1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <[email protected]>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
24 #include <linux/mm.h>
25 #include <linux/msi.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 #include "irq-msi-lib.h"
45 
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
49 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801	(1ULL << 4)
51 
52 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
53 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
54 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 static u8 __ro_after_init lpi_prop_prio;
68 static struct its_node *find_4_1_its(void);
69 
70 /*
71  * Collection structure - just an ID, and a redistributor address to
72  * ping. We use one per CPU as a bag of interrupts assigned to this
73  * CPU.
74  */
75 struct its_collection {
76 	u64			target_address;
77 	u16			col_id;
78 };
79 
80 /*
81  * The ITS_BASER structure - contains memory information, cached
82  * value of BASER register configuration and ITS page size.
83  */
84 struct its_baser {
85 	void		*base;
86 	u64		val;
87 	u32		order;
88 	u32		psz;
89 };
90 
91 struct its_device;
92 
93 /*
94  * The ITS structure - contains most of the infrastructure, with the
95  * top-level MSI domain, the command queue, the collections, and the
96  * list of devices writing to it.
97  *
98  * dev_alloc_lock has to be taken for device allocations, while the
99  * spinlock must be taken to parse data structures such as the device
100  * list.
101  */
102 struct its_node {
103 	raw_spinlock_t		lock;
104 	struct mutex		dev_alloc_lock;
105 	struct list_head	entry;
106 	void __iomem		*base;
107 	void __iomem		*sgir_base;
108 	phys_addr_t		phys_base;
109 	struct its_cmd_block	*cmd_base;
110 	struct its_cmd_block	*cmd_write;
111 	struct its_baser	tables[GITS_BASER_NR_REGS];
112 	struct its_collection	*collections;
113 	struct fwnode_handle	*fwnode_handle;
114 	u64			(*get_msi_base)(struct its_device *its_dev);
115 	u64			typer;
116 	u64			cbaser_save;
117 	u32			ctlr_save;
118 	u32			mpidr;
119 	struct list_head	its_device_list;
120 	u64			flags;
121 	unsigned long		list_nr;
122 	int			numa_node;
123 	unsigned int		msi_domain_flags;
124 	u32			pre_its_base; /* for Socionext Synquacer */
125 	int			vlpi_redist_offset;
126 };
127 
128 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
129 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
130 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
131 
132 #define ITS_ITT_ALIGN		SZ_256
133 
134 /* The maximum number of VPEID bits supported by VLPI commands */
135 #define ITS_MAX_VPEID_BITS						\
136 	({								\
137 		int nvpeid = 16;					\
138 		if (gic_rdists->has_rvpeid &&				\
139 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
140 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
141 				      GICD_TYPER2_VID);			\
142 									\
143 		nvpeid;							\
144 	})
145 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
146 
147 /* Convert page order to size in bytes */
148 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
149 
150 struct event_lpi_map {
151 	unsigned long		*lpi_map;
152 	u16			*col_map;
153 	irq_hw_number_t		lpi_base;
154 	int			nr_lpis;
155 	raw_spinlock_t		vlpi_lock;
156 	struct its_vm		*vm;
157 	struct its_vlpi_map	*vlpi_maps;
158 	int			nr_vlpis;
159 };
160 
161 /*
162  * The ITS view of a device - belongs to an ITS, owns an interrupt
163  * translation table, and a list of interrupts.  If it some of its
164  * LPIs are injected into a guest (GICv4), the event_map.vm field
165  * indicates which one.
166  */
167 struct its_device {
168 	struct list_head	entry;
169 	struct its_node		*its;
170 	struct event_lpi_map	event_map;
171 	void			*itt;
172 	u32			itt_sz;
173 	u32			nr_ites;
174 	u32			device_id;
175 	bool			shared;
176 };
177 
178 static struct {
179 	raw_spinlock_t		lock;
180 	struct its_device	*dev;
181 	struct its_vpe		**vpes;
182 	int			next_victim;
183 } vpe_proxy;
184 
185 struct cpu_lpi_count {
186 	atomic_t	managed;
187 	atomic_t	unmanaged;
188 };
189 
190 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
191 
192 static LIST_HEAD(its_nodes);
193 static DEFINE_RAW_SPINLOCK(its_lock);
194 static struct rdists *gic_rdists;
195 static struct irq_domain *its_parent;
196 
197 static unsigned long its_list_map;
198 static u16 vmovp_seq_num;
199 static DEFINE_RAW_SPINLOCK(vmovp_lock);
200 
201 static DEFINE_IDA(its_vpeid_ida);
202 
203 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
204 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
205 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
206 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
207 
208 static gfp_t gfp_flags_quirk;
209 
its_alloc_pages_node(int node,gfp_t gfp,unsigned int order)210 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
211 					 unsigned int order)
212 {
213 	struct page *page;
214 	int ret = 0;
215 
216 	page = alloc_pages_node(node, gfp | gfp_flags_quirk, order);
217 
218 	if (!page)
219 		return NULL;
220 
221 	ret = set_memory_decrypted((unsigned long)page_address(page),
222 				   1 << order);
223 	/*
224 	 * If set_memory_decrypted() fails then we don't know what state the
225 	 * page is in, so we can't free it. Instead we leak it.
226 	 * set_memory_decrypted() will already have WARNed.
227 	 */
228 	if (ret)
229 		return NULL;
230 
231 	return page;
232 }
233 
its_alloc_pages(gfp_t gfp,unsigned int order)234 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
235 {
236 	return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
237 }
238 
its_free_pages(void * addr,unsigned int order)239 static void its_free_pages(void *addr, unsigned int order)
240 {
241 	/*
242 	 * If the memory cannot be encrypted again then we must leak the pages.
243 	 * set_memory_encrypted() will already have WARNed.
244 	 */
245 	if (set_memory_encrypted((unsigned long)addr, 1 << order))
246 		return;
247 	free_pages((unsigned long)addr, order);
248 }
249 
250 static struct gen_pool *itt_pool;
251 
itt_alloc_pool(int node,int size)252 static void *itt_alloc_pool(int node, int size)
253 {
254 	unsigned long addr;
255 	struct page *page;
256 
257 	if (size >= PAGE_SIZE) {
258 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
259 
260 		return page ? page_address(page) : NULL;
261 	}
262 
263 	do {
264 		addr = gen_pool_alloc(itt_pool, size);
265 		if (addr)
266 			break;
267 
268 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
269 		if (!page)
270 			break;
271 
272 		gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
273 	} while (!addr);
274 
275 	return (void *)addr;
276 }
277 
itt_free_pool(void * addr,int size)278 static void itt_free_pool(void *addr, int size)
279 {
280 	if (!addr)
281 		return;
282 
283 	if (size >= PAGE_SIZE) {
284 		its_free_pages(addr, get_order(size));
285 		return;
286 	}
287 
288 	gen_pool_free(itt_pool, (unsigned long)addr, size);
289 }
290 
291 /*
292  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
293  * always have vSGIs mapped.
294  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)295 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
296 {
297 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
298 }
299 
rdists_support_shareable(void)300 static bool rdists_support_shareable(void)
301 {
302 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
303 }
304 
get_its_list(struct its_vm * vm)305 static u16 get_its_list(struct its_vm *vm)
306 {
307 	struct its_node *its;
308 	unsigned long its_list = 0;
309 
310 	list_for_each_entry(its, &its_nodes, entry) {
311 		if (!is_v4(its))
312 			continue;
313 
314 		if (require_its_list_vmovp(vm, its))
315 			__set_bit(its->list_nr, &its_list);
316 	}
317 
318 	return (u16)its_list;
319 }
320 
its_get_event_id(struct irq_data * d)321 static inline u32 its_get_event_id(struct irq_data *d)
322 {
323 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
324 	return d->hwirq - its_dev->event_map.lpi_base;
325 }
326 
dev_event_to_col(struct its_device * its_dev,u32 event)327 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
328 					       u32 event)
329 {
330 	struct its_node *its = its_dev->its;
331 
332 	return its->collections + its_dev->event_map.col_map[event];
333 }
334 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)335 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
336 					       u32 event)
337 {
338 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
339 		return NULL;
340 
341 	return &its_dev->event_map.vlpi_maps[event];
342 }
343 
get_vlpi_map(struct irq_data * d)344 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
345 {
346 	if (irqd_is_forwarded_to_vcpu(d)) {
347 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
348 		u32 event = its_get_event_id(d);
349 
350 		return dev_event_to_vlpi_map(its_dev, event);
351 	}
352 
353 	return NULL;
354 }
355 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)356 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
357 {
358 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
359 	return vpe->col_idx;
360 }
361 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)362 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
363 {
364 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
365 }
366 
367 static struct irq_chip its_vpe_irq_chip;
368 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)369 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
370 {
371 	struct its_vpe *vpe = NULL;
372 	int cpu;
373 
374 	if (d->chip == &its_vpe_irq_chip) {
375 		vpe = irq_data_get_irq_chip_data(d);
376 	} else {
377 		struct its_vlpi_map *map = get_vlpi_map(d);
378 		if (map)
379 			vpe = map->vpe;
380 	}
381 
382 	if (vpe) {
383 		cpu = vpe_to_cpuid_lock(vpe, flags);
384 	} else {
385 		/* Physical LPIs are already locked via the irq_desc lock */
386 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
387 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
388 		/* Keep GCC quiet... */
389 		*flags = 0;
390 	}
391 
392 	return cpu;
393 }
394 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)395 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
396 {
397 	struct its_vpe *vpe = NULL;
398 
399 	if (d->chip == &its_vpe_irq_chip) {
400 		vpe = irq_data_get_irq_chip_data(d);
401 	} else {
402 		struct its_vlpi_map *map = get_vlpi_map(d);
403 		if (map)
404 			vpe = map->vpe;
405 	}
406 
407 	if (vpe)
408 		vpe_to_cpuid_unlock(vpe, flags);
409 }
410 
valid_col(struct its_collection * col)411 static struct its_collection *valid_col(struct its_collection *col)
412 {
413 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
414 		return NULL;
415 
416 	return col;
417 }
418 
valid_vpe(struct its_node * its,struct its_vpe * vpe)419 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
420 {
421 	if (valid_col(its->collections + vpe->col_idx))
422 		return vpe;
423 
424 	return NULL;
425 }
426 
427 /*
428  * ITS command descriptors - parameters to be encoded in a command
429  * block.
430  */
431 struct its_cmd_desc {
432 	union {
433 		struct {
434 			struct its_device *dev;
435 			u32 event_id;
436 		} its_inv_cmd;
437 
438 		struct {
439 			struct its_device *dev;
440 			u32 event_id;
441 		} its_clear_cmd;
442 
443 		struct {
444 			struct its_device *dev;
445 			u32 event_id;
446 		} its_int_cmd;
447 
448 		struct {
449 			struct its_device *dev;
450 			int valid;
451 		} its_mapd_cmd;
452 
453 		struct {
454 			struct its_collection *col;
455 			int valid;
456 		} its_mapc_cmd;
457 
458 		struct {
459 			struct its_device *dev;
460 			u32 phys_id;
461 			u32 event_id;
462 		} its_mapti_cmd;
463 
464 		struct {
465 			struct its_device *dev;
466 			struct its_collection *col;
467 			u32 event_id;
468 		} its_movi_cmd;
469 
470 		struct {
471 			struct its_device *dev;
472 			u32 event_id;
473 		} its_discard_cmd;
474 
475 		struct {
476 			struct its_collection *col;
477 		} its_invall_cmd;
478 
479 		struct {
480 			struct its_vpe *vpe;
481 		} its_vinvall_cmd;
482 
483 		struct {
484 			struct its_vpe *vpe;
485 			struct its_collection *col;
486 			bool valid;
487 		} its_vmapp_cmd;
488 
489 		struct {
490 			struct its_vpe *vpe;
491 			struct its_device *dev;
492 			u32 virt_id;
493 			u32 event_id;
494 			bool db_enabled;
495 		} its_vmapti_cmd;
496 
497 		struct {
498 			struct its_vpe *vpe;
499 			struct its_device *dev;
500 			u32 event_id;
501 			bool db_enabled;
502 		} its_vmovi_cmd;
503 
504 		struct {
505 			struct its_vpe *vpe;
506 			struct its_collection *col;
507 			u16 seq_num;
508 			u16 its_list;
509 		} its_vmovp_cmd;
510 
511 		struct {
512 			struct its_vpe *vpe;
513 		} its_invdb_cmd;
514 
515 		struct {
516 			struct its_vpe *vpe;
517 			u8 sgi;
518 			u8 priority;
519 			bool enable;
520 			bool group;
521 			bool clear;
522 		} its_vsgi_cmd;
523 	};
524 };
525 
526 /*
527  * The ITS command block, which is what the ITS actually parses.
528  */
529 struct its_cmd_block {
530 	union {
531 		u64	raw_cmd[4];
532 		__le64	raw_cmd_le[4];
533 	};
534 };
535 
536 #define ITS_CMD_QUEUE_SZ		SZ_64K
537 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
538 
539 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
540 						    struct its_cmd_block *,
541 						    struct its_cmd_desc *);
542 
543 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
544 					      struct its_cmd_block *,
545 					      struct its_cmd_desc *);
546 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)547 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
548 {
549 	u64 mask = GENMASK_ULL(h, l);
550 	*raw_cmd &= ~mask;
551 	*raw_cmd |= (val << l) & mask;
552 }
553 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)554 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
557 }
558 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)559 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
560 {
561 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
562 }
563 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)564 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
565 {
566 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
567 }
568 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)569 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
570 {
571 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
572 }
573 
its_encode_size(struct its_cmd_block * cmd,u8 size)574 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
575 {
576 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
577 }
578 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)579 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
580 {
581 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
582 }
583 
its_encode_valid(struct its_cmd_block * cmd,int valid)584 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
585 {
586 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
587 }
588 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)589 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
590 {
591 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
592 }
593 
its_encode_collection(struct its_cmd_block * cmd,u16 col)594 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
595 {
596 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
597 }
598 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)599 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
600 {
601 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
602 }
603 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)604 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
605 {
606 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
607 }
608 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)609 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
610 {
611 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
612 }
613 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)614 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
615 {
616 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
617 }
618 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)619 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
620 {
621 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
622 }
623 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)624 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
625 {
626 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
627 }
628 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)629 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
630 {
631 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
632 }
633 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)634 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
635 {
636 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
637 }
638 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)639 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
640 {
641 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
642 }
643 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)644 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
645 {
646 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
647 }
648 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)649 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
650 {
651 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
652 }
653 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)654 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
655 					u32 vpe_db_lpi)
656 {
657 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
658 }
659 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)660 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
661 					u32 vpe_db_lpi)
662 {
663 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
664 }
665 
its_encode_db(struct its_cmd_block * cmd,bool db)666 static void its_encode_db(struct its_cmd_block *cmd, bool db)
667 {
668 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
669 }
670 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)671 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
672 {
673 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
674 }
675 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)676 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
677 {
678 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
679 }
680 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)681 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
682 {
683 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
684 }
685 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)686 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
687 {
688 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
689 }
690 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)691 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
692 {
693 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
694 }
695 
its_fixup_cmd(struct its_cmd_block * cmd)696 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
697 {
698 	/* Let's fixup BE commands */
699 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
700 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
701 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
702 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
703 }
704 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)705 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
706 						 struct its_cmd_block *cmd,
707 						 struct its_cmd_desc *desc)
708 {
709 	unsigned long itt_addr;
710 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
711 
712 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
713 
714 	its_encode_cmd(cmd, GITS_CMD_MAPD);
715 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
716 	its_encode_size(cmd, size - 1);
717 	its_encode_itt(cmd, itt_addr);
718 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
719 
720 	its_fixup_cmd(cmd);
721 
722 	return NULL;
723 }
724 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)725 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
726 						 struct its_cmd_block *cmd,
727 						 struct its_cmd_desc *desc)
728 {
729 	its_encode_cmd(cmd, GITS_CMD_MAPC);
730 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
731 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
732 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
733 
734 	its_fixup_cmd(cmd);
735 
736 	return desc->its_mapc_cmd.col;
737 }
738 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)739 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
740 						  struct its_cmd_block *cmd,
741 						  struct its_cmd_desc *desc)
742 {
743 	struct its_collection *col;
744 
745 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
746 			       desc->its_mapti_cmd.event_id);
747 
748 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
749 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
750 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
751 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
752 	its_encode_collection(cmd, col->col_id);
753 
754 	its_fixup_cmd(cmd);
755 
756 	return valid_col(col);
757 }
758 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)759 static struct its_collection *its_build_movi_cmd(struct its_node *its,
760 						 struct its_cmd_block *cmd,
761 						 struct its_cmd_desc *desc)
762 {
763 	struct its_collection *col;
764 
765 	col = dev_event_to_col(desc->its_movi_cmd.dev,
766 			       desc->its_movi_cmd.event_id);
767 
768 	its_encode_cmd(cmd, GITS_CMD_MOVI);
769 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
770 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
771 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
772 
773 	its_fixup_cmd(cmd);
774 
775 	return valid_col(col);
776 }
777 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)778 static struct its_collection *its_build_discard_cmd(struct its_node *its,
779 						    struct its_cmd_block *cmd,
780 						    struct its_cmd_desc *desc)
781 {
782 	struct its_collection *col;
783 
784 	col = dev_event_to_col(desc->its_discard_cmd.dev,
785 			       desc->its_discard_cmd.event_id);
786 
787 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
788 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
789 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
790 
791 	its_fixup_cmd(cmd);
792 
793 	return valid_col(col);
794 }
795 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)796 static struct its_collection *its_build_inv_cmd(struct its_node *its,
797 						struct its_cmd_block *cmd,
798 						struct its_cmd_desc *desc)
799 {
800 	struct its_collection *col;
801 
802 	col = dev_event_to_col(desc->its_inv_cmd.dev,
803 			       desc->its_inv_cmd.event_id);
804 
805 	its_encode_cmd(cmd, GITS_CMD_INV);
806 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
807 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
808 
809 	its_fixup_cmd(cmd);
810 
811 	return valid_col(col);
812 }
813 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)814 static struct its_collection *its_build_int_cmd(struct its_node *its,
815 						struct its_cmd_block *cmd,
816 						struct its_cmd_desc *desc)
817 {
818 	struct its_collection *col;
819 
820 	col = dev_event_to_col(desc->its_int_cmd.dev,
821 			       desc->its_int_cmd.event_id);
822 
823 	its_encode_cmd(cmd, GITS_CMD_INT);
824 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
825 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
826 
827 	its_fixup_cmd(cmd);
828 
829 	return valid_col(col);
830 }
831 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)832 static struct its_collection *its_build_clear_cmd(struct its_node *its,
833 						  struct its_cmd_block *cmd,
834 						  struct its_cmd_desc *desc)
835 {
836 	struct its_collection *col;
837 
838 	col = dev_event_to_col(desc->its_clear_cmd.dev,
839 			       desc->its_clear_cmd.event_id);
840 
841 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
842 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
843 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
844 
845 	its_fixup_cmd(cmd);
846 
847 	return valid_col(col);
848 }
849 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)850 static struct its_collection *its_build_invall_cmd(struct its_node *its,
851 						   struct its_cmd_block *cmd,
852 						   struct its_cmd_desc *desc)
853 {
854 	its_encode_cmd(cmd, GITS_CMD_INVALL);
855 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
856 
857 	its_fixup_cmd(cmd);
858 
859 	return desc->its_invall_cmd.col;
860 }
861 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)862 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
863 					     struct its_cmd_block *cmd,
864 					     struct its_cmd_desc *desc)
865 {
866 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
867 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
868 
869 	its_fixup_cmd(cmd);
870 
871 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
872 }
873 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)874 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
875 					   struct its_cmd_block *cmd,
876 					   struct its_cmd_desc *desc)
877 {
878 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
879 	unsigned long vpt_addr, vconf_addr;
880 	u64 target;
881 	bool alloc;
882 
883 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
884 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
885 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
886 
887 	if (!desc->its_vmapp_cmd.valid) {
888 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
889 		if (is_v4_1(its)) {
890 			its_encode_alloc(cmd, alloc);
891 			/*
892 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
893 			 * no need to issue a VSYNC.
894 			 */
895 			vpe = NULL;
896 		}
897 
898 		goto out;
899 	}
900 
901 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
902 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
903 
904 	its_encode_target(cmd, target);
905 	its_encode_vpt_addr(cmd, vpt_addr);
906 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
907 
908 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
909 
910 	if (!is_v4_1(its))
911 		goto out;
912 
913 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
914 
915 	its_encode_alloc(cmd, alloc);
916 
917 	/*
918 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
919 	 * to be unmapped first, and in this case, we may remap the vPE
920 	 * back while the VPT is not empty. So we can't assume that the
921 	 * VPT is empty on map. This is why we never advertise PTZ.
