1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/detect.h"
33
34 #if DETECT_ARCH_SSE
35 #include <emmintrin.h>
36 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
37 #include <altivec.h>
38 /*
39 altivec.h inclusion in -std=c++98..11 causes bool to be redefined
40 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58241
41 */
42 #undef bool
43 #endif
44
45 #include <stdbool.h>
46
47 #include "util/u_math.h"
48 #include "util/u_memory.h"
49 #include "util/u_rect.h"
50 #include "util/u_sse.h"
51 #include "lp_perf.h"
52 #include "lp_setup_context.h"
53 #include "lp_rast.h"
54 #include "lp_state_fs.h"
55 #include "lp_state_setup.h"
56 #include "lp_context.h"
57
58 #include <inttypes.h>
59
60 #if defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
61 #include "util/u_pwr8.h"
62 #endif
63
64 #if !DETECT_ARCH_SSE
65
66 static inline int
subpixel_snap(float a)67 subpixel_snap(float a)
68 {
69 return util_iround(FIXED_ONE * a);
70 }
71
72 #endif
73
74 /* Position and area in fixed point coordinates */
75 struct fixed_position {
76 int32_t x[4];
77 int32_t y[4];
78 int32_t dx01;
79 int32_t dy01;
80 int32_t dx20;
81 int32_t dy20;
82 };
83
84
85 /**
86 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
87 * immediately after it.
88 * The memory is allocated from the per-scene pool, not per-tile.
89 * \param num_inputs number of fragment shader inputs
90 * \return pointer to triangle space
91 */
92 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes)93 lp_setup_alloc_triangle(struct lp_scene *scene,
94 unsigned nr_inputs,
95 unsigned nr_planes)
96 {
97 // add 1 for XYZW position
98 unsigned input_array_sz = (nr_inputs + 1) * sizeof(float[4]);
99 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
100
101 STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
102
103 const unsigned tri_size = sizeof(struct lp_rast_triangle)
104 + 3 * input_array_sz + // 3 = da + dadx + dady
105 + plane_sz;
106
107 struct lp_rast_triangle *tri = lp_scene_alloc_aligned(scene, tri_size, 16);
108 if (!tri)
109 return NULL;
110
111 tri->inputs.stride = input_array_sz;
112
113 {
114 ASSERTED char *a = (char *)tri;
115 ASSERTED char *b = (char *)&GET_PLANES(tri)[nr_planes];
116
117 assert(b - a == tri_size);
118 }
119
120 return tri;
121 }
122
123
124 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])125 lp_setup_print_vertex(struct lp_setup_context *setup,
126 const char *name,
127 const float (*v)[4])
128 {
129 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
130
131 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
132 name,
133 v[0][0], v[0][1], v[0][2], v[0][3]);
134
135 for (int i = 0; i < key->num_inputs; i++) {
136 const float *in = v[key->inputs[i].src_index];
137
138 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
139 i,
140 name, key->inputs[i].src_index,
141 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
142 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
143 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
144 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
145
146 for (int j = 0; j < 4; j++)
147 if (key->inputs[i].usage_mask & (1<<j))
148 debug_printf("%.5f ", in[j]);
149
150 debug_printf("\n");
151 }
152 }
153
154
155 /**
156 * Print triangle vertex attribs (for debug).
157 */
158 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])159 lp_setup_print_triangle(struct lp_setup_context *setup,
160 const float (*v0)[4],
161 const float (*v1)[4],
162 const float (*v2)[4])
163 {
164 debug_printf("triangle\n");
165
166 {
167 const float ex = v0[0][0] - v2[0][0];
168 const float ey = v0[0][1] - v2[0][1];
169 const float fx = v1[0][0] - v2[0][0];
170 const float fy = v1[0][1] - v2[0][1];
171
172 /* det = cross(e,f).z */
173 const float det = ex * fy - ey * fx;
174 if (det < 0.0f)
175 debug_printf(" - ccw\n");
176 else if (det > 0.0f)
177 debug_printf(" - cw\n");
178 else
179 debug_printf(" - zero area\n");
180 }
181
182 lp_setup_print_vertex(setup, "v0", v0);
183 lp_setup_print_vertex(setup, "v1", v1);
184 lp_setup_print_vertex(setup, "v2", v2);
185 }
186
187
188 #define MAX_PLANES 8
189 static unsigned
190 lp_rast_tri_tab[MAX_PLANES+1] = {
191 0, /* should be impossible */
192 LP_RAST_OP_TRIANGLE_1,
193 LP_RAST_OP_TRIANGLE_2,
194 LP_RAST_OP_TRIANGLE_3,
195 LP_RAST_OP_TRIANGLE_4,
196 LP_RAST_OP_TRIANGLE_5,
197 LP_RAST_OP_TRIANGLE_6,
198 LP_RAST_OP_TRIANGLE_7,
199 LP_RAST_OP_TRIANGLE_8
200 };
201
202 static unsigned
203 lp_rast_32_tri_tab[MAX_PLANES+1] = {
204 0, /* should be impossible */
205 LP_RAST_OP_TRIANGLE_32_1,
206 LP_RAST_OP_TRIANGLE_32_2,
207 LP_RAST_OP_TRIANGLE_32_3,
208 LP_RAST_OP_TRIANGLE_32_4,
209 LP_RAST_OP_TRIANGLE_32_5,
210 LP_RAST_OP_TRIANGLE_32_6,
211 LP_RAST_OP_TRIANGLE_32_7,
212 LP_RAST_OP_TRIANGLE_32_8
213 };
214
215
216 static unsigned
217 lp_rast_ms_tri_tab[MAX_PLANES+1] = {
218 0, /* should be impossible */
219 LP_RAST_OP_MS_TRIANGLE_1,
220 LP_RAST_OP_MS_TRIANGLE_2,
221 LP_RAST_OP_MS_TRIANGLE_3,
222 LP_RAST_OP_MS_TRIANGLE_4,
223 LP_RAST_OP_MS_TRIANGLE_5,
224 LP_RAST_OP_MS_TRIANGLE_6,
225 LP_RAST_OP_MS_TRIANGLE_7,
226 LP_RAST_OP_MS_TRIANGLE_8
227 };
228
229
230 /*
231 * Detect big primitives drawn with an alpha == 1.0.
