xref: /aosp_15_r20/external/mesa3d/src/gallium/drivers/iris/iris_fence.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included
12  * in all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /**
24  * @file iris_fence.c
25  *
26  * Fences for driver and IPC serialisation, scheduling and synchronisation.
27  */
28 
29 #include "drm-uapi/sync_file.h"
30 #include "util/u_debug.h"
31 #include "util/u_inlines.h"
32 #include "intel/common/intel_gem.h"
33 
34 #include "iris_batch.h"
35 #include "iris_bufmgr.h"
36 #include "iris_context.h"
37 #include "iris_fence.h"
38 #include "iris_screen.h"
39 
40 static uint32_t
gem_syncobj_create(int fd,uint32_t flags)41 gem_syncobj_create(int fd, uint32_t flags)
42 {
43    struct drm_syncobj_create args = {
44       .flags = flags,
45    };
46 
47    intel_ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &args);
48 
49    return args.handle;
50 }
51 
52 static void
gem_syncobj_destroy(int fd,uint32_t handle)53 gem_syncobj_destroy(int fd, uint32_t handle)
54 {
55    struct drm_syncobj_destroy args = {
56       .handle = handle,
57    };
58 
59    intel_ioctl(fd, DRM_IOCTL_SYNCOBJ_DESTROY, &args);
60 }
61 
62 /**
63  * Make a new sync-point.
64  */
65 struct iris_syncobj *
iris_create_syncobj(struct iris_bufmgr * bufmgr)66 iris_create_syncobj(struct iris_bufmgr *bufmgr)
67 {
68    int fd = iris_bufmgr_get_fd(bufmgr);
69    struct iris_syncobj *syncobj = malloc(sizeof(*syncobj));
70 
71    if (!syncobj)
72       return NULL;
73 
74    syncobj->handle = gem_syncobj_create(fd, 0);
75    assert(syncobj->handle);
76 
77    pipe_reference_init(&syncobj->ref, 1);
78 
79    return syncobj;
80 }
81 
82 void
iris_syncobj_destroy(struct iris_bufmgr * bufmgr,struct iris_syncobj * syncobj)83 iris_syncobj_destroy(struct iris_bufmgr *bufmgr, struct iris_syncobj *syncobj)
84 {
85    int fd = iris_bufmgr_get_fd(bufmgr);
86    gem_syncobj_destroy(fd, syncobj->handle);
87    free(syncobj);
88 }
89 
90 void
iris_syncobj_signal(struct iris_bufmgr * bufmgr,struct iris_syncobj * syncobj)91 iris_syncobj_signal(struct iris_bufmgr *bufmgr, struct iris_syncobj *syncobj)
92 {
93    int fd = iris_bufmgr_get_fd(bufmgr);
94    struct drm_syncobj_array args = {
95       .handles = (uintptr_t)&syncobj->handle,
96       .count_handles = 1,
97    };
98 
99    if (intel_ioctl(fd, DRM_IOCTL_SYNCOBJ_SIGNAL, &args)) {
100       fprintf(stderr, "failed to signal syncobj %"PRIu32"\n",
101               syncobj->handle);
102    }
103 }
104 
105 /**
106  * Add a sync-point to the batch, with the given flags.
107  *
108  * \p flags   One of IRIS_BATCH_FENCE_WAIT or IRIS_BATCH_FENCE_SIGNAL.
109  */
110 void
iris_batch_add_syncobj(struct iris_batch * batch,struct iris_syncobj * syncobj,uint32_t flags)111 iris_batch_add_syncobj(struct iris_batch *batch,
112                        struct iris_syncobj *syncobj,
113                        uint32_t flags)
114 {
115    struct iris_batch_fence *fence =
116       util_dynarray_grow(&batch->exec_fences, struct iris_batch_fence, 1);
117 
118    *fence = (struct iris_batch_fence) {
119       .handle = syncobj->handle,
120       .flags = flags,
121    };
122 
123    struct iris_syncobj **store =
124       util_dynarray_grow(&batch->syncobjs, struct iris_syncobj *, 1);
125 
126    *store = NULL;
127    iris_syncobj_reference(batch->screen->bufmgr, store, syncobj);
128 }
129 
130 /**
131  * Walk through a batch's dependencies (any IRIS_BATCH_FENCE_WAIT syncobjs)
132  * and unreference any which have already passed.