922 	 */
923 	its_encode_ptz(cmd, false);
924 	its_encode_vconf_addr(cmd, vconf_addr);
925 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
926 
927 out:
928 	its_fixup_cmd(cmd);
929 
930 	return vpe;
931 }
932 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)933 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
934 					    struct its_cmd_block *cmd,
935 					    struct its_cmd_desc *desc)
936 {
937 	u32 db;
938 
939 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
940 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
941 	else
942 		db = 1023;
943 
944 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
945 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
946 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
947 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
948 	its_encode_db_phys_id(cmd, db);
949 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
950 
951 	its_fixup_cmd(cmd);
952 
953 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
954 }
955 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)956 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
957 					   struct its_cmd_block *cmd,
958 					   struct its_cmd_desc *desc)
959 {
960 	u32 db;
961 
962 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
963 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
964 	else
965 		db = 1023;
966 
967 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
968 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
969 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
970 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
971 	its_encode_db_phys_id(cmd, db);
972 	its_encode_db_valid(cmd, true);
973 
974 	its_fixup_cmd(cmd);
975 
976 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
977 }
978 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)979 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
980 					   struct its_cmd_block *cmd,
981 					   struct its_cmd_desc *desc)
982 {
983 	u64 target;
984 
985 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
986 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
987 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
988 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
989 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
990 	its_encode_target(cmd, target);
991 
992 	if (is_v4_1(its)) {
993 		its_encode_db(cmd, true);
994 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
995 	}
996 
997 	its_fixup_cmd(cmd);
998 
999 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
1000 }
1001 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1002 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1003 					  struct its_cmd_block *cmd,
1004 					  struct its_cmd_desc *desc)
1005 {
1006 	struct its_vlpi_map *map;
1007 
1008 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1009 				    desc->its_inv_cmd.event_id);
1010 
1011 	its_encode_cmd(cmd, GITS_CMD_INV);
1012 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1013 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1014 
1015 	its_fixup_cmd(cmd);
1016 
1017 	return valid_vpe(its, map->vpe);
1018 }
1019 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1020 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1021 					  struct its_cmd_block *cmd,
1022 					  struct its_cmd_desc *desc)
1023 {
1024 	struct its_vlpi_map *map;
1025 
1026 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1027 				    desc->its_int_cmd.event_id);
1028 
1029 	its_encode_cmd(cmd, GITS_CMD_INT);
1030 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1031 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1032 
1033 	its_fixup_cmd(cmd);
1034 
1035 	return valid_vpe(its, map->vpe);
1036 }
1037 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1038 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1039 					    struct its_cmd_block *cmd,
1040 					    struct its_cmd_desc *desc)
1041 {
1042 	struct its_vlpi_map *map;
1043 
1044 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1045 				    desc->its_clear_cmd.event_id);
1046 
1047 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
1048 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1049 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1050 
1051 	its_fixup_cmd(cmd);
1052 
1053 	return valid_vpe(its, map->vpe);
1054 }
1055 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1056 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1057 					   struct its_cmd_block *cmd,
1058 					   struct its_cmd_desc *desc)
1059 {
1060 	if (WARN_ON(!is_v4_1(its)))
1061 		return NULL;
1062 
1063 	its_encode_cmd(cmd, GITS_CMD_INVDB);
1064 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1065 
1066 	its_fixup_cmd(cmd);
1067 
1068 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
1069 }
1070 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1071 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1072 					  struct its_cmd_block *cmd,
1073 					  struct its_cmd_desc *desc)
1074 {
1075 	if (WARN_ON(!is_v4_1(its)))
1076 		return NULL;
1077 
1078 	its_encode_cmd(cmd, GITS_CMD_VSGI);
1079 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1080 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1081 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1082 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1083 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1084 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1085 
1086 	its_fixup_cmd(cmd);
1087 
1088 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1089 }
1090 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)1091 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1092 				 struct its_cmd_block *ptr)
1093 {
1094 	return (ptr - its->cmd_base) * sizeof(*ptr);
1095 }
1096 
its_queue_full(struct its_node * its)1097 static int its_queue_full(struct its_node *its)
1098 {
1099 	int widx;
1100 	int ridx;
1101 
1102 	widx = its->cmd_write - its->cmd_base;
1103 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1104 
1105 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1106 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1107 		return 1;
1108 
1109 	return 0;
1110 }
1111 
its_allocate_entry(struct its_node * its)1112 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1113 {
1114 	struct its_cmd_block *cmd;
1115 	u32 count = 1000000;	/* 1s! */
1116 
1117 	while (its_queue_full(its)) {
1118 		count--;
1119 		if (!count) {
1120 			pr_err_ratelimited("ITS queue not draining\n");
1121 			return NULL;
1122 		}
1123 		cpu_relax();
1124 		udelay(1);
1125 	}
1126 
1127 	cmd = its->cmd_write++;
1128 
1129 	/* Handle queue wrapping */
1130 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1131 		its->cmd_write = its->cmd_base;
1132 
1133 	/* Clear command  */
1134 	cmd->raw_cmd[0] = 0;
1135 	cmd->raw_cmd[1] = 0;
1136 	cmd->raw_cmd[2] = 0;
1137 	cmd->raw_cmd[3] = 0;
1138 
1139 	return cmd;
1140 }
1141 
its_post_commands(struct its_node * its)1142 static struct its_cmd_block *its_post_commands(struct its_node *its)
1143 {
1144 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1145 
1146 	writel_relaxed(wr, its->base + GITS_CWRITER);
1147 
1148 	return its->cmd_write;
1149 }
1150 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1151 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1152 {
1153 	/*
1154 	 * Make sure the commands written to memory are observable by
1155 	 * the ITS.
1156 	 */
1157 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1158 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1159 	else
1160 		dsb(ishst);
1161 }
1162 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1163 static int its_wait_for_range_completion(struct its_node *its,
1164 					 u64	prev_idx,
1165 					 struct its_cmd_block *to)
1166 {
1167 	u64 rd_idx, to_idx, linear_idx;
1168 	u32 count = 1000000;	/* 1s! */
1169 
1170 	/* Linearize to_idx if the command set has wrapped around */
1171 	to_idx = its_cmd_ptr_to_offset(its, to);
1172 	if (to_idx < prev_idx)
1173 		to_idx += ITS_CMD_QUEUE_SZ;
1174 
1175 	linear_idx = prev_idx;
1176 
1177 	while (1) {
1178 		s64 delta;
1179 
1180 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1181 
1182 		/*
1183 		 * Compute the read pointer progress, taking the
1184 		 * potential wrap-around into account.
1185 		 */
1186 		delta = rd_idx - prev_idx;
1187 		if (rd_idx < prev_idx)
1188 			delta += ITS_CMD_QUEUE_SZ;
1189 
1190 		linear_idx += delta;
1191 		if (linear_idx >= to_idx)
1192 			break;
1193 
1194 		count--;
1195 		if (!count) {
1196 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1197 					   to_idx, linear_idx);
1198 			return -1;
1199 		}
1200 		prev_idx = rd_idx;
1201 		cpu_relax();
1202 		udelay(1);
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 /* Warning, macro hell follows */
1209 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1210 void name(struct its_node *its,						\
1211 	  buildtype builder,						\
1212 	  struct its_cmd_desc *desc)					\
1213 {									\
1214 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1215 	synctype *sync_obj;						\
1216 	unsigned long flags;						\
1217 	u64 rd_idx;							\
1218 									\
1219 	raw_spin_lock_irqsave(&its->lock, flags);			\
1220 									\
1221 	cmd = its_allocate_entry(its);					\
1222 	if (!cmd) {		/* We're soooooo screewed... */		\
1223 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1224 		return;							\
1225 	}								\
1226 	sync_obj = builder(its, cmd, desc);				\
1227 	its_flush_cmd(its, cmd);					\
1228 									\
1229 	if (sync_obj) {							\
1230 		sync_cmd = its_allocate_entry(its);			\
1231 		if (!sync_cmd)						\
1232 			goto post;					\
1233 									\
1234 		buildfn(its, sync_cmd, sync_obj);			\
1235 		its_flush_cmd(its, sync_cmd);				\
1236 	}								\
1237 									\
1238 post:									\
1239 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1240 	next_cmd = its_post_commands(its);				\
1241 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1242 									\
1243 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1244 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1245 }
1246 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1247 static void its_build_sync_cmd(struct its_node *its,
1248 			       struct its_cmd_block *sync_cmd,
1249 			       struct its_collection *sync_col)
1250 {
1251 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1252 	its_encode_target(sync_cmd, sync_col->target_address);
1253 
1254 	its_fixup_cmd(sync_cmd);
1255 }
1256 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1257 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1258 			     struct its_collection, its_build_sync_cmd)
1259 
1260 static void its_build_vsync_cmd(struct its_node *its,
1261 				struct its_cmd_block *sync_cmd,
1262 				struct its_vpe *sync_vpe)
1263 {
1264 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1265 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1266 
1267 	its_fixup_cmd(sync_cmd);
1268 }
1269 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1270 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1271 			     struct its_vpe, its_build_vsync_cmd)
1272 
1273 static void its_send_int(struct its_device *dev, u32 event_id)
1274 {
1275 	struct its_cmd_desc desc;
1276 
1277 	desc.its_int_cmd.dev = dev;
1278 	desc.its_int_cmd.event_id = event_id;
1279 
1280 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1281 }
1282 
its_send_clear(struct its_device * dev,u32 event_id)1283 static void its_send_clear(struct its_device *dev, u32 event_id)
1284 {
1285 	struct its_cmd_desc desc;
1286 
1287 	desc.its_clear_cmd.dev = dev;
1288 	desc.its_clear_cmd.event_id = event_id;
1289 
1290 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1291 }
1292 
its_send_inv(struct its_device * dev,u32 event_id)1293 static void its_send_inv(struct its_device *dev, u32 event_id)
1294 {
1295 	struct its_cmd_desc desc;
1296 
1297 	desc.its_inv_cmd.dev = dev;
1298 	desc.its_inv_cmd.event_id = event_id;
1299 
1300 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1301 }
1302 
its_send_mapd(struct its_device * dev,int valid)1303 static void its_send_mapd(struct its_device *dev, int valid)
1304 {
1305 	struct its_cmd_desc desc;
1306 
1307 	desc.its_mapd_cmd.dev = dev;
1308 	desc.its_mapd_cmd.valid = !!valid;
1309 
1310 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1311 }
1312 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1313 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1314 			  int valid)
1315 {
1316 	struct its_cmd_desc desc;
1317 
1318 	desc.its_mapc_cmd.col = col;
1319 	desc.its_mapc_cmd.valid = !!valid;
1320 
1321 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1322 }
1323 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1324 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1325 {
1326 	struct its_cmd_desc desc;
1327 
1328 	desc.its_mapti_cmd.dev = dev;
1329 	desc.its_mapti_cmd.phys_id = irq_id;
1330 	desc.its_mapti_cmd.event_id = id;
1331 
1332 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1333 }
1334 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1335 static void its_send_movi(struct its_device *dev,
1336 			  struct its_collection *col, u32 id)
1337 {
1338 	struct its_cmd_desc desc;
1339 
1340 	desc.its_movi_cmd.dev = dev;
1341 	desc.its_movi_cmd.col = col;
1342 	desc.its_movi_cmd.event_id = id;
1343 
1344 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1345 }
1346 
its_send_discard(struct its_device * dev,u32 id)1347 static void its_send_discard(struct its_device *dev, u32 id)
1348 {
1349 	struct its_cmd_desc desc;
1350 
1351 	desc.its_discard_cmd.dev = dev;
1352 	desc.its_discard_cmd.event_id = id;
1353 
1354 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1355 }
1356 
its_send_invall(struct its_node * its,struct its_collection * col)1357 static void its_send_invall(struct its_node *its, struct its_collection *col)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	desc.its_invall_cmd.col = col;
1362 
1363 	its_send_single_command(its, its_build_invall_cmd, &desc);
1364 }
1365 
its_send_vmapti(struct its_device * dev,u32 id)1366 static void its_send_vmapti(struct its_device *dev, u32 id)
1367 {
1368 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1369 	struct its_cmd_desc desc;
1370 
1371 	desc.its_vmapti_cmd.vpe = map->vpe;
1372 	desc.its_vmapti_cmd.dev = dev;
1373 	desc.its_vmapti_cmd.virt_id = map->vintid;
1374 	desc.its_vmapti_cmd.event_id = id;
1375 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1376 
1377 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1378 }
1379 
its_send_vmovi(struct its_device * dev,u32 id)1380 static void its_send_vmovi(struct its_device *dev, u32 id)
1381 {
1382 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1383 	struct its_cmd_desc desc;
1384 
1385 	desc.its_vmovi_cmd.vpe = map->vpe;
1386 	desc.its_vmovi_cmd.dev = dev;
1387 	desc.its_vmovi_cmd.event_id = id;
1388 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1389 
1390 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1391 }
1392 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1393 static void its_send_vmapp(struct its_node *its,
1394 			   struct its_vpe *vpe, bool valid)
1395 {
1396 	struct its_cmd_desc desc;
1397 
1398 	desc.its_vmapp_cmd.vpe = vpe;
1399 	desc.its_vmapp_cmd.valid = valid;
1400 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1401 
1402 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1403 }
1404 
its_send_vmovp(struct its_vpe * vpe)1405 static void its_send_vmovp(struct its_vpe *vpe)
1406 {
1407 	struct its_cmd_desc desc = {};
1408 	struct its_node *its;
1409 	int col_id = vpe->col_idx;
1410 
1411 	desc.its_vmovp_cmd.vpe = vpe;
1412 
1413 	if (!its_list_map) {
1414 		its = list_first_entry(&its_nodes, struct its_node, entry);
1415 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1416 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1417 		return;
1418 	}
1419 
1420 	/*
1421 	 * Yet another marvel of the architecture. If using the
1422 	 * its_list "feature", we need to make sure that all ITSs
1423 	 * receive all VMOVP commands in the same order. The only way
1424 	 * to guarantee this is to make vmovp a serialization point.
1425 	 *
1426 	 * Wall <-- Head.
1427 	 */
1428 	guard(raw_spinlock)(&vmovp_lock);
1429 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1430 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1431 
1432 	/* Emit VMOVPs */
1433 	list_for_each_entry(its, &its_nodes, entry) {
1434 		if (!is_v4(its))
1435 			continue;
1436 
1437 		if (!require_its_list_vmovp(vpe->its_vm, its))
1438 			continue;
1439 
1440 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1441 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1442 	}
1443 }
1444 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1445 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1446 {
1447 	struct its_cmd_desc desc;
1448 
1449 	desc.its_vinvall_cmd.vpe = vpe;
1450 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1451 }
1452 
its_send_vinv(struct its_device * dev,u32 event_id)1453 static void its_send_vinv(struct its_device *dev, u32 event_id)
1454 {
1455 	struct its_cmd_desc desc;
1456 
1457 	/*
1458 	 * There is no real VINV command. This is just a normal INV,
1459 	 * with a VSYNC instead of a SYNC.
1460 	 */
1461 	desc.its_inv_cmd.dev = dev;
1462 	desc.its_inv_cmd.event_id = event_id;
1463 
1464 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1465 }
1466 
its_send_vint(struct its_device * dev,u32 event_id)1467 static void its_send_vint(struct its_device *dev, u32 event_id)
1468 {
1469 	struct its_cmd_desc desc;
1470 
1471 	/*
1472 	 * There is no real VINT command. This is just a normal INT,
1473 	 * with a VSYNC instead of a SYNC.
1474 	 */
1475 	desc.its_int_cmd.dev = dev;
1476 	desc.its_int_cmd.event_id = event_id;
1477 
1478 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1479 }
1480 
its_send_vclear(struct its_device * dev,u32 event_id)1481 static void its_send_vclear(struct its_device *dev, u32 event_id)
1482 {
1483 	struct its_cmd_desc desc;
1484 
1485 	/*
1486 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1487 	 * with a VSYNC instead of a SYNC.
1488 	 */
1489 	desc.its_clear_cmd.dev = dev;
1490 	desc.its_clear_cmd.event_id = event_id;
1491 
1492 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1493 }
1494 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1495 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1496 {
1497 	struct its_cmd_desc desc;
1498 
1499 	desc.its_invdb_cmd.vpe = vpe;
1500 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1501 }
1502 
1503 /*
1504  * irqchip functions - assumes MSI, mostly.
1505  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1506 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1507 {
1508 	struct its_vlpi_map *map = get_vlpi_map(d);
1509 	irq_hw_number_t hwirq;
1510 	void *va;
1511 	u8 *cfg;
1512 
1513 	if (map) {
1514 		va = page_address(map->vm->vprop_page);
1515 		hwirq = map->vintid;
1516 
1517 		/* Remember the updated property */
1518 		map->properties &= ~clr;
1519 		map->properties |= set | LPI_PROP_GROUP1;
1520 	} else {
1521 		va = gic_rdists->prop_table_va;
1522 		hwirq = d->hwirq;
1523 	}
1524 
1525 	cfg = va + hwirq - 8192;
1526 	*cfg &= ~clr;
1527 	*cfg |= set | LPI_PROP_GROUP1;
1528 
1529 	/*
1530 	 * Make the above write visible to the redistributors.
1531 	 * And yes, we're flushing exactly: One. Single. Byte.
1532 	 * Humpf...
1533 	 */
1534 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1535 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1536 	else
1537 		dsb(ishst);
1538 }
1539 
wait_for_syncr(void __iomem * rdbase)1540 static void wait_for_syncr(void __iomem *rdbase)
1541 {
1542 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1543 		cpu_relax();
1544 }
1545 
__direct_lpi_inv(struct irq_data * d,u64 val)1546 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1547 {
1548 	void __iomem *rdbase;
1549 	unsigned long flags;
1550 	int cpu;
1551 
1552 	/* Target the redistributor this LPI is currently routed to */
1553 	cpu = irq_to_cpuid_lock(d, &flags);
1554 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1555 
1556 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1557 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1558 	wait_for_syncr(rdbase);
1559 
1560 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1561 	irq_to_cpuid_unlock(d, flags);
1562 }
1563 
direct_lpi_inv(struct irq_data * d)1564 static void direct_lpi_inv(struct irq_data *d)
1565 {
1566 	struct its_vlpi_map *map = get_vlpi_map(d);
1567 	u64 val;
1568 
1569 	if (map) {
1570 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1571 
1572 		WARN_ON(!is_v4_1(its_dev->its));
1573 
1574 		val  = GICR_INVLPIR_V;
1575 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1576 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1577 	} else {
1578 		val = d->hwirq;
1579 	}
1580 
1581 	__direct_lpi_inv(d, val);
1582 }
1583 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1584 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1585 {
1586 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1587 
1588 	lpi_write_config(d, clr, set);
1589 	if (gic_rdists->has_direct_lpi &&
1590 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1591 		direct_lpi_inv(d);
1592 	else if (!irqd_is_forwarded_to_vcpu(d))
1593 		its_send_inv(its_dev, its_get_event_id(d));
1594 	else
1595 		its_send_vinv(its_dev, its_get_event_id(d));
1596 }
1597 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1598 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1599 {
1600 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1601 	u32 event = its_get_event_id(d);
1602 	struct its_vlpi_map *map;
1603 
1604 	/*
1605 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1606 	 * here.
1607 	 */
1608 	if (is_v4_1(its_dev->its))
1609 		return;
1610 
1611 	map = dev_event_to_vlpi_map(its_dev, event);
1612 
1613 	if (map->db_enabled == enable)
1614 		return;
1615 
1616 	map->db_enabled = enable;
1617 
1618 	/*
1619 	 * More fun with the architecture:
1620 	 *
1621 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1622 	 * value or to 1023, depending on the enable bit. But that
1623 	 * would be issuing a mapping for an /existing/ DevID+EventID
1624 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1625 	 * to the /same/ vPE, using this opportunity to adjust the
1626 	 * doorbell. Mouahahahaha. We loves it, Precious.