232 *
233 * This is used when simulating anti-aliasing primitives in shaders, e.g.,
234 * when drawing the windows client area in Aero's flip-3d effect.
235 */
236 static bool
check_opaque(const struct lp_setup_context * setup,const float (* v1)[4],const float (* v2)[4],const float (* v3)[4])237 check_opaque(const struct lp_setup_context *setup,
238 const float (*v1)[4],
239 const float (*v2)[4],
240 const float (*v3)[4])
241 {
242 const struct lp_fragment_shader_variant *variant =
243 setup->fs.current.variant;
244
245 if (variant->opaque)
246 return true;
247
248 if (!variant->potentially_opaque)
249 return false;
250
251 const struct lp_tgsi_channel_info *alpha_info = &variant->shader->info.cbuf[0][3];
252 if (alpha_info->file == TGSI_FILE_CONSTANT) {
253 const float *constants = setup->fs.current.jit_resources.constants[0].f;
254 float alpha = constants[alpha_info->u.index*4 +
255 alpha_info->swizzle];
256 return alpha == 1.0f;
257 }
258
259 if (alpha_info->file == TGSI_FILE_INPUT) {
260 return (v1[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
261 v2[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
262 v3[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f);
263 }
264
265 return false;
266 }
267
268
269 /**
270 * Do basic setup for triangle rasterization and determine which
271 * framebuffer tiles are touched. Put the triangle in the scene's
272 * bins for the tiles which we overlap.
273 */
274 static bool
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],bool frontfacing)275 do_triangle_ccw(struct lp_setup_context *setup,
276 struct fixed_position *position,
277 const float (*v0)[4],
278 const float (*v1)[4],
279 const float (*v2)[4],
280 bool frontfacing)
281 {
282 struct lp_scene *scene = setup->scene;
283
284 const float (*pv)[4];
285 if (setup->flatshade_first) {
286 pv = v0;
287 } else {
288 pv = v2;
289 }
290
291 unsigned viewport_index = 0;
292 if (setup->viewport_index_slot > 0) {
293 unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
294 viewport_index = lp_clamp_viewport_idx(*udata);
295 }
296
297 unsigned layer = 0;
298 if (setup->layer_slot > 0) {
299 layer = *(unsigned*)pv[setup->layer_slot];
300 layer = MIN2(layer, scene->fb_max_layer);
301 }
302
303 /* Bounding rectangle (in pixels) */
304 struct u_rect bbox;
305 {
306 /* Yes this is necessary to accurately calculate bounding boxes
307 * with the two fill-conventions we support. GL (normally) ends
308 * up needing a bottom-left fill convention, which requires
309 * slightly different rounding.
310 */
311 int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
312
313 /* Inclusive x0, exclusive x1 */
314 bbox.x0 = MIN3(position->x[0], position->x[1],
315 position->x[2]) >> FIXED_ORDER;
316 bbox.x1 = (MAX3(position->x[0], position->x[1],
317 position->x[2]) - 1) >> FIXED_ORDER;
318
319 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
320 bbox.y0 = (MIN3(position->y[0], position->y[1],
321 position->y[2]) + adj) >> FIXED_ORDER;
322 bbox.y1 = (MAX3(position->y[0], position->y[1],
323 position->y[2]) - 1 + adj) >> FIXED_ORDER;
324 }
325
326 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
327 if (0) debug_printf("no intersection\n");
328 LP_COUNT(nr_culled_tris);
329 return true;
330 }
331
332 int max_szorig = ((bbox.x1 - (bbox.x0 & ~3)) |
333 (bbox.y1 - (bbox.y0 & ~3)));
334 bool use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
335 #if defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
336 bool pwr8_limit_check = (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
337 (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32;
338 #endif
339
340 /* Can safely discard negative regions, but need to keep hold of
341 * information about when the triangle extends past screen
342 * boundaries. See trimmed_box in lp_setup_bin_triangle().
343 */
344 bbox.x0 = MAX2(bbox.x0, 0);
345 bbox.y0 = MAX2(bbox.y0, 0);
346
347 int nr_planes = 3;
348
349 /*
350 * Determine how many scissor planes we need, that is drop scissor
351 * edges if the bounding box of the tri is fully inside that edge.
