include <linux/device/bus.h>
18 #include <linux/mei_aux.h>
19
20 /**
21 * DOC: HuC
22 *
23 * The HuC is a dedicated microcontroller for usage in media HEVC (High
24 * Efficiency Video Coding) operations. Userspace can directly use the firmware
25 * capabilities by adding HuC specific commands to batch buffers.
26 *
27 * The kernel driver is only responsible for loading the HuC firmware and
28 * triggering its security authentication. This is done differently depending
29 * on the platform:
30 *
31 * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
32 * and the authentication via GuC
33 * - DG2: load and authentication are both performed via GSC.
34 * - MTL and newer platforms: the load is performed via DMA (same as with
35 * not-DG2 older platforms), while the authentication is done in 2-steps,
36 * a first auth for clear-media workloads via GuC and a second one for all
37 * workloads via GSC.
38 *
39 * On platforms where the GuC does the authentication, to correctly do so the
40 * HuC binary must be loaded before the GuC one.
41 * Loading the HuC is optional; however, not using the HuC might negatively
42 * impact power usage and/or performance of media workloads, depending on the
43 * use-cases.
44 * HuC must be reloaded on events that cause the WOPCM to lose its contents
45 * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
46 * reset, while on newer ones it will survive that.
47 *
48 * See https://github.com/intel/media-driver for the latest details on HuC
49 * functionality.
50 */
51
52 /**
53 * DOC: HuC Memory Management
54 *
55 * Similarly to the GuC, the HuC can't do any memory allocations on its own,
56 * with the difference being that the allocations for HuC usage are handled by
57 * the userspace driver instead of the kernel one. The HuC accesses the memory
58 * via the PPGTT belonging to the context loaded on the VCS executing the
59 * HuC-specific commands.
60 */
61
62 /*
63 * MEI-GSC load is an async process. The probing of the exposed aux device
64 * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
65 * on when the kernel schedules it. Unless something goes terribly wrong, we're
66 * guaranteed for this to happen during boot, so the big timeout is a safety net
67 * that we never expect to need.
68 * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
69 * and/or reset, this can take longer. Note that the kernel might schedule
70 * other work between the i915 init/resume and the MEI one, which can add to
71 * the delay.
72 */
73 #define GSC_INIT_TIMEOUT_MS 10000
74 #define PXP_INIT_TIMEOUT_MS 5000
75
sw_fence_dummy_notify(struct i915_sw_fence * sf,enum i915_sw_fence_notify state)76 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
77 enum i915_sw_fence_notify state)
78 {
79 return NOTIFY_DONE;
80 }
81
__delayed_huc_load_complete(struct intel_huc * huc)82 static void __delayed_huc_load_complete(struct intel_huc *huc)
83 {
84 if (!i915_sw_fence_done(&huc->delayed_load.fence))
85 i915_sw_fence_complete(&huc->delayed_load.fence);
86 }
87
delayed_huc_load_complete(struct intel_huc * huc)88 static void delayed_huc_load_complete(struct intel_huc *huc)
89 {
90 hrtimer_cancel(&huc->delayed_load.timer);
91 __delayed_huc_load_complete(huc);
92 }
93
__gsc_init_error(struct intel_huc * huc)94 static void __gsc_init_error(struct intel_huc *huc)
95 {
96 huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
97 __delayed_huc_load_complete(huc);
98 }
99
gsc_init_error(struct intel_huc * huc)100 static void gsc_init_error(struct intel_huc *huc)
101 {
102 hrtimer_cancel(&huc->delayed_load.timer);
103 __gsc_init_error(huc);
104 }
105
gsc_init_done(struct intel_huc * huc)106 static void gsc_init_done(struct intel_huc *huc)
107 {
108 hrtimer_cancel(&huc->delayed_load.timer);
109
110 /* MEI-GSC init is done, now we wait for MEI-PXP to bind */
111 huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
112 if (!i915_sw_fence_done(&huc->delayed_load.fence))
113 hrtimer_start(&huc->delayed_load.timer,
114 ms_to_ktime(PXP_INIT_TIMEOUT_MS),
115 HRTIMER_MODE_REL);
116 }
117
huc_delayed_load_timer_callback(struct hrtimer * hrtimer)118 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
119 {
120 struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
121
122 if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
123 if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
124 huc_notice(huc, "timed out waiting for MEI GSC\n");
125 else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
126 huc_notice(huc, "timed out waiting for MEI PXP\n");
127 else
128 MISSING_CASE(huc->delayed_load.status);
129
130 __gsc_init_error(huc);
131 }
132
133 return HRTIMER_NORESTART;
134 }
135
huc_delayed_load_start(struct intel_huc * huc)136 static void huc_delayed_load_start(struct intel_huc *huc)
137 {
138 ktime_t delay;
139
140 GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
141
142 /*
143 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
144 * do need to wait for MEI-PXP to reset & re-bind
145 */
146 switch (huc->delayed_load.status) {
147 case INTEL_HUC_WAITING_ON_GSC:
148 delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
149 break;
150 case INTEL_HUC_WAITING_ON_PXP:
151 delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
152 break;
153 default:
154 gsc_init_error(huc);
155 return;
156 }
157
158 /*
159 * This fence is always complete unless we're waiting for the
160 * GSC device to come up to load the HuC. We arm the fence here
161 * and complete it when we confirm that the HuC is loaded from
162 * the PXP bind callback.
