1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2018, Google LLC.
4 */
5
6 #include "linux/bitmap.h"
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "sev.h"
11
12 #ifndef NUM_INTERRUPTS
13 #define NUM_INTERRUPTS 256
14 #endif
15
16 #define KERNEL_CS 0x8
17 #define KERNEL_DS 0x10
18 #define KERNEL_TSS 0x18
19
20 vm_vaddr_t exception_handlers;
21 bool host_cpu_is_amd;
22 bool host_cpu_is_intel;
23 bool is_forced_emulation_enabled;
24 uint64_t guest_tsc_khz;
25
regs_dump(FILE * stream,struct kvm_regs * regs,uint8_t indent)26 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
27 {
28 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
29 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
30 indent, "",
31 regs->rax, regs->rbx, regs->rcx, regs->rdx);
32 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
33 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
34 indent, "",
35 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
36 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
37 "r10: 0x%.16llx r11: 0x%.16llx\n",
38 indent, "",
39 regs->r8, regs->r9, regs->r10, regs->r11);
40 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
41 "r14: 0x%.16llx r15: 0x%.16llx\n",
42 indent, "",
43 regs->r12, regs->r13, regs->r14, regs->r15);
44 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
45 indent, "",
46 regs->rip, regs->rflags);
47 }
48
segment_dump(FILE * stream,struct kvm_segment * segment,uint8_t indent)49 static void segment_dump(FILE *stream, struct kvm_segment *segment,
50 uint8_t indent)
51 {
52 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
53 "selector: 0x%.4x type: 0x%.2x\n",
54 indent, "", segment->base, segment->limit,
55 segment->selector, segment->type);
56 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
57 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
58 indent, "", segment->present, segment->dpl,
59 segment->db, segment->s, segment->l);
60 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
61 "unusable: 0x%.2x padding: 0x%.2x\n",
62 indent, "", segment->g, segment->avl,
63 segment->unusable, segment->padding);
64 }
65
dtable_dump(FILE * stream,struct kvm_dtable * dtable,uint8_t indent)66 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
67 uint8_t indent)
68 {
69 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
70 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
71 indent, "", dtable->base, dtable->limit,
72 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
73 }
74
sregs_dump(FILE * stream,struct kvm_sregs * sregs,uint8_t indent)75 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
76 {
77 unsigned int i;
78
79 fprintf(stream, "%*scs:\n", indent, "");
80 segment_dump(stream, &sregs->cs, indent + 2);
81 fprintf(stream, "%*sds:\n", indent, "");
82 segment_dump(stream, &sregs->ds, indent + 2);
83 fprintf(stream, "%*ses:\n", indent, "");
84 segment_dump(stream, &sregs->es, indent + 2);
85 fprintf(stream, "%*sfs:\n", indent, "");
86 segment_dump(stream, &sregs->fs, indent + 2);
87 fprintf(stream, "%*sgs:\n", indent, "");
88 segment_dump(stream, &sregs->gs, indent + 2);
89 fprintf(stream, "%*sss:\n", indent, "");
90 segment_dump(stream, &sregs->ss, indent + 2);
91 fprintf(stream, "%*str:\n", indent, "");
92 segment_dump(stream, &sregs->tr, indent + 2);
93 fprintf(stream, "%*sldt:\n", indent, "");
94 segment_dump(stream, &sregs->ldt, indent + 2);
95
96 fprintf(stream, "%*sgdt:\n", indent, "");
97 dtable_dump(stream, &sregs->gdt, indent + 2);
98 fprintf(stream, "%*sidt:\n", indent, "");
99 dtable_dump(stream, &sregs->idt, indent + 2);
100
101 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
102 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
103 indent, "",
104 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
105 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
106 "apic_base: 0x%.16llx\n",
107 indent, "",
108 sregs->cr8, sregs->efer, sregs->apic_base);
109
110 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
111 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
112 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
113 sregs->interrupt_bitmap[i]);
114 }
115 }
116
kvm_is_tdp_enabled(void)117 bool kvm_is_tdp_enabled(void)
118 {
119 if (host_cpu_is_intel)
120 return get_kvm_intel_param_bool("ept");
121 else
122 return get_kvm_amd_param_bool("npt");
123 }
124
virt_arch_pgd_alloc(struct kvm_vm * vm)125 void virt_arch_pgd_alloc(struct kvm_vm *vm)
126 {
127 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
128 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
129
130 /* If needed, create page map l4 table. */
131 if (!vm->pgd_created) {
132 vm->pgd = vm_alloc_page_table(vm);
133 vm->pgd_created = true;
134 }
135 }
136
virt_get_pte(struct kvm_vm * vm,uint64_t * parent_pte,uint64_t vaddr,int level)137 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
138 uint64_t vaddr, int level)
139 {
140 uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
141 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
142 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
143
144 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
145 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
146 level + 1, vaddr);
147
148 return &page_table[index];
149 }
150
virt_create_upper_pte(struct kvm_vm * vm,uint64_t * parent_pte,uint64_t vaddr,uint64_t paddr,int current_level,int target_level)151 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
152 uint64_t *parent_pte,
153 uint64_t vaddr,
154 uint64_t paddr,
155 int current_level,
156 int target_level)
157 {
158 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
159
160 paddr = vm_untag_gpa(vm, paddr);
161
162 if (!(*pte & PTE_PRESENT_MASK)) {
163 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
164 if (current_level == target_level)
165 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
166 else
167 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
168 } else {
169 /*
170 * Entry already present. Assert that the caller doesn't want
171 * a hugepage at this level, and that there isn't a hugepage at
172 * this level.