133  *
134  * Sometimes the compute batch is seldom used, and accumulates references
135  * to stale render batches that are no longer of interest, so we can free
136  * those up.
137  */
138 static void
clear_stale_syncobjs(struct iris_batch * batch)139 clear_stale_syncobjs(struct iris_batch *batch)
140 {
141    struct iris_screen *screen = batch->screen;
142    struct iris_bufmgr *bufmgr = screen->bufmgr;
143 
144    int n = util_dynarray_num_elements(&batch->syncobjs, struct iris_syncobj *);
145 
146    assert(n == util_dynarray_num_elements(&batch->exec_fences,
147                                           struct iris_batch_fence));
148 
149    /* Skip the first syncobj, as it's the signalling one. */
150    for (int i = n - 1; i > 0; i--) {
151       struct iris_syncobj **syncobj =
152          util_dynarray_element(&batch->syncobjs, struct iris_syncobj *, i);
153       struct iris_batch_fence *fence =
154          util_dynarray_element(&batch->exec_fences,
155                                struct iris_batch_fence, i);
156       assert(fence->flags & IRIS_BATCH_FENCE_WAIT);
157 
158       if (iris_wait_syncobj(bufmgr, *syncobj, 0) == false)
159          continue;
160 
161       /* This sync object has already passed, there's no need to continue
162        * marking it as a dependency; we can stop holding on to the reference.
163        */
164       iris_syncobj_reference(bufmgr, syncobj, NULL);
165 
166       /* Remove it from the lists; move the last element here. */
167       struct iris_syncobj **nth_syncobj =
168          util_dynarray_pop_ptr(&batch->syncobjs, struct iris_syncobj *);
169       struct iris_batch_fence *nth_fence =
170          util_dynarray_pop_ptr(&batch->exec_fences, struct iris_batch_fence);
171 
172       if (syncobj != nth_syncobj) {
173          *syncobj = *nth_syncobj;
174          memcpy(fence, nth_fence, sizeof(*fence));
175       }
176    }
177 }
178 
179 /* ------------------------------------------------------------------- */
180 
181 struct pipe_fence_handle {
182    struct pipe_reference ref;
183 
184    struct pipe_context *unflushed_ctx;
185 
186    struct iris_fine_fence *fine[IRIS_BATCH_COUNT];
187 };
188 
189 static void
iris_fence_destroy(struct pipe_screen * p_screen,struct pipe_fence_handle * fence)190 iris_fence_destroy(struct pipe_screen *p_screen,
191                    struct pipe_fence_handle *fence)
192 {
193    struct iris_screen *screen = (struct iris_screen *)p_screen;
194 
195    for (unsigned i = 0; i < ARRAY_SIZE(fence->fine); i++)
196       iris_fine_fence_reference(screen, &fence->fine[i], NULL);
197 
198    free(fence);
199 }
200 
201 static void
iris_fence_reference(struct pipe_screen * p_screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)202 iris_fence_reference(struct pipe_screen *p_screen,
203                      struct pipe_fence_handle **dst,
204                      struct pipe_fence_handle *src)
205 {
206    if (pipe_reference(*dst ? &(*dst)->ref : NULL,
207                       src ? &src->ref : NULL))
208       iris_fence_destroy(p_screen, *dst);
209 