352 */
353 const struct u_rect *scissor = &setup->draw_regions[viewport_index];
354 bool s_planes[4];
355 scissor_planes_needed(s_planes, &bbox, scissor);
356 nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
357
358 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
359 struct lp_rast_triangle *tri =
360 lp_setup_alloc_triangle(scene, key->num_inputs, nr_planes);
361 if (!tri)
362 return false;
363
364 #if MESA_DEBUG
365 tri->v[0][0] = v0[0][0];
366 tri->v[1][0] = v1[0][0];
367 tri->v[2][0] = v2[0][0];
368 tri->v[0][1] = v0[0][1];
369 tri->v[1][1] = v1[0][1];
370 tri->v[2][1] = v2[0][1];
371 #endif
372
373 LP_COUNT(nr_tris);
374
375 /*
376 * Rotate the tri such that v0 is closest to the fb origin.
377 * This can give more accurate a0 value (which is at fb origin)
378 * when calculating the interpolants.
379 * It can't work when there's flat shading for instance in one
380 * of the attributes, hence restrict this to just a single attribute
381 * which is what causes some test failures.
382 * (This does not address the problem that interpolation may be
383 * inaccurate if gradients are relatively steep in small tris far
384 * away from the origin. It does however fix the (silly) wgf11rasterizer
385 * Interpolator test.)
386 * XXX This causes problems with mipgen -EmuTexture for not yet really
387 * understood reasons (if the vertices would be submitted in a different
388 * order, we'd also generate the same "wrong" results here without
389 * rotation). In any case, that we generate different values if a prim
390 * has the vertices rotated but is otherwise the same (which is due to
391 * numerical issues) is not a nice property. An additional problem by
392 * swapping the vertices here (which is possibly worse) is that
393 * the same primitive coming in twice might generate different values
394 * (in particular for z) due to the swapping potentially not happening
395 * both times, if the attributes to be interpolated are different. For now,
396 * just restrict this to not get used with dx9 (by checking pixel offset),
397 * could also restrict it further to only trigger with wgf11Interpolator
398 * Rasterizer test (the only place which needs it, with always the same
399 * vertices even).
400 */
401 if ((LP_DEBUG & DEBUG_ACCURATE_A0) &&
402 setup->pixel_offset == 0.5f &&
403 key->num_inputs == 1 &&
404 (key->inputs[0].interp == LP_INTERP_LINEAR ||
405 key->inputs[0].interp == LP_INTERP_PERSPECTIVE) &&
406 setup->fs.current_tex_num == 0 &&
407 setup->cullmode == 0) {
408 float dist0 = v0[0][0] * v0[0][0] + v0[0][1] * v0[0][1];
409 float dist1 = v1[0][0] * v1[0][0] + v1[0][1] * v1[0][1];
410 float dist2 = v2[0][0] * v2[0][0] + v2[0][1] * v2[0][1];
411 if (dist0 > dist1 && dist1 < dist2) {
412 const float (*vt)[4];
413 vt = v0;
414 v0 = v1;
415 v1 = v2;
416 v2 = vt;
417 // rotate positions
418 int x = position->x[0];
419 int y = position->y[0];
420 position->x[0] = position->x[1];
421 position->y[0] = position->y[1];
422 position->x[1] = position->x[2];
423 position->y[1] = position->y[2];
424 position->x[2] = x;
425 position->y[2] = y;
426
427 position->dx20 = position->dx01;
428 position->dy20 = position->dy01;
429 position->dx01 = position->x[0] - position->x[1];
430 position->dy01 = position->y[0] - position->y[1];
431 } else if (dist0 > dist2) {
432 const float (*vt)[4];
433 vt = v0;
434 v0 = v2;
435 v2 = v1;
436 v1 = vt;
437 // rotate positions
438 int x = position->x[0];
439 int y = position->y[0];
440 position->x[0] = position->x[2];
441 position->y[0] = position->y[2];
442 position->x[2] = position->x[1];
443 position->y[2] = position->y[1];
444 position->x[1] = x;
445 position->y[1] = y;
446
447 position->dx01 = position->dx20;
448 position->dy01 = position->dy20;
449 position->dx20 = position->x[2] - position->x[0];
450 position->dy20 = position->y[2] - position->y[0];
451 }
452 }
453
454 /* Setup parameter interpolants:
455 */
456 setup->setup.variant->jit_function(v0, v1, v2,
457 frontfacing,
458 GET_A0(&tri->inputs),
459 GET_DADX(&tri->inputs),
460 GET_DADY(&tri->inputs),
461 &setup->setup.variant->key);
462
463 tri->inputs.frontfacing = frontfacing;
464 tri->inputs.disable = false;
465 tri->inputs.is_blit = false;
466 tri->inputs.layer = layer;
467 tri->inputs.viewport_index = viewport_index;
468 tri->inputs.view_index = setup->view_index;
469
470 if (0)
471 lp_dump_setup_coef(&setup->setup.variant->key,
472 GET_A0(&tri->inputs),
473 GET_DADX(&tri->inputs),
474 GET_DADY(&tri->inputs));
475
476 struct lp_rast_plane *plane = GET_PLANES(tri);
477
478 #if DETECT_ARCH_SSE
479 if (1) {
480 __m128i vertx, verty;
481 __m128i shufx, shufy;
482 __m128i dcdx, dcdy;
483 __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
484 __m128i c01, c23, unused;
485 __m128i dcdx_neg_mask;
486 __m128i dcdy_neg_mask;
487 __m128i dcdx_zero_mask;
488 __m128i top_left_flag, c_dec;
489 __m128i eo, p0, p1, p2;
490 __m128i zero = _mm_setzero_si128();
491
492 vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
493 verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
494
495 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
496 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
497
498 dcdx = _mm_sub_epi32(verty, shufy);
499 dcdy = _mm_sub_epi32(vertx, shufx);
500
501 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
502 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
503 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
504
505 top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
506
507 c_dec = _mm_or_si128(dcdx_neg_mask,
508 _mm_and_si128(dcdx_zero_mask,
509 _mm_xor_si128(dcdy_neg_mask,
510 top_left_flag)));
511
512 /*
513 * 64 bit arithmetic.