1627 	 */
1628 	its_send_vmovi(its_dev, event);
1629 }
1630 
its_mask_irq(struct irq_data * d)1631 static void its_mask_irq(struct irq_data *d)
1632 {
1633 	if (irqd_is_forwarded_to_vcpu(d))
1634 		its_vlpi_set_doorbell(d, false);
1635 
1636 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1637 }
1638 
its_unmask_irq(struct irq_data * d)1639 static void its_unmask_irq(struct irq_data *d)
1640 {
1641 	if (irqd_is_forwarded_to_vcpu(d))
1642 		its_vlpi_set_doorbell(d, true);
1643 
1644 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1645 }
1646 
its_read_lpi_count(struct irq_data * d,int cpu)1647 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1648 {
1649 	if (irqd_affinity_is_managed(d))
1650 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1651 
1652 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1653 }
1654 
its_inc_lpi_count(struct irq_data * d,int cpu)1655 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1656 {
1657 	if (irqd_affinity_is_managed(d))
1658 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1659 	else
1660 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1661 }
1662 
its_dec_lpi_count(struct irq_data * d,int cpu)1663 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1664 {
1665 	if (irqd_affinity_is_managed(d))
1666 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1667 	else
1668 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1669 }
1670 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1671 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1672 					      const struct cpumask *cpu_mask)
1673 {
1674 	unsigned int cpu = nr_cpu_ids, tmp;
1675 	int count = S32_MAX;
1676 
1677 	for_each_cpu(tmp, cpu_mask) {
1678 		int this_count = its_read_lpi_count(d, tmp);
1679 		if (this_count < count) {
1680 			cpu = tmp;
1681 		        count = this_count;
1682 		}
1683 	}
1684 
1685 	return cpu;
1686 }
1687 
1688 /*
1689  * As suggested by Thomas Gleixner in:
1690  * https://lore.kernel.org/r/[email protected]
1691  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1692 static int its_select_cpu(struct irq_data *d,
1693 			  const struct cpumask *aff_mask)
1694 {
1695 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1696 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1697 	static struct cpumask __tmpmask;
1698 	struct cpumask *tmpmask;
1699 	unsigned long flags;
1700 	int cpu, node;
1701 	node = its_dev->its->numa_node;
1702 	tmpmask = &__tmpmask;
1703 
1704 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1705 
1706 	if (!irqd_affinity_is_managed(d)) {
1707 		/* First try the NUMA node */
1708 		if (node != NUMA_NO_NODE) {
1709 			/*
1710 			 * Try the intersection of the affinity mask and the
1711 			 * node mask (and the online mask, just to be safe).
1712 			 */
1713 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1714 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1715 
1716 			/*
1717 			 * Ideally, we would check if the mask is empty, and
1718 			 * try again on the full node here.
1719 			 *
1720 			 * But it turns out that the way ACPI describes the
1721 			 * affinity for ITSs only deals about memory, and
1722 			 * not target CPUs, so it cannot describe a single
1723 			 * ITS placed next to two NUMA nodes.
1724 			 *
1725 			 * Instead, just fallback on the online mask. This
1726 			 * diverges from Thomas' suggestion above.
1727 			 */
1728 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1729 			if (cpu < nr_cpu_ids)
1730 				goto out;
1731 
1732 			/* If we can't cross sockets, give up */
1733 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1734 				goto out;
1735 
1736 			/* If the above failed, expand the search */
1737 		}
1738 
1739 		/* Try the intersection of the affinity and online masks */
1740 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1741 
1742 		/* If that doesn't fly, the online mask is the last resort */
1743 		if (cpumask_empty(tmpmask))
1744 			cpumask_copy(tmpmask, cpu_online_mask);
1745 
1746 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1747 	} else {
1748 		cpumask_copy(tmpmask, aff_mask);
1749 
1750 		/* If we cannot cross sockets, limit the search to that node */
1751 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1752 		    node != NUMA_NO_NODE)
1753 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1754 
1755 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1756 	}
1757 out:
1758 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1759 
1760 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1761 	return cpu;
1762 }
1763 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1764 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1765 			    bool force)
1766 {
1767 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1768 	struct its_collection *target_col;
1769 	u32 id = its_get_event_id(d);
1770 	int cpu, prev_cpu;
1771 
1772 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1773 	if (irqd_is_forwarded_to_vcpu(d))
1774 		return -EINVAL;
1775 
1776 	prev_cpu = its_dev->event_map.col_map[id];
1777 	its_dec_lpi_count(d, prev_cpu);
1778 
1779 	if (!force)
1780 		cpu = its_select_cpu(d, mask_val);
1781 	else
1782 		cpu = cpumask_pick_least_loaded(d, mask_val);
1783 
1784 	if (cpu < 0 || cpu >= nr_cpu_ids)
1785 		goto err;
1786 
1787 	/* don't set the affinity when the target cpu is same as current one */
1788 	if (cpu != prev_cpu) {
1789 		target_col = &its_dev->its->collections[cpu];
1790 		its_send_movi(its_dev, target_col, id);
1791 		its_dev->event_map.col_map[id] = cpu;
1792 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1793 	}
1794 
1795 	its_inc_lpi_count(d, cpu);
1796 
1797 	return IRQ_SET_MASK_OK_DONE;
1798 
1799 err:
1800 	its_inc_lpi_count(d, prev_cpu);
1801 	return -EINVAL;
1802 }
1803 
its_irq_get_msi_base(struct its_device * its_dev)1804 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1805 {
1806 	struct its_node *its = its_dev->its;
1807 
1808 	return its->phys_base + GITS_TRANSLATER;
1809 }
1810 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1811 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1812 {
1813 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814 	struct its_node *its;
1815 	u64 addr;
1816 
1817 	its = its_dev->its;
1818 	addr = its->get_msi_base(its_dev);
1819 
1820 	msg->address_lo		= lower_32_bits(addr);
1821 	msg->address_hi		= upper_32_bits(addr);
1822 	msg->data		= its_get_event_id(d);
1823 
1824 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1825 }
1826 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1827 static int its_irq_set_irqchip_state(struct irq_data *d,
1828 				     enum irqchip_irq_state which,
1829 				     bool state)
1830 {
1831 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1832 	u32 event = its_get_event_id(d);
1833 
1834 	if (which != IRQCHIP_STATE_PENDING)
1835 		return -EINVAL;
1836 
1837 	if (irqd_is_forwarded_to_vcpu(d)) {
1838 		if (state)
1839 			its_send_vint(its_dev, event);
1840 		else
1841 			its_send_vclear(its_dev, event);
1842 	} else {
1843 		if (state)
1844 			its_send_int(its_dev, event);
1845 		else
1846 			its_send_clear(its_dev, event);
1847 	}
1848 
1849 	return 0;
1850 }
1851 
its_irq_retrigger(struct irq_data * d)1852 static int its_irq_retrigger(struct irq_data *d)
1853 {
1854 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1855 }
1856 
1857 /*
1858  * Two favourable cases:
1859  *
1860  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1861  *     for vSGI delivery
1862  *
1863  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1864  *     and we're better off mapping all VPEs always
1865  *
1866  * If neither (a) nor (b) is true, then we map vPEs on demand.
1867  *
1868  */
gic_requires_eager_mapping(void)1869 static bool gic_requires_eager_mapping(void)
1870 {
1871 	if (!its_list_map || gic_rdists->has_rvpeid)
1872 		return true;
1873 
1874 	return false;
1875 }
1876 
its_map_vm(struct its_node * its,struct its_vm * vm)1877 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1878 {
1879 	if (gic_requires_eager_mapping())
1880 		return;
1881 
1882 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1883 
1884 	/*
1885 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1886 	 * them mapped now.
1887 	 */
1888 	vm->vlpi_count[its->list_nr]++;
1889 
1890 	if (vm->vlpi_count[its->list_nr] == 1) {
1891 		int i;
1892 
1893 		for (i = 0; i < vm->nr_vpes; i++) {
1894 			struct its_vpe *vpe = vm->vpes[i];
1895 
1896 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1897 				its_send_vmapp(its, vpe, true);
1898 
1899 			its_send_vinvall(its, vpe);
1900 		}
1901 	}
1902 }
1903 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1904 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1905 {
1906 	/* Not using the ITS list? Everything is always mapped. */
1907 	if (gic_requires_eager_mapping())
1908 		return;
1909 
1910 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1911 
1912 	if (!--vm->vlpi_count[its->list_nr]) {
1913 		int i;
1914 
1915 		for (i = 0; i < vm->nr_vpes; i++) {
1916 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1917 			its_send_vmapp(its, vm->vpes[i], false);
1918 		}
1919 	}
1920 }
1921 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1922 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1923 {
1924 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1925 	u32 event = its_get_event_id(d);
1926 
1927 	if (!info->map)
1928 		return -EINVAL;
1929 
1930 	if (!its_dev->event_map.vm) {
1931 		struct its_vlpi_map *maps;
1932 
1933 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1934 			       GFP_ATOMIC);
1935 		if (!maps)
1936 			return -ENOMEM;
1937 
1938 		its_dev->event_map.vm = info->map->vm;
1939 		its_dev->event_map.vlpi_maps = maps;
1940 	} else if (its_dev->event_map.vm != info->map->vm) {
1941 		return -EINVAL;
1942 	}
1943 
1944 	/* Get our private copy of the mapping information */
1945 	its_dev->event_map.vlpi_maps[event] = *info->map;
1946 
1947 	if (irqd_is_forwarded_to_vcpu(d)) {
1948 		/* Already mapped, move it around */
1949 		its_send_vmovi(its_dev, event);
1950 	} else {
1951 		/* Ensure all the VPEs are mapped on this ITS */
1952 		its_map_vm(its_dev->its, info->map->vm);
1953 
1954 		/*
1955 		 * Flag the interrupt as forwarded so that we can
1956 		 * start poking the virtual property table.
1957 		 */
1958 		irqd_set_forwarded_to_vcpu(d);
1959 
1960 		/* Write out the property to the prop table */
1961 		lpi_write_config(d, 0xff, info->map->properties);
1962 
1963 		/* Drop the physical mapping */
1964 		its_send_discard(its_dev, event);
1965 
1966 		/* and install the virtual one */
1967 		its_send_vmapti(its_dev, event);
1968 
1969 		/* Increment the number of VLPIs */
1970 		its_dev->event_map.nr_vlpis++;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1976 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1977 {
1978 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1979 	struct its_vlpi_map *map;
1980 
1981 	map = get_vlpi_map(d);
1982 
1983 	if (!its_dev->event_map.vm || !map)
1984 		return -EINVAL;
1985 
1986 	/* Copy our mapping information to the incoming request */
1987 	*info->map = *map;
1988 
1989 	return 0;
1990 }
1991 
its_vlpi_unmap(struct irq_data * d)1992 static int its_vlpi_unmap(struct irq_data *d)
1993 {
1994 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1995 	u32 event = its_get_event_id(d);
1996 
1997 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1998 		return -EINVAL;
1999 
2000 	/* Drop the virtual mapping */
2001 	its_send_discard(its_dev, event);
2002 
2003 	/* and restore the physical one */
2004 	irqd_clr_forwarded_to_vcpu(d);
2005 	its_send_mapti(its_dev, d->hwirq, event);
2006 	lpi_update_config(d, 0xff, (lpi_prop_prio |
2007 				    LPI_PROP_ENABLED |
2008 				    LPI_PROP_GROUP1));
2009 
2010 	/* Potentially unmap the VM from this ITS */
2011 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2012 
2013 	/*
2014 	 * Drop the refcount and make the device available again if
2015 	 * this was the last VLPI.
2016 	 */
2017 	if (!--its_dev->event_map.nr_vlpis) {
2018 		its_dev->event_map.vm = NULL;
2019 		kfree(its_dev->event_map.vlpi_maps);
2020 	}
2021 
2022 	return 0;
2023 }
2024 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)2025 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2026 {
2027 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2028 
2029 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2030 		return -EINVAL;
2031 
2032 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2033 		lpi_update_config(d, 0xff, info->config);
2034 	else
2035 		lpi_write_config(d, 0xff, info->config);
2036 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2037 
2038 	return 0;
2039 }
2040 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)2041 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2042 {
2043 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2044 	struct its_cmd_info *info = vcpu_info;
2045 
2046 	/* Need a v4 ITS */
2047 	if (!is_v4(its_dev->its))
2048 		return -EINVAL;
2049 
2050 	guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2051 
2052 	/* Unmap request? */
2053 	if (!info)
2054 		return its_vlpi_unmap(d);
2055 
2056 	switch (info->cmd_type) {
2057 	case MAP_VLPI:
2058 		return its_vlpi_map(d, info);
2059 
2060 	case GET_VLPI:
2061 		return its_vlpi_get(d, info);
2062 
2063 	case PROP_UPDATE_VLPI:
2064 	case PROP_UPDATE_AND_INV_VLPI:
2065 		return its_vlpi_prop_update(d, info);
2066 
2067 	default:
2068 		return -EINVAL;
2069 	}
2070 }
2071 
2072 static struct irq_chip its_irq_chip = {
2073 	.name			= "ITS",
2074 	.irq_mask		= its_mask_irq,
2075 	.irq_unmask		= its_unmask_irq,
2076 	.irq_eoi		= irq_chip_eoi_parent,
2077 	.irq_set_affinity	= its_set_affinity,
2078 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2079 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2080 	.irq_retrigger		= its_irq_retrigger,
2081 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2082 };
2083 
2084 
2085 /*
2086  * How we allocate LPIs:
2087  *
2088  * lpi_range_list contains ranges of LPIs that are to available to
2089  * allocate from. To allocate LPIs, just pick the first range that
2090  * fits the required allocation, and reduce it by the required
2091  * amount. Once empty, remove the range from the list.
2092  *
2093  * To free a range of LPIs, add a free range to the list, sort it and
2094  * merge the result if the new range happens to be adjacent to an
2095  * already free block.
2096  *
2097  * The consequence of the above is that allocation is cost is low, but
2098  * freeing is expensive. We assumes that freeing rarely occurs.
2099  */
2100 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2101 
2102 static DEFINE_MUTEX(lpi_range_lock);
2103 static LIST_HEAD(lpi_range_list);
2104 
2105 struct lpi_range {
2106 	struct list_head	entry;
2107 	u32			base_id;
2108 	u32			span;
2109 };
2110 
mk_lpi_range(u32 base,u32 span)2111 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2112 {
2113 	struct lpi_range *range;
2114 
2115 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2116 	if (range) {
2117 		range->base_id = base;
2118 		range->span = span;
2119 	}
2120 
2121 	return range;
2122 }
2123 
alloc_lpi_range(u32 nr_lpis,u32 * base)2124 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2125 {
2126 	struct lpi_range *range, *tmp;
2127 	int err = -ENOSPC;
2128 
2129 	mutex_lock(&lpi_range_lock);
2130 
2131 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2132 		if (range->span >= nr_lpis) {
2133 			*base = range->base_id;
2134 			range->base_id += nr_lpis;
2135 			range->span -= nr_lpis;
2136 
2137 			if (range->span == 0) {
2138 				list_del(&range->entry);
2139 				kfree(range);
2140 			}
2141 
2142 			err = 0;
2143 			break;
2144 		}
2145 	}
2146 
2147 	mutex_unlock(&lpi_range_lock);
2148 
2149 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2150 	return err;
2151 }
2152 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2153 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2154 {
2155 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2156 		return;
2157 	if (a->base_id + a->span != b->base_id)
2158 		return;
2159 	b->base_id = a->base_id;
2160 	b->span += a->span;
2161 	list_del(&a->entry);
2162 	kfree(a);
2163 }
2164 
free_lpi_range(u32 base,u32 nr_lpis)2165 static int free_lpi_range(u32 base, u32 nr_lpis)
2166 {
2167 	struct lpi_range *new, *old;
2168 
2169 	new = mk_lpi_range(base, nr_lpis);
2170 	if (!new)
2171 		return -ENOMEM;
2172 
2173 	mutex_lock(&lpi_range_lock);
2174 
2175 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2176 		if (old->base_id < base)
2177 			break;
2178 	}
2179 	/*
2180 	 * old is the last element with ->base_id smaller than base,
2181 	 * so new goes right after it. If there are no elements with
2182 	 * ->base_id smaller than base, &old->entry ends up pointing
2183 	 * at the head of the list, and inserting new it the start of
2184 	 * the list is the right thing to do in that case as well.
2185 	 */
2186 	list_add(&new->entry, &old->entry);
2187 	/*
2188 	 * Now check if we can merge with the preceding and/or
2189 	 * following ranges.
2190 	 */
2191 	merge_lpi_ranges(old, new);
2192 	merge_lpi_ranges(new, list_next_entry(new, entry));
2193 
2194 	mutex_unlock(&lpi_range_lock);
2195 	return 0;
2196 }
2197 
its_lpi_init(u32 id_bits)2198 static int __init its_lpi_init(u32 id_bits)
2199 {
2200 	u32 lpis = (1UL << id_bits) - 8192;
2201 	u32 numlpis;
2202 	int err;
2203 
2204 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2205 
2206 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2207 		lpis = numlpis;
2208 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2209 			lpis);
2210 	}
2211 
2212 	/*
2213 	 * Initializing the allocator is just the same as freeing the
2214 	 * full range of LPIs.
2215 	 */
2216 	err = free_lpi_range(8192, lpis);
2217 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2218 	return err;
2219 }
2220 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2221 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2222 {
2223 	unsigned long *bitmap = NULL;
2224 	int err = 0;
2225 
2226 	do {
2227 		err = alloc_lpi_range(nr_irqs, base);
2228 		if (!err)
2229 			break;
2230 
2231 		nr_irqs /= 2;
2232 	} while (nr_irqs > 0);
2233 
2234 	if (!nr_irqs)
2235 		err = -ENOSPC;
2236 
2237 	if (err)
2238 		goto out;
2239 
2240 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2241 	if (!bitmap)
2242 		goto out;
2243 
2244 	*nr_ids = nr_irqs;
2245 
2246 out:
2247 	if (!bitmap)
2248 		*base = *nr_ids = 0;
2249 
2250 	return bitmap;
2251 }
2252 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2253 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2254 {
2255 	WARN_ON(free_lpi_range(base, nr_ids));
2256 	bitmap_free(bitmap);
2257 }
2258 
gic_reset_prop_table(void * va)2259 static void gic_reset_prop_table(void *va)
2260 {
2261 	/* Regular IRQ priority, Group-1, disabled */
2262 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2263 
2264 	/* Make sure the GIC will observe the written configuration */
2265 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2266 }
2267 
its_allocate_prop_table(gfp_t gfp_flags)2268 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2269 {
2270 	struct page *prop_page;
2271 
2272 	prop_page = its_alloc_pages(gfp_flags,
2273 				    get_order(LPI_PROPBASE_SZ));
2274 	if (!prop_page)
2275 		return NULL;
2276 
2277 	gic_reset_prop_table(page_address(prop_page));
2278 
2279 	return prop_page;
2280 }
2281 
its_free_prop_table(struct page * prop_page)2282 static void its_free_prop_table(struct page *prop_page)
2283 {
2284 	its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2285 }
2286 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2287 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2288 {
2289 	phys_addr_t start, end, addr_end;
2290 	u64 i;
2291 
2292 	/*
2293 	 * We don't bother checking for a kdump kernel as by
2294 	 * construction, the LPI tables are out of this kernel's
2295 	 * memory map.
