1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/uaccess.h>
7 #include <linux/interrupt.h>
8 #include <linux/cpu.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include "vgic.h"
14 
15 /*
16  * Initialization rules: there are multiple stages to the vgic
17  * initialization, both for the distributor and the CPU interfaces.  The basic
18  * idea is that even though the VGIC is not functional or not requested from
19  * user space, the critical path of the run loop can still call VGIC functions
20  * that just won't do anything, without them having to check additional
21  * initialization flags to ensure they don't look at uninitialized data
22  * structures.
23  *
24  * Distributor:
25  *
26  * - kvm_vgic_early_init(): initialization of static data that doesn't
27  *   depend on any sizing information or emulation type. No allocation
28  *   is allowed there.
29  *
30  * - vgic_init(): allocation and initialization of the generic data
31  *   structures that depend on sizing information (number of CPUs,
32  *   number of interrupts). Also initializes the vcpu specific data
33  *   structures. Can be executed lazily for GICv2.
34  *
35  * CPU Interface:
36  *
37  * - kvm_vgic_vcpu_init(): initialization of static data that doesn't depend
38  *   on any sizing information. Private interrupts are allocated if not
39  *   already allocated at vgic-creation time.
40  */
41 
42 /* EARLY INIT */
43 
44 /**
45  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
46  * @kvm: The VM whose VGIC districutor should be initialized
47  *
48  * Only do initialization of static structures that don't require any
49  * allocation or sizing information from userspace.  vgic_init() called
50  * kvm_vgic_dist_init() which takes care of the rest.
51  */
kvm_vgic_early_init(struct kvm * kvm)52 void kvm_vgic_early_init(struct kvm *kvm)
53 {
54 	struct vgic_dist *dist = &kvm->arch.vgic;
55 
56 	xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ);
57 }
58 
59 /* CREATION */
60 
61 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type);
62 
63 /**
64  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66  * or through the generic KVM_CREATE_DEVICE API ioctl.
67  * irqchip_in_kernel() tells you if this function succeeded or not.
68  * @kvm: kvm struct pointer
69  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70  */
kvm_vgic_create(struct kvm * kvm,u32 type)71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73 	struct kvm_vcpu *vcpu;
74 	unsigned long i;
75 	int ret;
76 
77 	/*
78 	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
79 	 * which had no chance yet to check the availability of the GICv2
80 	 * emulation. So check this here again. KVM_CREATE_DEVICE does
81 	 * the proper checks already.
82 	 */
83 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
84 		!kvm_vgic_global_state.can_emulate_gicv2)
85 		return -ENODEV;
86 
87 	/* Must be held to avoid race with vCPU creation */
88 	lockdep_assert_held(&kvm->lock);
89 
90 	ret = -EBUSY;
91 	if (!lock_all_vcpus(kvm))
92 		return ret;
93 
94 	mutex_lock(&kvm->arch.config_lock);
95 
96 	if (irqchip_in_kernel(kvm)) {
97 		ret = -EEXIST;
98 		goto out_unlock;
99 	}
100 
101 	kvm_for_each_vcpu(i, vcpu, kvm) {
102 		if (vcpu_has_run_once(vcpu))
103 			goto out_unlock;
104 	}
105 	ret = 0;
106 