173 */
174 TEST_ASSERT(current_level != target_level,
175 "Cannot create hugepage at level: %u, vaddr: 0x%lx",
176 current_level, vaddr);
177 TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
178 "Cannot create page table at level: %u, vaddr: 0x%lx",
179 current_level, vaddr);
180 }
181 return pte;
182 }
183
__virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,int level)184 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
185 {
186 const uint64_t pg_size = PG_LEVEL_SIZE(level);
187 uint64_t *pml4e, *pdpe, *pde;
188 uint64_t *pte;
189
190 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
191 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
192
193 TEST_ASSERT((vaddr % pg_size) == 0,
194 "Virtual address not aligned,\n"
195 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
196 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
197 "Invalid virtual address, vaddr: 0x%lx", vaddr);
198 TEST_ASSERT((paddr % pg_size) == 0,
199 "Physical address not aligned,\n"
200 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
201 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
202 "Physical address beyond maximum supported,\n"
203 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
204 paddr, vm->max_gfn, vm->page_size);
205 TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
206 "Unexpected bits in paddr: %lx", paddr);
207
208 /*
209 * Allocate upper level page tables, if not already present. Return
210 * early if a hugepage was created.
211 */
212 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
213 if (*pml4e & PTE_LARGE_MASK)
214 return;
215
216 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
217 if (*pdpe & PTE_LARGE_MASK)
218 return;
219
220 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
221 if (*pde & PTE_LARGE_MASK)
222 return;
223
224 /* Fill in page table entry. */
225 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
226 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
227 "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
228 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
229
230 /*
231 * Neither SEV nor TDX supports shared page tables, so only the final
232 * leaf PTE needs manually set the C/S-bit.
233 */
234 if (vm_is_gpa_protected(vm, paddr))
235 *pte |= vm->arch.c_bit;
236 else
237 *pte |= vm->arch.s_bit;
238 }
239
virt_arch_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)240 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
241 {
242 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
243 }
244
virt_map_level(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,uint64_t nr_bytes,int level)245 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
246 uint64_t nr_bytes, int level)
247 {
248 uint64_t pg_size = PG_LEVEL_SIZE(level);
249 uint64_t nr_pages = nr_bytes / pg_size;
250 int i;
251
252 TEST_ASSERT(nr_bytes % pg_size == 0,
253 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
254 nr_bytes, pg_size);
255
256 for (i = 0; i < nr_pages; i++) {
257 __virt_pg_map(vm, vaddr, paddr, level);
258
259 vaddr += pg_size;
260 paddr += pg_size;
261 }
262 }
263
vm_is_target_pte(uint64_t * pte,int * level,int current_level)264 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
265 {
266 if (*pte & PTE_LARGE_MASK) {
267 TEST_ASSERT(*level == PG_LEVEL_NONE ||
268 *level == current_level,
269 "Unexpected hugepage at level %d", current_level);
270 *level = current_level;
271 }
272
273 return *level == current_level;
274 }
275
__vm_get_page_table_entry(struct kvm_vm * vm,uint64_t vaddr,int * level)276 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
277 int *level)
278 {
279 uint64_t *pml4e, *pdpe, *pde;
280
281 TEST_ASSERT(!vm->arch.is_pt_protected,
282 "Walking page tables of protected guests is impossible");
283
284 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
285 "Invalid PG_LEVEL_* '%d'", *level);
286
287 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
288 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
289 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
290 (vaddr >> vm->page_shift)),
291 "Invalid virtual address, vaddr: 0x%lx",
292 vaddr);
293 /*
294 * Based on the mode check above there are 48 bits in the vaddr, so
295 * shift 16 to sign extend the last bit (bit-47),
296 */
297 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
298 "Canonical check failed. The virtual address is invalid.");
299
300 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
301 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
302 return pml4e;
303
304 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
305 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
306 return pdpe;
307
308 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
309 if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
310 return pde;
311
312 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
313 }
314