163 */
164 GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
165 i915_sw_fence_fini(&huc->delayed_load.fence);
166 i915_sw_fence_reinit(&huc->delayed_load.fence);
167 i915_sw_fence_await(&huc->delayed_load.fence);
168 i915_sw_fence_commit(&huc->delayed_load.fence);
169
170 hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
171 }
172
gsc_notifier(struct notifier_block * nb,unsigned long action,void * data)173 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
174 {
175 struct device *dev = data;
176 struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
177 struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
178
179 if (!intf->adev || &intf->adev->aux_dev.dev != dev)
180 return 0;
181
182 switch (action) {
183 case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
184 gsc_init_done(huc);
185 break;
186
187 case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
188 case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
189 huc_info(huc, "MEI driver not bound, disabling load\n");
190 gsc_init_error(huc);
191 break;
192 }
193
194 return 0;
195 }
196
intel_huc_register_gsc_notifier(struct intel_huc * huc,const struct bus_type * bus)197 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
198 {
199 int ret;
200
201 if (!intel_huc_is_loaded_by_gsc(huc))
202 return;
203
204 huc->delayed_load.nb.notifier_call = gsc_notifier;
205 ret = bus_register_notifier(bus, &huc->delayed_load.nb);
206 if (ret) {
207 huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
208 huc->delayed_load.nb.notifier_call = NULL;
209 gsc_init_error(huc);
210 }
211 }
212
intel_huc_unregister_gsc_notifier(struct intel_huc * huc,const struct bus_type * bus)213 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
214 {
215 if (!huc->delayed_load.nb.notifier_call)
216 return;
217
218 delayed_huc_load_complete(huc);
219
220 bus_unregister_notifier(bus, &huc->delayed_load.nb);
221 huc->delayed_load.nb.notifier_call = NULL;
222 }
223
delayed_huc_load_init(struct intel_huc * huc)224 static void delayed_huc_load_init(struct intel_huc *huc)
225 {
226 /*
227 * Initialize fence to be complete as this is expected to be complete
228 * unless there is a delayed HuC load in progress.
229 */
230 i915_sw_fence_init(&huc->delayed_load.fence,
231 sw_fence_dummy_notify);
232 i915_sw_fence_commit(&huc->delayed_load.fence);
233
234 hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
235 huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
236 }
237
delayed_huc_load_fini(struct intel_huc * huc)238 static void delayed_huc_load_fini(struct intel_huc *huc)
239 {
240 /*
241 * the fence is initialized in init_early, so we need to clean it up
242 * even if HuC loading is off.
243 */
244 delayed_huc_load_complete(huc);
245 i915_sw_fence_fini(&huc->delayed_load.fence);
246 }
247
intel_huc_sanitize(struct intel_huc * huc)248 int intel_huc_sanitize(struct intel_huc *huc)
249 {
250 delayed_huc_load_complete(huc);
251 intel_uc_fw_sanitize(&huc->fw);
252 return 0;
253 }
254
vcs_supported(struct intel_gt * gt)255 static bool vcs_supported(struct intel_gt *gt)
256 {
257 intel_engine_mask_t mask = gt->info.engine_mask;
258
259 /*
260 * We reach here from i915_driver_early_probe for the primary GT before
261 * its engine mask is set, so we use the device info engine mask for it;
262 * this means we're not taking VCS fusing into account, but if the
263 * primary GT supports VCS engines we expect at least one of them to
264 * remain unfused so we're fine.
265 * For other GTs we expect the GT-specific mask to be set before we
266 * call this function.