107 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
108 		kvm->max_vcpus = VGIC_V2_MAX_CPUS;
109 	else
110 		kvm->max_vcpus = VGIC_V3_MAX_CPUS;
111 
112 	if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) {
113 		ret = -E2BIG;
114 		goto out_unlock;
115 	}
116 
117 	kvm_for_each_vcpu(i, vcpu, kvm) {
118 		ret = vgic_allocate_private_irqs_locked(vcpu, type);
119 		if (ret)
120 			break;
121 	}
122 
123 	if (ret) {
124 		kvm_for_each_vcpu(i, vcpu, kvm) {
125 			struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
126 			kfree(vgic_cpu->private_irqs);
127 			vgic_cpu->private_irqs = NULL;
128 		}
129 
130 		goto out_unlock;
131 	}
132 
133 	kvm->arch.vgic.in_kernel = true;
134 	kvm->arch.vgic.vgic_model = type;
135 
136 	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
137 
138 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
139 		kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
140 	else
141 		INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
142 
143 out_unlock:
144 	mutex_unlock(&kvm->arch.config_lock);
145 	unlock_all_vcpus(kvm);
146 	return ret;
147 }
148 
149 /* INIT/DESTROY */
150 
151 /**
152  * kvm_vgic_dist_init: initialize the dist data structures
153  * @kvm: kvm struct pointer
154  * @nr_spis: number of spis, frozen by caller
155  */
kvm_vgic_dist_init(struct kvm * kvm,unsigned int nr_spis)156 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
157 {
158 	struct vgic_dist *dist = &kvm->arch.vgic;
159 	struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
160 	int i;
161 
162 	dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
163 	if (!dist->spis)
164 		return  -ENOMEM;
165 
166 	/*
167 	 * In the following code we do not take the irq struct lock since
168 	 * no other action on irq structs can happen while the VGIC is
169 	 * not initialized yet:
170 	 * If someone wants to inject an interrupt or does a MMIO access, we
171 	 * require prior initialization in case of a virtual GICv3 or trigger
172 	 * initialization when using a virtual GICv2.
173 	 */
174 	for (i = 0; i < nr_spis; i++) {
175 		struct vgic_irq *irq = &dist->spis[i];
176 
177 		irq->intid = i + VGIC_NR_PRIVATE_IRQS;
178 		INIT_LIST_HEAD(&irq->ap_list);
179 		raw_spin_lock_init(&irq->irq_lock);
180 		irq->vcpu = NULL;
181 		irq->target_vcpu = vcpu0;
182 		kref_init(&irq->refcount);
183 		switch (dist->vgic_model) {
184 		case KVM_DEV_TYPE_ARM_VGIC_V2:
185 			irq->targets = 0;
186 			irq->group = 0;
187 			break;
188 		case KVM_DEV_TYPE_ARM_VGIC_V3:
189 			irq->mpidr = 0;
190 			irq->group = 1;
191 			break;
192 		default:
193 			kfree(dist->spis);
194 			dist->spis = NULL;
195 			return -EINVAL;
196 		}
197 	}
198 	return 0;
199 }
200 
vgic_allocate_private_irqs_locked(struct kvm_vcpu * vcpu,u32 type)201 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type)
202 {
203 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
204 	int i;
205 
206 	lockdep_assert_held(&vcpu->kvm->arch.config_lock);
207 
208 	if (vgic_cpu->private_irqs)
209 		return 0;
210 
211 	vgic_cpu->private_irqs = kcalloc(VGIC_NR_PRIVATE_IRQS,
212 					 sizeof(struct vgic_irq),
213 					 GFP_KERNEL_ACCOUNT);
214 
215 	if (!vgic_cpu->private_irqs)
216 		return -ENOMEM;
217 
218 	/*
219 	 * Enable and configure all SGIs to be edge-triggered and
220 	 * configure all PPIs as level-triggered.
