1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2023 Red Hat
4 */
5
6 #include "data-vio.h"
7
8 #include <linux/atomic.h>
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/delay.h>
12 #include <linux/device-mapper.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/lz4.h>
17 #include <linux/minmax.h>
18 #include <linux/sched.h>
19 #include <linux/spinlock.h>
20 #include <linux/wait.h>
21
22 #include "logger.h"
23 #include "memory-alloc.h"
24 #include "murmurhash3.h"
25 #include "permassert.h"
26
27 #include "block-map.h"
28 #include "dump.h"
29 #include "encodings.h"
30 #include "int-map.h"
31 #include "io-submitter.h"
32 #include "logical-zone.h"
33 #include "packer.h"
34 #include "recovery-journal.h"
35 #include "slab-depot.h"
36 #include "status-codes.h"
37 #include "types.h"
38 #include "vdo.h"
39 #include "vio.h"
40 #include "wait-queue.h"
41
42 /**
43 * DOC: Bio flags.
44 *
45 * For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those
46 * flags on our own bio(s) for that request may help underlying layers better fulfill the user
47 * bio's needs. This constant contains the aggregate of those flags; VDO strips all the other
48 * flags, as they convey incorrect information.
49 *
50 * These flags are always irrelevant if we have already finished the user bio as they are only
51 * hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how
52 * important finishing the finished bio was.
53 *
54 * Note that bio.c contains the complete list of flags we believe may be set; the following list
55 * explains the action taken with each of those flags VDO could receive:
56 *
57 * * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio
58 * completion is required for further work to be done by the issuer.
59 * * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer
60 * treats it as more urgent, similar to REQ_SYNC.
61 * * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is
62 * important.
63 * * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO.
64 * * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't
65 * match incoming IO, so this flag is incorrect for it.
66 * * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise.
67 * * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance.
68 * * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled
69 * ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load
70 * prioritization.
71 */
72 static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD);
73
74 /**
75 * DOC:
76 *
77 * The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For
78 * correctness, and in order to avoid potentially expensive or blocking memory allocations during
79 * normal operation, the number of concurrently active data_vios is capped. Furthermore, in order
80 * to avoid starvation of reads and writes, at most 75% of the data_vios may be used for
81 * discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios
82 * for which a data_vio or discard permit are not available will block until the necessary
83 * resources are available. The pool is also responsible for distributing resources to blocked
84 * threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by
85 * performing the work of actually assigning resources to blocked threads or placing data_vios back
86 * into the pool on a single cpu at a time.
87 *
88 * The pool contains two "limiters", one for tracking data_vios and one for tracking discard
89 * permits. The limiters also provide safe cross-thread access to pool statistics without the need
90 * to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to
91 * get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources
92 * are available, the incoming bio will be assigned to the acquired data_vio, and it will be
93 * launched. However, if either of these are unavailable, the arrival time of the bio is recorded
94 * in the bio's bi_private field, the bio and its submitter are both queued on the appropriate
95 * limiter and the submitting thread will then put itself to sleep. (note that this mechanism will
96 * break if jiffies are only 32 bits.)
97 *
98 * Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio()
99 * will be called on it. This function will add the data_vio to a funnel queue, and then check the
100 * state of the pool. If the pool is not currently processing released data_vios, the pool's
101 * completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to
102 * hold the pool's lock, and also batches release work while avoiding starvation of the cpu
103 * threads.
104 *
105 * Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which
106 * processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For
107 * each data_vio, it first checks whether that data_vio was processing a discard. If so, and there
108 * is a blocked bio waiting for a discard permit, that permit is notionally transferred to the
109 * eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting
110 * for a data_vio. If there are no discard waiters, the discard permit is returned to the pool.
111 * Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or
112 * doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the
113 * pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit
114 * them are awakened.