2296 	 */
2297 	if (is_kdump_kernel())
2298 		return true;
2299 
2300 	addr_end = addr + size - 1;
2301 
2302 	for_each_reserved_mem_range(i, &start, &end) {
2303 		if (addr >= start && addr_end <= end)
2304 			return true;
2305 	}
2306 
2307 	/* Not found, not a good sign... */
2308 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2309 		&addr, &addr_end);
2310 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2311 	return false;
2312 }
2313 
gic_reserve_range(phys_addr_t addr,unsigned long size)2314 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2315 {
2316 	if (efi_enabled(EFI_CONFIG_TABLES))
2317 		return efi_mem_reserve_persistent(addr, size);
2318 
2319 	return 0;
2320 }
2321 
its_setup_lpi_prop_table(void)2322 static int __init its_setup_lpi_prop_table(void)
2323 {
2324 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2325 		u64 val;
2326 
2327 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2328 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2329 
2330 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2331 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2332 						     LPI_PROPBASE_SZ,
2333 						     MEMREMAP_WB);
2334 		gic_reset_prop_table(gic_rdists->prop_table_va);
2335 	} else {
2336 		struct page *page;
2337 
2338 		lpi_id_bits = min_t(u32,
2339 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2340 				    ITS_MAX_LPI_NRBITS);
2341 		page = its_allocate_prop_table(GFP_NOWAIT);
2342 		if (!page) {
2343 			pr_err("Failed to allocate PROPBASE\n");
2344 			return -ENOMEM;
2345 		}
2346 
2347 		gic_rdists->prop_table_pa = page_to_phys(page);
2348 		gic_rdists->prop_table_va = page_address(page);
2349 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2350 					  LPI_PROPBASE_SZ));
2351 	}
2352 
2353 	pr_info("GICv3: using LPI property table @%pa\n",
2354 		&gic_rdists->prop_table_pa);
2355 
2356 	return its_lpi_init(lpi_id_bits);
2357 }
2358 
2359 static const char *its_base_type_string[] = {
2360 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2361 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2362 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2363 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2364 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2365 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2366 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2367 };
2368 
its_read_baser(struct its_node * its,struct its_baser * baser)2369 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2370 {
2371 	u32 idx = baser - its->tables;
2372 
2373 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2374 }
2375 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2376 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2377 			    u64 val)
2378 {
2379 	u32 idx = baser - its->tables;
2380 
2381 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2382 	baser->val = its_read_baser(its, baser);
2383 }
2384 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2385 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2386 			   u64 cache, u64 shr, u32 order, bool indirect)
2387 {
2388 	u64 val = its_read_baser(its, baser);
2389 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2390 	u64 type = GITS_BASER_TYPE(val);
2391 	u64 baser_phys, tmp;
2392 	u32 alloc_pages, psz;
2393 	struct page *page;
2394 	void *base;
2395 
2396 	psz = baser->psz;
2397 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2398 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2399 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2400 			&its->phys_base, its_base_type_string[type],
2401 			alloc_pages, GITS_BASER_PAGES_MAX);
2402 		alloc_pages = GITS_BASER_PAGES_MAX;
2403 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2404 	}
2405 
2406 	page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2407 	if (!page)
2408 		return -ENOMEM;
2409 
2410 	base = (void *)page_address(page);
2411 	baser_phys = virt_to_phys(base);
2412 
2413 	/* Check if the physical address of the memory is above 48bits */
2414 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2415 
2416 		/* 52bit PA is supported only when PageSize=64K */
2417 		if (psz != SZ_64K) {
2418 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2419 			its_free_pages(base, order);
2420 			return -ENXIO;
2421 		}
2422 
2423 		/* Convert 52bit PA to 48bit field */
2424 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2425 	}
2426 
2427 retry_baser:
2428 	val = (baser_phys					 |
2429 		(type << GITS_BASER_TYPE_SHIFT)			 |
2430 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2431 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2432 		cache						 |
2433 		shr						 |
2434 		GITS_BASER_VALID);
2435 
2436 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2437 
2438 	switch (psz) {
2439 	case SZ_4K:
2440 		val |= GITS_BASER_PAGE_SIZE_4K;
2441 		break;
2442 	case SZ_16K:
2443 		val |= GITS_BASER_PAGE_SIZE_16K;
2444 		break;
2445 	case SZ_64K:
2446 		val |= GITS_BASER_PAGE_SIZE_64K;
2447 		break;
2448 	}
2449 
2450 	if (!shr)
2451 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2452 
2453 	its_write_baser(its, baser, val);
2454 	tmp = baser->val;
2455 
2456 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2457 		/*
2458 		 * Shareability didn't stick. Just use
2459 		 * whatever the read reported, which is likely
2460 		 * to be the only thing this redistributor
2461 		 * supports. If that's zero, make it
2462 		 * non-cacheable as well.
2463 		 */
2464 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2465 		if (!shr)
2466 			cache = GITS_BASER_nC;
2467 
2468 		goto retry_baser;
2469 	}
2470 
2471 	if (val != tmp) {
2472 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2473 		       &its->phys_base, its_base_type_string[type],
2474 		       val, tmp);
2475 		its_free_pages(base, order);
2476 		return -ENXIO;
2477 	}
2478 
2479 	baser->order = order;
2480 	baser->base = base;
2481 	baser->psz = psz;
2482 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2483 
2484 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2485 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2486 		its_base_type_string[type],
2487 		(unsigned long)virt_to_phys(base),
2488 		indirect ? "indirect" : "flat", (int)esz,
2489 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2490 
2491 	return 0;
2492 }
2493 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2494 static bool its_parse_indirect_baser(struct its_node *its,
2495 				     struct its_baser *baser,
2496 				     u32 *order, u32 ids)
2497 {
2498 	u64 tmp = its_read_baser(its, baser);
2499 	u64 type = GITS_BASER_TYPE(tmp);
2500 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2501 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2502 	u32 new_order = *order;
2503 	u32 psz = baser->psz;
2504 	bool indirect = false;
2505 
2506 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2507 	if ((esz << ids) > (psz * 2)) {
2508 		/*
2509 		 * Find out whether hw supports a single or two-level table by
2510 		 * table by reading bit at offset '62' after writing '1' to it.
2511 		 */
2512 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2513 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2514 
2515 		if (indirect) {
2516 			/*
2517 			 * The size of the lvl2 table is equal to ITS page size
2518 			 * which is 'psz'. For computing lvl1 table size,
2519 			 * subtract ID bits that sparse lvl2 table from 'ids'
2520 			 * which is reported by ITS hardware times lvl1 table
2521 			 * entry size.
2522 			 */
2523 			ids -= ilog2(psz / (int)esz);
2524 			esz = GITS_LVL1_ENTRY_SIZE;
2525 		}
2526 	}
2527 
2528 	/*
2529 	 * Allocate as many entries as required to fit the
2530 	 * range of device IDs that the ITS can grok... The ID
2531 	 * space being incredibly sparse, this results in a
2532 	 * massive waste of memory if two-level device table
2533 	 * feature is not supported by hardware.
2534 	 */
2535 	new_order = max_t(u32, get_order(esz << ids), new_order);
2536 	if (new_order > MAX_PAGE_ORDER) {
2537 		new_order = MAX_PAGE_ORDER;
2538 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2539 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2540 			&its->phys_base, its_base_type_string[type],
2541 			device_ids(its), ids);
2542 	}
2543 
2544 	*order = new_order;
2545 
2546 	return indirect;
2547 }
2548 
compute_common_aff(u64 val)2549 static u32 compute_common_aff(u64 val)
2550 {
2551 	u32 aff, clpiaff;
2552 
2553 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2554 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2555 
2556 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2557 }
2558 
compute_its_aff(struct its_node * its)2559 static u32 compute_its_aff(struct its_node *its)
2560 {
2561 	u64 val;
2562 	u32 svpet;
2563 
2564 	/*
2565 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2566 	 * the resulting affinity. We then use that to see if this match
2567 	 * our own affinity.
2568 	 */
2569 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2570 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2571 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2572 	return compute_common_aff(val);
2573 }
2574 
find_sibling_its(struct its_node * cur_its)2575 static struct its_node *find_sibling_its(struct its_node *cur_its)
2576 {
2577 	struct its_node *its;
2578 	u32 aff;
2579 
2580 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2581 		return NULL;
2582 
2583 	aff = compute_its_aff(cur_its);
2584 
2585 	list_for_each_entry(its, &its_nodes, entry) {
2586 		u64 baser;
2587 
2588 		if (!is_v4_1(its) || its == cur_its)
2589 			continue;
2590 
2591 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2592 			continue;
2593 
2594 		if (aff != compute_its_aff(its))
2595 			continue;
2596 
2597 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2598 		baser = its->tables[2].val;
2599 		if (!(baser & GITS_BASER_VALID))
2600 			continue;
2601 
2602 		return its;
2603 	}
2604 
2605 	return NULL;
2606 }
2607 
its_free_tables(struct its_node * its)2608 static void its_free_tables(struct its_node *its)
2609 {
2610 	int i;
2611 
2612 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2613 		if (its->tables[i].base) {
2614 			its_free_pages(its->tables[i].base, its->tables[i].order);
2615 			its->tables[i].base = NULL;
2616 		}
2617 	}
2618 }
2619 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2620 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2621 {
2622 	u64 psz = SZ_64K;
2623 
2624 	while (psz) {
2625 		u64 val, gpsz;
2626 
2627 		val = its_read_baser(its, baser);
2628 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2629 
2630 		switch (psz) {
2631 		case SZ_64K:
2632 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2633 			break;
2634 		case SZ_16K:
2635 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2636 			break;
2637 		case SZ_4K:
2638 		default:
2639 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2640 			break;
2641 		}
2642 
2643 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2644 
2645 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2646 		its_write_baser(its, baser, val);
2647 
2648 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2649 			break;
2650 
2651 		switch (psz) {
2652 		case SZ_64K:
2653 			psz = SZ_16K;
2654 			break;
2655 		case SZ_16K:
2656 			psz = SZ_4K;
2657 			break;
2658 		case SZ_4K:
2659 		default:
2660 			return -1;
2661 		}
2662 	}
2663 
2664 	baser->psz = psz;
2665 	return 0;
2666 }
2667 
its_alloc_tables(struct its_node * its)2668 static int its_alloc_tables(struct its_node *its)
2669 {
2670 	u64 shr = GITS_BASER_InnerShareable;
2671 	u64 cache = GITS_BASER_RaWaWb;
2672 	int err, i;
2673 
2674 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2675 		/* erratum 24313: ignore memory access type */
2676 		cache = GITS_BASER_nCnB;
2677 
2678 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2679 		cache = GITS_BASER_nC;
2680 		shr = 0;
2681 	}
2682 
2683 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2684 		struct its_baser *baser = its->tables + i;
2685 		u64 val = its_read_baser(its, baser);
2686 		u64 type = GITS_BASER_TYPE(val);
2687 		bool indirect = false;
2688 		u32 order;
2689 
2690 		if (type == GITS_BASER_TYPE_NONE)
2691 			continue;
2692 
2693 		if (its_probe_baser_psz(its, baser)) {
2694 			its_free_tables(its);
2695 			return -ENXIO;
2696 		}
2697 
2698 		order = get_order(baser->psz);
2699 
2700 		switch (type) {
2701 		case GITS_BASER_TYPE_DEVICE:
2702 			indirect = its_parse_indirect_baser(its, baser, &order,
2703 							    device_ids(its));
2704 			break;
2705 
2706 		case GITS_BASER_TYPE_VCPU:
2707 			if (is_v4_1(its)) {
2708 				struct its_node *sibling;
2709 
2710 				WARN_ON(i != 2);
2711 				if ((sibling = find_sibling_its(its))) {
2712 					*baser = sibling->tables[2];
2713 					its_write_baser(its, baser, baser->val);
2714 					continue;
2715 				}
2716 			}
2717 
2718 			indirect = its_parse_indirect_baser(its, baser, &order,
2719 							    ITS_MAX_VPEID_BITS);
2720 			break;
2721 		}
2722 
2723 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2724 		if (err < 0) {
2725 			its_free_tables(its);
2726 			return err;
2727 		}
2728 
2729 		/* Update settings which will be used for next BASERn */
2730 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2731 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2732 	}
2733 
2734 	return 0;
2735 }
2736 
inherit_vpe_l1_table_from_its(void)2737 static u64 inherit_vpe_l1_table_from_its(void)
2738 {
2739 	struct its_node *its;
2740 	u64 val;
2741 	u32 aff;
2742 
2743 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2744 	aff = compute_common_aff(val);
2745 
2746 	list_for_each_entry(its, &its_nodes, entry) {
2747 		u64 baser, addr;
2748 
2749 		if (!is_v4_1(its))
2750 			continue;
2751 
2752 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2753 			continue;
2754 
2755 		if (aff != compute_its_aff(its))
2756 			continue;
2757 
2758 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2759 		baser = its->tables[2].val;
2760 		if (!(baser & GITS_BASER_VALID))
2761 			continue;
2762 
2763 		/* We have a winner! */
2764 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2765 
2766 		val  = GICR_VPROPBASER_4_1_VALID;
2767 		if (baser & GITS_BASER_INDIRECT)
2768 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2769 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2770 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2771 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2772 		case GIC_PAGE_SIZE_64K:
2773 			addr = GITS_BASER_ADDR_48_to_52(baser);
2774 			break;
2775 		default:
2776 			addr = baser & GENMASK_ULL(47, 12);
2777 			break;
2778 		}
2779 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2780 		if (rdists_support_shareable()) {
2781 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2782 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2783 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2784 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2785 		}
2786 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2787 
2788 		return val;
2789 	}
2790 
2791 	return 0;
2792 }
2793 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2794 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2795 {
2796 	u32 aff;
2797 	u64 val;
2798 	int cpu;
2799 
2800 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2801 	aff = compute_common_aff(val);
2802 
2803 	for_each_possible_cpu(cpu) {
2804 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2805 
2806 		if (!base || cpu == smp_processor_id())
2807 			continue;
2808 
2809 		val = gic_read_typer(base + GICR_TYPER);
2810 		if (aff != compute_common_aff(val))
2811 			continue;
2812 
2813 		/*
2814 		 * At this point, we have a victim. This particular CPU
2815 		 * has already booted, and has an affinity that matches
2816 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2817 		 * Make sure we don't write the Z bit in that case.
2818 		 */
2819 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2820 		val &= ~GICR_VPROPBASER_4_1_Z;
2821 
2822 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2823 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2824 
2825 		return val;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
allocate_vpe_l2_table(int cpu,u32 id)2831 static bool allocate_vpe_l2_table(int cpu, u32 id)
2832 {
2833 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2834 	unsigned int psz, esz, idx, npg, gpsz;
2835 	u64 val;
2836 	struct page *page;
2837 	__le64 *table;
2838 
2839 	if (!gic_rdists->has_rvpeid)
2840 		return true;
2841 
2842 	/* Skip non-present CPUs */
2843 	if (!base)
2844 		return true;
2845 
2846 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2847 
2848 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2849 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2850 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2851 
2852 	switch (gpsz) {
2853 	default:
2854 		WARN_ON(1);
2855 		fallthrough;
2856 	case GIC_PAGE_SIZE_4K:
2857 		psz = SZ_4K;
2858 		break;
2859 	case GIC_PAGE_SIZE_16K:
2860 		psz = SZ_16K;
2861 		break;
2862 	case GIC_PAGE_SIZE_64K:
2863 		psz = SZ_64K;
2864 		break;
2865 	}
2866 
2867 	/* Don't allow vpe_id that exceeds single, flat table limit */
2868 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2869 		return (id < (npg * psz / (esz * SZ_8)));
2870 
2871 	/* Compute 1st level table index & check if that exceeds table limit */
2872 	idx = id >> ilog2(psz / (esz * SZ_8));
2873 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2874 		return false;
2875 
2876 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2877 
2878 	/* Allocate memory for 2nd level table */
2879 	if (!table[idx]) {
2880 		page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2881 		if (!page)
2882 			return false;
2883 
2884 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2885 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2886 			gic_flush_dcache_to_poc(page_address(page), psz);
2887 
2888 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2889 
2890 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2891 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2892 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2893 
2894 		/* Ensure updated table contents are visible to RD hardware */
2895 		dsb(sy);
2896 	}
2897 
2898 	return true;
2899 }
2900 
allocate_vpe_l1_table(void)2901 static int allocate_vpe_l1_table(void)
2902 {
2903 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2904 	u64 val, gpsz, npg, pa;
2905 	unsigned int psz = SZ_64K;
2906 	unsigned int np, epp, esz;
2907 	struct page *page;
2908 
2909 	if (!gic_rdists->has_rvpeid)
2910 		return 0;
2911 
2912 	/*
2913 	 * if VPENDBASER.Valid is set, disable any previously programmed
2914 	 * VPE by setting PendingLast while clearing Valid. This has the
2915 	 * effect of making sure no doorbell will be generated and we can
2916 	 * then safely clear VPROPBASER.Valid.
2917 	 */
2918 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2919 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2920 				      vlpi_base + GICR_VPENDBASER);
2921 
2922 	/*
2923 	 * If we can inherit the configuration from another RD, let's do
2924 	 * so. Otherwise, we have to go through the allocation process. We
2925 	 * assume that all RDs have the exact same requirements, as
2926 	 * nothing will work otherwise.
2927 	 */
2928 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2929 	if (val & GICR_VPROPBASER_4_1_VALID)
2930 		goto out;
2931 
2932 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2933 	if (!gic_data_rdist()->vpe_table_mask)
2934 		return -ENOMEM;
2935 
2936 	val = inherit_vpe_l1_table_from_its();
2937 	if (val & GICR_VPROPBASER_4_1_VALID)
2938 		goto out;
2939 
2940 	/* First probe the page size */
2941 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2942 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2943 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2944 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2945 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2946 
2947 	switch (gpsz) {
2948 	default:
2949 		gpsz = GIC_PAGE_SIZE_4K;
2950 		fallthrough;
2951 	case GIC_PAGE_SIZE_4K:
2952 		psz = SZ_4K;
2953 		break;
2954 	case GIC_PAGE_SIZE_16K:
2955 		psz = SZ_16K;
2956 		break;
2957 	case GIC_PAGE_SIZE_64K:
2958 		psz = SZ_64K;
2959 		break;
2960 	}
2961 
2962 	/*
2963 	 * Start populating the register from scratch, including RO fields
2964 	 * (which we want to print in debug cases...)
2965 	 */
2966 	val = 0;
2967 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2968 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2969 
2970 	/* How many entries per GIC page? */
2971 	esz++;
2972 	epp = psz / (esz * SZ_8);
2973 
2974 	/*
2975 	 * If we need more than just a single L1 page, flag the table
2976 	 * as indirect and compute the number of required L1 pages.
2977 	 */
2978 	if (epp < ITS_MAX_VPEID) {
2979 		int nl2;
2980 
2981 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2982 
2983 		/* Number of L2 pages required to cover the VPEID space */
2984 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2985 
2986 		/* Number of L1 pages to point to the L2 pages */
2987 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2988 	} else {
2989 		npg = 1;
2990 	}
2991 
2992 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2993 
2994 	/* Right, that's the number of CPU pages we need for L1 */
2995 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2996 
2997 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2998 		 np, npg, psz, epp, esz);
2999 	page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
3000 	if (!page)
3001 		return -ENOMEM;
3002 
3003 	gic_data_rdist()->vpe_l1_base = page_address(page);
3004 	pa = virt_to_phys(page_address(page));
3005 	WARN_ON(!IS_ALIGNED(pa, psz));
3006 
3007 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3008 	if (rdists_support_shareable()) {
3009 		val |= GICR_VPROPBASER_RaWb;
3010 		val |= GICR_VPROPBASER_InnerShareable;
3011 	}
3012 	val |= GICR_VPROPBASER_4_1_Z;
3013 	val |= GICR_VPROPBASER_4_1_VALID;
3014 
3015 out:
3016 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3017 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3018 
3019 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3020 		 smp_processor_id(), val,
3021 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3022 
3023 	return 0;
3024 }
3025 
its_alloc_collections(struct its_node * its)3026 static int its_alloc_collections(struct its_node *its)
3027 {
3028 	int i;
3029 
3030 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3031 				   GFP_KERNEL);
3032 	if (!its->collections)
3033 		return -ENOMEM;
3034 
3035 	for (i = 0; i < nr_cpu_ids; i++)
3036 		its->collections[i].target_address = ~0ULL;
3037 
3038 	return 0;
3039 }
3040 
its_allocate_pending_table(gfp_t gfp_flags)3041 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3042 {
3043 	struct page *pend_page;
3044 
3045 	pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3046 	if (!pend_page)
3047 		return NULL;
3048 
3049 	/* Make sure the GIC will observe the zero-ed page */
3050 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3051 
3052 	return pend_page;
3053 }
3054 
its_free_pending_table(struct page * pt)3055 static void its_free_pending_table(struct page *pt)
3056 {
3057 	its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3058 }
3059 
3060 /*
3061  * Booting with kdump and LPIs enabled is generally fine. Any other
3062  * case is wrong in the absence of firmware/EFI support.
3063  */
enabled_lpis_allowed(void)3064 static bool enabled_lpis_allowed(void)
3065 {
3066 	phys_addr_t addr;
3067 	u64 val;
3068 
3069 	/* Check whether the property table is in a reserved region */
3070 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3071 	addr = val & GENMASK_ULL(51, 12);
3072 
3073 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3074 }
3075 
allocate_lpi_tables(void)3076 static int __init allocate_lpi_tables(void)
3077 {
3078 	u64 val;
3079 	int err, cpu;
3080 
3081 	/*
3082 	 * If LPIs are enabled while we run this from the boot CPU,
3083 	 * flag the RD tables as pre-allocated if the stars do align.
3084 	 */
3085 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3086 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3087 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3088 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3089 		pr_info("GICv3: Using preallocated redistributor tables\n");
3090 	}
3091 
3092 	err = its_setup_lpi_prop_table();
3093 	if (err)
3094 		return err;
3095 
3096 	/*
3097 	 * We allocate all the pending tables anyway, as we may have a
3098 	 * mix of RDs that have had LPIs enabled, and some that
3099 	 * don't. We'll free the unused ones as each CPU comes online.