514 * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
515 */
516 cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
517 cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
518 c02 = _mm_sub_epi64(cdx02, cdy02);
519 c13 = _mm_sub_epi64(cdx13, cdy13);
520 c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
521 _MM_SHUFFLE(2,2,0,0)));
522 c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
523 _MM_SHUFFLE(3,3,1,1)));
524
525 /*
526 * Useful for very small fbs/tris (or fewer subpixel bits) only:
527 * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
528 * mm_mullo_epi32(dcdy, verty));
529 *
530 * c = _mm_sub_epi32(c, c_dec);
531 */
532
533 /* Scale up to match c:
534 */
535 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
536 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
537
538 /*
539 * Calculate trivial reject values:
540 * Note eo cannot overflow even if dcdx/dcdy would already have
541 * 31 bits (which they shouldn't have). This is because eo
542 * is never negative (albeit if we rely on that need to be careful...)
543 */
544 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
545 _mm_and_si128(dcdx_neg_mask, dcdx));
546
547 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
548
549 /*
550 * Pointless transpose which gets undone immediately in
551 * rasterization.
552 * It is actually difficult to do away with it - would essentially
553 * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
554 * for this then would need to depend on the number of planes.
555 * The transpose is quite special here due to c being 64bit...
556 * The store has to be unaligned (unless we'd make the plane size
557 * a multiple of 128), and of course storing eo separately...
558 */
559 c01 = _mm_unpacklo_epi64(c02, c13);
560 c23 = _mm_unpackhi_epi64(c02, c13);
561 transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
562 &p0, &p1, &p2, &unused);
563 _mm_storeu_si128((__m128i *)&plane[0], p0);
564 plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
565 _mm_storeu_si128((__m128i *)&plane[1], p1);
566 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
567 plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
568 _mm_storeu_si128((__m128i *)&plane[2], p2);
569 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
570 plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
571 } else
572 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
573 /*
574 * XXX this code is effectively disabled for all practical purposes,
575 * as the allowed fb size is tiny if FIXED_ORDER is 8.
576 */
577 if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
578 setup->fb.height <= MAX_FIXED_LENGTH32 &&
579 pwr8_limit_check) {
580 unsigned int bottom_edge;
581 __m128i vertx, verty;
582 __m128i shufx, shufy;
583 __m128i dcdx, dcdy, c;
584 __m128i unused;
585 __m128i dcdx_neg_mask;
586 __m128i dcdy_neg_mask;
587 __m128i dcdx_zero_mask;
588 __m128i top_left_flag;
589 __m128i c_inc_mask, c_inc;
590 __m128i eo, p0, p1, p2;
591 __m128i_union vshuf_mask;
592 __m128i zero = vec_splats((unsigned char) 0);
593 alignas(16) int32_t temp_vec[4];
594
595 #if UTIL_ARCH_LITTLE_ENDIAN
596 vshuf_mask.i[0] = 0x07060504;
597 vshuf_mask.i[1] = 0x0B0A0908;
598 vshuf_mask.i[2] = 0x03020100;
599 vshuf_mask.i[3] = 0x0F0E0D0C;
600 #else
601 vshuf_mask.i[0] = 0x00010203;
602 vshuf_mask.i[1] = 0x0C0D0E0F;
603 vshuf_mask.i[2] = 0x04050607;
604 vshuf_mask.i[3] = 0x08090A0B;
605 #endif
606
607 /* vertex x coords */
608 vertx = vec_load_si128((const uint32_t *) position->x);
609 /* vertex y coords */
610 verty = vec_load_si128((const uint32_t *) position->y);
611
612 shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
613 shufy = vec_perm (verty, verty, vshuf_mask.m128i);
614
615 dcdx = vec_sub_epi32(verty, shufy);
616 dcdy = vec_sub_epi32(vertx, shufx);
617
618 dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
619 dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
620 dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
621
622 bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
623 top_left_flag = (__m128i) vec_splats(bottom_edge);
624
625 c_inc_mask = vec_or(dcdx_neg_mask,
626 vec_and(dcdx_zero_mask,
627 vec_xor(dcdy_neg_mask,
628 top_left_flag)));
629
630 c_inc = vec_srli_epi32(c_inc_mask, 31);
631
632 c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
633 vec_mullo_epi32(dcdy, verty));
634
635 c = vec_add_epi32(c, c_inc);
636
637 /* Scale up to match c:
638 */
639 dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
640 dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
641
642 /* Calculate trivial reject values:
643 */
644 eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
645 vec_and(dcdx_neg_mask, dcdx));
646
647 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
648
649 /* Pointless transpose which gets undone immediately in
650 * rasterization:
651 */
652 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
653 &p0, &p1, &p2, &unused);
654
655 #define STORE_PLANE(plane, vec) do { \
656 vec_store_si128((uint32_t *)&temp_vec, vec); \
657 plane.c = (int64_t)temp_vec[0]; \
658 plane.dcdx = temp_vec[1]; \
659 plane.dcdy = temp_vec[2]; \
660 plane.eo = temp_vec[3]; \
661 } while(0)
662
663 STORE_PLANE(plane[0], p0);
664 STORE_PLANE(plane[1], p1);
665 STORE_PLANE(plane[2], p2);
666 #undef STORE_PLANE
667 } else
668 #endif
669 {
670 plane[0].dcdy = position->dx01;
671 plane[1].dcdy = position->x[1] - position->x[2];
672 plane[2].dcdy = position->dx20;
673 plane[0].dcdx = position->dy01;
674 plane[1].dcdx = position->y[1] - position->y[2];
675 plane[2].dcdx = position->dy20;
676
677 for (int i = 0; i < 3; i++) {
678 /* half-edge constants, will be iterated over the whole render
679 * target.