115 */
116
117 #define DATA_VIO_RELEASE_BATCH_SIZE 128
118
119 static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1;
120 static const u32 COMPRESSION_STATUS_MASK = 0xff;
121 static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000;
122
123 struct limiter;
124 typedef void (*assigner_fn)(struct limiter *limiter);
125
126 /* Bookkeeping structure for a single type of resource. */
127 struct limiter {
128 /* The data_vio_pool to which this limiter belongs */
129 struct data_vio_pool *pool;
130 /* The maximum number of data_vios available */
131 data_vio_count_t limit;
132 /* The number of resources in use */
133 data_vio_count_t busy;
134 /* The maximum number of resources ever simultaneously in use */
135 data_vio_count_t max_busy;
136 /* The number of resources to release */
137 data_vio_count_t release_count;
138 /* The number of waiters to wake */
139 data_vio_count_t wake_count;
140 /* The list of waiting bios which are known to process_release_callback() */
141 struct bio_list waiters;
142 /* The list of waiting bios which are not yet known to process_release_callback() */
143 struct bio_list new_waiters;
144 /* The list of waiters which have their permits */
145 struct bio_list *permitted_waiters;
146 /* The function for assigning a resource to a waiter */
147 assigner_fn assigner;
148 /* The queue of blocked threads */
149 wait_queue_head_t blocked_threads;
150 /* The arrival time of the eldest waiter */
151 u64 arrival;
152 };
153
154 /*
155 * A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread,
156 * and are released in batches.
157 */
158 struct data_vio_pool {
159 /* Completion for scheduling releases */
160 struct vdo_completion completion;
161 /* The administrative state of the pool */
162 struct admin_state state;
163 /* Lock protecting the pool */
164 spinlock_t lock;
165 /* The main limiter controlling the total data_vios in the pool. */
166 struct limiter limiter;
167 /* The limiter controlling data_vios for discard */
168 struct limiter discard_limiter;
169 /* The list of bios which have discard permits but still need a data_vio */
170 struct bio_list permitted_discards;
171 /* The list of available data_vios */
172 struct list_head available;
173 /* The queue of data_vios waiting to be returned to the pool */
174 struct funnel_queue *queue;
175 /* Whether the pool is processing, or scheduled to process releases */
176 atomic_t processing;
177 /* The data vios in the pool */
178 struct data_vio data_vios[];
179 };
180
181 static const char * const ASYNC_OPERATION_NAMES[] = {
182 "launch",
183 "acknowledge_write",
184 "acquire_hash_lock",
185 "attempt_logical_block_lock",
186 "lock_duplicate_pbn",
187 "check_for_duplication",
188 "cleanup",
189 "compress_data_vio",
190 "find_block_map_slot",
191 "get_mapped_block_for_read",
192 "get_mapped_block_for_write",
193 "hash_data_vio",
194 "journal_remapping",
195 "vdo_attempt_packing",
196 "put_mapped_block",
197 "read_data_vio",
198 "update_dedupe_index",
199 "update_reference_counts",
200 "verify_duplication",
201 "write_data_vio",
202 };
203
204 /* The steps taken cleaning up a VIO, in the order they are performed. */
205 enum data_vio_cleanup_stage {
206 VIO_CLEANUP_START,
207 VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START,
208 VIO_RELEASE_ALLOCATED,
209 VIO_RELEASE_RECOVERY_LOCKS,
210 VIO_RELEASE_LOGICAL,
211 VIO_CLEANUP_DONE
212 };
213
214 static inline struct data_vio_pool * __must_check
as_data_vio_pool(struct vdo_completion * completion)215 as_data_vio_pool(struct vdo_completion *completion)
216 {
217 vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION);
218 return container_of(completion, struct data_vio_pool, completion);
219 }
220
get_arrival_time(struct bio * bio)221 static inline u64 get_arrival_time(struct bio *bio)
222 {
223 return (u64) bio->bi_private;
224 }
225
226 /**
227 * check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios
228 * or waiters while holding the pool's lock.