3100 	 */
3101 	for_each_possible_cpu(cpu) {
3102 		struct page *pend_page;
3103 
3104 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3105 		if (!pend_page) {
3106 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3107 			return -ENOMEM;
3108 		}
3109 
3110 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3111 	}
3112 
3113 	return 0;
3114 }
3115 
read_vpend_dirty_clear(void __iomem * vlpi_base)3116 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3117 {
3118 	u32 count = 1000000;	/* 1s! */
3119 	bool clean;
3120 	u64 val;
3121 
3122 	do {
3123 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3124 		clean = !(val & GICR_VPENDBASER_Dirty);
3125 		if (!clean) {
3126 			count--;
3127 			cpu_relax();
3128 			udelay(1);
3129 		}
3130 	} while (!clean && count);
3131 
3132 	if (unlikely(!clean))
3133 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3134 
3135 	return val;
3136 }
3137 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3138 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3139 {
3140 	u64 val;
3141 
3142 	/* Make sure we wait until the RD is done with the initial scan */
3143 	val = read_vpend_dirty_clear(vlpi_base);
3144 	val &= ~GICR_VPENDBASER_Valid;
3145 	val &= ~clr;
3146 	val |= set;
3147 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3148 
3149 	val = read_vpend_dirty_clear(vlpi_base);
3150 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3151 		val |= GICR_VPENDBASER_PendingLast;
3152 
3153 	return val;
3154 }
3155 
its_cpu_init_lpis(void)3156 static void its_cpu_init_lpis(void)
3157 {
3158 	void __iomem *rbase = gic_data_rdist_rd_base();
3159 	struct page *pend_page;
3160 	phys_addr_t paddr;
3161 	u64 val, tmp;
3162 
3163 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3164 		return;
3165 
3166 	val = readl_relaxed(rbase + GICR_CTLR);
3167 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3168 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3169 		/*
3170 		 * Check that we get the same property table on all
3171 		 * RDs. If we don't, this is hopeless.
3172 		 */
3173 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3174 		paddr &= GENMASK_ULL(51, 12);
3175 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3176 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3177 
3178 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3179 		paddr &= GENMASK_ULL(51, 16);
3180 
3181 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3182 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3183 
3184 		goto out;
3185 	}
3186 
3187 	pend_page = gic_data_rdist()->pend_page;
3188 	paddr = page_to_phys(pend_page);
3189 
3190 	/* set PROPBASE */
3191 	val = (gic_rdists->prop_table_pa |
3192 	       GICR_PROPBASER_InnerShareable |
3193 	       GICR_PROPBASER_RaWaWb |
3194 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3195 
3196 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3197 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3198 
3199 	if (!rdists_support_shareable())
3200 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3201 
3202 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3203 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3204 			/*
3205 			 * The HW reports non-shareable, we must
3206 			 * remove the cacheability attributes as
3207 			 * well.
3208 			 */
3209 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3210 				 GICR_PROPBASER_CACHEABILITY_MASK);
3211 			val |= GICR_PROPBASER_nC;
3212 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3213 		}
3214 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3215 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3216 	}
3217 
3218 	/* set PENDBASE */
3219 	val = (page_to_phys(pend_page) |
3220 	       GICR_PENDBASER_InnerShareable |
3221 	       GICR_PENDBASER_RaWaWb);
3222 
3223 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3224 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3225 
3226 	if (!rdists_support_shareable())
3227 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3228 
3229 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3230 		/*
3231 		 * The HW reports non-shareable, we must remove the
3232 		 * cacheability attributes as well.
3233 		 */
3234 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3235 			 GICR_PENDBASER_CACHEABILITY_MASK);
3236 		val |= GICR_PENDBASER_nC;
3237 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3238 	}
3239 
3240 	/* Enable LPIs */
3241 	val = readl_relaxed(rbase + GICR_CTLR);
3242 	val |= GICR_CTLR_ENABLE_LPIS;
3243 	writel_relaxed(val, rbase + GICR_CTLR);
3244 
3245 out:
3246 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3247 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3248 
3249 		/*
3250 		 * It's possible for CPU to receive VLPIs before it is
3251 		 * scheduled as a vPE, especially for the first CPU, and the
3252 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3253 		 * as out of range and dropped by GIC.
3254 		 * So we initialize IDbits to known value to avoid VLPI drop.
3255 		 */
3256 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3257 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3258 			smp_processor_id(), val);
3259 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3260 
3261 		/*
3262 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3263 		 * ancient programming gets left in and has possibility of
3264 		 * corrupting memory.
3265 		 */
3266 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3267 	}
3268 
3269 	if (allocate_vpe_l1_table()) {
3270 		/*
3271 		 * If the allocation has failed, we're in massive trouble.
3272 		 * Disable direct injection, and pray that no VM was
3273 		 * already running...
3274 		 */
3275 		gic_rdists->has_rvpeid = false;
3276 		gic_rdists->has_vlpis = false;
3277 	}
3278 
3279 	/* Make sure the GIC has seen the above */
3280 	dsb(sy);
3281 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3282 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3283 		smp_processor_id(),
3284 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3285 		"reserved" : "allocated",
3286 		&paddr);
3287 }
3288 
its_cpu_init_collection(struct its_node * its)3289 static void its_cpu_init_collection(struct its_node *its)
3290 {
3291 	int cpu = smp_processor_id();
3292 	u64 target;
3293 
3294 	/* avoid cross node collections and its mapping */
3295 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3296 		struct device_node *cpu_node;
3297 
3298 		cpu_node = of_get_cpu_node(cpu, NULL);
3299 		if (its->numa_node != NUMA_NO_NODE &&
3300 			its->numa_node != of_node_to_nid(cpu_node))
3301 			return;
3302 	}
3303 
3304 	/*
3305 	 * We now have to bind each collection to its target
3306 	 * redistributor.
3307 	 */
3308 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3309 		/*
3310 		 * This ITS wants the physical address of the
3311 		 * redistributor.
3312 		 */
3313 		target = gic_data_rdist()->phys_base;
3314 	} else {
3315 		/* This ITS wants a linear CPU number. */
3316 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3317 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3318 	}
3319 
3320 	/* Perform collection mapping */
3321 	its->collections[cpu].target_address = target;
3322 	its->collections[cpu].col_id = cpu;
3323 
3324 	its_send_mapc(its, &its->collections[cpu], 1);
3325 	its_send_invall(its, &its->collections[cpu]);
3326 }
3327 
its_cpu_init_collections(void)3328 static void its_cpu_init_collections(void)
3329 {
3330 	struct its_node *its;
3331 
3332 	raw_spin_lock(&its_lock);
3333 
3334 	list_for_each_entry(its, &its_nodes, entry)
3335 		its_cpu_init_collection(its);
3336 
3337 	raw_spin_unlock(&its_lock);
3338 }
3339 
its_find_device(struct its_node * its,u32 dev_id)3340 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3341 {
3342 	struct its_device *its_dev = NULL, *tmp;
3343 	unsigned long flags;
3344 
3345 	raw_spin_lock_irqsave(&its->lock, flags);
3346 
3347 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3348 		if (tmp->device_id == dev_id) {
3349 			its_dev = tmp;
3350 			break;
3351 		}
3352 	}
3353 
3354 	raw_spin_unlock_irqrestore(&its->lock, flags);
3355 
3356 	return its_dev;
3357 }
3358 
its_get_baser(struct its_node * its,u32 type)3359 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3360 {
3361 	int i;
3362 
3363 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3364 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3365 			return &its->tables[i];
3366 	}
3367 
3368 	return NULL;
3369 }
3370 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3371 static bool its_alloc_table_entry(struct its_node *its,
3372 				  struct its_baser *baser, u32 id)
3373 {
3374 	struct page *page;
3375 	u32 esz, idx;
3376 	__le64 *table;
3377 
3378 	/* Don't allow device id that exceeds single, flat table limit */
3379 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3380 	if (!(baser->val & GITS_BASER_INDIRECT))
3381 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3382 
3383 	/* Compute 1st level table index & check if that exceeds table limit */
3384 	idx = id >> ilog2(baser->psz / esz);
3385 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3386 		return false;
3387 
3388 	table = baser->base;
3389 
3390 	/* Allocate memory for 2nd level table */
3391 	if (!table[idx]) {
3392 		page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3393 					    get_order(baser->psz));
3394 		if (!page)
3395 			return false;
3396 
3397 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3398 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3399 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3400 
3401 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3402 
3403 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3404 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3405 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3406 
3407 		/* Ensure updated table contents are visible to ITS hardware */
3408 		dsb(sy);
3409 	}
3410 
3411 	return true;
3412 }
3413 
its_alloc_device_table(struct its_node * its,u32 dev_id)3414 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3415 {
3416 	struct its_baser *baser;
3417 
3418 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3419 
3420 	/* Don't allow device id that exceeds ITS hardware limit */
3421 	if (!baser)
3422 		return (ilog2(dev_id) < device_ids(its));
3423 
3424 	return its_alloc_table_entry(its, baser, dev_id);
3425 }
3426 
its_alloc_vpe_table(u32 vpe_id)3427 static bool its_alloc_vpe_table(u32 vpe_id)
3428 {
3429 	struct its_node *its;
3430 	int cpu;
3431 
3432 	/*
3433 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3434 	 * could try and only do it on ITSs corresponding to devices
3435 	 * that have interrupts targeted at this VPE, but the
3436 	 * complexity becomes crazy (and you have tons of memory
3437 	 * anyway, right?).
3438 	 */
3439 	list_for_each_entry(its, &its_nodes, entry) {
3440 		struct its_baser *baser;
3441 
3442 		if (!is_v4(its))
3443 			continue;
3444 
3445 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3446 		if (!baser)
3447 			return false;
3448 
3449 		if (!its_alloc_table_entry(its, baser, vpe_id))
3450 			return false;
3451 	}
3452 
3453 	/* Non v4.1? No need to iterate RDs and go back early. */
3454 	if (!gic_rdists->has_rvpeid)
3455 		return true;
3456 
3457 	/*
3458 	 * Make sure the L2 tables are allocated for all copies of
3459 	 * the L1 table on *all* v4.1 RDs.
3460 	 */
3461 	for_each_possible_cpu(cpu) {
3462 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3463 			return false;
3464 	}
3465 
3466 	return true;
3467 }
3468 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3469 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3470 					    int nvecs, bool alloc_lpis)
3471 {
3472 	struct its_device *dev;
3473 	unsigned long *lpi_map = NULL;
3474 	unsigned long flags;
3475 	u16 *col_map = NULL;
3476 	void *itt;
3477 	int lpi_base;
3478 	int nr_lpis;
3479 	int nr_ites;
3480 	int sz;
3481 
3482 	if (!its_alloc_device_table(its, dev_id))
3483 		return NULL;
3484 
3485 	if (WARN_ON(!is_power_of_2(nvecs)))
3486 		nvecs = roundup_pow_of_two(nvecs);
3487 
3488 	/*
3489 	 * Even if the device wants a single LPI, the ITT must be
3490 	 * sized as a power of two (and you need at least one bit...).
3491 	 */
3492 	nr_ites = max(2, nvecs);
3493 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3494 	sz = max(sz, ITS_ITT_ALIGN);
3495 
3496 	itt = itt_alloc_pool(its->numa_node, sz);
3497 
3498 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3499 
3500 	if (alloc_lpis) {
3501 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3502 		if (lpi_map)
3503 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3504 					  GFP_KERNEL);
3505 	} else {
3506 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3507 		nr_lpis = 0;
3508 		lpi_base = 0;
3509 	}
3510 
3511 	if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3512 		kfree(dev);
3513 		itt_free_pool(itt, sz);
3514 		bitmap_free(lpi_map);
3515 		kfree(col_map);
3516 		return NULL;
3517 	}
3518 
3519 	gic_flush_dcache_to_poc(itt, sz);
3520 
3521 	dev->its = its;
3522 	dev->itt = itt;
3523 	dev->itt_sz = sz;
3524 	dev->nr_ites = nr_ites;
3525 	dev->event_map.lpi_map = lpi_map;
3526 	dev->event_map.col_map = col_map;
3527 	dev->event_map.lpi_base = lpi_base;
3528 	dev->event_map.nr_lpis = nr_lpis;
3529 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3530 	dev->device_id = dev_id;
3531 	INIT_LIST_HEAD(&dev->entry);
3532 
3533 	raw_spin_lock_irqsave(&its->lock, flags);
3534 	list_add(&dev->entry, &its->its_device_list);
3535 	raw_spin_unlock_irqrestore(&its->lock, flags);
3536 
3537 	/* Map device to its ITT */
3538 	its_send_mapd(dev, 1);
3539 
3540 	return dev;
3541 }
3542 
its_free_device(struct its_device * its_dev)3543 static void its_free_device(struct its_device *its_dev)
3544 {
3545 	unsigned long flags;
3546 
3547 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3548 	list_del(&its_dev->entry);
3549 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3550 	kfree(its_dev->event_map.col_map);
3551 	itt_free_pool(its_dev->itt, its_dev->itt_sz);
3552 	kfree(its_dev);
3553 }
3554 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3555 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3556 {
3557 	int idx;
3558 
3559 	/* Find a free LPI region in lpi_map and allocate them. */
3560 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3561 				      dev->event_map.nr_lpis,
3562 				      get_count_order(nvecs));
3563 	if (idx < 0)
3564 		return -ENOSPC;
3565 
3566 	*hwirq = dev->event_map.lpi_base + idx;
3567 
3568 	return 0;
3569 }
3570 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3571 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3572 			   int nvec, msi_alloc_info_t *info)
3573 {
3574 	struct its_node *its;
3575 	struct its_device *its_dev;
3576 	struct msi_domain_info *msi_info;
3577 	u32 dev_id;
3578 	int err = 0;
3579 
3580 	/*
3581 	 * We ignore "dev" entirely, and rely on the dev_id that has
3582 	 * been passed via the scratchpad. This limits this domain's
3583 	 * usefulness to upper layers that definitely know that they
3584 	 * are built on top of the ITS.
3585 	 */
3586 	dev_id = info->scratchpad[0].ul;
3587 
3588 	msi_info = msi_get_domain_info(domain);
3589 	its = msi_info->data;
3590 
3591 	if (!gic_rdists->has_direct_lpi &&
3592 	    vpe_proxy.dev &&
3593 	    vpe_proxy.dev->its == its &&
3594 	    dev_id == vpe_proxy.dev->device_id) {
3595 		/* Bad luck. Get yourself a better implementation */
3596 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3597 			  dev_id);
3598 		return -EINVAL;
3599 	}
3600 
3601 	mutex_lock(&its->dev_alloc_lock);
3602 	its_dev = its_find_device(its, dev_id);
3603 	if (its_dev) {
3604 		/*
3605 		 * We already have seen this ID, probably through
3606 		 * another alias (PCI bridge of some sort). No need to
3607 		 * create the device.
3608 		 */
3609 		its_dev->shared = true;
3610 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3611 		goto out;
3612 	}
3613 
3614 	its_dev = its_create_device(its, dev_id, nvec, true);
3615 	if (!its_dev) {
3616 		err = -ENOMEM;
3617 		goto out;
3618 	}
3619 
3620 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3621 		its_dev->shared = true;
3622 
3623 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3624 out:
3625 	mutex_unlock(&its->dev_alloc_lock);
3626 	info->scratchpad[0].ptr = its_dev;
3627 	return err;
3628 }
3629 
3630 static struct msi_domain_ops its_msi_domain_ops = {
3631 	.msi_prepare	= its_msi_prepare,
3632 };
3633 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3634 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3635 				    unsigned int virq,
3636 				    irq_hw_number_t hwirq)
3637 {
3638 	struct irq_fwspec fwspec;
3639 
3640 	if (irq_domain_get_of_node(domain->parent)) {
3641 		fwspec.fwnode = domain->parent->fwnode;
3642 		fwspec.param_count = 3;
3643 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3644 		fwspec.param[1] = hwirq;
3645 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3646 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3647 		fwspec.fwnode = domain->parent->fwnode;
3648 		fwspec.param_count = 2;
3649 		fwspec.param[0] = hwirq;
3650 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3651 	} else {
3652 		return -EINVAL;
3653 	}
3654 
3655 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3656 }
3657 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3658 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3659 				unsigned int nr_irqs, void *args)
3660 {
3661 	msi_alloc_info_t *info = args;
3662 	struct its_device *its_dev = info->scratchpad[0].ptr;
3663 	struct its_node *its = its_dev->its;
3664 	struct irq_data *irqd;
3665 	irq_hw_number_t hwirq;
3666 	int err;
3667 	int i;
3668 
3669 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3670 	if (err)
3671 		return err;
3672 
3673 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3674 	if (err)
3675 		return err;
3676 
3677 	for (i = 0; i < nr_irqs; i++) {
3678 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3679 		if (err)
3680 			return err;
3681 
3682 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3683 					      hwirq + i, &its_irq_chip, its_dev);
3684 		irqd = irq_get_irq_data(virq + i);
3685 		irqd_set_single_target(irqd);
3686 		irqd_set_affinity_on_activate(irqd);
3687 		irqd_set_resend_when_in_progress(irqd);
3688 		pr_debug("ID:%d pID:%d vID:%d\n",
3689 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3690 			 (int)(hwirq + i), virq + i);
3691 	}
3692 
3693 	return 0;
3694 }
3695 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3696 static int its_irq_domain_activate(struct irq_domain *domain,
3697 				   struct irq_data *d, bool reserve)
3698 {
3699 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3700 	u32 event = its_get_event_id(d);
3701 	int cpu;
3702 
3703 	cpu = its_select_cpu(d, cpu_online_mask);
3704 	if (cpu < 0 || cpu >= nr_cpu_ids)
3705 		return -EINVAL;
3706 
3707 	its_inc_lpi_count(d, cpu);
3708 	its_dev->event_map.col_map[event] = cpu;
3709 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3710 
3711 	/* Map the GIC IRQ and event to the device */
3712 	its_send_mapti(its_dev, d->hwirq, event);
3713 	return 0;
3714 }
3715 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3716 static void its_irq_domain_deactivate(struct irq_domain *domain,
3717 				      struct irq_data *d)
3718 {
3719 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3720 	u32 event = its_get_event_id(d);
3721 
3722 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3723 	/* Stop the delivery of interrupts */
3724 	its_send_discard(its_dev, event);
3725 }
3726 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3727 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3728 				unsigned int nr_irqs)
3729 {
3730 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3731 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3732 	struct its_node *its = its_dev->its;
3733 	int i;
3734 
3735 	bitmap_release_region(its_dev->event_map.lpi_map,
3736 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3737 			      get_count_order(nr_irqs));
3738 
3739 	for (i = 0; i < nr_irqs; i++) {
3740 		struct irq_data *data = irq_domain_get_irq_data(domain,
3741 								virq + i);
3742 		/* Nuke the entry in the domain */
3743 		irq_domain_reset_irq_data(data);
3744 	}
3745 
3746 	mutex_lock(&its->dev_alloc_lock);
3747 
3748 	/*
3749 	 * If all interrupts have been freed, start mopping the
3750 	 * floor. This is conditioned on the device not being shared.
3751 	 */
3752 	if (!its_dev->shared &&
3753 	    bitmap_empty(its_dev->event_map.lpi_map,
3754 			 its_dev->event_map.nr_lpis)) {
3755 		its_lpi_free(its_dev->event_map.lpi_map,
3756 			     its_dev->event_map.lpi_base,
3757 			     its_dev->event_map.nr_lpis);
3758 
3759 		/* Unmap device/itt */
3760 		its_send_mapd(its_dev, 0);
3761 		its_free_device(its_dev);
3762 	}
3763 
3764 	mutex_unlock(&its->dev_alloc_lock);
3765 
3766 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3767 }
3768 
3769 static const struct irq_domain_ops its_domain_ops = {
3770 	.select			= msi_lib_irq_domain_select,
3771 	.alloc			= its_irq_domain_alloc,
3772 	.free			= its_irq_domain_free,
3773 	.activate		= its_irq_domain_activate,
3774 	.deactivate		= its_irq_domain_deactivate,
3775 };
3776 
3777 /*
3778  * This is insane.
3779  *
3780  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3781  * likely), the only way to perform an invalidate is to use a fake
3782  * device to issue an INV command, implying that the LPI has first
3783  * been mapped to some event on that device. Since this is not exactly
3784  * cheap, we try to keep that mapping around as long as possible, and
3785  * only issue an UNMAP if we're short on available slots.
3786  *
3787  * Broken by design(tm).