210    *dst = src;
211 }
212 
213 bool
iris_wait_syncobj(struct iris_bufmgr * bufmgr,struct iris_syncobj * syncobj,int64_t timeout_nsec)214 iris_wait_syncobj(struct iris_bufmgr *bufmgr,
215                   struct iris_syncobj *syncobj,
216                   int64_t timeout_nsec)
217 {
218    if (!syncobj)
219       return false;
220 
221    int fd = iris_bufmgr_get_fd(bufmgr);
222 
223    struct drm_syncobj_wait args = {
224       .handles = (uintptr_t)&syncobj->handle,
225       .count_handles = 1,
226       .timeout_nsec = timeout_nsec,
227    };
228    return intel_ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &args) == 0;
229 }
230 
231 #define CSI "\e["
232 #define BLUE_HEADER  CSI "0;97;44m"
233 #define NORMAL       CSI "0m"
234 
235 static void
iris_fence_flush(struct pipe_context * ctx,struct pipe_fence_handle ** out_fence,unsigned flags)236 iris_fence_flush(struct pipe_context *ctx,
237                  struct pipe_fence_handle **out_fence,
238                  unsigned flags)
239 {
240    struct iris_screen *screen = (void *) ctx->screen;
241    struct iris_context *ice = (struct iris_context *)ctx;
242 
243    /* We require DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT (kernel 5.2+) for
244     * deferred flushes.  Just ignore the request to defer on older kernels.
245     */
246    if (!(screen->kernel_features & KERNEL_HAS_WAIT_FOR_SUBMIT))
247       flags &= ~PIPE_FLUSH_DEFERRED;
248 
249    const bool deferred = flags & PIPE_FLUSH_DEFERRED;
250 
251    if (flags & PIPE_FLUSH_END_OF_FRAME) {
252       ice->frame++;
253 
254       if (INTEL_DEBUG(DEBUG_SUBMIT)) {
255          fprintf(stderr, "%s ::: FRAME %-10u (ctx %p)%-35c%s\n",
256                  INTEL_DEBUG(DEBUG_COLOR) ? BLUE_HEADER : "",
257                  ice->frame, ctx, ' ',
258                  INTEL_DEBUG(DEBUG_COLOR) ? NORMAL : "");
259       }
260    }
261 
262    iris_flush_dirty_dmabufs(ice);
263 
264    if (!deferred) {
265       iris_foreach_batch(ice, batch)
266          iris_batch_flush(batch);
267    }
268 
269    if (flags & PIPE_FLUSH_END_OF_FRAME) {
270       iris_measure_frame_end(ice);
271    }
272 
273    intel_ds_device_process(&ice->ds, flags & PIPE_FLUSH_END_OF_FRAME);
274 
275    if (!out_fence)
276       return;
277 
278    struct pipe_fence_handle *fence = calloc(1, sizeof(*fence));
279    if (!fence)
280       return;
281 
282    pipe_reference_init(&fence->ref, 1);
283 
284    if (deferred)
285       fence->unflushed_ctx = ctx;
286 
287    iris_foreach_batch(ice, batch) {
288       unsigned b = batch->name;
289 
290       if (deferred && iris_batch_bytes_used(batch) > 0) {
291          struct iris_fine_fence *fine = iris_fine_fence_new(batch);
292          iris_fine_fence_reference(screen, &fence->fine[b], fine);
293          iris_fine_fence_reference(screen, &fine, NULL);
294       } else {
295          /* This batch has no commands queued up (perhaps we just flushed,
296           * or all the commands are on the other batch).  Wait for the last
297           * syncobj on this engine - unless it's already finished by now.