vm_get_page_table_entry(struct kvm_vm * vm,uint64_t vaddr)315 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
316 {
317 int level = PG_LEVEL_4K;
318
319 return __vm_get_page_table_entry(vm, vaddr, &level);
320 }
321
virt_arch_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)322 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
323 {
324 uint64_t *pml4e, *pml4e_start;
325 uint64_t *pdpe, *pdpe_start;
326 uint64_t *pde, *pde_start;
327 uint64_t *pte, *pte_start;
328
329 if (!vm->pgd_created)
330 return;
331
332 fprintf(stream, "%*s "
333 " no\n", indent, "");
334 fprintf(stream, "%*s index hvaddr gpaddr "
335 "addr w exec dirty\n",
336 indent, "");
337 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
338 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
339 pml4e = &pml4e_start[n1];
340 if (!(*pml4e & PTE_PRESENT_MASK))
341 continue;
342 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
343 " %u\n",
344 indent, "",
345 pml4e - pml4e_start, pml4e,
346 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
347 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
348
349 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
350 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
351 pdpe = &pdpe_start[n2];
352 if (!(*pdpe & PTE_PRESENT_MASK))
353 continue;
354 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
355 "%u %u\n",
356 indent, "",
357 pdpe - pdpe_start, pdpe,
358 addr_hva2gpa(vm, pdpe),
359 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
360 !!(*pdpe & PTE_NX_MASK));
361
362 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
363 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
364 pde = &pde_start[n3];
365 if (!(*pde & PTE_PRESENT_MASK))
366 continue;
367 fprintf(stream, "%*spde 0x%-3zx %p "
368 "0x%-12lx 0x%-10llx %u %u\n",
369 indent, "", pde - pde_start, pde,
370 addr_hva2gpa(vm, pde),
371 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
372 !!(*pde & PTE_NX_MASK));
373
374 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
375 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
376 pte = &pte_start[n4];
377 if (!(*pte & PTE_PRESENT_MASK))
378 continue;
379 fprintf(stream, "%*spte 0x%-3zx %p "
380 "0x%-12lx 0x%-10llx %u %u "
381 " %u 0x%-10lx\n",
382 indent, "",
383 pte - pte_start, pte,
384 addr_hva2gpa(vm, pte),
385 PTE_GET_PFN(*pte),
386 !!(*pte & PTE_WRITABLE_MASK),
387 !!(*pte & PTE_NX_MASK),
388 !!(*pte & PTE_DIRTY_MASK),
389 ((uint64_t) n1 << 27)
390 | ((uint64_t) n2 << 18)
391 | ((uint64_t) n3 << 9)
392 | ((uint64_t) n4));
393 }
394 }
395 }
396 }
397 }
398
399 /*
400 * Set Unusable Segment
401 *
402 * Input Args: None
403 *
404 * Output Args:
405 * segp - Pointer to segment register
406 *
407 * Return: None
408 *
409 * Sets the segment register pointed to by @segp to an unusable state.
410 */
kvm_seg_set_unusable(struct kvm_segment * segp)411 static void kvm_seg_set_unusable(struct kvm_segment *segp)
412 {
413 memset(segp, 0, sizeof(*segp));
414 segp->unusable = true;
415 }
416
kvm_seg_fill_gdt_64bit(struct kvm_vm * vm,struct kvm_segment * segp)417 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
418 {
419 void *gdt = addr_gva2hva(vm, vm->arch.gdt);
420 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
421
422 desc->limit0 = segp->limit & 0xFFFF;
423 desc->base0 = segp->base & 0xFFFF;
424 desc->base1 = segp->base >> 16;
425 desc->type = segp->type;
426 desc->s = segp->s;
427 desc->dpl = segp->dpl;
428 desc->p = segp->present;
429 desc->limit1 = segp->limit >> 16;
430 desc->avl = segp->avl;
431 desc->l = segp->l;
432 desc->db = segp->db;
433 desc->g = segp->g;
434 desc->base2 = segp->base >> 24;
435 if (!segp->s)
436 desc->base3 = segp->base >> 32;
437 }
438
kvm_seg_set_kernel_code_64bit(struct kvm_segment * segp)439 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
440 {
441 memset(segp, 0, sizeof(*segp));
442 segp->selector = KERNEL_CS;
443 segp->limit = 0xFFFFFFFFu;
444 segp->s = 0x1; /* kTypeCodeData */
445 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
446 * | kFlagCodeReadable
447 */
448 segp->g = true;
449 segp->l = true;
450 segp->present = 1;
451 }
452
kvm_seg_set_kernel_data_64bit(struct kvm_segment * segp)453 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
454 {
455 memset(segp, 0, sizeof(*segp));
456 segp->selector = KERNEL_DS;
457 segp->limit = 0xFFFFFFFFu;
458 segp->s = 0x1; /* kTypeCodeData */
459 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
460 * | kFlagDataWritable
461 */
462 segp->g = true;
463 segp->present = true;
464 }
465
addr_arch_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)466 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
467 {
468 int level = PG_LEVEL_NONE;
469 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
470
471 TEST_ASSERT(*pte & PTE_PRESENT_MASK,
472 "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
473
474 /*
475 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
476 * address bits to be zero.