229 */
check_for_drain_complete_locked(struct data_vio_pool * pool)230 static bool check_for_drain_complete_locked(struct data_vio_pool *pool)
231 {
232 if (pool->limiter.busy > 0)
233 return false;
234
235 VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0),
236 "no outstanding discard permits");
237
238 return (bio_list_empty(&pool->limiter.new_waiters) &&
239 bio_list_empty(&pool->discard_limiter.new_waiters));
240 }
241
initialize_lbn_lock(struct data_vio * data_vio,logical_block_number_t lbn)242 static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn)
243 {
244 struct vdo *vdo = vdo_from_data_vio(data_vio);
245 zone_count_t zone_number;
246 struct lbn_lock *lock = &data_vio->logical;
247
248 lock->lbn = lbn;
249 lock->locked = false;
250 vdo_waitq_init(&lock->waiters);
251 zone_number = vdo_compute_logical_zone(data_vio);
252 lock->zone = &vdo->logical_zones->zones[zone_number];
253 }
254
launch_locked_request(struct data_vio * data_vio)255 static void launch_locked_request(struct data_vio *data_vio)
256 {
257 data_vio->logical.locked = true;
258 if (data_vio->write) {
259 struct vdo *vdo = vdo_from_data_vio(data_vio);
260
261 if (vdo_is_read_only(vdo)) {
262 continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
263 return;
264 }
265 }
266
267 data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT;
268 vdo_find_block_map_slot(data_vio);
269 }
270
acknowledge_data_vio(struct data_vio * data_vio)271 static void acknowledge_data_vio(struct data_vio *data_vio)
272 {
273 struct vdo *vdo = vdo_from_data_vio(data_vio);
274 struct bio *bio = data_vio->user_bio;
275 int error = vdo_status_to_errno(data_vio->vio.completion.result);
276
277 if (bio == NULL)
278 return;
279
280 VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <=
281 (u32) (VDO_BLOCK_SIZE - data_vio->offset)),
282 "data_vio to acknowledge is not an incomplete discard");
283
284 data_vio->user_bio = NULL;
285 vdo_count_bios(&vdo->stats.bios_acknowledged, bio);
286 if (data_vio->is_partial)
287 vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio);
288
289 bio->bi_status = errno_to_blk_status(error);
290 bio_endio(bio);
291 }
292
copy_to_bio(struct bio * bio,char * data_ptr)293 static void copy_to_bio(struct bio *bio, char *data_ptr)
294 {
295 struct bio_vec biovec;
296 struct bvec_iter iter;
297
298 bio_for_each_segment(biovec, bio, iter) {
299 memcpy_to_bvec(&biovec, data_ptr);
300 data_ptr += biovec.bv_len;
301 }
302 }
303
get_data_vio_compression_status(struct data_vio * data_vio)304 struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio)
305 {
306 u32 packed = atomic_read(&data_vio->compression.status);
307
308 /* pairs with cmpxchg in set_data_vio_compression_status */
309 smp_rmb();
310 return (struct data_vio_compression_status) {
311 .stage = packed & COMPRESSION_STATUS_MASK,
312 .may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0),
313 };
314 }
315
316 /**
317 * pack_status() - Convert a data_vio_compression_status into a u32 which may be stored
318 * atomically.
319 * @status: The state to convert.
320 *
321 * Return: The compression state packed into a u32.
322 */
pack_status(struct data_vio_compression_status status)323 static u32 __must_check pack_status(struct data_vio_compression_status status)
324 {
325 return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0);
326 }
327
328 /**
329 * set_data_vio_compression_status() - Set the compression status of a data_vio.
330 * @data_vio: The data_vio to change.
331 * @status: The expected current status of the data_vio.
332 * @new_status: The status to set.
333 *
334 * Return: true if the new status was set, false if the data_vio's compression status did not
335 * match the expected state, and so was left unchanged.