3788  *
3789  * GICv4.1, on the other hand, mandates that we're able to invalidate
3790  * by writing to a MMIO register. It doesn't implement the whole of
3791  * DirectLPI, but that's good enough. And most of the time, we don't
3792  * even have to invalidate anything, as the redistributor can be told
3793  * whether to generate a doorbell or not (we thus leave it enabled,
3794  * always).
3795  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3796 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3797 {
3798 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3799 	if (gic_rdists->has_rvpeid)
3800 		return;
3801 
3802 	/* Already unmapped? */
3803 	if (vpe->vpe_proxy_event == -1)
3804 		return;
3805 
3806 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3807 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3808 
3809 	/*
3810 	 * We don't track empty slots at all, so let's move the
3811 	 * next_victim pointer if we can quickly reuse that slot
3812 	 * instead of nuking an existing entry. Not clear that this is
3813 	 * always a win though, and this might just generate a ripple
3814 	 * effect... Let's just hope VPEs don't migrate too often.
3815 	 */
3816 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3817 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3818 
3819 	vpe->vpe_proxy_event = -1;
3820 }
3821 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3822 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3823 {
3824 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3825 	if (gic_rdists->has_rvpeid)
3826 		return;
3827 
3828 	if (!gic_rdists->has_direct_lpi) {
3829 		unsigned long flags;
3830 
3831 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3832 		its_vpe_db_proxy_unmap_locked(vpe);
3833 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3834 	}
3835 }
3836 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3837 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3838 {
3839 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3840 	if (gic_rdists->has_rvpeid)
3841 		return;
3842 
3843 	/* Already mapped? */
3844 	if (vpe->vpe_proxy_event != -1)
3845 		return;
3846 
3847 	/* This slot was already allocated. Kick the other VPE out. */
3848 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3849 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3850 
3851 	/* Map the new VPE instead */
3852 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3853 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3854 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3855 
3856 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3857 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3858 }
3859 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3860 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3861 {
3862 	unsigned long flags;
3863 	struct its_collection *target_col;
3864 
3865 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3866 	if (gic_rdists->has_rvpeid)
3867 		return;
3868 
3869 	if (gic_rdists->has_direct_lpi) {
3870 		void __iomem *rdbase;
3871 
3872 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3873 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3874 		wait_for_syncr(rdbase);
3875 
3876 		return;
3877 	}
3878 
3879 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3880 
3881 	its_vpe_db_proxy_map_locked(vpe);
3882 
3883 	target_col = &vpe_proxy.dev->its->collections[to];
3884 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3885 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3886 
3887 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3888 }
3889 
its_vpe_4_1_invall_locked(int cpu,struct its_vpe * vpe)3890 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3891 {
3892 	void __iomem *rdbase;
3893 	u64 val;
3894 
3895 	val  = GICR_INVALLR_V;
3896 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3897 
3898 	guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3899 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3900 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3901 	wait_for_syncr(rdbase);
3902 }
3903 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3904 static int its_vpe_set_affinity(struct irq_data *d,
3905 				const struct cpumask *mask_val,
3906 				bool force)
3907 {
3908 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3909 	unsigned int from, cpu = nr_cpu_ids;
3910 	struct cpumask *table_mask;
3911 	struct its_node *its;
3912 	unsigned long flags;
3913 
3914 	/*
3915 	 * Check if we're racing against a VPE being destroyed, for
3916 	 * which we don't want to allow a VMOVP.
3917 	 */
3918 	if (!atomic_read(&vpe->vmapp_count)) {
3919 		if (gic_requires_eager_mapping())
3920 			return -EINVAL;
3921 
3922 		/*
3923 		 * If we lazily map the VPEs, this isn't an error and
3924 		 * we can exit cleanly.
3925 		 */
3926 		cpu = cpumask_first(mask_val);
3927 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3928 		return IRQ_SET_MASK_OK_DONE;
3929 	}
3930 
3931 	/*
3932 	 * Changing affinity is mega expensive, so let's be as lazy as
3933 	 * we can and only do it if we really have to. Also, if mapped
3934 	 * into the proxy device, we need to move the doorbell
3935 	 * interrupt to its new location.
3936 	 *
3937 	 * Another thing is that changing the affinity of a vPE affects
3938 	 * *other interrupts* such as all the vLPIs that are routed to
3939 	 * this vPE. This means that the irq_desc lock is not enough to
3940 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3941 	 * during the update, hence the lock below which must also be
3942 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3943 	 *
3944 	 * Finally, we must protect ourselves against concurrent updates of
3945 	 * the mapping state on this VM should the ITS list be in use (see
3946 	 * the shortcut in its_send_vmovp() otherewise).
3947 	 */
3948 	if (its_list_map)
3949 		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3950 
3951 	from = vpe_to_cpuid_lock(vpe, &flags);
3952 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3953 
3954 	/*
3955 	 * If we are offered another CPU in the same GICv4.1 ITS
3956 	 * affinity, pick this one. Otherwise, any CPU will do.
3957 	 */
3958 	if (table_mask)
3959 		cpu = cpumask_any_and(mask_val, table_mask);
3960 	if (cpu < nr_cpu_ids) {
3961 		if (cpumask_test_cpu(from, mask_val) &&
3962 		    cpumask_test_cpu(from, table_mask))
3963 			cpu = from;
3964 	} else {
3965 		cpu = cpumask_first(mask_val);
3966 	}
3967 
3968 	if (from == cpu)
3969 		goto out;
3970 
3971 	vpe->col_idx = cpu;
3972 
3973 	its_send_vmovp(vpe);
3974 
3975 	its = find_4_1_its();
3976 	if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3977 		its_vpe_4_1_invall_locked(cpu, vpe);
3978 
3979 	its_vpe_db_proxy_move(vpe, from, cpu);
3980 
3981 out:
3982 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3983 	vpe_to_cpuid_unlock(vpe, flags);
3984 
3985 	if (its_list_map)
3986 		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3987 
3988 	return IRQ_SET_MASK_OK_DONE;
3989 }
3990 
its_wait_vpt_parse_complete(void)3991 static void its_wait_vpt_parse_complete(void)
3992 {
3993 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3994 	u64 val;
3995 
3996 	if (!gic_rdists->has_vpend_valid_dirty)
3997 		return;
3998 
3999 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
4000 						       val,
4001 						       !(val & GICR_VPENDBASER_Dirty),
4002 						       1, 500));
4003 }
4004 
its_vpe_schedule(struct its_vpe * vpe)4005 static void its_vpe_schedule(struct its_vpe *vpe)
4006 {
4007 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4008 	u64 val;
4009 
4010 	/* Schedule the VPE */
4011 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4012 		GENMASK_ULL(51, 12);
4013 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4014 	if (rdists_support_shareable()) {
4015 		val |= GICR_VPROPBASER_RaWb;
4016 		val |= GICR_VPROPBASER_InnerShareable;
4017 	}
4018 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4019 
4020 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
4021 		GENMASK_ULL(51, 16);
4022 	if (rdists_support_shareable()) {
4023 		val |= GICR_VPENDBASER_RaWaWb;
4024 		val |= GICR_VPENDBASER_InnerShareable;
4025 	}
4026 	/*
4027 	 * There is no good way of finding out if the pending table is
4028 	 * empty as we can race against the doorbell interrupt very
4029 	 * easily. So in the end, vpe->pending_last is only an
4030 	 * indication that the vcpu has something pending, not one
4031 	 * that the pending table is empty. A good implementation
4032 	 * would be able to read its coarse map pretty quickly anyway,
4033 	 * making this a tolerable issue.
4034 	 */
4035 	val |= GICR_VPENDBASER_PendingLast;
4036 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4037 	val |= GICR_VPENDBASER_Valid;
4038 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4039 }
4040 
its_vpe_deschedule(struct its_vpe * vpe)4041 static void its_vpe_deschedule(struct its_vpe *vpe)
4042 {
4043 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4044 	u64 val;
4045 
4046 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
4047 
4048 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4049 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4050 }
4051 
its_vpe_invall(struct its_vpe * vpe)4052 static void its_vpe_invall(struct its_vpe *vpe)
4053 {
4054 	struct its_node *its;
4055 
4056 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4057 
4058 	list_for_each_entry(its, &its_nodes, entry) {
4059 		if (!is_v4(its))
4060 			continue;
4061 
4062 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4063 			continue;
4064 
4065 		/*
4066 		 * Sending a VINVALL to a single ITS is enough, as all
4067 		 * we need is to reach the redistributors.
4068 		 */
4069 		its_send_vinvall(its, vpe);
4070 		return;
4071 	}
4072 }
4073 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4074 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4075 {
4076 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4077 	struct its_cmd_info *info = vcpu_info;
4078 
4079 	switch (info->cmd_type) {
4080 	case SCHEDULE_VPE:
4081 		its_vpe_schedule(vpe);
4082 		return 0;
4083 
4084 	case DESCHEDULE_VPE:
4085 		its_vpe_deschedule(vpe);
4086 		return 0;
4087 
4088 	case COMMIT_VPE:
4089 		its_wait_vpt_parse_complete();
4090 		return 0;
4091 
4092 	case INVALL_VPE:
4093 		its_vpe_invall(vpe);
4094 		return 0;
4095 
4096 	default:
4097 		return -EINVAL;
4098 	}
4099 }
4100 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))4101 static void its_vpe_send_cmd(struct its_vpe *vpe,
4102 			     void (*cmd)(struct its_device *, u32))
4103 {
4104 	unsigned long flags;
4105 
4106 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4107 
4108 	its_vpe_db_proxy_map_locked(vpe);
4109 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4110 
4111 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4112 }
4113 
its_vpe_send_inv(struct irq_data * d)4114 static void its_vpe_send_inv(struct irq_data *d)
4115 {
4116 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4117 
4118 	if (gic_rdists->has_direct_lpi)
4119 		__direct_lpi_inv(d, d->parent_data->hwirq);
4120 	else
4121 		its_vpe_send_cmd(vpe, its_send_inv);
4122 }
4123 
its_vpe_mask_irq(struct irq_data * d)4124 static void its_vpe_mask_irq(struct irq_data *d)
4125 {
4126 	/*
4127 	 * We need to unmask the LPI, which is described by the parent
4128 	 * irq_data. Instead of calling into the parent (which won't
4129 	 * exactly do the right thing, let's simply use the
4130 	 * parent_data pointer. Yes, I'm naughty.
4131 	 */
4132 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4133 	its_vpe_send_inv(d);
4134 }
4135 
its_vpe_unmask_irq(struct irq_data * d)4136 static void its_vpe_unmask_irq(struct irq_data *d)
4137 {
4138 	/* Same hack as above... */
4139 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4140 	its_vpe_send_inv(d);
4141 }
4142 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4143 static int its_vpe_set_irqchip_state(struct irq_data *d,
4144 				     enum irqchip_irq_state which,
4145 				     bool state)
4146 {
4147 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4148 
4149 	if (which != IRQCHIP_STATE_PENDING)
4150 		return -EINVAL;
4151 
4152 	if (gic_rdists->has_direct_lpi) {
4153 		void __iomem *rdbase;
4154 
4155 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4156 		if (state) {
4157 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4158 		} else {
4159 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4160 			wait_for_syncr(rdbase);
4161 		}
4162 	} else {
4163 		if (state)
4164 			its_vpe_send_cmd(vpe, its_send_int);
4165 		else
4166 			its_vpe_send_cmd(vpe, its_send_clear);
4167 	}
4168 
4169 	return 0;
4170 }
4171 
its_vpe_retrigger(struct irq_data * d)4172 static int its_vpe_retrigger(struct irq_data *d)
4173 {
4174 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4175 }
4176 
4177 static struct irq_chip its_vpe_irq_chip = {
4178 	.name			= "GICv4-vpe",
4179 	.irq_mask		= its_vpe_mask_irq,
4180 	.irq_unmask		= its_vpe_unmask_irq,
4181 	.irq_eoi		= irq_chip_eoi_parent,
4182 	.irq_set_affinity	= its_vpe_set_affinity,
4183 	.irq_retrigger		= its_vpe_retrigger,
4184 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4185 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4186 };
4187 
find_4_1_its(void)4188 static struct its_node *find_4_1_its(void)
4189 {
4190 	static struct its_node *its = NULL;
4191 
4192 	if (!its) {
4193 		list_for_each_entry(its, &its_nodes, entry) {
4194 			if (is_v4_1(its))
4195 				return its;
4196 		}
4197 
4198 		/* Oops? */
4199 		its = NULL;
4200 	}
4201 
4202 	return its;
4203 }
4204 
its_vpe_4_1_send_inv(struct irq_data * d)4205 static void its_vpe_4_1_send_inv(struct irq_data *d)
4206 {
4207 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4208 	struct its_node *its;
4209 
4210 	/*
4211 	 * GICv4.1 wants doorbells to be invalidated using the
4212 	 * INVDB command in order to be broadcast to all RDs. Send
4213 	 * it to the first valid ITS, and let the HW do its magic.
4214 	 */
4215 	its = find_4_1_its();
4216 	if (its)
4217 		its_send_invdb(its, vpe);
4218 }
4219 
its_vpe_4_1_mask_irq(struct irq_data * d)4220 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4221 {
4222 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4223 	its_vpe_4_1_send_inv(d);
4224 }
4225 
its_vpe_4_1_unmask_irq(struct irq_data * d)4226 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4227 {
4228 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4229 	its_vpe_4_1_send_inv(d);
4230 }
4231 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4232 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4233 				 struct its_cmd_info *info)
4234 {
4235 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4236 	u64 val = 0;
4237 
4238 	/* Schedule the VPE */
4239 	val |= GICR_VPENDBASER_Valid;
4240 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4241 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4242 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4243 
4244 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4245 }
4246 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4247 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4248 				   struct its_cmd_info *info)
4249 {
4250 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4251 	u64 val;
4252 
4253 	if (info->req_db) {
4254 		unsigned long flags;
4255 
4256 		/*
4257 		 * vPE is going to block: make the vPE non-resident with
4258 		 * PendingLast clear and DB set. The GIC guarantees that if
4259 		 * we read-back PendingLast clear, then a doorbell will be
4260 		 * delivered when an interrupt comes.
4261 		 *
4262 		 * Note the locking to deal with the concurrent update of
4263 		 * pending_last from the doorbell interrupt handler that can
4264 		 * run concurrently.
4265 		 */
4266 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4267 		val = its_clear_vpend_valid(vlpi_base,
4268 					    GICR_VPENDBASER_PendingLast,
4269 					    GICR_VPENDBASER_4_1_DB);
4270 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4271 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4272 	} else {
4273 		/*
4274 		 * We're not blocking, so just make the vPE non-resident
4275 		 * with PendingLast set, indicating that we'll be back.
4276 		 */
4277 		val = its_clear_vpend_valid(vlpi_base,
4278 					    0,
4279 					    GICR_VPENDBASER_PendingLast);
4280 		vpe->pending_last = true;
4281 	}
4282 }
4283 
its_vpe_4_1_invall(struct its_vpe * vpe)4284 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4285 {
4286 	unsigned long flags;
4287 	int cpu;
4288 
4289 	/* Target the redistributor this vPE is currently known on */
4290 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4291 	its_vpe_4_1_invall_locked(cpu, vpe);
4292 	vpe_to_cpuid_unlock(vpe, flags);
4293 }
4294 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4295 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4296 {
4297 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4298 	struct its_cmd_info *info = vcpu_info;
4299 
4300 	switch (info->cmd_type) {
4301 	case SCHEDULE_VPE:
4302 		its_vpe_4_1_schedule(vpe, info);
4303 		return 0;
4304 
4305 	case DESCHEDULE_VPE:
4306 		its_vpe_4_1_deschedule(vpe, info);
4307 		return 0;
4308 
4309 	case COMMIT_VPE:
4310 		its_wait_vpt_parse_complete();
4311 		return 0;
4312 
4313 	case INVALL_VPE:
4314 		its_vpe_4_1_invall(vpe);
4315 		return 0;
4316 
4317 	default:
4318 		return -EINVAL;
4319 	}
4320 }
4321 
4322 static struct irq_chip its_vpe_4_1_irq_chip = {
4323 	.name			= "GICv4.1-vpe",
4324 	.irq_mask		= its_vpe_4_1_mask_irq,
4325 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4326 	.irq_eoi		= irq_chip_eoi_parent,
4327 	.irq_set_affinity	= its_vpe_set_affinity,
4328 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4329 };
4330 
its_configure_sgi(struct irq_data * d,bool clear)4331 static void its_configure_sgi(struct irq_data *d, bool clear)
4332 {
4333 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4334 	struct its_cmd_desc desc;
4335 
4336 	desc.its_vsgi_cmd.vpe = vpe;
4337 	desc.its_vsgi_cmd.sgi = d->hwirq;
4338 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4339 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4340 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4341 	desc.its_vsgi_cmd.clear = clear;
4342 
4343 	/*
4344 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4345 	 * destination VPE is mapped there. Since we map them eagerly at
4346 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4347 	 */
4348 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4349 }
4350 
its_sgi_mask_irq(struct irq_data * d)4351 static void its_sgi_mask_irq(struct irq_data *d)
4352 {
4353 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4354 
4355 	vpe->sgi_config[d->hwirq].enabled = false;
4356 	its_configure_sgi(d, false);
4357 }
4358 
its_sgi_unmask_irq(struct irq_data * d)4359 static void its_sgi_unmask_irq(struct irq_data *d)
4360 {
4361 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4362 
4363 	vpe->sgi_config[d->hwirq].enabled = true;
4364 	its_configure_sgi(d, false);
4365 }
4366 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4367 static int its_sgi_set_affinity(struct irq_data *d,
4368 				const struct cpumask *mask_val,
4369 				bool force)
4370 {
4371 	/*
4372 	 * There is no notion of affinity for virtual SGIs, at least
4373 	 * not on the host (since they can only be targeting a vPE).
4374 	 * Tell the kernel we've done whatever it asked for.
4375 	 */
4376 	irq_data_update_effective_affinity(d, mask_val);
4377 	return IRQ_SET_MASK_OK;
4378 }
4379 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4380 static int its_sgi_set_irqchip_state(struct irq_data *d,
4381 				     enum irqchip_irq_state which,
4382 				     bool state)
4383 {
4384 	if (which != IRQCHIP_STATE_PENDING)
4385 		return -EINVAL;
4386 
4387 	if (state) {
4388 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4389 		struct its_node *its = find_4_1_its();
4390 		u64 val;
4391 
4392 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4393 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4394 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4395 	} else {
4396 		its_configure_sgi(d, true);
4397 	}
4398 
4399 	return 0;
4400 }
4401 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4402 static int its_sgi_get_irqchip_state(struct irq_data *d,
4403 				     enum irqchip_irq_state which, bool *val)
4404 {
4405 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4406 	void __iomem *base;
4407 	unsigned long flags;
4408 	u32 count = 1000000;	/* 1s! */
4409 	u32 status;
4410 	int cpu;
4411 
4412 	if (which != IRQCHIP_STATE_PENDING)
4413 		return -EINVAL;
4414 
4415 	/*
4416 	 * Locking galore! We can race against two different events:
4417 	 *
4418 	 * - Concurrent vPE affinity change: we must make sure it cannot
4419 	 *   happen, or we'll talk to the wrong redistributor. This is
4420 	 *   identical to what happens with vLPIs.
4421 	 *
4422 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4423 	 *   MMIO registers, this must be made atomic one way or another.