221 	 */
222 	for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
223 		struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
224 
225 		INIT_LIST_HEAD(&irq->ap_list);
226 		raw_spin_lock_init(&irq->irq_lock);
227 		irq->intid = i;
228 		irq->vcpu = NULL;
229 		irq->target_vcpu = vcpu;
230 		kref_init(&irq->refcount);
231 		if (vgic_irq_is_sgi(i)) {
232 			/* SGIs */
233 			irq->enabled = 1;
234 			irq->config = VGIC_CONFIG_EDGE;
235 		} else {
236 			/* PPIs */
237 			irq->config = VGIC_CONFIG_LEVEL;
238 		}
239 
240 		switch (type) {
241 		case KVM_DEV_TYPE_ARM_VGIC_V3:
242 			irq->group = 1;
243 			irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
244 			break;
245 		case KVM_DEV_TYPE_ARM_VGIC_V2:
246 			irq->group = 0;
247 			irq->targets = BIT(vcpu->vcpu_id);
248 			break;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
vgic_allocate_private_irqs(struct kvm_vcpu * vcpu,u32 type)255 static int vgic_allocate_private_irqs(struct kvm_vcpu *vcpu, u32 type)
256 {
257 	int ret;
258 
259 	mutex_lock(&vcpu->kvm->arch.config_lock);
260 	ret = vgic_allocate_private_irqs_locked(vcpu, type);
261 	mutex_unlock(&vcpu->kvm->arch.config_lock);
262 
263 	return ret;
264 }
265 
266 /**
267  * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
268  * structures and register VCPU-specific KVM iodevs
269  *
270  * @vcpu: pointer to the VCPU being created and initialized
271  *
272  * Only do initialization, but do not actually enable the
273  * VGIC CPU interface
274  */
kvm_vgic_vcpu_init(struct kvm_vcpu * vcpu)275 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
276 {
277 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
278 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
279 	int ret = 0;
280 
281 	vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
282 
283 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
284 	raw_spin_lock_init(&vgic_cpu->ap_list_lock);
285 	atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
286 
287 	if (!irqchip_in_kernel(vcpu->kvm))
288 		return 0;
289 
290 	ret = vgic_allocate_private_irqs(vcpu, dist->vgic_model);
291 	if (ret)
292 		return ret;
293 
294 	/*
295 	 * If we are creating a VCPU with a GICv3 we must also register the
296 	 * KVM io device for the redistributor that belongs to this VCPU.
297 	 */
298 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
299 		mutex_lock(&vcpu->kvm->slots_lock);
300 		ret = vgic_register_redist_iodev(vcpu);
301 		mutex_unlock(&vcpu->kvm->slots_lock);
302 	}
303 	return ret;
304 }
305 
kvm_vgic_vcpu_enable(struct kvm_vcpu * vcpu)306 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
307 {
308 	if (kvm_vgic_global_state.type == VGIC_V2)
309 		vgic_v2_enable(vcpu);
310 	else
311 		vgic_v3_enable(vcpu);
312 }
313 
314 /*
315  * vgic_init: allocates and initializes dist and vcpu data structures
316  * depending on two dimensioning parameters:
317  * - the number of spis
318  * - the number of vcpus
319  * The function is generally called when nr_spis has been explicitly set
320  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
321  * vgic_initialized() returns true when this function has succeeded.
322  */
vgic_init(struct kvm * kvm)323 int vgic_init(struct kvm *kvm)
324 {
325 	struct vgic_dist *dist = &kvm->arch.vgic;
326 	struct kvm_vcpu *vcpu;
327 	int ret = 0;
328 	unsigned long idx;
329 
330 	lockdep_assert_held(&kvm->arch.config_lock);
331 
332 	if (vgic_initialized(kvm))
333 		return 0;
334 
335 	/* Are we also in the middle of creating a VCPU? */
336 	if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
337 		return -EBUSY;
338 
339 	/* freeze the number of spis */
340 	if (!dist->nr_spis)
341 		dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
342 
343 	ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
344 	if (ret)
345 		goto out;
346 
347 	/*
348 	 * If we have GICv4.1 enabled, unconditionally request enable the
349 	 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
350 	 * enable it if we present a virtual ITS to the guest.