336 */
337 static bool __must_check
set_data_vio_compression_status(struct data_vio * data_vio,struct data_vio_compression_status status,struct data_vio_compression_status new_status)338 set_data_vio_compression_status(struct data_vio *data_vio,
339 struct data_vio_compression_status status,
340 struct data_vio_compression_status new_status)
341 {
342 u32 actual;
343 u32 expected = pack_status(status);
344 u32 replacement = pack_status(new_status);
345
346 /*
347 * Extra barriers because this was original developed using a CAS operation that implicitly
348 * had them.
349 */
350 smp_mb__before_atomic();
351 actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement);
352 /* same as before_atomic */
353 smp_mb__after_atomic();
354 return (expected == actual);
355 }
356
advance_data_vio_compression_stage(struct data_vio * data_vio)357 struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio)
358 {
359 for (;;) {
360 struct data_vio_compression_status status =
361 get_data_vio_compression_status(data_vio);
362 struct data_vio_compression_status new_status = status;
363
364 if (status.stage == DATA_VIO_POST_PACKER) {
365 /* We're already in the last stage. */
366 return status;
367 }
368
369 if (status.may_not_compress) {
370 /*
371 * Compression has been dis-allowed for this VIO, so skip the rest of the
372 * path and go to the end.
373 */
374 new_status.stage = DATA_VIO_POST_PACKER;
375 } else {
376 /* Go to the next state. */
377 new_status.stage++;
378 }
379
380 if (set_data_vio_compression_status(data_vio, status, new_status))
381 return new_status;
382
383 /* Another thread changed the status out from under us so try again. */
384 }
385 }
386
387 /**
388 * cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed.
389 *
390 * Return: true if the data_vio is in the packer and the caller was the first caller to cancel it.
391 */
cancel_data_vio_compression(struct data_vio * data_vio)392 bool cancel_data_vio_compression(struct data_vio *data_vio)
393 {
394 struct data_vio_compression_status status, new_status;
395
396 for (;;) {
397 status = get_data_vio_compression_status(data_vio);
398 if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) {
399 /* This data_vio is already set up to not block in the packer. */
400 break;
401 }
402
403 new_status.stage = status.stage;
404 new_status.may_not_compress = true;
405
406 if (set_data_vio_compression_status(data_vio, status, new_status))
407 break;
408 }
409
410 return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress);
411 }
412
413 /**
414 * attempt_logical_block_lock() - Attempt to acquire the lock on a logical block.
415 * @completion: The data_vio for an external data request as a completion.
416 *
417 * This is the start of the path for all external requests. It is registered in launch_data_vio().
418 */
attempt_logical_block_lock(struct vdo_completion * completion)419 static void attempt_logical_block_lock(struct vdo_completion *completion)
420 {
421 struct data_vio *data_vio = as_data_vio(completion);
422 struct lbn_lock *lock = &data_vio->logical;
423 struct vdo *vdo = vdo_from_data_vio(data_vio);
424 struct data_vio *lock_holder;
425 int result;
426
427 assert_data_vio_in_logical_zone(data_vio);
428
429 if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) {
430 continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE);
431 return;
432 }
433
434 result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
435 data_vio, false, (void **) &lock_holder);
436 if (result != VDO_SUCCESS) {
437 continue_data_vio_with_error(data_vio, result);
438 return;
439 }
440
441 if (lock_holder == NULL) {
442 /* We got the lock */
443 launch_locked_request(data_vio);
444 return;
445 }
446
447 result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held");
448 if (result != VDO_SUCCESS) {
449 continue_data_vio_with_error(data_vio, result);
450 return;
451 }
452
453 /*
454 * If the new request is a pure read request (not read-modify-write) and the lock_holder is
455 * writing and has received an allocation, service the read request immediately by copying
456 * data from the lock_holder to avoid having to flush the write out of the packer just to
457 * prevent the read from waiting indefinitely. If the lock_holder does not yet have an
458 * allocation, prevent it from blocking in the packer and wait on it. This is necessary in
459 * order to prevent returning data that may not have actually been written.