680 */
681 plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
682 IMUL64(plane[i].dcdy, position->y[i]);
683
684 /* correct for top-left vs. bottom-left fill convention.
685 */
686 if (plane[i].dcdx < 0) {
687 /* both fill conventions want this - adjust for left edges */
688 plane[i].c++;
689 }
690 else if (plane[i].dcdx == 0) {
691 if (setup->bottom_edge_rule == 0) {
692 /* correct for top-left fill convention:
693 */
694 if (plane[i].dcdy > 0)
695 plane[i].c++;
696 } else {
697 /* correct for bottom-left fill convention:
698 */
699 if (plane[i].dcdy < 0)
700 plane[i].c++;
701 }
702 }
703
704 /* Scale up to match c:
705 */
706 assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
707 assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
708 plane[i].dcdx <<= FIXED_ORDER;
709 plane[i].dcdy <<= FIXED_ORDER;
710
711 /* find trivial reject offsets for each edge for a single-pixel
712 * sized block. These will be scaled up at each recursive level to
713 * match the active blocksize. Scaling in this way works best if
714 * the blocks are square.
715 */
716 plane[i].eo = 0;
717 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
718 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
719 }
720 }
721
722 if (0) {
723 debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
724 plane[0].c,
725 plane[0].dcdx,
726 plane[0].dcdy,
727 plane[0].eo);
728
729 debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
730 plane[1].c,
731 plane[1].dcdx,
732 plane[1].dcdy,
733 plane[1].eo);
734
735 debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
736 plane[2].c,
737 plane[2].dcdx,
738 plane[2].dcdy,
739 plane[2].eo);
740 }
741
742 if (nr_planes > 3) {
743 lp_setup_add_scissor_planes(scissor, &plane[3],
744 s_planes, setup->multisample);
745 }
746
747 return lp_setup_bin_triangle(setup, tri, use_32bits,
748 check_opaque(setup, v0, v1, v2),
749 &bbox, nr_planes, viewport_index);
750 }
751
752 /*
753 * Round to nearest less or equal power of two of the input.
754 *
755 * Undefined if no bit set exists, so code should check against 0 first.
756 */
757 static inline uint32_t
floor_pot(uint32_t n)758 floor_pot(uint32_t n)
759 {
760 #if DETECT_CC_GCC && (DETECT_ARCH_X86 || DETECT_ARCH_X86_64)
761 if (n == 0)
762 return 0;
763
764 __asm__("bsr %1,%0"
765 : "=r" (n)
766 : "rm" (n)
767 : "cc");
768 return 1 << n;
769 #else
770 n |= (n >> 1);
771 n |= (n >> 2);
772 n |= (n >> 4);
773 n |= (n >> 8);
774 n |= (n >> 16);
775 return n - (n >> 1);
776 #endif
777 }
778
779
780 bool
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,bool use_32bits,bool opaque,const struct u_rect * bbox,int nr_planes,unsigned viewport_index)781 lp_setup_bin_triangle(struct lp_setup_context *setup,
782 struct lp_rast_triangle *tri,
783 bool use_32bits,
784 bool opaque,
785 const struct u_rect *bbox,
786 int nr_planes,
787 unsigned viewport_index)
788 {
789 struct lp_scene *scene = setup->scene;
790 unsigned cmd;
791
792 /* What is the largest power-of-two boundary this triangle crosses:
793 */
794 const int dx = floor_pot((bbox->x0 ^ bbox->x1) |
795 (bbox->y0 ^ bbox->y1));
796
797 /* The largest dimension of the rasterized area of the triangle
798 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
799 */
800 const int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
801 (bbox->y1 - (bbox->y0 & ~3)));
802 const int sz = floor_pot(max_sz);
803
804 /*
805 * NOTE: It is important to use the original bounding box
806 * which might contain negative values here, because if the
807 * plane math may overflow or not with the 32bit rasterization
808 * functions depends on the original extent of the triangle.
809 */
810
811 /* Now apply scissor, etc to the bounding box. Could do this
812 * earlier, but it confuses the logic for tri-16 and would force
813 * the rasterizer to also respect scissor, etc, just for the rare
814 * cases where a small triangle extends beyond the scissor.