477 */
478 return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
479 }
480
kvm_seg_set_tss_64bit(vm_vaddr_t base,struct kvm_segment * segp)481 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
482 {
483 memset(segp, 0, sizeof(*segp));
484 segp->base = base;
485 segp->limit = 0x67;
486 segp->selector = KERNEL_TSS;
487 segp->type = 0xb;
488 segp->present = 1;
489 }
490
vcpu_init_sregs(struct kvm_vm * vm,struct kvm_vcpu * vcpu)491 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
492 {
493 struct kvm_sregs sregs;
494
495 TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K);
496
497 /* Set mode specific system register values. */
498 vcpu_sregs_get(vcpu, &sregs);
499
500 sregs.idt.base = vm->arch.idt;
501 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
502 sregs.gdt.base = vm->arch.gdt;
503 sregs.gdt.limit = getpagesize() - 1;
504
505 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
506 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
507 if (kvm_cpu_has(X86_FEATURE_XSAVE))
508 sregs.cr4 |= X86_CR4_OSXSAVE;
509 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
510
511 kvm_seg_set_unusable(&sregs.ldt);
512 kvm_seg_set_kernel_code_64bit(&sregs.cs);
513 kvm_seg_set_kernel_data_64bit(&sregs.ds);
514 kvm_seg_set_kernel_data_64bit(&sregs.es);
515 kvm_seg_set_kernel_data_64bit(&sregs.gs);
516 kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
517
518 sregs.cr3 = vm->pgd;
519 vcpu_sregs_set(vcpu, &sregs);
520 }
521
vcpu_init_xcrs(struct kvm_vm * vm,struct kvm_vcpu * vcpu)522 static void vcpu_init_xcrs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
523 {
524 struct kvm_xcrs xcrs = {
525 .nr_xcrs = 1,
526 .xcrs[0].xcr = 0,
527 .xcrs[0].value = kvm_cpu_supported_xcr0(),
528 };
529
530 if (!kvm_cpu_has(X86_FEATURE_XSAVE))
531 return;
532
533 vcpu_xcrs_set(vcpu, &xcrs);
534 }
535
set_idt_entry(struct kvm_vm * vm,int vector,unsigned long addr,int dpl,unsigned short selector)536 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
537 int dpl, unsigned short selector)
538 {
539 struct idt_entry *base =
540 (struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
541 struct idt_entry *e = &base[vector];
542
543 memset(e, 0, sizeof(*e));
544 e->offset0 = addr;
545 e->selector = selector;
546 e->ist = 0;
547 e->type = 14;
548 e->dpl = dpl;
549 e->p = 1;
550 e->offset1 = addr >> 16;
551 e->offset2 = addr >> 32;
552 }
553
kvm_fixup_exception(struct ex_regs * regs)554 static bool kvm_fixup_exception(struct ex_regs *regs)
555 {
556 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
557 return false;
558
559 if (regs->vector == DE_VECTOR)
560 return false;
561
562 regs->rip = regs->r11;
563 regs->r9 = regs->vector;
564 regs->r10 = regs->error_code;
565 return true;
566 }
567
route_exception(struct ex_regs * regs)568 void route_exception(struct ex_regs *regs)
569 {
570 typedef void(*handler)(struct ex_regs *);
571 handler *handlers = (handler *)exception_handlers;
572
573 if (handlers && handlers[regs->vector]) {
574 handlers[regs->vector](regs);
575 return;
576 }
577
578 if (kvm_fixup_exception(regs))
579 return;
580
581 GUEST_FAIL("Unhandled exception '0x%lx' at guest RIP '0x%lx'",
582 regs->vector, regs->rip);
583 }
584
vm_init_descriptor_tables(struct kvm_vm * vm)585 static void vm_init_descriptor_tables(struct kvm_vm *vm)
586 {
587 extern void *idt_handlers;
588 struct kvm_segment seg;
589 int i;
590
591 vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
592 vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
593 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
594 vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
595
596 /* Handlers have the same address in both address spaces.*/
597 for (i = 0; i < NUM_INTERRUPTS; i++)
598 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
599
600 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
601
602 kvm_seg_set_kernel_code_64bit(&seg);
603 kvm_seg_fill_gdt_64bit(vm, &seg);
604
605 kvm_seg_set_kernel_data_64bit(&seg);
606 kvm_seg_fill_gdt_64bit(vm, &seg);
607
608 kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
609 kvm_seg_fill_gdt_64bit(vm, &seg);
610 }
611
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))612 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
613 void (*handler)(struct ex_regs *))
614 {
615 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
616
617 handlers[vector] = (vm_vaddr_t)handler;
618 }
619
assert_on_unhandled_exception(struct kvm_vcpu * vcpu)620 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
621 {
622 struct ucall uc;
623
624 if (get_ucall(vcpu, &uc) == UCALL_ABORT)
625 REPORT_GUEST_ASSERT(uc);
626 }
627
kvm_arch_vm_post_create(struct kvm_vm * vm)628 void kvm_arch_vm_post_create(struct kvm_vm *vm)
629 {
630 int r;
631
632 TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
633 "Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
634
635 vm_create_irqchip(vm);
636 vm_init_descriptor_tables(vm);
637
638 sync_global_to_guest(vm, host_cpu_is_intel);
639 sync_global_to_guest(vm, host_cpu_is_amd);
640 sync_global_to_guest(vm, is_forced_emulation_enabled);
641
642 if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
643 struct kvm_sev_init init = { 0 };
644
645 vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
646 }
647
648 r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
649 TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
650 guest_tsc_khz = r;
651 sync_global_to_guest(vm, guest_tsc_khz);
652 }
653
vcpu_arch_set_entry_point(struct kvm_vcpu * vcpu,void * guest_code)654 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
655 {
656 struct kvm_regs regs;
657
658 vcpu_regs_get(vcpu, ®s);
659 regs.rip = (unsigned long) guest_code;
660 vcpu_regs_set(vcpu, ®s);
661 }
662
vm_arch_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)663 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
664 {
665 struct kvm_mp_state mp_state;
666 struct kvm_regs regs;
667 vm_vaddr_t stack_vaddr;
668 struct kvm_vcpu *vcpu;
669
670 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
671 DEFAULT_GUEST_STACK_VADDR_MIN,
672 MEM_REGION_DATA);
673
674 stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
675
676 /*
677 * Align stack to match calling sequence requirements in section "The
678 * Stack Frame" of the System V ABI AMD64 Architecture Processor
679 * Supplement, which requires the value (%rsp + 8) to be a multiple of
680 * 16 when control is transferred to the function entry point.