298           */
299          if (iris_fine_fence_signaled(batch->last_fence))
300             continue;
301 
302          iris_fine_fence_reference(screen, &fence->fine[b], batch->last_fence);
303       }
304    }
305 
306    iris_fence_reference(ctx->screen, out_fence, NULL);
307    *out_fence = fence;
308 }
309 
310 static void
iris_fence_await(struct pipe_context * ctx,struct pipe_fence_handle * fence)311 iris_fence_await(struct pipe_context *ctx,
312                  struct pipe_fence_handle *fence)
313 {
314    struct iris_context *ice = (struct iris_context *)ctx;
315 
316    /* Unflushed fences from the same context are no-ops. */
317    if (ctx && ctx == fence->unflushed_ctx)
318       return;
319 
320    /* XXX: We can't safely flush the other context, because it might be
321     *      bound to another thread, and poking at its internals wouldn't
322     *      be safe.  In the future we should use MI_SEMAPHORE_WAIT and
323     *      block until the other job has been submitted, relying on
324     *      kernel timeslicing to preempt us until the other job is
325     *      actually flushed and the seqno finally passes.
326     */
327    if (fence->unflushed_ctx) {
328       util_debug_message(&ice->dbg, CONFORMANCE, "%s",
329                          "glWaitSync on unflushed fence from another context "
330                          "is unlikely to work without kernel 5.8+\n");
331    }
332 
333    for (unsigned i = 0; i < ARRAY_SIZE(fence->fine); i++) {
334       struct iris_fine_fence *fine = fence->fine[i];
335 
336       if (iris_fine_fence_signaled(fine))
337          continue;
338 
339       iris_foreach_batch(ice, batch) {
340          /* We're going to make any future work in this batch wait for our
341           * fence to have gone by.  But any currently queued work doesn't
342           * need to wait.  Flush the batch now, so it can happen sooner.
343           */
344          iris_batch_flush(batch);
345 
346          /* Before adding a new reference, clean out any stale ones. */
347          clear_stale_syncobjs(batch);
348 
349          iris_batch_add_syncobj(batch, fine->syncobj, IRIS_BATCH_FENCE_WAIT);
350       }
351    }
352 }
353 
354 #define NSEC_PER_SEC (1000 * USEC_PER_SEC)
355 #define USEC_PER_SEC (1000 * MSEC_PER_SEC)
356 #define MSEC_PER_SEC (1000)
357 
358 static uint64_t
gettime_ns(void)359 gettime_ns(void)
360 {
361    struct timespec current;
362    clock_gettime(CLOCK_MONOTONIC, &current);
363    return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec;
364 }
365 
366 static uint64_t
rel2abs(uint64_t timeout)367 rel2abs(uint64_t timeout)
368 {
369    if (timeout == 0)
370       return 0;
371 
372    uint64_t current_time = gettime_ns();
373    uint64_t max_timeout = (uint64_t) INT64_MAX - current_time;
374 
375    timeout = MIN2(max_timeout, timeout);
376 
377    return current_time + timeout;
378 }
379 
380 static bool
iris_fence_finish(struct pipe_screen * p_screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)381 iris_fence_finish(struct pipe_screen *p_screen,
382                   struct pipe_context *ctx,
383                   struct pipe_fence_handle *fence,
384                   uint64_t timeout)
385 {
386    ctx = threaded_context_unwrap_sync(ctx);
387 
388    struct iris_context *ice = (struct iris_context *)ctx;
389    struct iris_screen *screen = (struct iris_screen *)p_screen;
390 
391    /* If we created the fence with PIPE_FLUSH_DEFERRED, we may not have
392     * flushed yet.  Check if our syncobj is the current batch's signalling
393     * syncobj - if so, we haven't flushed and need to now.
394     *
395     * The Gallium docs mention that a flush will occur if \p ctx matches
396     * the context the fence was created with.  It may be NULL, so we check
397     * that it matches first.