267 */
268 GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
269
270 if (gt_is_root(gt))
271 mask = INTEL_INFO(gt->i915)->platform_engine_mask;
272 else
273 mask = gt->info.engine_mask;
274
275 return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
276 }
277
intel_huc_init_early(struct intel_huc * huc)278 void intel_huc_init_early(struct intel_huc *huc)
279 {
280 struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
281 struct intel_gt *gt = huc_to_gt(huc);
282
283 intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
284
285 /*
286 * we always init the fence as already completed, even if HuC is not
287 * supported. This way we don't have to distinguish between HuC not
288 * supported/disabled or already loaded, and can focus on if the load
289 * is currently in progress (fence not complete) or not, which is what
290 * we care about for stalling userspace submissions.
291 */
292 delayed_huc_load_init(huc);
293
294 if (!vcs_supported(gt)) {
295 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
296 return;
297 }
298
299 if (GRAPHICS_VER(i915) >= 11) {
300 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
301 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
302 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
303 } else {
304 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
305 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
306 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
307 }
308
309 if (IS_DG2(i915)) {
310 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
311 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
312 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
313 } else {
314 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
315 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
316 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
317 }
318 }
319
intel_huc_fini_late(struct intel_huc * huc)320 void intel_huc_fini_late(struct intel_huc *huc)
321 {
322 delayed_huc_load_fini(huc);
323 }
324
325 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
check_huc_loading_mode(struct intel_huc * huc)326 static int check_huc_loading_mode(struct intel_huc *huc)
327 {
328 struct intel_gt *gt = huc_to_gt(huc);
329 bool gsc_enabled = huc->fw.has_gsc_headers;
330
331 /*
332 * The fuse for HuC load via GSC is only valid on platforms that have
333 * GuC deprivilege.
334 */
335 if (HAS_GUC_DEPRIVILEGE(gt->i915))
336 huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
337 GSC_LOADS_HUC;
338
339 if (huc->loaded_via_gsc && !gsc_enabled) {
340 huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
341 return -ENOEXEC;
342 }
343
344 /*
345 * On newer platforms we have GSC-enabled binaries but we load the HuC
346 * via DMA. To do so we need to find the location of the legacy-style
347 * binary inside the GSC-enabled one, which we do at fetch time. Make
348 * sure that we were able to do so if the fuse says we need to load via
349 * DMA and the binary is GSC-enabled.
350 */
351 if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
352 huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
353 return -ENOEXEC;
354 }
355
356 /*
357 * If the HuC is loaded via GSC, we need to be able to access the GSC.
358 * On DG2 this is done via the mei components, while on newer platforms
359 * it is done via the GSCCS,
360 */
361 if (huc->loaded_via_gsc) {
362 if (IS_DG2(gt->i915)) {
363 if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
364 !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
365 huc_info(huc, "can't load due to missing mei modules\n");
366 return -EIO;
367 }
368 } else {
369 if (!HAS_ENGINE(gt, GSC0)) {
370 huc_info(huc, "can't load due to missing GSCCS\n");
371 return -EIO;
372 }
373 }
374 }
375
376 huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
377
378 return 0;
379 }
380
intel_huc_init(struct intel_huc * huc)381 int intel_huc_init(struct intel_huc *huc)
382 {
383 struct intel_gt *gt = huc_to_gt(huc);
384 int err;
385
386 err = check_huc_loading_mode(huc);
387 if (err)
388 goto out;
389
390 if (HAS_ENGINE(gt, GSC0)) {
391 struct i915_vma *vma;
392
393 vma = intel_guc_allocate_vma(gt_to_guc(gt), PXP43_HUC_AUTH_INOUT_SIZE * 2);
394 if (IS_ERR(vma)) {
395 err = PTR_ERR(vma);
396 huc_info(huc, "Failed to allocate heci pkt\n");
397 goto out;
398 }
399
400 huc->heci_pkt = vma;
401 }
402
403 err = intel_uc_fw_init(&huc->fw);
404 if (err)
405 goto out_pkt;
406
407 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
408
409 return 0;
410
411 out_pkt:
412 if (huc->heci_pkt)
413 i915_vma_unpin_and_release(&huc->heci_pkt, 0);
414 out:
415 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
416 huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
417 return err;
418 }
419
intel_huc_fini(struct intel_huc * huc)420 void intel_huc_fini(struct intel_huc *huc)
421 {
422 if (huc->heci_pkt)
423 i915_vma_unpin_and_release(&huc->heci_pkt, 0);
424
425 if (intel_uc_fw_is_loadable(&huc->fw))
426 intel_uc_fw_fini(&huc->fw);
427 }
428
auth_mode_string(struct intel_huc * huc,enum intel_huc_authentication_type type)429 static const char *auth_mode_string(struct intel_huc *huc,
430 enum intel_huc_authentication_type type)
431 {
432 bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
433
434 return partial ? "clear media" : "all workloads";
435 }
436
437 /*
438 * Use a longer timeout for debug builds so that problems can be detected
439 * and analysed. But a shorter timeout for releases so that user's don't
440 * wait forever to find out there is a problem. Note that the only reason
441 * an end user should hit the timeout is in case of extreme thermal throttling.