681 *
682 * If this code is ever used to launch a vCPU with 32-bit entry point it
683 * may need to subtract 4 bytes instead of 8 bytes.
684 */
685 TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
686 "__vm_vaddr_alloc() did not provide a page-aligned address");
687 stack_vaddr -= 8;
688
689 vcpu = __vm_vcpu_add(vm, vcpu_id);
690 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
691 vcpu_init_sregs(vm, vcpu);
692 vcpu_init_xcrs(vm, vcpu);
693
694 /* Setup guest general purpose registers */
695 vcpu_regs_get(vcpu, ®s);
696 regs.rflags = regs.rflags | 0x2;
697 regs.rsp = stack_vaddr;
698 vcpu_regs_set(vcpu, ®s);
699
700 /* Setup the MP state */
701 mp_state.mp_state = 0;
702 vcpu_mp_state_set(vcpu, &mp_state);
703
704 /*
705 * Refresh CPUID after setting SREGS and XCR0, so that KVM's "runtime"
706 * updates to guest CPUID, e.g. for OSXSAVE and XSAVE state size, are
707 * reflected into selftests' vCPU CPUID cache, i.e. so that the cache
708 * is consistent with vCPU state.
709 */
710 vcpu_get_cpuid(vcpu);
711 return vcpu;
712 }
713
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)714 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
715 {
716 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
717
718 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
719
720 return vcpu;
721 }
722
vcpu_arch_free(struct kvm_vcpu * vcpu)723 void vcpu_arch_free(struct kvm_vcpu *vcpu)
724 {
725 if (vcpu->cpuid)
726 free(vcpu->cpuid);
727 }
728
729 /* Do not use kvm_supported_cpuid directly except for validity checks. */
730 static void *kvm_supported_cpuid;
731
kvm_get_supported_cpuid(void)732 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
733 {
734 int kvm_fd;
735
736 if (kvm_supported_cpuid)
737 return kvm_supported_cpuid;
738
739 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
740 kvm_fd = open_kvm_dev_path_or_exit();
741
742 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
743 (struct kvm_cpuid2 *)kvm_supported_cpuid);
744
745 close(kvm_fd);
746 return kvm_supported_cpuid;
747 }
748
__kvm_cpu_has(const struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)749 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
750 uint32_t function, uint32_t index,
751 uint8_t reg, uint8_t lo, uint8_t hi)
752 {
753 const struct kvm_cpuid_entry2 *entry;
754 int i;
755
756 for (i = 0; i < cpuid->nent; i++) {
757 entry = &cpuid->entries[i];
758
759 /*
760 * The output registers in kvm_cpuid_entry2 are in alphabetical
761 * order, but kvm_x86_cpu_feature matches that mess, so yay
762 * pointer shenanigans!