351 	 */
352 	if (vgic_supports_direct_msis(kvm)) {
353 		ret = vgic_v4_init(kvm);
354 		if (ret)
355 			goto out;
356 	}
357 
358 	kvm_for_each_vcpu(idx, vcpu, kvm)
359 		kvm_vgic_vcpu_enable(vcpu);
360 
361 	ret = kvm_vgic_setup_default_irq_routing(kvm);
362 	if (ret)
363 		goto out;
364 
365 	vgic_debug_init(kvm);
366 
367 	/*
368 	 * If userspace didn't set the GIC implementation revision,
369 	 * default to the latest and greatest. You know want it.
370 	 */
371 	if (!dist->implementation_rev)
372 		dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST;
373 	dist->initialized = true;
374 
375 out:
376 	return ret;
377 }
378 
kvm_vgic_dist_destroy(struct kvm * kvm)379 static void kvm_vgic_dist_destroy(struct kvm *kvm)
380 {
381 	struct vgic_dist *dist = &kvm->arch.vgic;
382 	struct vgic_redist_region *rdreg, *next;
383 
384 	dist->ready = false;
385 	dist->initialized = false;
386 
387 	kfree(dist->spis);
388 	dist->spis = NULL;
389 	dist->nr_spis = 0;
390 	dist->vgic_dist_base = VGIC_ADDR_UNDEF;
391 
392 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
393 		list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list)
394 			vgic_v3_free_redist_region(kvm, rdreg);
395 		INIT_LIST_HEAD(&dist->rd_regions);
396 	} else {
397 		dist->vgic_cpu_base = VGIC_ADDR_UNDEF;
398 	}
399 
400 	if (vgic_supports_direct_msis(kvm))
401 		vgic_v4_teardown(kvm);
402 
403 	xa_destroy(&dist->lpi_xa);
404 }
405 
__kvm_vgic_vcpu_destroy(struct kvm_vcpu * vcpu)406 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
407 {
408 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
409 
410 	/*
411 	 * Retire all pending LPIs on this vcpu anyway as we're
412 	 * going to destroy it.
413 	 */
414 	vgic_flush_pending_lpis(vcpu);
415 
416 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
417 	kfree(vgic_cpu->private_irqs);
418 	vgic_cpu->private_irqs = NULL;
419 
420 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
421 		/*
422 		 * If this vCPU is being destroyed because of a failed creation
423 		 * then unregister the redistributor to avoid leaving behind a
424 		 * dangling pointer to the vCPU struct.
425 		 *
426 		 * vCPUs that have been successfully created (i.e. added to
427 		 * kvm->vcpu_array) get unregistered in kvm_vgic_destroy(), as
428 		 * this function gets called while holding kvm->arch.config_lock
429 		 * in the VM teardown path and would otherwise introduce a lock
430 		 * inversion w.r.t. kvm->srcu.
431 		 *
432 		 * vCPUs that failed creation are torn down outside of the
433 		 * kvm->arch.config_lock and do not get unregistered in
434 		 * kvm_vgic_destroy(), meaning it is both safe and necessary to
435 		 * do so here.
436 		 */
437 		if (kvm_get_vcpu_by_id(vcpu->kvm, vcpu->vcpu_id) != vcpu)
438 			vgic_unregister_redist_iodev(vcpu);
439 
440 		vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
441 	}
442 }
443 
kvm_vgic_vcpu_destroy(struct kvm_vcpu * vcpu)444 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
445 {
446 	struct kvm *kvm = vcpu->kvm;
447 
448 	mutex_lock(&kvm->slots_lock);
449 	__kvm_vgic_vcpu_destroy(vcpu);
450 	mutex_unlock(&kvm->slots_lock);
451 }
452 
kvm_vgic_destroy(struct kvm * kvm)453 void kvm_vgic_destroy(struct kvm *kvm)
454 {
455 	struct kvm_vcpu *vcpu;
456 	unsigned long i;
457 
458 	mutex_lock(&kvm->slots_lock);
459 	mutex_lock(&kvm->arch.config_lock);
460 
461 	vgic_debug_destroy(kvm);
462 
463 	kvm_for_each_vcpu(i, vcpu, kvm)
464 		__kvm_vgic_vcpu_destroy(vcpu);
465 
466 	kvm_vgic_dist_destroy(kvm);
467 
468 	mutex_unlock(&kvm->arch.config_lock);
469 
470 	if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
471 		kvm_for_each_vcpu(i, vcpu, kvm)
472 			vgic_unregister_redist_iodev(vcpu);
473 
474 	mutex_unlock(&kvm->slots_lock);
475 }
476 
477 /**
478  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
479  * is a GICv2. A GICv3 must be explicitly initialized by userspace using the
480  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
481  * @kvm: kvm struct pointer
482  */
vgic_lazy_init(struct kvm * kvm)483 int vgic_lazy_init(struct kvm *kvm)
484 {
485 	int ret = 0;
486 
487 	if (unlikely(!vgic_initialized(kvm))) {
488 		/*
489 		 * We only provide the automatic initialization of the VGIC
490 		 * for the legacy case of a GICv2. Any other type must
491 		 * be explicitly initialized once setup with the respective
492 		 * KVM device call.