460 */
461 if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) {
462 copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset);
463 acknowledge_data_vio(data_vio);
464 complete_data_vio(completion);
465 return;
466 }
467
468 data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK;
469 vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter);
470
471 /*
472 * Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the
473 * packer.
474 */
475 if (lock_holder->write && cancel_data_vio_compression(lock_holder)) {
476 data_vio->compression.lock_holder = lock_holder;
477 launch_data_vio_packer_callback(data_vio,
478 vdo_remove_lock_holder_from_packer);
479 }
480 }
481
482 /**
483 * launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the
484 * same parent and other state and send it on its way.
485 */
launch_data_vio(struct data_vio * data_vio,logical_block_number_t lbn)486 static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn)
487 {
488 struct vdo_completion *completion = &data_vio->vio.completion;
489
490 /*
491 * Clearing the tree lock must happen before initializing the LBN lock, which also adds
492 * information to the tree lock.
493 */
494 memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock));
495 initialize_lbn_lock(data_vio, lbn);
496 INIT_LIST_HEAD(&data_vio->hash_lock_entry);
497 INIT_LIST_HEAD(&data_vio->write_entry);
498
499 memset(&data_vio->allocation, 0, sizeof(data_vio->allocation));
500
501 data_vio->is_duplicate = false;
502
503 memset(&data_vio->record_name, 0, sizeof(data_vio->record_name));
504 memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate));
505 vdo_reset_completion(&data_vio->decrement_completion);
506 vdo_reset_completion(completion);
507 completion->error_handler = handle_data_vio_error;
508 set_data_vio_logical_callback(data_vio, attempt_logical_block_lock);
509 vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY);
510 }
511
is_zero_block(char * block)512 static bool is_zero_block(char *block)
513 {
514 int i;
515
516 for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
517 if (*((u64 *) &block[i]))
518 return false;
519 }
520
521 return true;
522 }
523
copy_from_bio(struct bio * bio,char * data_ptr)524 static void copy_from_bio(struct bio *bio, char *data_ptr)
525 {
526 struct bio_vec biovec;
527 struct bvec_iter iter;
528
529 bio_for_each_segment(biovec, bio, iter) {
530 memcpy_from_bvec(data_ptr, &biovec);
531 data_ptr += biovec.bv_len;
532 }
533 }
534
launch_bio(struct vdo * vdo,struct data_vio * data_vio,struct bio * bio)535 static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio)
536 {
537 logical_block_number_t lbn;
538 /*
539 * Zero out the fields which don't need to be preserved (i.e. which are not pointers to
540 * separately allocated objects).
541 */
542 memset(data_vio, 0, offsetof(struct data_vio, vio));
543 memset(&data_vio->compression, 0, offsetof(struct compression_state, block));
544
545 data_vio->user_bio = bio;
546 data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK);
547 data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0);
548
549 /*
550 * Discards behave very differently than other requests when coming in from device-mapper.
551 * We have to be able to handle any size discards and various sector offsets within a
552 * block.
553 */
554 if (bio_op(bio) == REQ_OP_DISCARD) {
555 data_vio->remaining_discard = bio->bi_iter.bi_size;
556 data_vio->write = true;
557 data_vio->is_discard = true;
558 if (data_vio->is_partial) {
559 vdo_count_bios(&vdo->stats.bios_in_partial, bio);
560 data_vio->read = true;
561 }
562 } else if (data_vio->is_partial) {
563 vdo_count_bios(&vdo->stats.bios_in_partial, bio);
564 data_vio->read = true;
565 if (bio_data_dir(bio) == WRITE)
566 data_vio->write = true;
567 } else if (bio_data_dir(bio) == READ) {
568 data_vio->read = true;
569 } else {
570 /*
571 * Copy the bio data to a char array so that we can continue to use the data after
572 * we acknowledge the bio.