442 * And a system that is that hot during boot is probably dead anyway!
443 */
444 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
445 #define HUC_LOAD_RETRY_LIMIT 20
446 #else
447 #define HUC_LOAD_RETRY_LIMIT 3
448 #endif
449
intel_huc_wait_for_auth_complete(struct intel_huc * huc,enum intel_huc_authentication_type type)450 int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
451 enum intel_huc_authentication_type type)
452 {
453 struct intel_gt *gt = huc_to_gt(huc);
454 struct intel_uncore *uncore = gt->uncore;
455 ktime_t before, after, delta;
456 int ret, count;
457 u64 delta_ms;
458 u32 before_freq;
459
460 /*
461 * The KMD requests maximum frequency during driver load, however thermal
462 * throttling can force the frequency down to minimum (although the board
463 * really should never get that hot in real life!). IFWI issues have been
464 * seen to cause sporadic failures to grant the higher frequency. And at
465 * minimum frequency, the authentication time can be in the seconds range.
466 * Note that there is a limit on how long an individual wait_for() can wait.
467 * So wrap it in a loop.
468 */
469 before_freq = intel_rps_read_actual_frequency(>->rps);
470 before = ktime_get();
471 for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) {
472 ret = __intel_wait_for_register(gt->uncore,
473 huc->status[type].reg,
474 huc->status[type].mask,
475 huc->status[type].value,
476 2, 1000, NULL);
477 if (!ret)
478 break;
479
480 huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n",
481 count, intel_rps_read_actual_frequency(>->rps),
482 huc->status[type].reg.reg);
483 }
484 after = ktime_get();
485 delta = ktime_sub(after, before);
486 delta_ms = ktime_to_ms(delta);
487
488 if (delta_ms > 50) {
489 huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
490 delta_ms, huc->status[type].reg.reg, count, ret);
491 huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
492 intel_rps_read_actual_frequency(>->rps), before_freq,
493 intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
494 } else {
495 huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
496 delta_ms, intel_rps_read_actual_frequency(>->rps),
497 before_freq, huc->status[type].reg.reg, count, ret);
498 }
499
500 /* mark the load process as complete even if the wait failed */
501 delayed_huc_load_complete(huc);
502
503 if (ret) {
504 huc_err(huc, "firmware not verified for %s: %pe\n",
505 auth_mode_string(huc, type), ERR_PTR(ret));
506 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
507 return ret;
508 }
509
510 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
511 huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
512 return 0;
513 }
514
515 /**
516 * intel_huc_auth() - Authenticate HuC uCode
517 * @huc: intel_huc structure
518 * @type: authentication type (via GuC or via GSC)
519 *
520 * Called after HuC and GuC firmware loading during intel_uc_init_hw().
521 *
522 * This function invokes the GuC action to authenticate the HuC firmware,
523 * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
524 * waits for up to 50ms for firmware verification ACK.