763 */
764 if (entry->function == function && entry->index == index)
765 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
766 }
767
768 return 0;
769 }
770
kvm_cpuid_has(const struct kvm_cpuid2 * cpuid,struct kvm_x86_cpu_feature feature)771 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
772 struct kvm_x86_cpu_feature feature)
773 {
774 return __kvm_cpu_has(cpuid, feature.function, feature.index,
775 feature.reg, feature.bit, feature.bit);
776 }
777
kvm_cpuid_property(const struct kvm_cpuid2 * cpuid,struct kvm_x86_cpu_property property)778 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
779 struct kvm_x86_cpu_property property)
780 {
781 return __kvm_cpu_has(cpuid, property.function, property.index,
782 property.reg, property.lo_bit, property.hi_bit);
783 }
784
kvm_get_feature_msr(uint64_t msr_index)785 uint64_t kvm_get_feature_msr(uint64_t msr_index)
786 {
787 struct {
788 struct kvm_msrs header;
789 struct kvm_msr_entry entry;
790 } buffer = {};
791 int r, kvm_fd;
792
793 buffer.header.nmsrs = 1;
794 buffer.entry.index = msr_index;
795 kvm_fd = open_kvm_dev_path_or_exit();
796
797 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
798 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
799
800 close(kvm_fd);
801 return buffer.entry.data;
802 }
803
__vm_xsave_require_permission(uint64_t xfeature,const char * name)804 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
805 {
806 int kvm_fd;
807 u64 bitmask;
808 long rc;
809 struct kvm_device_attr attr = {
810 .group = 0,
811 .attr = KVM_X86_XCOMP_GUEST_SUPP,
812 .addr = (unsigned long) &bitmask,
813 };
814
815 TEST_ASSERT(!kvm_supported_cpuid,
816 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
817
818 TEST_ASSERT(is_power_of_2(xfeature),
819 "Dynamic XFeatures must be enabled one at a time");
820
821 kvm_fd = open_kvm_dev_path_or_exit();
822 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
823 close(kvm_fd);
824
825 if (rc == -1 && (errno == ENXIO || errno == EINVAL))
826 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
827
828 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
829
830 __TEST_REQUIRE(bitmask & xfeature,
831 "Required XSAVE feature '%s' not supported", name);
832
833 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
834
835 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
836 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
837 TEST_ASSERT(bitmask & xfeature,
838 "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
839 name, xfeature, bitmask);
840 }
841
vcpu_init_cpuid(struct kvm_vcpu * vcpu,const struct kvm_cpuid2 * cpuid)842 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
843 {
844 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
845
846 /* Allow overriding the default CPUID. */
847 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
848 free(vcpu->cpuid);
849 vcpu->cpuid = NULL;
850 }
851
852 if (!vcpu->cpuid)
853 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
854
855 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
856 vcpu_set_cpuid(vcpu);
857 }
858
vcpu_set_cpuid_property(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_property property,uint32_t value)859 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
860 struct kvm_x86_cpu_property property,
861 uint32_t value)
862 {
863 struct kvm_cpuid_entry2 *entry;
864
865 entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
866
867 (&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
868 (&entry->eax)[property.reg] |= value << property.lo_bit;
869
870 vcpu_set_cpuid(vcpu);
871
872 /* Sanity check that @value doesn't exceed the bounds in any way. */
873 TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
874 }
875
vcpu_clear_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)876 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
877 {
878 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
879
880 entry->eax = 0;
881 entry->ebx = 0;
882 entry->ecx = 0;
883 entry->edx = 0;
884 vcpu_set_cpuid(vcpu);
885 }
886
vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature,bool set)887 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
888 struct kvm_x86_cpu_feature feature,
889 bool set)
890 {
891 struct kvm_cpuid_entry2 *entry;
892 u32 *reg;
893
894 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
895 reg = (&entry->eax) + feature.reg;
896
897 if (set)
898 *reg |= BIT(feature.bit);
899 else
900 *reg &= ~BIT(feature.bit);
901
902 vcpu_set_cpuid(vcpu);
903 }
904
vcpu_get_msr(struct kvm_vcpu * vcpu,uint64_t msr_index)905 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
906 {
907 struct {
908 struct kvm_msrs header;
909 struct kvm_msr_entry entry;
910 } buffer = {};
911
912 buffer.header.nmsrs = 1;
913 buffer.entry.index = msr_index;
914
915 vcpu_msrs_get(vcpu, &buffer.header);
916
917 return buffer.entry.data;
918 }
919
_vcpu_set_msr(struct kvm_vcpu * vcpu,uint64_t msr_index,uint64_t msr_value)920 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
921 {
922 struct {
923 struct kvm_msrs header;
924 struct kvm_msr_entry entry;
925 } buffer = {};
926
927 memset(&buffer, 0, sizeof(buffer));
928 buffer.header.nmsrs = 1;
929 buffer.entry.index = msr_index;
930 buffer.entry.data = msr_value;
931
932 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
933 }
934
vcpu_args_set(struct kvm_vcpu * vcpu,unsigned int num,...)935 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
936 {
937 va_list ap;
938 struct kvm_regs regs;
939
940 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