815 */
816 struct u_rect trimmed_box = *bbox;
817 u_rect_find_intersection(&setup->draw_regions[viewport_index],
818 &trimmed_box);
819
820 /* Determine which tile(s) intersect the triangle's bounding box
821 */
822 if (dx < TILE_SIZE) {
823 const int ix0 = bbox->x0 / TILE_SIZE;
824 const int iy0 = bbox->y0 / TILE_SIZE;
825 unsigned px = bbox->x0 & 63 & ~3;
826 unsigned py = bbox->y0 & 63 & ~3;
827
828 assert(iy0 == bbox->y1 / TILE_SIZE &&
829 ix0 == bbox->x1 / TILE_SIZE);
830
831 if (nr_planes == 3) {
832 if (sz < 4) {
833 /* Triangle is contained in a single 4x4 stamp:
834 */
835 assert(px + 4 <= TILE_SIZE);
836 assert(py + 4 <= TILE_SIZE);
837 if (setup->multisample)
838 cmd = LP_RAST_OP_MS_TRIANGLE_3_4;
839 else
840 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_4 : LP_RAST_OP_TRIANGLE_3_4;
841 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
842 setup->fs.stored, cmd,
843 lp_rast_arg_triangle_contained(tri, px, py));
844 }
845
846 if (sz < 16) {
847 /* Triangle is contained in a single 16x16 block:
848 */
849
850 /*
851 * The 16x16 block is only 4x4 aligned, and can exceed the tile
852 * dimensions if the triangle is 16 pixels in one dimension but 4
853 * in the other. So budge the 16x16 back inside the tile.
854 */
855 px = MIN2(px, TILE_SIZE - 16);
856 py = MIN2(py, TILE_SIZE - 16);
857
858 assert(px + 16 <= TILE_SIZE);
859 assert(py + 16 <= TILE_SIZE);
860
861 if (setup->multisample)
862 cmd = LP_RAST_OP_MS_TRIANGLE_3_16;
863 else
864 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_16 : LP_RAST_OP_TRIANGLE_3_16;
865 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
866 setup->fs.stored, cmd,
867 lp_rast_arg_triangle_contained(tri, px, py));
868 }
869 } else if (nr_planes == 4 && sz < 16) {
870 px = MIN2(px, TILE_SIZE - 16);
871 py = MIN2(py, TILE_SIZE - 16);
872
873 assert(px + 16 <= TILE_SIZE);
874 assert(py + 16 <= TILE_SIZE);
875
876 if (setup->multisample)
877 cmd = LP_RAST_OP_MS_TRIANGLE_4_16;
878 else
879 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_4_16 : LP_RAST_OP_TRIANGLE_4_16;
880 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
881 setup->fs.stored, cmd,
882 lp_rast_arg_triangle_contained(tri, px, py));
883 }
884
885 /* Triangle is contained in a single tile:
886 */
887 if (setup->multisample)
888 cmd = lp_rast_ms_tri_tab[nr_planes];
889 else
890 cmd = use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes];
891 return lp_scene_bin_cmd_with_state(scene, ix0, iy0, setup->fs.stored,
892 cmd,
893 lp_rast_arg_triangle(tri,
894 (1<<nr_planes)-1));
895 } else {
896 struct lp_rast_plane *plane = GET_PLANES(tri);
897 int64_t c[MAX_PLANES];
898 int64_t ei[MAX_PLANES];
899
900 int64_t eo[MAX_PLANES];
901 int64_t xstep[MAX_PLANES];
902 int64_t ystep[MAX_PLANES];
903
904 const int ix0 = trimmed_box.x0 / TILE_SIZE;
905 const int iy0 = trimmed_box.y0 / TILE_SIZE;
906 const int ix1 = trimmed_box.x1 / TILE_SIZE;
907 const int iy1 = trimmed_box.y1 / TILE_SIZE;
908
909 for (int i = 0; i < nr_planes; i++) {
910 c[i] = (plane[i].c +
911 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
912 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
913
914 ei[i] = (plane[i].dcdy -
915 plane[i].dcdx -
916 (int64_t)plane[i].eo) << TILE_ORDER;
917
918 eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
919 xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
920 ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
921 }
922
923 tri->inputs.is_blit = lp_setup_is_blit(setup, &tri->inputs);
924
925 /* Test tile-sized blocks against the triangle.
926 * Discard blocks fully outside the tri. If the block is fully
927 * contained inside the tri, bin an lp_rast_shade_tile command.
928 * Else, bin a lp_rast_triangle command.
929 */
930 for (int y = iy0; y <= iy1; y++) {
931 bool in = false; /* are we inside the triangle? */
932 int64_t cx[MAX_PLANES];
933
934 for (int i = 0; i < nr_planes; i++)
935 cx[i] = c[i];
936
937 for (int x = ix0; x <= ix1; x++) {
938 int out = 0, partial = 0;
939
940 for (int i = 0; i < nr_planes; i++) {
941 int64_t planeout = cx[i] + eo[i];
942 int64_t planepartial = cx[i] + ei[i] - 1;
943 out |= (int) (planeout >> 63);
944 partial |= ((int) (planepartial >> 63)) & (1<<i);
945 }
946
947 if (out) {
948 /* do nothing */
949 if (in)
950 break; /* exiting triangle, all done with this row */
951 LP_COUNT(nr_empty_64);
952 } else if (partial) {
953 /* Not trivially accepted by at least one plane -
954 * rasterize/shade partial tile
955 */
956 int count = util_bitcount(partial);
957 in = true;
958
959 if (setup->multisample)
960 cmd = lp_rast_ms_tri_tab[count];
961 else
962 cmd = use_32bits ? lp_rast_32_tri_tab[count] : lp_rast_tri_tab[count];
963 if (!lp_scene_bin_cmd_with_state(scene, x, y,
964 setup->fs.stored, cmd,
965 lp_rast_arg_triangle(tri, partial)))
966 goto fail;
967
968 LP_COUNT(nr_partially_covered_64);
969 } else {
970 /* triangle covers the whole tile- shade whole tile */
971 LP_COUNT(nr_fully_covered_64);
972 in = true;
973 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y, opaque))
974 goto fail;
975 }
976
977 /* Iterate cx values across the region: */
978 for (int i = 0; i < nr_planes; i++)
979 cx[i] += xstep[i];
980 }
981
982 /* Iterate c values down the region: */
983 for (int i = 0; i < nr_planes; i++)
984 c[i] += ystep[i];
985 }
986 }
987
988 return true;
989
990 fail:
991 /* Need to disable any partially binned triangle. This is easier
992 * than trying to locate all the triangle, shade-tile, etc,
993 * commands which may have been binned.