573 */
574 copy_from_bio(bio, data_vio->vio.data);
575 data_vio->is_zero = is_zero_block(data_vio->vio.data);
576 data_vio->write = true;
577 }
578
579 if (data_vio->user_bio->bi_opf & REQ_FUA)
580 data_vio->fua = true;
581
582 lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK;
583 launch_data_vio(data_vio, lbn);
584 }
585
assign_data_vio(struct limiter * limiter,struct data_vio * data_vio)586 static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio)
587 {
588 struct bio *bio = bio_list_pop(limiter->permitted_waiters);
589
590 launch_bio(limiter->pool->completion.vdo, data_vio, bio);
591 limiter->wake_count++;
592
593 bio = bio_list_peek(limiter->permitted_waiters);
594 limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio));
595 }
596
assign_discard_permit(struct limiter * limiter)597 static void assign_discard_permit(struct limiter *limiter)
598 {
599 struct bio *bio = bio_list_pop(&limiter->waiters);
600
601 if (limiter->arrival == U64_MAX)
602 limiter->arrival = get_arrival_time(bio);
603
604 bio_list_add(limiter->permitted_waiters, bio);
605 }
606
get_waiters(struct limiter * limiter)607 static void get_waiters(struct limiter *limiter)
608 {
609 bio_list_merge_init(&limiter->waiters, &limiter->new_waiters);
610 }
611
get_available_data_vio(struct data_vio_pool * pool)612 static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool)
613 {
614 struct data_vio *data_vio =
615 list_first_entry(&pool->available, struct data_vio, pool_entry);
616
617 list_del_init(&data_vio->pool_entry);
618 return data_vio;
619 }
620
assign_data_vio_to_waiter(struct limiter * limiter)621 static void assign_data_vio_to_waiter(struct limiter *limiter)
622 {
623 assign_data_vio(limiter, get_available_data_vio(limiter->pool));
624 }
625
update_limiter(struct limiter * limiter)626 static void update_limiter(struct limiter *limiter)
627 {
628 struct bio_list *waiters = &limiter->waiters;
629 data_vio_count_t available = limiter->limit - limiter->busy;
630
631 VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy),
632 "Release count %u is not more than busy count %u",
633 limiter->release_count, limiter->busy);
634
635 get_waiters(limiter);
636 for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--)
637 limiter->assigner(limiter);
638
639 if (limiter->release_count > 0) {
640 WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count);
641 limiter->release_count = 0;
642 return;
643 }
644
645 for (; (available > 0) && !bio_list_empty(waiters); available--)
646 limiter->assigner(limiter);
647
648 WRITE_ONCE(limiter->busy, limiter->limit - available);
649 if (limiter->max_busy < limiter->busy)
650 WRITE_ONCE(limiter->max_busy, limiter->busy);
651 }
652
653 /**
654 * schedule_releases() - Ensure that release processing is scheduled.
655 *
656 * If this call switches the state to processing, enqueue. Otherwise, some other thread has already
657 * done so.
658 */
schedule_releases(struct data_vio_pool * pool)659 static void schedule_releases(struct data_vio_pool *pool)
660 {
661 /* Pairs with the barrier in process_release_callback(). */
662 smp_mb__before_atomic();
663 if (atomic_cmpxchg(&pool->processing, false, true))
664 return;
665
666 pool->completion.requeue = true;
667 vdo_launch_completion_with_priority(&pool->completion,
668 CPU_Q_COMPLETE_VIO_PRIORITY);
669 }
670
reuse_or_release_resources(struct data_vio_pool * pool,struct data_vio * data_vio,struct list_head * returned)671 static void reuse_or_release_resources(struct data_vio_pool *pool,
672 struct data_vio *data_vio,
673 struct list_head *returned)
674 {
675 if (data_vio->remaining_discard > 0) {
676 if (bio_list_empty(&pool->discard_limiter.waiters)) {
677 /* Return the data_vio's discard permit. */
678 pool->discard_limiter.release_count++;
679 } else {
680 assign_discard_permit(&pool->discard_limiter);
681 }
682 }
683
684 if (pool->limiter.arrival < pool->discard_limiter.arrival) {
685 assign_data_vio(&pool->limiter, data_vio);
686 } else if (pool->discard_limiter.arrival < U64_MAX) {
687 assign_data_vio(&pool->discard_limiter, data_vio);
688 } else {
689 list_add(&data_vio->pool_entry, returned);
690 pool->limiter.release_count++;
691 }
692 }
693
694 /**
695 * process_release_callback() - Process a batch of data_vio releases.