398     */
399    if (ctx && ctx == fence->unflushed_ctx) {
400       iris_foreach_batch(ice, batch) {
401          struct iris_fine_fence *fine = fence->fine[batch->name];
402 
403          if (iris_fine_fence_signaled(fine))
404             continue;
405 
406          if (fine->syncobj == iris_batch_get_signal_syncobj(batch))
407             iris_batch_flush(batch);
408       }
409 
410       /* The fence is no longer deferred. */
411       fence->unflushed_ctx = NULL;
412    }
413 
414    unsigned int handle_count = 0;
415    uint32_t handles[ARRAY_SIZE(fence->fine)];
416    for (unsigned i = 0; i < ARRAY_SIZE(fence->fine); i++) {
417       struct iris_fine_fence *fine = fence->fine[i];
418 
419       if (iris_fine_fence_signaled(fine))
420          continue;
421 
422       handles[handle_count++] = fine->syncobj->handle;
423    }
424 
425    if (handle_count == 0)
426       return true;
427 
428    struct drm_syncobj_wait args = {
429       .handles = (uintptr_t)handles,
430       .count_handles = handle_count,
431       .timeout_nsec = rel2abs(timeout),
432       .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL
433    };
434 
435    if (fence->unflushed_ctx) {
436       /* This fence had a deferred flush from another context.  We can't
437        * safely flush it here, because the context might be bound to a
438        * different thread, and poking at its internals wouldn't be safe.
439        *
440        * Instead, use the WAIT_FOR_SUBMIT flag to block and hope that
441        * another thread submits the work.
442        */
443       args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT;
444    }
445 
446    return intel_ioctl(screen->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args) == 0;
447 }
448 
449 static int
sync_merge_fd(int sync_fd,int new_fd)450 sync_merge_fd(int sync_fd, int new_fd)
451 {
452    if (sync_fd == -1)
453       return new_fd;
454 
455    if (new_fd == -1)
456       return sync_fd;
457 
458    struct sync_merge_data args = {
459       .name = "iris fence",
460       .fd2 = new_fd,
461       .fence = -1,
462    };
463 
464    intel_ioctl(sync_fd, SYNC_IOC_MERGE, &args);
465    close(new_fd);
466    close(sync_fd);
467 
468    return args.fence;
469 }
470 
471 static int
iris_fence_get_fd(struct pipe_screen * p_screen,struct pipe_fence_handle * fence)472 iris_fence_get_fd(struct pipe_screen *p_screen,
473                   struct pipe_fence_handle *fence)
474 {
475    struct iris_screen *screen = (struct iris_screen *)p_screen;
476    int fd = -1;
477 
478    /* Deferred fences aren't supported. */
479    if (fence->unflushed_ctx)
480       return -1;
481 
482    for (unsigned i = 0; i < ARRAY_SIZE(fence->fine); i++) {
483       struct iris_fine_fence *fine = fence->fine[i];
484 
485       if (iris_fine_fence_signaled(fine))
486          continue;
487 
488       struct drm_syncobj_handle args = {
489          .handle = fine->syncobj->handle,
490          .flags = DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE,
491          .fd = -1,
492       };
493 
494       intel_ioctl(screen->fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &args);
495       fd = sync_merge_fd(fd, args.fd);
496    }
497 
498    if (fd == -1) {
499       /* Our fence has no syncobj's recorded.  This means that all of the
500        * batches had already completed, their syncobj's had been signalled,
501        * and so we didn't bother to record them.  But we're being asked to
502        * export such a fence.  So export a dummy already-signalled syncobj.