493 		 */
494 		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
495 			return -EBUSY;
496 
497 		mutex_lock(&kvm->arch.config_lock);
498 		ret = vgic_init(kvm);
499 		mutex_unlock(&kvm->arch.config_lock);
500 	}
501 
502 	return ret;
503 }
504 
505 /* RESOURCE MAPPING */
506 
507 /**
508  * kvm_vgic_map_resources - map the MMIO regions
509  * @kvm: kvm struct pointer
510  *
511  * Map the MMIO regions depending on the VGIC model exposed to the guest
512  * called on the first VCPU run.
513  * Also map the virtual CPU interface into the VM.
514  * v2 calls vgic_init() if not already done.
515  * v3 and derivatives return an error if the VGIC is not initialized.
516  * vgic_ready() returns true if this function has succeeded.
517  */
kvm_vgic_map_resources(struct kvm * kvm)518 int kvm_vgic_map_resources(struct kvm *kvm)
519 {
520 	struct vgic_dist *dist = &kvm->arch.vgic;
521 	enum vgic_type type;
522 	gpa_t dist_base;
523 	int ret = 0;
524 
525 	if (likely(vgic_ready(kvm)))
526 		return 0;
527 
528 	mutex_lock(&kvm->slots_lock);
529 	mutex_lock(&kvm->arch.config_lock);
530 	if (vgic_ready(kvm))
531 		goto out;
532 
533 	if (!irqchip_in_kernel(kvm))
534 		goto out;
535 
536 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) {
537 		ret = vgic_v2_map_resources(kvm);
538 		type = VGIC_V2;
539 	} else {
540 		ret = vgic_v3_map_resources(kvm);
541 		type = VGIC_V3;
542 	}
543 
544 	if (ret)
545 		goto out;
546 
547 	dist_base = dist->vgic_dist_base;
548 	mutex_unlock(&kvm->arch.config_lock);
549 
550 	ret = vgic_register_dist_iodev(kvm, dist_base, type);
551 	if (ret) {
552 		kvm_err("Unable to register VGIC dist MMIO regions\n");
553 		goto out_slots;
554 	}
555 
556 	/*
557 	 * kvm_io_bus_register_dev() guarantees all readers see the new MMIO
558 	 * registration before returning through synchronize_srcu(), which also
559 	 * implies a full memory barrier. As such, marking the distributor as
560 	 * 'ready' here is guaranteed to be ordered after all vCPUs having seen
561 	 * a completely configured distributor.