994 */
995 tri->inputs.disable = true;
996 return false;
997 }
998
999
1000 /**
1001 * Try to draw the triangle, restart the scene on failure.
1002 */
1003 static inline void
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],bool front)1004 retry_triangle_ccw(struct lp_setup_context *setup,
1005 struct fixed_position *position,
1006 const float (*v0)[4],
1007 const float (*v1)[4],
1008 const float (*v2)[4],
1009 bool front)
1010 {
1011 if (0)
1012 lp_setup_print_triangle(setup, v0, v1, v2);
1013
1014 if (lp_setup_zero_sample_mask(setup)) {
1015 if (0) debug_printf("zero sample mask\n");
1016 LP_COUNT(nr_culled_tris);
1017 return;
1018 }
1019
1020 if (!do_triangle_ccw(setup, position, v0, v1, v2, front)) {
1021 if (!lp_setup_flush_and_restart(setup))
1022 return;
1023
1024 if (!do_triangle_ccw(setup, position, v0, v1, v2, front))
1025 return;
1026 }
1027 }
1028
1029
1030 /**
1031 * Calculate fixed position data for a triangle
1032 * It is unfortunate we need to do that here (as we need area
1033 * calculated in fixed point), as there's quite some code duplication
1034 * to what is done in the jit setup prog.
1035 */
1036 static inline int8_t
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1037 calc_fixed_position(struct lp_setup_context *setup,
1038 struct fixed_position* position,
1039 const float (*v0)[4],
1040 const float (*v1)[4],
1041 const float (*v2)[4])
1042 {
1043 float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
1044 /*
1045 * The rounding may not be quite the same with DETECT_ARCH_SSE
1046 * (util_iround right now only does nearest/even on x87,
1047 * otherwise nearest/away-from-zero).
1048 * Both should be acceptable, I think.
1049 */
1050 #if DETECT_ARCH_SSE
1051 __m128 v0r, v1r;
1052 __m128 vxy0xy2, vxy1xy0;
1053 __m128i vxy0xy2i, vxy1xy0i;
1054 __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
1055 __m128 pix_offset = _mm_set1_ps(pixel_offset);
1056 __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
1057 v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
1058 vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
1059 v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
1060 vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
1061 vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
1062 vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
1063 vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
1064 vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
1065 vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
1066 vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
1067 dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
1068 _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
1069 /*
1070 * For the mul, would need some more shuffles, plus emulation
1071 * for the signed mul (without sse41), so don't bother.
1072 */
1073 x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
1074 x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
1075 x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
1076 y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
1077 _mm_store_si128((__m128i *)&position->x[0], x0120);
1078 _mm_store_si128((__m128i *)&position->y[0], y0120);
1079
1080 #else
1081 position->x[0] = subpixel_snap(v0[0][0] - pixel_offset);
1082 position->x[1] = subpixel_snap(v1[0][0] - pixel_offset);
1083 position->x[2] = subpixel_snap(v2[0][0] - pixel_offset);
1084 position->x[3] = 0; // should be unused
1085
1086 position->y[0] = subpixel_snap(v0[0][1] - pixel_offset);
1087 position->y[1] = subpixel_snap(v1[0][1] - pixel_offset);
1088 position->y[2] = subpixel_snap(v2[0][1] - pixel_offset);
1089 position->y[3] = 0; // should be unused
1090
1091 position->dx01 = position->x[0] - position->x[1];
1092 position->dy01 = position->y[0] - position->y[1];
1093
1094 position->dx20 = position->x[2] - position->x[0];
1095 position->dy20 = position->y[2] - position->y[0];
1096 #endif
1097
1098 uint64_t area = IMUL64(position->dx01, position->dy20) -
1099 IMUL64(position->dx20, position->dy01);
1100 return area == 0 ? 0 : (area & (1ULL << 63)) ? -1 : 1;
1101 }
1102
1103
1104 /**
1105 * Rotate a triangle, flipping its clockwise direction,
1106 * Swaps values for xy[0] and xy[1]
1107 */
1108 static inline void
rotate_fixed_position_01(struct fixed_position * position)1109 rotate_fixed_position_01(struct fixed_position* position)
1110 {
1111 int x = position->x[1];
1112 int y = position->y[1];
1113
1114 position->x[1] = position->x[0];
1115 position->y[1] = position->y[0];
1116 position->x[0] = x;
1117 position->y[0] = y;
1118
1119 position->dx01 = -position->dx01;
1120 position->dy01 = -position->dy01;
1121 position->dx20 = position->x[2] - position->x[0];
1122 position->dy20 = position->y[2] - position->y[0];
1123 }
1124
1125
1126 /**
1127 * Rotate a triangle, flipping its clockwise direction,
1128 * Swaps values for xy[1] and xy[2]
1129 */
1130 static inline void
rotate_fixed_position_12(struct fixed_position * position)1131 rotate_fixed_position_12(struct fixed_position* position)
1132 {
1133 int x = position->x[2];
1134 int y = position->y[2];
1135
1136 position->x[2] = position->x[1];
1137 position->y[2] = position->y[1];
1138 position->x[1] = x;
1139 position->y[1] = y;
1140
1141 x = position->dx01;
1142 y = position->dy01;
1143 position->dx01 = -position->dx20;
1144 position->dy01 = -position->dy20;
1145 position->dx20 = -x;
1146 position->dy20 = -y;
1147 }
1148
1149
1150 /**
1151 * Draw triangle if it's CW, cull otherwise.