503        */
504       struct drm_syncobj_handle args = {
505          .flags = DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE, .fd = -1,
506       };
507 
508       args.handle = gem_syncobj_create(screen->fd, DRM_SYNCOBJ_CREATE_SIGNALED);
509       intel_ioctl(screen->fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &args);
510       gem_syncobj_destroy(screen->fd, args.handle);
511       return args.fd;
512    }
513 
514    return fd;
515 }
516 
517 static void
iris_fence_create_fd(struct pipe_context * ctx,struct pipe_fence_handle ** out,int fd,enum pipe_fd_type type)518 iris_fence_create_fd(struct pipe_context *ctx,
519                      struct pipe_fence_handle **out,
520                      int fd,
521                      enum pipe_fd_type type)
522 {
523    assert(type == PIPE_FD_TYPE_NATIVE_SYNC || type == PIPE_FD_TYPE_SYNCOBJ);
524 
525    struct iris_screen *screen = (struct iris_screen *)ctx->screen;
526    struct drm_syncobj_handle args = {
527       .fd = fd,
528    };
529 
530    if (type == PIPE_FD_TYPE_NATIVE_SYNC) {
531       args.flags = DRM_SYNCOBJ_FD_TO_HANDLE_FLAGS_IMPORT_SYNC_FILE;
532       args.handle = gem_syncobj_create(screen->fd, DRM_SYNCOBJ_CREATE_SIGNALED);
533    }
534 
535    if (intel_ioctl(screen->fd, DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE, &args) == -1) {
536       fprintf(stderr, "DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE failed: %s\n",
537               strerror(errno));
538       if (type == PIPE_FD_TYPE_NATIVE_SYNC)
539          gem_syncobj_destroy(screen->fd, args.handle);
540       *out = NULL;
541       return;
542    }
543 
544    struct iris_syncobj *syncobj = malloc(sizeof(*syncobj));
545    if (!syncobj) {
546       *out = NULL;
547       return;
548    }
549    syncobj->handle = args.handle;
550    pipe_reference_init(&syncobj->ref, 1);
551 
552    struct iris_fine_fence *fine = calloc(1, sizeof(*fine));
553    if (!fine) {
554       free(syncobj);
555       *out = NULL;
556       return;
557    }
558 
559    static const uint32_t zero = 0;
560 
561    /* Fences work in terms of iris_fine_fence, but we don't actually have a
562     * seqno for an imported fence.  So, create a fake one which always
563     * returns as 'not signaled' so we fall back to using the sync object.
564     */
565    fine->seqno = UINT32_MAX;
566    fine->map = &zero;
567    fine->syncobj = syncobj;
568    pipe_reference_init(&fine->reference, 1);
569 
570    struct pipe_fence_handle *fence = calloc(1, sizeof(*fence));
571    if (!fence) {
572       free(fine);
573       free(syncobj);
574       *out = NULL;
575       return;
576    }
577    pipe_reference_init(&fence->ref, 1);
578    fence->fine[0] = fine;
579 
580    *out = fence;
581 }
582 
583 static void
iris_fence_signal(struct pipe_context * ctx,struct pipe_fence_handle * fence)584 iris_fence_signal(struct pipe_context *ctx,
585                   struct pipe_fence_handle *fence)
586 {
587    struct iris_context *ice = (struct iris_context *)ctx;
588 
589    if (ctx == fence->unflushed_ctx)
590       return;
591 
592    iris_foreach_batch(ice, batch) {
593       for (unsigned i = 0; i < ARRAY_SIZE(fence->fine); i++) {
594          struct iris_fine_fence *fine = fence->fine[i];
595 
596          /* already signaled fence skipped */
597          if (iris_fine_fence_signaled(fine))
598             continue;
599 
600          batch->contains_fence_signal = true;
601          iris_batch_add_syncobj(batch, fine->syncobj, IRIS_BATCH_FENCE_SIGNAL);
602       }
603       if (batch->contains_fence_signal)
604          iris_batch_flush(batch);
605    }
606 }
607 
608 void
iris_init_screen_fence_functions(struct pipe_screen * screen)609 iris_init_screen_fence_functions(struct pipe_screen *screen)
610 {
611    screen->fence_reference = iris_fence_reference;
612    screen->fence_finish = iris_fence_finish;
613    screen->fence_get_fd = iris_fence_get_fd;
614 }
615 
616 void
iris_init_context_fence_functions(struct pipe_context * ctx)617 iris_init_context_fence_functions(struct pipe_context *ctx)
618 {
619    ctx->flush = iris_fence_flush;
620    ctx->create_fence_fd = iris_fence_create_fd;
621    ctx->fence_server_sync = iris_fence_await;
622    ctx->fence_server_signal = iris_fence_signal;
623 }
624