4424 	 */
4425 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4426 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4427 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4428 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4429 	do {
4430 		status = readl_relaxed(base + GICR_VSGIPENDR);
4431 		if (!(status & GICR_VSGIPENDR_BUSY))
4432 			goto out;
4433 
4434 		count--;
4435 		if (!count) {
4436 			pr_err_ratelimited("Unable to get SGI status\n");
4437 			goto out;
4438 		}
4439 		cpu_relax();
4440 		udelay(1);
4441 	} while (count);
4442 
4443 out:
4444 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4445 	vpe_to_cpuid_unlock(vpe, flags);
4446 
4447 	if (!count)
4448 		return -ENXIO;
4449 
4450 	*val = !!(status & (1 << d->hwirq));
4451 
4452 	return 0;
4453 }
4454 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4455 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4456 {
4457 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4458 	struct its_cmd_info *info = vcpu_info;
4459 
4460 	switch (info->cmd_type) {
4461 	case PROP_UPDATE_VSGI:
4462 		vpe->sgi_config[d->hwirq].priority = info->priority;
4463 		vpe->sgi_config[d->hwirq].group = info->group;
4464 		its_configure_sgi(d, false);
4465 		return 0;
4466 
4467 	default:
4468 		return -EINVAL;
4469 	}
4470 }
4471 
4472 static struct irq_chip its_sgi_irq_chip = {
4473 	.name			= "GICv4.1-sgi",
4474 	.irq_mask		= its_sgi_mask_irq,
4475 	.irq_unmask		= its_sgi_unmask_irq,
4476 	.irq_set_affinity	= its_sgi_set_affinity,
4477 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4478 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4479 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4480 };
4481 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4482 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4483 				    unsigned int virq, unsigned int nr_irqs,
4484 				    void *args)
4485 {
4486 	struct its_vpe *vpe = args;
4487 	int i;
4488 
4489 	/* Yes, we do want 16 SGIs */
4490 	WARN_ON(nr_irqs != 16);
4491 
4492 	for (i = 0; i < 16; i++) {
4493 		vpe->sgi_config[i].priority = 0;
4494 		vpe->sgi_config[i].enabled = false;
4495 		vpe->sgi_config[i].group = false;
4496 
4497 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4498 					      &its_sgi_irq_chip, vpe);
4499 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4500 	}
4501 
4502 	return 0;
4503 }
4504 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4505 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4506 				    unsigned int virq,
4507 				    unsigned int nr_irqs)
4508 {
4509 	/* Nothing to do */
4510 }
4511 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4512 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4513 				       struct irq_data *d, bool reserve)
4514 {
4515 	/* Write out the initial SGI configuration */
4516 	its_configure_sgi(d, false);
4517 	return 0;
4518 }
4519 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4520 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4521 					  struct irq_data *d)
4522 {
4523 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4524 
4525 	/*
4526 	 * The VSGI command is awkward:
4527 	 *
4528 	 * - To change the configuration, CLEAR must be set to false,
4529 	 *   leaving the pending bit unchanged.
4530 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4531 	 *   the configuration unchanged.
4532 	 *
4533 	 * You just can't do both at once, hence the two commands below.
4534 	 */
4535 	vpe->sgi_config[d->hwirq].enabled = false;
4536 	its_configure_sgi(d, false);
4537 	its_configure_sgi(d, true);
4538 }
4539 
4540 static const struct irq_domain_ops its_sgi_domain_ops = {
4541 	.alloc		= its_sgi_irq_domain_alloc,
4542 	.free		= its_sgi_irq_domain_free,
4543 	.activate	= its_sgi_irq_domain_activate,
4544 	.deactivate	= its_sgi_irq_domain_deactivate,
4545 };
4546 
its_vpe_id_alloc(void)4547 static int its_vpe_id_alloc(void)
4548 {
4549 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4550 }
4551 
its_vpe_id_free(u16 id)4552 static void its_vpe_id_free(u16 id)
4553 {
4554 	ida_free(&its_vpeid_ida, id);
4555 }
4556 
its_vpe_init(struct its_vpe * vpe)4557 static int its_vpe_init(struct its_vpe *vpe)
4558 {
4559 	struct page *vpt_page;
4560 	int vpe_id;
4561 
4562 	/* Allocate vpe_id */
4563 	vpe_id = its_vpe_id_alloc();
4564 	if (vpe_id < 0)
4565 		return vpe_id;
4566 
4567 	/* Allocate VPT */
4568 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4569 	if (!vpt_page) {
4570 		its_vpe_id_free(vpe_id);
4571 		return -ENOMEM;
4572 	}
4573 
4574 	if (!its_alloc_vpe_table(vpe_id)) {
4575 		its_vpe_id_free(vpe_id);
4576 		its_free_pending_table(vpt_page);
4577 		return -ENOMEM;
4578 	}
4579 
4580 	raw_spin_lock_init(&vpe->vpe_lock);
4581 	vpe->vpe_id = vpe_id;
4582 	vpe->vpt_page = vpt_page;
4583 	atomic_set(&vpe->vmapp_count, 0);
4584 	if (!gic_rdists->has_rvpeid)
4585 		vpe->vpe_proxy_event = -1;
4586 
4587 	return 0;
4588 }
4589 
its_vpe_teardown(struct its_vpe * vpe)4590 static void its_vpe_teardown(struct its_vpe *vpe)
4591 {
4592 	its_vpe_db_proxy_unmap(vpe);
4593 	its_vpe_id_free(vpe->vpe_id);
4594 	its_free_pending_table(vpe->vpt_page);
4595 }
4596 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4597 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4598 				    unsigned int virq,
4599 				    unsigned int nr_irqs)
4600 {
4601 	struct its_vm *vm = domain->host_data;
4602 	int i;
4603 
4604 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4605 
4606 	for (i = 0; i < nr_irqs; i++) {
4607 		struct irq_data *data = irq_domain_get_irq_data(domain,
4608 								virq + i);
4609 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4610 
4611 		BUG_ON(vm != vpe->its_vm);
4612 
4613 		clear_bit(data->hwirq, vm->db_bitmap);
4614 		its_vpe_teardown(vpe);
4615 		irq_domain_reset_irq_data(data);
4616 	}
4617 
4618 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4619 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4620 		its_free_prop_table(vm->vprop_page);
4621 	}
4622 }
4623 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4624 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4625 				    unsigned int nr_irqs, void *args)
4626 {
4627 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4628 	struct its_vm *vm = args;
4629 	unsigned long *bitmap;
4630 	struct page *vprop_page;
4631 	int base, nr_ids, i, err = 0;
4632 
4633 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4634 	if (!bitmap)
4635 		return -ENOMEM;
4636 
4637 	if (nr_ids < nr_irqs) {
4638 		its_lpi_free(bitmap, base, nr_ids);
4639 		return -ENOMEM;
4640 	}
4641 
4642 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4643 	if (!vprop_page) {
4644 		its_lpi_free(bitmap, base, nr_ids);
4645 		return -ENOMEM;
4646 	}
4647 
4648 	vm->db_bitmap = bitmap;
4649 	vm->db_lpi_base = base;
4650 	vm->nr_db_lpis = nr_ids;
4651 	vm->vprop_page = vprop_page;
4652 	raw_spin_lock_init(&vm->vmapp_lock);
4653 
4654 	if (gic_rdists->has_rvpeid)
4655 		irqchip = &its_vpe_4_1_irq_chip;
4656 
4657 	for (i = 0; i < nr_irqs; i++) {
4658 		vm->vpes[i]->vpe_db_lpi = base + i;
4659 		err = its_vpe_init(vm->vpes[i]);
4660 		if (err)
4661 			break;
4662 		err = its_irq_gic_domain_alloc(domain, virq + i,
4663 					       vm->vpes[i]->vpe_db_lpi);
4664 		if (err)
4665 			break;
4666 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4667 					      irqchip, vm->vpes[i]);
4668 		set_bit(i, bitmap);
4669 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4670 	}
4671 
4672 	if (err)
4673 		its_vpe_irq_domain_free(domain, virq, i);
4674 
4675 	return err;
4676 }
4677 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4678 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4679 				       struct irq_data *d, bool reserve)
4680 {
4681 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4682 	struct its_node *its;
4683 
4684 	/* Map the VPE to the first possible CPU */
4685 	vpe->col_idx = cpumask_first(cpu_online_mask);
4686 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4687 
4688 	/*
4689 	 * If we use the list map, we issue VMAPP on demand... Unless
4690 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4691 	 * so that VSGIs can work.
4692 	 */
4693 	if (!gic_requires_eager_mapping())
4694 		return 0;
4695 
4696 	list_for_each_entry(its, &its_nodes, entry) {
4697 		if (!is_v4(its))
4698 			continue;
4699 
4700 		its_send_vmapp(its, vpe, true);
4701 		its_send_vinvall(its, vpe);
4702 	}
4703 
4704 	return 0;
4705 }
4706 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4707 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4708 					  struct irq_data *d)
4709 {
4710 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4711 	struct its_node *its;
4712 
4713 	/*
4714 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4715 	 * VLPIs are associated with the VM.
4716 	 */
4717 	if (!gic_requires_eager_mapping())
4718 		return;
4719 
4720 	list_for_each_entry(its, &its_nodes, entry) {
4721 		if (!is_v4(its))
4722 			continue;
4723 
4724 		its_send_vmapp(its, vpe, false);
4725 	}
4726 
4727 	/*
4728 	 * There may be a direct read to the VPT after unmapping the
4729 	 * vPE, to guarantee the validity of this, we make the VPT
4730 	 * memory coherent with the CPU caches here.
4731 	 */
4732 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4733 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4734 					LPI_PENDBASE_SZ);
4735 }
4736 
4737 static const struct irq_domain_ops its_vpe_domain_ops = {
4738 	.alloc			= its_vpe_irq_domain_alloc,
4739 	.free			= its_vpe_irq_domain_free,
4740 	.activate		= its_vpe_irq_domain_activate,
4741 	.deactivate		= its_vpe_irq_domain_deactivate,
4742 };
4743 
its_force_quiescent(void __iomem * base)4744 static int its_force_quiescent(void __iomem *base)
4745 {
4746 	u32 count = 1000000;	/* 1s */
4747 	u32 val;
4748 
4749 	val = readl_relaxed(base + GITS_CTLR);
4750 	/*
4751 	 * GIC architecture specification requires the ITS to be both
4752 	 * disabled and quiescent for writes to GITS_BASER<n> or
4753 	 * GITS_CBASER to not have UNPREDICTABLE results.
4754 	 */
4755 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4756 		return 0;
4757 
4758 	/* Disable the generation of all interrupts to this ITS */
4759 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4760 	writel_relaxed(val, base + GITS_CTLR);
4761 
4762 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4763 	while (1) {
4764 		val = readl_relaxed(base + GITS_CTLR);
4765 		if (val & GITS_CTLR_QUIESCENT)
4766 			return 0;
4767 
4768 		count--;
4769 		if (!count)
4770 			return -EBUSY;
4771 
4772 		cpu_relax();
4773 		udelay(1);
4774 	}
4775 }
4776 
its_enable_quirk_cavium_22375(void * data)4777 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4778 {
4779 	struct its_node *its = data;
4780 
4781 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4782 	its->typer &= ~GITS_TYPER_DEVBITS;
4783 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4784 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4785 
4786 	return true;
4787 }
4788 
its_enable_quirk_cavium_23144(void * data)4789 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4790 {
4791 	struct its_node *its = data;
4792 
4793 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4794 
4795 	return true;
4796 }
4797 
its_enable_quirk_qdf2400_e0065(void * data)4798 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4799 {
4800 	struct its_node *its = data;
4801 
4802 	/* On QDF2400, the size of the ITE is 16Bytes */
4803 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4804 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4805 
4806 	return true;
4807 }
4808 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4809 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4810 {
4811 	struct its_node *its = its_dev->its;
4812 
4813 	/*
4814 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4815 	 * which maps 32-bit writes targeted at a separate window of
4816 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4817 	 * with device ID taken from bits [device_id_bits + 1:2] of
4818 	 * the window offset.
4819 	 */
4820 	return its->pre_its_base + (its_dev->device_id << 2);
4821 }
4822 
its_enable_quirk_socionext_synquacer(void * data)4823 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4824 {
4825 	struct its_node *its = data;
4826 	u32 pre_its_window[2];
4827 	u32 ids;
4828 
4829 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4830 					   "socionext,synquacer-pre-its",
4831 					   pre_its_window,
4832 					   ARRAY_SIZE(pre_its_window))) {
4833 
4834 		its->pre_its_base = pre_its_window[0];
4835 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4836 
4837 		ids = ilog2(pre_its_window[1]) - 2;
4838 		if (device_ids(its) > ids) {
4839 			its->typer &= ~GITS_TYPER_DEVBITS;
4840 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4841 		}
4842 
4843 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4844 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4845 		return true;
4846 	}
4847 	return false;
4848 }
4849 
its_enable_quirk_hip07_161600802(void * data)4850 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4851 {
4852 	struct its_node *its = data;
4853 
4854 	/*
4855 	 * Hip07 insists on using the wrong address for the VLPI
4856 	 * page. Trick it into doing the right thing...
4857 	 */
4858 	its->vlpi_redist_offset = SZ_128K;
4859 	return true;
4860 }
4861 
its_enable_rk3588001(void * data)4862 static bool __maybe_unused its_enable_rk3588001(void *data)
4863 {
4864 	struct its_node *its = data;
4865 
4866 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4867 	    !of_machine_is_compatible("rockchip,rk3588s"))
4868 		return false;
4869 
4870 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4871 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4872 
4873 	return true;
4874 }
4875 
its_set_non_coherent(void * data)4876 static bool its_set_non_coherent(void *data)
4877 {
4878 	struct its_node *its = data;
4879 
4880 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4881 	return true;
4882 }
4883 
its_enable_quirk_hip09_162100801(void * data)4884 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4885 {
4886 	struct its_node *its = data;
4887 
4888 	its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4889 	return true;
4890 }
4891 
its_enable_rk3568002(void * data)4892 static bool __maybe_unused its_enable_rk3568002(void *data)
4893 {
4894 	if (!of_machine_is_compatible("rockchip,rk3566") &&
4895 	    !of_machine_is_compatible("rockchip,rk3568"))
4896 		return false;
4897 
4898 	gfp_flags_quirk |= GFP_DMA32;
4899 
4900 	return true;
4901 }
4902 
4903 static const struct gic_quirk its_quirks[] = {
4904 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4905 	{
4906 		.desc	= "ITS: Cavium errata 22375, 24313",
4907 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4908 		.mask	= 0xffff0fff,
4909 		.init	= its_enable_quirk_cavium_22375,
4910 	},
4911 #endif
4912 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4913 	{
4914 		.desc	= "ITS: Cavium erratum 23144",
4915 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4916 		.mask	= 0xffff0fff,
4917 		.init	= its_enable_quirk_cavium_23144,
4918 	},
4919 #endif
4920 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4921 	{
4922 		.desc	= "ITS: QDF2400 erratum 0065",
4923 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4924 		.mask	= 0xffffffff,
4925 		.init	= its_enable_quirk_qdf2400_e0065,
4926 	},
4927 #endif
4928 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4929 	{
4930 		/*
4931 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4932 		 * implementation, but with a 'pre-ITS' added that requires
4933 		 * special handling in software.
4934 		 */
4935 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4936 		.iidr	= 0x0001143b,
4937 		.mask	= 0xffffffff,
4938 		.init	= its_enable_quirk_socionext_synquacer,
4939 	},
4940 #endif
4941 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4942 	{
4943 		.desc	= "ITS: Hip07 erratum 161600802",
4944 		.iidr	= 0x00000004,
4945 		.mask	= 0xffffffff,
4946 		.init	= its_enable_quirk_hip07_161600802,
4947 	},
4948 #endif
4949 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4950 	{
4951 		.desc	= "ITS: Hip09 erratum 162100801",
4952 		.iidr	= 0x00051736,
4953 		.mask	= 0xffffffff,
4954 		.init	= its_enable_quirk_hip09_162100801,
4955 	},
4956 #endif
4957 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4958 	{
4959 		.desc   = "ITS: Rockchip erratum RK3588001",
4960 		.iidr   = 0x0201743b,
4961 		.mask   = 0xffffffff,
4962 		.init   = its_enable_rk3588001,
4963 	},
4964 #endif
4965 	{
4966 		.desc   = "ITS: non-coherent attribute",
4967 		.property = "dma-noncoherent",
4968 		.init   = its_set_non_coherent,
4969 	},
4970 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002
4971 	{
4972 		.desc   = "ITS: Rockchip erratum RK3568002",
4973 		.iidr   = 0x0201743b,
4974 		.mask   = 0xffffffff,
4975 		.init   = its_enable_rk3568002,
4976 	},
4977 #endif
4978 	{
4979 	}
4980 };
4981 
its_enable_quirks(struct its_node * its)4982 static void its_enable_quirks(struct its_node *its)
4983 {
4984 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4985 
4986 	gic_enable_quirks(iidr, its_quirks, its);
4987 
4988 	if (is_of_node(its->fwnode_handle))
4989 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4990 				     its_quirks, its);
4991 }
4992 
its_save_disable(void)4993 static int its_save_disable(void)
4994 {
4995 	struct its_node *its;
4996 	int err = 0;
4997 
4998 	raw_spin_lock(&its_lock);
4999 	list_for_each_entry(its, &its_nodes, entry) {
5000 		void __iomem *base;
5001 
5002 		base = its->base;
5003 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
5004 		err = its_force_quiescent(base);
5005 		if (err) {
5006 			pr_err("ITS@%pa: failed to quiesce: %d\n",
5007 			       &its->phys_base, err);
5008 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5009 			goto err;
5010 		}
5011 
5012 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
5013 	}
5014 
5015 err:
5016 	if (err) {
5017 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
5018 			void __iomem *base;
5019 
5020 			base = its->base;
5021 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5022 		}
5023 	}
5024 	raw_spin_unlock(&its_lock);
5025 
5026 	return err;
5027 }
5028 
its_restore_enable(void)5029 static void its_restore_enable(void)
5030 {
5031 	struct its_node *its;
5032 	int ret;
5033 
5034 	raw_spin_lock(&its_lock);
5035 	list_for_each_entry(its, &its_nodes, entry) {
5036 		void __iomem *base;
5037 		int i;
5038 
5039 		base = its->base;
5040 
5041 		/*
5042 		 * Make sure that the ITS is disabled. If it fails to quiesce,
5043 		 * don't restore it since writing to CBASER or BASER<n>
5044 		 * registers is undefined according to the GIC v3 ITS
5045 		 * Specification.
5046 		 *
5047 		 * Firmware resuming with the ITS enabled is terminally broken.
5048 		 */
5049 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5050 		ret = its_force_quiescent(base);
5051 		if (ret) {
5052 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5053 			       &its->phys_base, ret);
5054 			continue;
5055 		}
5056 
5057 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5058 
5059 		/*
5060 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
5061 		 * cmd_write line up with it.
5062 		 */
5063 		its->cmd_write = its->cmd_base;
5064 		gits_write_cwriter(0, base + GITS_CWRITER);
5065 
5066 		/* Restore GITS_BASER from the value cache. */
5067 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5068 			struct its_baser *baser = &its->tables[i];
5069 
5070 			if (!(baser->val & GITS_BASER_VALID))
5071 				continue;
5072 
5073 			its_write_baser(its, baser, baser->val);
5074 		}
5075 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5076 
5077 		/*
5078 		 * Reinit the collection if it's stored in the ITS. This is
5079 		 * indicated by the col_id being less than the HCC field.
5080 		 * CID < HCC as specified in the GIC v3 Documentation.
5081 		 */
5082 		if (its->collections[smp_processor_id()].col_id <
5083 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5084 			its_cpu_init_collection(its);
5085 	}
5086 	raw_spin_unlock(&its_lock);
5087 }
5088 
5089 static struct syscore_ops its_syscore_ops = {
5090 	.suspend = its_save_disable,
5091 	.resume = its_restore_enable,
5092 };
5093 
its_map_one(struct resource * res,int * err)5094 static void __init __iomem *its_map_one(struct resource *res, int *err)
5095 {
5096 	void __iomem *its_base;
5097 	u32 val;
5098 
5099 	its_base = ioremap(res->start, SZ_64K);
5100 	if (!its_base) {
5101 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5102 		*err = -ENOMEM;
5103 		return NULL;
5104 	}
5105 
5106 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5107 	if (val != 0x30 && val != 0x40) {
5108 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5109 		*err = -ENODEV;
5110 		goto out_unmap;
5111 	}
5112 
5113 	*err = its_force_quiescent(its_base);
5114 	if (*err) {
5115 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5116 		goto out_unmap;
5117 	}
5118 
5119 	return its_base;
5120 
5121 out_unmap:
5122 	iounmap(its_base);
5123 	return NULL;
5124 }
5125 
its_init_domain(struct its_node * its)5126 static int its_init_domain(struct its_node *its)
5127 {
5128 	struct irq_domain *inner_domain;
5129 	struct msi_domain_info *info;
5130 
5131 	info = kzalloc(sizeof(*info), GFP_KERNEL);
5132 	if (!info)
5133 		return -ENOMEM;
5134 
5135 	info->ops = &its_msi_domain_ops;
5136 	info->data = its;
5137 
5138 	inner_domain = irq_domain_create_hierarchy(its_parent,
5139 						   its->msi_domain_flags, 0,
5140 						   its->fwnode_handle, &its_domain_ops,
5141 						   info);
5142 	if (!inner_domain) {
5143 		kfree(info);
5144 		return -ENOMEM;
5145 	}
5146 
5147 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5148 
5149 	inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5150 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5151 
5152 	return 0;
5153 }
5154 
its_init_vpe_domain(void)5155 static int its_init_vpe_domain(void)
5156 {
5157 	struct its_node *its;
5158 	u32 devid;
5159 	int entries;
5160 
5161 	if (gic_rdists->has_direct_lpi) {
5162 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5163 		return 0;
5164 	}
5165 
5166 	/* Any ITS will do, even if not v4 */
5167 	its = list_first_entry(&its_nodes, struct its_node, entry);
5168 
5169 	entries = roundup_pow_of_two(nr_cpu_ids);
5170 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5171 				 GFP_KERNEL);
5172 	if (!vpe_proxy.vpes)
5173 		return -ENOMEM;
5174 
5175 	/* Use the last possible DevID */
5176 	devid = GENMASK(device_ids(its) - 1, 0);
5177 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5178 	if (!vpe_proxy.dev) {
5179 		kfree(vpe_proxy.vpes);
5180 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5181 		return -ENOMEM;
5182 	}
5183 
5184 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5185 
5186 	raw_spin_lock_init(&vpe_proxy.lock);
5187 	vpe_proxy.next_victim = 0;
5188 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5189 		devid, vpe_proxy.dev->nr_ites);
5190 
5191 	return 0;
5192 }
5193 
its_compute_its_list_map(struct its_node * its)5194 static int __init its_compute_its_list_map(struct its_node *its)
5195 {
5196 	int its_number;
5197 	u32 ctlr;
5198 
5199 	/*
5200 	 * This is assumed to be done early enough that we're
5201 	 * guaranteed to be single-threaded, hence no
5202 	 * locking. Should this change, we should address
5203 	 * this.