525 */
intel_huc_auth(struct intel_huc * huc,enum intel_huc_authentication_type type)526 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
527 {
528 struct intel_gt *gt = huc_to_gt(huc);
529 struct intel_guc *guc = gt_to_guc(gt);
530 int ret;
531
532 if (!intel_uc_fw_is_loaded(&huc->fw))
533 return -ENOEXEC;
534
535 /* GSC will do the auth with the load */
536 if (intel_huc_is_loaded_by_gsc(huc))
537 return -ENODEV;
538
539 if (intel_huc_is_authenticated(huc, type))
540 return -EEXIST;
541
542 ret = i915_inject_probe_error(gt->i915, -ENXIO);
543 if (ret)
544 goto fail;
545
546 switch (type) {
547 case INTEL_HUC_AUTH_BY_GUC:
548 ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
549 break;
550 case INTEL_HUC_AUTH_BY_GSC:
551 ret = intel_huc_fw_auth_via_gsccs(huc);
552 break;
553 default:
554 MISSING_CASE(type);
555 ret = -EINVAL;
556 }
557 if (ret)
558 goto fail;
559
560 /* Check authentication status, it should be done by now */
561 ret = intel_huc_wait_for_auth_complete(huc, type);
562 if (ret)
563 goto fail;
564
565 return 0;
566
567 fail:
568 huc_probe_error(huc, "%s authentication failed %pe\n",
569 auth_mode_string(huc, type), ERR_PTR(ret));
570 return ret;
571 }
572
intel_huc_is_authenticated(struct intel_huc * huc,enum intel_huc_authentication_type type)573 bool intel_huc_is_authenticated(struct intel_huc *huc,
574 enum intel_huc_authentication_type type)
575 {
576 struct intel_gt *gt = huc_to_gt(huc);
577 intel_wakeref_t wakeref;
578 u32 status = 0;
579
580 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
581 status = intel_uncore_read(gt->uncore, huc->status[type].reg);
582
583 return (status & huc->status[type].mask) == huc->status[type].value;
584 }
585
huc_is_fully_authenticated(struct intel_huc * huc)586 static bool huc_is_fully_authenticated(struct intel_huc *huc)
587 {
588 struct intel_uc_fw *huc_fw = &huc->fw;
589
590 if (!huc_fw->has_gsc_headers)
591 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
592 else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
593 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
594 else
595 return false;
596 }
597
598 /**
599 * intel_huc_check_status() - check HuC status
600 * @huc: intel_huc structure
601 *
602 * This function reads status register to verify if HuC
603 * firmware was successfully loaded.
604 *
605 * The return values match what is expected for the I915_PARAM_HUC_STATUS
606 * getparam.
607 */
intel_huc_check_status(struct intel_huc * huc)608 int intel_huc_check_status(struct intel_huc *huc)
609 {
610 struct intel_uc_fw *huc_fw = &huc->fw;
611
612 switch (__intel_uc_fw_status(huc_fw)) {
613 case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
614 return -ENODEV;
615 case INTEL_UC_FIRMWARE_DISABLED:
616 return -EOPNOTSUPP;
617 case INTEL_UC_FIRMWARE_MISSING:
618 return -ENOPKG;
619 case INTEL_UC_FIRMWARE_ERROR:
620 return -ENOEXEC;
621 case INTEL_UC_FIRMWARE_INIT_FAIL:
622 return -ENOMEM;
623 case INTEL_UC_FIRMWARE_LOAD_FAIL:
624 return -EIO;
625 default:
626 break;
627 }
628
629 /*
630 * GSC-enabled binaries loaded via DMA are first partially
631 * authenticated by GuC and then fully authenticated by GSC
632 */
633 if (huc_is_fully_authenticated(huc))
634 return 1; /* full auth */
635 else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
636 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
637 return 2; /* clear media only */
638 else
639 return 0;
640 }
641
huc_has_delayed_load(struct intel_huc * huc)642 static bool huc_has_delayed_load(struct intel_huc *huc)
643 {
644 return intel_huc_is_loaded_by_gsc(huc) &&
645 (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
646 }
647
intel_huc_update_auth_status(struct intel_huc * huc)648 void intel_huc_update_auth_status(struct intel_huc *huc)
649 {
650 if (!intel_uc_fw_is_loadable(&huc->fw))
651 return;
652
653 if (!huc->fw.has_gsc_headers)
654 return;
655
656 if (huc_is_fully_authenticated(huc))
657 intel_uc_fw_change_status(&huc->fw,
658 INTEL_UC_FIRMWARE_RUNNING);
659 else if (huc_has_delayed_load(huc))
660 huc_delayed_load_start(huc);
661 }
662
663 /**
664 * intel_huc_load_status - dump information about HuC load status
665 * @huc: the HuC
666 * @p: the &drm_printer
667 *
668 * Pretty printer for HuC load status.
669 */
intel_huc_load_status(struct intel_huc * huc,struct drm_printer * p)670 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
671 {
672 struct intel_gt *gt = huc_to_gt(huc);
673 intel_wakeref_t wakeref;
674
675 if (!intel_huc_is_supported(huc)) {
676 drm_printf(p, "HuC not supported\n");
677 return;
678 }
679
680 if (!intel_huc_is_wanted(huc)) {
681 drm_printf(p, "HuC disabled\n");
682 return;
683 }
684
685 intel_uc_fw_dump(&huc->fw, p);
686
687 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
688 drm_printf(p, "HuC status: 0x%08x\n",
689 intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
690 }
691