562 	 */
563 	dist->ready = true;
564 	goto out_slots;
565 out:
566 	mutex_unlock(&kvm->arch.config_lock);
567 out_slots:
568 	if (ret)
569 		kvm_vm_dead(kvm);
570 
571 	mutex_unlock(&kvm->slots_lock);
572 
573 	return ret;
574 }
575 
576 /* GENERIC PROBE */
577 
kvm_vgic_cpu_up(void)578 void kvm_vgic_cpu_up(void)
579 {
580 	enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
581 }
582 
583 
kvm_vgic_cpu_down(void)584 void kvm_vgic_cpu_down(void)
585 {
586 	disable_percpu_irq(kvm_vgic_global_state.maint_irq);
587 }
588 
vgic_maintenance_handler(int irq,void * data)589 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
590 {
591 	/*
592 	 * We cannot rely on the vgic maintenance interrupt to be
593 	 * delivered synchronously. This means we can only use it to
594 	 * exit the VM, and we perform the handling of EOIed
595 	 * interrupts on the exit path (see vgic_fold_lr_state).
596 	 */
597 	return IRQ_HANDLED;
598 }
599 
600 static struct gic_kvm_info *gic_kvm_info;
601 
vgic_set_kvm_info(const struct gic_kvm_info * info)602 void __init vgic_set_kvm_info(const struct gic_kvm_info *info)
603 {
604 	BUG_ON(gic_kvm_info != NULL);
605 	gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL);
606 	if (gic_kvm_info)
607 		*gic_kvm_info = *info;
608 }
609 
610 /**
611  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
612  *
613  * For a specific CPU, initialize the GIC VE hardware.
614  */
kvm_vgic_init_cpu_hardware(void)615 void kvm_vgic_init_cpu_hardware(void)
616 {
617 	BUG_ON(preemptible());
618 
619 	/*
620 	 * We want to make sure the list registers start out clear so that we
621 	 * only have the program the used registers.
622 	 */
623 	if (kvm_vgic_global_state.type == VGIC_V2)
624 		vgic_v2_init_lrs();
625 	else
626 		kvm_call_hyp(__vgic_v3_init_lrs);
627 }
628 
629 /**
630  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
631  * according to the host GIC model. Accordingly calls either
632  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
633  * instantiated by a guest later on .
634  */
kvm_vgic_hyp_init(void)635 int kvm_vgic_hyp_init(void)
636 {
637 	bool has_mask;
638 	int ret;
639 
640 	if (!gic_kvm_info)
641 		return -ENODEV;
642 
643 	has_mask = !gic_kvm_info->no_maint_irq_mask;
644 
645 	if (has_mask && !gic_kvm_info->maint_irq) {
646 		kvm_err("No vgic maintenance irq\n");
647 		return -ENXIO;
648 	}
649 
650 	/*
651 	 * If we get one of these oddball non-GICs, taint the kernel,
652 	 * as we have no idea of how they *really* behave.
653 	 */
654 	if (gic_kvm_info->no_hw_deactivation) {
655 		kvm_info("Non-architectural vgic, tainting kernel\n");
656 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
657 		kvm_vgic_global_state.no_hw_deactivation = true;
658 	}
659 
660 	switch (gic_kvm_info->type) {
661 	case GIC_V2:
662 		ret = vgic_v2_probe(gic_kvm_info);
663 		break;
664 	case GIC_V3:
665 		ret = vgic_v3_probe(gic_kvm_info);
666 		if (!ret) {
667 			static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
668 			kvm_info("GIC system register CPU interface enabled\n");
669 		}
670 		break;
671 	default:
672 		ret = -ENODEV;
673 	}
674 
675 	kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
676 
677 	kfree(gic_kvm_info);
678 	gic_kvm_info = NULL;
679 
680 	if (ret)
681 		return ret;
682 
683 	if (!has_mask && !kvm_vgic_global_state.maint_irq)
684 		return 0;
685 
686 	ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
687 				 vgic_maintenance_handler,
688 				 "vgic", kvm_get_running_vcpus());
689 	if (ret) {
690 		kvm_err("Cannot register interrupt %d\n",
691 			kvm_vgic_global_state.maint_irq);
692 		return ret;
693 	}
694 
695 	kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
696 	return 0;
697 }
698