5204 	 */
5205 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5206 	if (its_number >= GICv4_ITS_LIST_MAX) {
5207 		pr_err("ITS@%pa: No ITSList entry available!\n",
5208 		       &its->phys_base);
5209 		return -EINVAL;
5210 	}
5211 
5212 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5213 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5214 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5215 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5216 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5217 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5218 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5219 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5220 	}
5221 
5222 	if (test_and_set_bit(its_number, &its_list_map)) {
5223 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5224 		       &its->phys_base, its_number);
5225 		return -EINVAL;
5226 	}
5227 
5228 	return its_number;
5229 }
5230 
its_probe_one(struct its_node * its)5231 static int __init its_probe_one(struct its_node *its)
5232 {
5233 	u64 baser, tmp;
5234 	struct page *page;
5235 	u32 ctlr;
5236 	int err;
5237 
5238 	its_enable_quirks(its);
5239 
5240 	if (is_v4(its)) {
5241 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5242 			err = its_compute_its_list_map(its);
5243 			if (err < 0)
5244 				goto out;
5245 
5246 			its->list_nr = err;
5247 
5248 			pr_info("ITS@%pa: Using ITS number %d\n",
5249 				&its->phys_base, err);
5250 		} else {
5251 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5252 		}
5253 
5254 		if (is_v4_1(its)) {
5255 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5256 
5257 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5258 			if (!its->sgir_base) {
5259 				err = -ENOMEM;
5260 				goto out;
5261 			}
5262 
5263 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5264 
5265 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5266 				&its->phys_base, its->mpidr, svpet);
5267 		}
5268 	}
5269 
5270 	page = its_alloc_pages_node(its->numa_node,
5271 				    GFP_KERNEL | __GFP_ZERO,
5272 				    get_order(ITS_CMD_QUEUE_SZ));
5273 	if (!page) {
5274 		err = -ENOMEM;
5275 		goto out_unmap_sgir;
5276 	}
5277 	its->cmd_base = (void *)page_address(page);
5278 	its->cmd_write = its->cmd_base;
5279 
5280 	err = its_alloc_tables(its);
5281 	if (err)
5282 		goto out_free_cmd;
5283 
5284 	err = its_alloc_collections(its);
5285 	if (err)
5286 		goto out_free_tables;
5287 
5288 	baser = (virt_to_phys(its->cmd_base)	|
5289 		 GITS_CBASER_RaWaWb		|
5290 		 GITS_CBASER_InnerShareable	|
5291 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5292 		 GITS_CBASER_VALID);
5293 
5294 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5295 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5296 
5297 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5298 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5299 
5300 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5301 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5302 			/*
5303 			 * The HW reports non-shareable, we must
5304 			 * remove the cacheability attributes as
5305 			 * well.
5306 			 */
5307 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5308 				   GITS_CBASER_CACHEABILITY_MASK);
5309 			baser |= GITS_CBASER_nC;
5310 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5311 		}
5312 		pr_info("ITS: using cache flushing for cmd queue\n");
5313 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5314 	}
5315 
5316 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5317 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5318 	ctlr |= GITS_CTLR_ENABLE;
5319 	if (is_v4(its))
5320 		ctlr |= GITS_CTLR_ImDe;
5321 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5322 
5323 	err = its_init_domain(its);
5324 	if (err)
5325 		goto out_free_tables;
5326 
5327 	raw_spin_lock(&its_lock);
5328 	list_add(&its->entry, &its_nodes);
5329 	raw_spin_unlock(&its_lock);
5330 
5331 	return 0;
5332 
5333 out_free_tables:
5334 	its_free_tables(its);
5335 out_free_cmd:
5336 	its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5337 out_unmap_sgir:
5338 	if (its->sgir_base)
5339 		iounmap(its->sgir_base);
5340 out:
5341 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5342 	return err;
5343 }
5344 
gic_rdists_supports_plpis(void)5345 static bool gic_rdists_supports_plpis(void)
5346 {
5347 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5348 }
5349 
redist_disable_lpis(void)5350 static int redist_disable_lpis(void)
5351 {
5352 	void __iomem *rbase = gic_data_rdist_rd_base();
5353 	u64 timeout = USEC_PER_SEC;
5354 	u64 val;
5355 
5356 	if (!gic_rdists_supports_plpis()) {
5357 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5358 		return -ENXIO;
5359 	}
5360 
5361 	val = readl_relaxed(rbase + GICR_CTLR);
5362 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5363 		return 0;
5364 
5365 	/*
5366 	 * If coming via a CPU hotplug event, we don't need to disable
5367 	 * LPIs before trying to re-enable them. They are already
5368 	 * configured and all is well in the world.
5369 	 *
5370 	 * If running with preallocated tables, there is nothing to do.
5371 	 */
5372 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5373 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5374 		return 0;
5375 
5376 	/*
5377 	 * From that point on, we only try to do some damage control.
5378 	 */
5379 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5380 		smp_processor_id());
5381 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5382 
5383 	/* Disable LPIs */
5384 	val &= ~GICR_CTLR_ENABLE_LPIS;
5385 	writel_relaxed(val, rbase + GICR_CTLR);
5386 
5387 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5388 	dsb(sy);
5389 
5390 	/*
5391 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5392 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5393 	 * Error out if we time out waiting for RWP to clear.
5394 	 */
5395 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5396 		if (!timeout) {
5397 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5398 			       smp_processor_id());
5399 			return -ETIMEDOUT;
5400 		}
5401 		udelay(1);
5402 		timeout--;
5403 	}
5404 
5405 	/*
5406 	 * After it has been written to 1, it is IMPLEMENTATION
5407 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5408 	 * cleared to 0. Error out if clearing the bit failed.
5409 	 */
5410 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5411 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5412 		return -EBUSY;
5413 	}
5414 
5415 	return 0;
5416 }
5417 
its_cpu_init(void)5418 int its_cpu_init(void)
5419 {
5420 	if (!list_empty(&its_nodes)) {
5421 		int ret;
5422 
5423 		ret = redist_disable_lpis();
5424 		if (ret)
5425 			return ret;
5426 
5427 		its_cpu_init_lpis();
5428 		its_cpu_init_collections();
5429 	}
5430 
5431 	return 0;
5432 }
5433 
rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct * work)5434 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5435 {
5436 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5437 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5438 }
5439 
5440 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5441 		    rdist_memreserve_cpuhp_cleanup_workfn);
5442 
its_cpu_memreserve_lpi(unsigned int cpu)5443 static int its_cpu_memreserve_lpi(unsigned int cpu)
5444 {
5445 	struct page *pend_page;
5446 	int ret = 0;
5447 
5448 	/* This gets to run exactly once per CPU */
5449 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5450 		return 0;
5451 
5452 	pend_page = gic_data_rdist()->pend_page;
5453 	if (WARN_ON(!pend_page)) {
5454 		ret = -ENOMEM;
5455 		goto out;
5456 	}
5457 	/*
5458 	 * If the pending table was pre-programmed, free the memory we
5459 	 * preemptively allocated. Otherwise, reserve that memory for
5460 	 * later kexecs.
5461 	 */
5462 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5463 		its_free_pending_table(pend_page);
5464 		gic_data_rdist()->pend_page = NULL;
5465 	} else {
5466 		phys_addr_t paddr = page_to_phys(pend_page);
5467 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5468 	}
5469 
5470 out:
5471 	/* Last CPU being brought up gets to issue the cleanup */
5472 	if (!IS_ENABLED(CONFIG_SMP) ||
5473 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5474 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5475 
5476 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5477 	return ret;
5478 }
5479 
5480 /* Mark all the BASER registers as invalid before they get reprogrammed */
its_reset_one(struct resource * res)5481 static int __init its_reset_one(struct resource *res)
5482 {
5483 	void __iomem *its_base;
5484 	int err, i;
5485 
5486 	its_base = its_map_one(res, &err);
5487 	if (!its_base)
5488 		return err;
5489 
5490 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5491 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5492 
5493 	iounmap(its_base);
5494 	return 0;
5495 }
5496 
5497 static const struct of_device_id its_device_id[] = {
5498 	{	.compatible	= "arm,gic-v3-its",	},
5499 	{},
5500 };
5501 
its_node_init(struct resource * res,struct fwnode_handle * handle,int numa_node)5502 static struct its_node __init *its_node_init(struct resource *res,
5503 					     struct fwnode_handle *handle, int numa_node)
5504 {
5505 	void __iomem *its_base;
5506 	struct its_node *its;
5507 	int err;
5508 
5509 	its_base = its_map_one(res, &err);
5510 	if (!its_base)
5511 		return NULL;
5512 
5513 	pr_info("ITS %pR\n", res);
5514 
5515 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5516 	if (!its)
5517 		goto out_unmap;
5518 
5519 	raw_spin_lock_init(&its->lock);
5520 	mutex_init(&its->dev_alloc_lock);
5521 	INIT_LIST_HEAD(&its->entry);
5522 	INIT_LIST_HEAD(&its->its_device_list);
5523 
5524 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5525 	its->base = its_base;
5526 	its->phys_base = res->start;
5527 	its->get_msi_base = its_irq_get_msi_base;
5528 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5529 
5530 	its->numa_node = numa_node;
5531 	its->fwnode_handle = handle;
5532 
5533 	return its;
5534 
5535 out_unmap:
5536 	iounmap(its_base);
5537 	return NULL;
5538 }
5539 
its_node_destroy(struct its_node * its)5540 static void its_node_destroy(struct its_node *its)
5541 {
5542 	iounmap(its->base);
5543 	kfree(its);
5544 }
5545 
its_of_probe(struct device_node * node)5546 static int __init its_of_probe(struct device_node *node)
5547 {
5548 	struct device_node *np;
5549 	struct resource res;
5550 	int err;
5551 
5552 	/*
5553 	 * Make sure *all* the ITS are reset before we probe any, as
5554 	 * they may be sharing memory. If any of the ITS fails to
5555 	 * reset, don't even try to go any further, as this could
5556 	 * result in something even worse.
5557 	 */
5558 	for (np = of_find_matching_node(node, its_device_id); np;
5559 	     np = of_find_matching_node(np, its_device_id)) {
5560 		if (!of_device_is_available(np) ||
5561 		    !of_property_read_bool(np, "msi-controller") ||
5562 		    of_address_to_resource(np, 0, &res))
5563 			continue;
5564 
5565 		err = its_reset_one(&res);
5566 		if (err)
5567 			return err;
5568 	}
5569 
5570 	for (np = of_find_matching_node(node, its_device_id); np;
5571 	     np = of_find_matching_node(np, its_device_id)) {
5572 		struct its_node *its;
5573 
5574 		if (!of_device_is_available(np))
5575 			continue;
5576 		if (!of_property_read_bool(np, "msi-controller")) {
5577 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5578 				np);
5579 			continue;
5580 		}
5581 
5582 		if (of_address_to_resource(np, 0, &res)) {
5583 			pr_warn("%pOF: no regs?\n", np);
5584 			continue;
5585 		}
5586 
5587 
5588 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5589 		if (!its)
5590 			return -ENOMEM;
5591 
5592 		err = its_probe_one(its);
5593 		if (err)  {
5594 			its_node_destroy(its);
5595 			return err;
5596 		}
5597 	}
5598 	return 0;
5599 }
5600 
5601 #ifdef CONFIG_ACPI
5602 
5603 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5604 
5605 #ifdef CONFIG_ACPI_NUMA
5606 struct its_srat_map {
5607 	/* numa node id */
5608 	u32	numa_node;
5609 	/* GIC ITS ID */
5610 	u32	its_id;
5611 };
5612 
5613 static struct its_srat_map *its_srat_maps __initdata;
5614 static int its_in_srat __initdata;
5615 
acpi_get_its_numa_node(u32 its_id)5616 static int __init acpi_get_its_numa_node(u32 its_id)
5617 {
5618 	int i;
5619 
5620 	for (i = 0; i < its_in_srat; i++) {
5621 		if (its_id == its_srat_maps[i].its_id)
5622 			return its_srat_maps[i].numa_node;
5623 	}
5624 	return NUMA_NO_NODE;
5625 }
5626 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5627 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5628 					  const unsigned long end)
5629 {
5630 	return 0;
5631 }
5632 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5633 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5634 			 const unsigned long end)
5635 {
5636 	int node;
5637 	struct acpi_srat_gic_its_affinity *its_affinity;
5638 
5639 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5640 	if (!its_affinity)
5641 		return -EINVAL;
5642 
5643 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5644 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5645 			its_affinity->header.length);
5646 		return -EINVAL;
5647 	}
5648 
5649 	/*
5650 	 * Note that in theory a new proximity node could be created by this
5651 	 * entry as it is an SRAT resource allocation structure.
5652 	 * We do not currently support doing so.
5653 	 */
5654 	node = pxm_to_node(its_affinity->proximity_domain);
5655 
5656 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5657 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5658 		return 0;
5659 	}
5660 
5661 	its_srat_maps[its_in_srat].numa_node = node;
5662 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5663 	its_in_srat++;
5664 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5665 		its_affinity->proximity_domain, its_affinity->its_id, node);
5666 
5667 	return 0;
5668 }
5669 
acpi_table_parse_srat_its(void)5670 static void __init acpi_table_parse_srat_its(void)
5671 {
5672 	int count;
5673 
5674 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5675 			sizeof(struct acpi_table_srat),
5676 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5677 			gic_acpi_match_srat_its, 0);
5678 	if (count <= 0)
5679 		return;
5680 
5681 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5682 				      GFP_KERNEL);
5683 	if (!its_srat_maps)
5684 		return;
5685 
5686 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5687 			sizeof(struct acpi_table_srat),
5688 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5689 			gic_acpi_parse_srat_its, 0);
5690 }
5691 
5692 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5693 static void __init acpi_its_srat_maps_free(void)
5694 {
5695 	kfree(its_srat_maps);
5696 }
5697 #else
acpi_table_parse_srat_its(void)5698 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5699 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5700 static void __init acpi_its_srat_maps_free(void) { }
5701 #endif
5702 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5703 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5704 					  const unsigned long end)
5705 {
5706 	struct acpi_madt_generic_translator *its_entry;
5707 	struct fwnode_handle *dom_handle;
5708 	struct its_node *its;
5709 	struct resource res;
5710 	int err;
5711 
5712 	its_entry = (struct acpi_madt_generic_translator *)header;
5713 	memset(&res, 0, sizeof(res));
5714 	res.start = its_entry->base_address;
5715 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5716 	res.flags = IORESOURCE_MEM;
5717 
5718 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5719 	if (!dom_handle) {
5720 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5721 		       &res.start);
5722 		return -ENOMEM;
5723 	}
5724 
5725 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5726 					 dom_handle);
5727 	if (err) {
5728 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5729 		       &res.start, its_entry->translation_id);
5730 		goto dom_err;
5731 	}
5732 
5733 	its = its_node_init(&res, dom_handle,
5734 			    acpi_get_its_numa_node(its_entry->translation_id));
5735 	if (!its) {
5736 		err = -ENOMEM;
5737 		goto node_err;
5738 	}
5739 
5740 	if (acpi_get_madt_revision() >= 7 &&
5741 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5742 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5743 
5744 	err = its_probe_one(its);
5745 	if (!err)
5746 		return 0;
5747 
5748 node_err:
5749 	iort_deregister_domain_token(its_entry->translation_id);
5750 dom_err:
5751 	irq_domain_free_fwnode(dom_handle);
5752 	return err;
5753 }
5754 
its_acpi_reset(union acpi_subtable_headers * header,const unsigned long end)5755 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5756 				 const unsigned long end)
5757 {
5758 	struct acpi_madt_generic_translator *its_entry;
5759 	struct resource res;
5760 
5761 	its_entry = (struct acpi_madt_generic_translator *)header;
5762 	res = (struct resource) {
5763 		.start	= its_entry->base_address,
5764 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5765 		.flags	= IORESOURCE_MEM,
5766 	};
5767 
5768 	return its_reset_one(&res);
5769 }
5770 
its_acpi_probe(void)5771 static void __init its_acpi_probe(void)
5772 {
5773 	acpi_table_parse_srat_its();
5774 	/*
5775 	 * Make sure *all* the ITS are reset before we probe any, as
5776 	 * they may be sharing memory. If any of the ITS fails to
5777 	 * reset, don't even try to go any further, as this could
5778 	 * result in something even worse.
5779 	 */
5780 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5781 				  its_acpi_reset, 0) > 0)
5782 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5783 				      gic_acpi_parse_madt_its, 0);
5784 	acpi_its_srat_maps_free();
5785 }
5786 #else
its_acpi_probe(void)5787 static void __init its_acpi_probe(void) { }
5788 #endif
5789 
its_lpi_memreserve_init(void)5790 int __init its_lpi_memreserve_init(void)
5791 {
5792 	int state;
5793 
5794 	if (!efi_enabled(EFI_CONFIG_TABLES))
5795 		return 0;
5796 
5797 	if (list_empty(&its_nodes))
5798 		return 0;
5799 
5800 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5801 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5802 				  "irqchip/arm/gicv3/memreserve:online",
5803 				  its_cpu_memreserve_lpi,
5804 				  NULL);
5805 	if (state < 0)
5806 		return state;
5807 
5808 	gic_rdists->cpuhp_memreserve_state = state;
5809 
5810 	return 0;
5811 }
5812 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain,u8 irq_prio)5813 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5814 		    struct irq_domain *parent_domain, u8 irq_prio)
5815 {
5816 	struct device_node *of_node;
5817 	struct its_node *its;
5818 	bool has_v4 = false;
5819 	bool has_v4_1 = false;
5820 	int err;
5821 
5822 	itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5823 	if (!itt_pool)
5824 		return -ENOMEM;
5825 
5826 	gic_rdists = rdists;
5827 
5828 	lpi_prop_prio = irq_prio;
5829 	its_parent = parent_domain;
5830 	of_node = to_of_node(handle);
5831 	if (of_node)
5832 		its_of_probe(of_node);
5833 	else
5834 		its_acpi_probe();
5835 
5836 	if (list_empty(&its_nodes)) {
5837 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5838 		return -ENXIO;
5839 	}
5840 
5841 	err = allocate_lpi_tables();
5842 	if (err)
5843 		return err;
5844 
5845 	list_for_each_entry(its, &its_nodes, entry) {
5846 		has_v4 |= is_v4(its);
5847 		has_v4_1 |= is_v4_1(its);
5848 	}
5849 
5850 	/* Don't bother with inconsistent systems */
5851 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5852 		rdists->has_rvpeid = false;
5853 
5854 	if (has_v4 & rdists->has_vlpis) {
5855 		const struct irq_domain_ops *sgi_ops;
5856 
5857 		if (has_v4_1)
5858 			sgi_ops = &its_sgi_domain_ops;
5859 		else
5860 			sgi_ops = NULL;
5861 
5862 		if (its_init_vpe_domain() ||
5863 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5864 			rdists->has_vlpis = false;
5865 			pr_err("ITS: Disabling GICv4 support\n");
5866 		}
5867 	}
5868 
5869 	register_syscore_ops(&its_syscore_ops);
5870 
5871 	return 0;
5872 }
5873