xref: /aosp_15_r20/external/tensorflow/tensorflow/python/ops/resources.py (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15
16
17"""Utilities for using generic resources."""
18# pylint: disable=g-bad-name
19import collections
20import os
21
22from tensorflow.python.framework import dtypes
23from tensorflow.python.framework import ops
24from tensorflow.python.ops import array_ops
25from tensorflow.python.ops import control_flow_ops
26from tensorflow.python.ops import math_ops
27from tensorflow.python.util import tf_should_use
28
29
30_Resource = collections.namedtuple("_Resource",
31                                   ["handle", "create", "is_initialized"])
32
33
34def register_resource(handle, create_op, is_initialized_op, is_shared=True):
35  """Registers a resource into the appropriate collections.
36
37  This makes the resource findable in either the shared or local resources
38  collection.
39
40  Args:
41   handle: op which returns a handle for the resource.
42   create_op: op which initializes the resource.
43   is_initialized_op: op which returns a scalar boolean tensor of whether
44    the resource has been initialized.
45   is_shared: if True, the resource gets added to the shared resource
46    collection; otherwise it gets added to the local resource collection.
47
48  """
49  resource = _Resource(handle, create_op, is_initialized_op)
50  if is_shared:
51    ops.add_to_collection(ops.GraphKeys.RESOURCES, resource)
52  else:
53    ops.add_to_collection(ops.GraphKeys.LOCAL_RESOURCES, resource)
54
55
56def shared_resources():
57  """Returns resources visible to all tasks in the cluster."""
58  return ops.get_collection(ops.GraphKeys.RESOURCES)
59
60
61def local_resources():
62  """Returns resources intended to be local to this session."""
63  return ops.get_collection(ops.GraphKeys.LOCAL_RESOURCES)
64
65
66def report_uninitialized_resources(resource_list=None,
67                                   name="report_uninitialized_resources"):
68  """Returns the names of all uninitialized resources in resource_list.
69
70  If the returned tensor is empty then all resources have been initialized.
71
72  Args:
73   resource_list: resources to check. If None, will use shared_resources() +
74    local_resources().
75   name: name for the resource-checking op.
76
77  Returns:
78   Tensor containing names of the handles of all resources which have not
79   yet been initialized.
80
81  """
82  if resource_list is None:
83    resource_list = shared_resources() + local_resources()
84  with ops.name_scope(name):
85    # Run all operations on CPU
86    local_device = os.environ.get(
87        "TF_DEVICE_FOR_UNINITIALIZED_VARIABLE_REPORTING", "/cpu:0")
88    with ops.device(local_device):
89      if not resource_list:
90        # Return an empty tensor so we only need to check for returned tensor
91        # size being 0 as an indication of model ready.
92        return array_ops.constant([], dtype=dtypes.string)
93      # Get a 1-D boolean tensor listing whether each resource is initialized.
94      variables_mask = math_ops.logical_not(
95          array_ops.stack([r.is_initialized for r in resource_list]))
96      # Get a 1-D string tensor containing all the resource names.
97      variable_names_tensor = array_ops.constant(
98          [s.handle.name for s in resource_list])
99      # Return a 1-D tensor containing all the names of uninitialized resources.
100      return array_ops.boolean_mask(variable_names_tensor, variables_mask)
101
102
103@tf_should_use.should_use_result
104def initialize_resources(resource_list, name="init"):
105  """Initializes the resources in the given list.
106
107  Args:
108   resource_list: list of resources to initialize.
109   name: name of the initialization op.
110
111  Returns:
112   op responsible for initializing all resources.
113  """
114  if resource_list:
115    return control_flow_ops.group(*[r.create for r in resource_list], name=name)
116  return control_flow_ops.no_op(name=name)
117