941 " num: %u",
942 num);
943
944 va_start(ap, num);
945 vcpu_regs_get(vcpu, ®s);
946
947 if (num >= 1)
948 regs.rdi = va_arg(ap, uint64_t);
949
950 if (num >= 2)
951 regs.rsi = va_arg(ap, uint64_t);
952
953 if (num >= 3)
954 regs.rdx = va_arg(ap, uint64_t);
955
956 if (num >= 4)
957 regs.rcx = va_arg(ap, uint64_t);
958
959 if (num >= 5)
960 regs.r8 = va_arg(ap, uint64_t);
961
962 if (num >= 6)
963 regs.r9 = va_arg(ap, uint64_t);
964
965 vcpu_regs_set(vcpu, ®s);
966 va_end(ap);
967 }
968
vcpu_arch_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)969 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
970 {
971 struct kvm_regs regs;
972 struct kvm_sregs sregs;
973
974 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
975
976 fprintf(stream, "%*sregs:\n", indent + 2, "");
977 vcpu_regs_get(vcpu, ®s);
978 regs_dump(stream, ®s, indent + 4);
979
980 fprintf(stream, "%*ssregs:\n", indent + 2, "");
981 vcpu_sregs_get(vcpu, &sregs);
982 sregs_dump(stream, &sregs, indent + 4);
983 }
984
__kvm_get_msr_index_list(bool feature_msrs)985 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
986 {
987 struct kvm_msr_list *list;
988 struct kvm_msr_list nmsrs;
989 int kvm_fd, r;
990
991 kvm_fd = open_kvm_dev_path_or_exit();
992
993 nmsrs.nmsrs = 0;
994 if (!feature_msrs)
995 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
996 else
997 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
998
999 TEST_ASSERT(r == -1 && errno == E2BIG,
1000 "Expected -E2BIG, got rc: %i errno: %i (%s)",
1001 r, errno, strerror(errno));
1002
1003 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
1004 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
1005 list->nmsrs = nmsrs.nmsrs;
1006
1007 if (!feature_msrs)
1008 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1009 else
1010 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
1011 close(kvm_fd);
1012
1013 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
1014 "Number of MSRs in list changed, was %d, now %d",
1015 nmsrs.nmsrs, list->nmsrs);
1016 return list;
1017 }
1018
kvm_get_msr_index_list(void)1019 const struct kvm_msr_list *kvm_get_msr_index_list(void)
1020 {
1021 static const struct kvm_msr_list *list;
1022
1023 if (!list)
1024 list = __kvm_get_msr_index_list(false);
1025 return list;
1026 }
1027
1028
kvm_get_feature_msr_index_list(void)1029 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
1030 {
1031 static const struct kvm_msr_list *list;
1032
1033 if (!list)
1034 list = __kvm_get_msr_index_list(true);
1035 return list;
1036 }
1037
kvm_msr_is_in_save_restore_list(uint32_t msr_index)1038 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
1039 {
1040 const struct kvm_msr_list *list = kvm_get_msr_index_list();
1041 int i;
1042
1043 for (i = 0; i < list->nmsrs; ++i) {
1044 if (list->indices[i] == msr_index)
1045 return true;
1046 }
1047
1048 return false;
1049 }
1050
vcpu_save_xsave_state(struct kvm_vcpu * vcpu,struct kvm_x86_state * state)1051 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
1052 struct kvm_x86_state *state)
1053 {
1054 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
1055
1056 if (size) {
1057 state->xsave = malloc(size);
1058 vcpu_xsave2_get(vcpu, state->xsave);
1059 } else {
1060 state->xsave = malloc(sizeof(struct kvm_xsave));
1061 vcpu_xsave_get(vcpu, state->xsave);
1062 }
1063 }
1064
vcpu_save_state(struct kvm_vcpu * vcpu)1065 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
1066 {
1067 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
1068 struct kvm_x86_state *state;
1069 int i;
1070
1071 static int nested_size = -1;
1072
1073 if (nested_size == -1) {
1074 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1075 TEST_ASSERT(nested_size <= sizeof(state->nested_),
1076 "Nested state size too big, %i > %zi",
1077 nested_size, sizeof(state->nested_));
1078 }
1079
1080 /*
1081 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1082 * guest state is consistent only after userspace re-enters the
1083 * kernel with KVM_RUN. Complete IO prior to migrating state
1084 * to a new VM.
1085 */
1086 vcpu_run_complete_io(vcpu);
1087
1088 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1089 TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1090
1091 vcpu_events_get(vcpu, &state->events);
1092 vcpu_mp_state_get(vcpu, &state->mp_state);
1093 vcpu_regs_get(vcpu, &state->regs);
1094 vcpu_save_xsave_state(vcpu, state);
1095
1096 if (kvm_has_cap(KVM_CAP_XCRS))
1097 vcpu_xcrs_get(vcpu, &state->xcrs);
1098
1099 vcpu_sregs_get(vcpu, &state->sregs);
1100
1101 if (nested_size) {
1102 state->nested.size = sizeof(state->nested_);
1103
1104 vcpu_nested_state_get(vcpu, &state->nested);
1105 TEST_ASSERT(state->nested.size <= nested_size,
1106 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1107 state->nested.size, nested_size);
1108 } else {
1109 state->nested.size = 0;
1110 }
1111
1112 state->msrs.nmsrs = msr_list->nmsrs;
1113 for (i = 0; i < msr_list->nmsrs; i++)
1114 state->msrs.entries[i].index = msr_list->indices[i];
1115 vcpu_msrs_get(vcpu, &state->msrs);
1116
1117 vcpu_debugregs_get(vcpu, &state->debugregs);
1118
1119 return state;
1120 }
1121
vcpu_load_state(struct kvm_vcpu * vcpu,struct kvm_x86_state * state)1122 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1123 {
1124 vcpu_sregs_set(vcpu, &state->sregs);
1125 vcpu_msrs_set(vcpu, &state->msrs);
1126
1127 if (kvm_has_cap(KVM_CAP_XCRS))
1128 vcpu_xcrs_set(vcpu, &state->xcrs);
1129