1152 */
1153 static void
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1154 triangle_cw(struct lp_setup_context *setup,
1155 const float (*v0)[4],
1156 const float (*v1)[4],
1157 const float (*v2)[4])
1158 {
1159 alignas(16) struct fixed_position position;
1160 struct llvmpipe_context *lp_context = llvmpipe_context(setup->pipe);
1161
1162 if (lp_context->active_statistics_queries) {
1163 lp_context->pipeline_statistics.c_primitives++;
1164 }
1165
1166 int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
1167
1168 if (area_sign < 0) {
1169 if (setup->flatshade_first) {
1170 rotate_fixed_position_12(&position);
1171 retry_triangle_ccw(setup, &position, v0, v2, v1,
1172 !setup->ccw_is_frontface);
1173 } else {
1174 rotate_fixed_position_01(&position);
1175 retry_triangle_ccw(setup, &position, v1, v0, v2,
1176 !setup->ccw_is_frontface);
1177 }
1178 }
1179 }
1180
1181
1182 static void
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1183 triangle_ccw(struct lp_setup_context *setup,
1184 const float (*v0)[4],
1185 const float (*v1)[4],
1186 const float (*v2)[4])
1187 {
1188 alignas(16) struct fixed_position position;
1189 struct llvmpipe_context *lp_context = llvmpipe_context(setup->pipe);
1190
1191 if (lp_context->active_statistics_queries) {
1192 lp_context->pipeline_statistics.c_primitives++;
1193 }
1194
1195 int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
1196
1197 if (area_sign > 0)
1198 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1199 }
1200
1201
1202 /**
1203 * Draw triangle whether it's CW or CCW.
1204 */
1205 static void
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1206 triangle_both(struct lp_setup_context *setup,
1207 const float (*v0)[4],
1208 const float (*v1)[4],
1209 const float (*v2)[4])
1210 {
1211 alignas(16) struct fixed_position position;
1212 struct llvmpipe_context *lp_context = llvmpipe_context(setup->pipe);
1213
1214 if (lp_context->active_statistics_queries) {
1215 lp_context->pipeline_statistics.c_primitives++;
1216 }
1217
1218 int8_t area_sign = calc_fixed_position(setup, &position, v0, v1, v2);
1219
1220 if (0) {
1221 assert(!util_is_inf_or_nan(v0[0][0]));
1222 assert(!util_is_inf_or_nan(v0[0][1]));
1223 assert(!util_is_inf_or_nan(v1[0][0]));
1224 assert(!util_is_inf_or_nan(v1[0][1]));
1225 assert(!util_is_inf_or_nan(v2[0][0]));
1226 assert(!util_is_inf_or_nan(v2[0][1]));
1227 }
1228
1229 if (area_sign > 0) {
1230 retry_triangle_ccw(setup, &position, v0, v1, v2,
1231 setup->ccw_is_frontface);
1232 } else if (area_sign < 0) {
1233 if (setup->flatshade_first) {
1234 rotate_fixed_position_12(&position);
1235 retry_triangle_ccw(setup, &position, v0, v2, v1,
1236 !setup->ccw_is_frontface);
1237 } else {
1238 rotate_fixed_position_01(&position);
1239 retry_triangle_ccw(setup, &position, v1, v0, v2,
1240 !setup->ccw_is_frontface);
1241 }
1242 }
1243 }
1244
1245
1246 static void
triangle_noop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1247 triangle_noop(struct lp_setup_context *setup,
1248 const float (*v0)[4],
1249 const float (*v1)[4],
1250 const float (*v2)[4])
1251 {
1252 }
1253
1254
1255 void
lp_setup_choose_triangle(struct lp_setup_context * setup)1256 lp_setup_choose_triangle(struct lp_setup_context *setup)
1257 {
1258 if (setup->rasterizer_discard) {
1259 setup->triangle = triangle_noop;
1260 return;
1261 }
1262 switch (setup->cullmode) {
1263 case PIPE_FACE_NONE:
1264 setup->triangle = triangle_both;
1265 break;
1266 case PIPE_FACE_BACK:
1267 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1268 break;
1269 case PIPE_FACE_FRONT:
1270 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1271 break;
1272 default:
1273 setup->triangle = triangle_noop;
1274 break;
1275 }
1276 }
1277