1130 vcpu_xsave_set(vcpu, state->xsave);
1131 vcpu_events_set(vcpu, &state->events);
1132 vcpu_mp_state_set(vcpu, &state->mp_state);
1133 vcpu_debugregs_set(vcpu, &state->debugregs);
1134 vcpu_regs_set(vcpu, &state->regs);
1135
1136 if (state->nested.size)
1137 vcpu_nested_state_set(vcpu, &state->nested);
1138 }
1139
kvm_x86_state_cleanup(struct kvm_x86_state * state)1140 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1141 {
1142 free(state->xsave);
1143 free(state);
1144 }
1145
kvm_get_cpu_address_width(unsigned int * pa_bits,unsigned int * va_bits)1146 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1147 {
1148 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1149 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1150 *va_bits = 32;
1151 } else {
1152 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1153 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1154 }
1155 }
1156
kvm_init_vm_address_properties(struct kvm_vm * vm)1157 void kvm_init_vm_address_properties(struct kvm_vm *vm)
1158 {
1159 if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
1160 vm->arch.sev_fd = open_sev_dev_path_or_exit();
1161 vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1162 vm->gpa_tag_mask = vm->arch.c_bit;
1163 } else {
1164 vm->arch.sev_fd = -1;
1165 }
1166 }
1167
get_cpuid_entry(const struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)1168 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1169 uint32_t function, uint32_t index)
1170 {
1171 int i;
1172
1173 for (i = 0; i < cpuid->nent; i++) {
1174 if (cpuid->entries[i].function == function &&
1175 cpuid->entries[i].index == index)
1176 return &cpuid->entries[i];
1177 }
1178
1179 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1180
1181 return NULL;
1182 }
1183
1184 #define X86_HYPERCALL(inputs...) \
1185 ({ \
1186 uint64_t r; \
1187 \
1188 asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \
1189 "jnz 1f\n\t" \
1190 "vmcall\n\t" \
1191 "jmp 2f\n\t" \
1192 "1: vmmcall\n\t" \
1193 "2:" \
1194 : "=a"(r) \
1195 : [use_vmmcall] "r" (host_cpu_is_amd), inputs); \
1196 \
1197 r; \
1198 })
1199
kvm_hypercall(uint64_t nr,uint64_t a0,uint64_t a1,uint64_t a2,uint64_t a3)1200 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1201 uint64_t a3)
1202 {
1203 return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1204 }
1205
__xen_hypercall(uint64_t nr,uint64_t a0,void * a1)1206 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1207 {
1208 return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1209 }
1210
xen_hypercall(uint64_t nr,uint64_t a0,void * a1)1211 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1212 {
1213 GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1214 }
1215
vm_compute_max_gfn(struct kvm_vm * vm)1216 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1217 {
1218 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1219 unsigned long ht_gfn, max_gfn, max_pfn;
1220 uint8_t maxphyaddr, guest_maxphyaddr;
1221
1222 /*
1223 * Use "guest MAXPHYADDR" from KVM if it's available. Guest MAXPHYADDR
1224 * enumerates the max _mappable_ GPA, which can be less than the raw
1225 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
1226 * doesn't support 5-level TDP.
1227 */
1228 guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
1229 guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
1230 TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
1231 "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
1232
1233 max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
1234
1235 /* Avoid reserved HyperTransport region on AMD processors. */
1236 if (!host_cpu_is_amd)
1237 return max_gfn;
1238
1239 /* On parts with <40 physical address bits, the area is fully hidden */
1240 if (vm->pa_bits < 40)
1241 return max_gfn;
1242
1243 /* Before family 17h, the HyperTransport area is just below 1T. */
1244 ht_gfn = (1 << 28) - num_ht_pages;
1245 if (this_cpu_family() < 0x17)
1246 goto done;
1247
1248 /*
1249 * Otherwise it's at the top of the physical address space, possibly
1250 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
1251 * the old conservative value if MAXPHYADDR is not enumerated.
1252 */
1253 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1254 goto done;
1255
1256 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1257 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1258
1259 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1260 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1261
1262 ht_gfn = max_pfn - num_ht_pages;
1263 done:
1264 return min(max_gfn, ht_gfn - 1);
1265 }
1266
1267 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
vm_is_unrestricted_guest(struct kvm_vm * vm)1268 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1269 {
1270 /* Ensure that a KVM vendor-specific module is loaded. */
1271 if (vm == NULL)
1272 close(open_kvm_dev_path_or_exit());
1273
1274 return get_kvm_intel_param_bool("unrestricted_guest");
1275 }
1276
kvm_selftest_arch_init(void)1277 void kvm_selftest_arch_init(void)
1278 {
1279 host_cpu_is_intel = this_cpu_is_intel();
1280 host_cpu_is_amd = this_cpu_is_amd();
1281 is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
1282 }
1283
sys_clocksource_is_based_on_tsc(void)1284 bool sys_clocksource_is_based_on_tsc(void)
1285 {
1286 char *clk_name = sys_get_cur_clocksource();
1287 bool ret = !strcmp(clk_name, "tsc\n") ||
1288 !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1289
1290 free(clk_name);
1291
1292 return ret;
1293 }
1294