696 * @completion: The pool with data_vios to release.
697 */
process_release_callback(struct vdo_completion * completion)698 static void process_release_callback(struct vdo_completion *completion)
699 {
700 struct data_vio_pool *pool = as_data_vio_pool(completion);
701 bool reschedule;
702 bool drained;
703 data_vio_count_t processed;
704 data_vio_count_t to_wake;
705 data_vio_count_t discards_to_wake;
706 LIST_HEAD(returned);
707
708 spin_lock(&pool->lock);
709 get_waiters(&pool->discard_limiter);
710 get_waiters(&pool->limiter);
711 spin_unlock(&pool->lock);
712
713 if (pool->limiter.arrival == U64_MAX) {
714 struct bio *bio = bio_list_peek(&pool->limiter.waiters);
715
716 if (bio != NULL)
717 pool->limiter.arrival = get_arrival_time(bio);
718 }
719
720 for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) {
721 struct data_vio *data_vio;
722 struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue);
723
724 if (entry == NULL)
725 break;
726
727 data_vio = as_data_vio(container_of(entry, struct vdo_completion,
728 work_queue_entry_link));
729 acknowledge_data_vio(data_vio);
730 reuse_or_release_resources(pool, data_vio, &returned);
731 }
732
733 spin_lock(&pool->lock);
734 /*
735 * There is a race where waiters could be added while we are in the unlocked section above.
736 * Those waiters could not see the resources we are now about to release, so we assign
737 * those resources now as we have no guarantee of being rescheduled. This is handled in
738 * update_limiter().
739 */
740 update_limiter(&pool->discard_limiter);
741 list_splice(&returned, &pool->available);
742 update_limiter(&pool->limiter);
743 to_wake = pool->limiter.wake_count;
744 pool->limiter.wake_count = 0;
745 discards_to_wake = pool->discard_limiter.wake_count;
746 pool->discard_limiter.wake_count = 0;
747
748 atomic_set(&pool->processing, false);
749 /* Pairs with the barrier in schedule_releases(). */
750 smp_mb();
751
752 reschedule = !vdo_is_funnel_queue_empty(pool->queue);
753 drained = (!reschedule &&
754 vdo_is_state_draining(&pool->state) &&
755 check_for_drain_complete_locked(pool));
756 spin_unlock(&pool->lock);
757
758 if (to_wake > 0)
759 wake_up_nr(&pool->limiter.blocked_threads, to_wake);
760
761 if (discards_to_wake > 0)
762 wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake);
763
764 if (reschedule)
765 schedule_releases(pool);
766 else if (drained)
767 vdo_finish_draining(&pool->state);
768 }
769
initialize_limiter(struct limiter * limiter,struct data_vio_pool * pool,assigner_fn assigner,data_vio_count_t limit)770 static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool,
771 assigner_fn assigner, data_vio_count_t limit)
772 {
773 limiter->pool = pool;
774 limiter->assigner = assigner;
775 limiter->limit = limit;
776 limiter->arrival = U64_MAX;
777 init_waitqueue_head(&limiter->blocked_threads);
778 }
779
780 /**
781 * initialize_data_vio() - Allocate the components of a data_vio.
782 *
783 * The caller is responsible for cleaning up the data_vio on error.
784 *
785 * Return: VDO_SUCCESS or an error.
786 */
initialize_data_vio(struct data_vio * data_vio,struct vdo * vdo)787 static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo)
788 {
789 struct bio *bio;
790 int result;
791
792 BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE);
793 result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data",
794 &data_vio->vio.data);
795 if (result != VDO_SUCCESS)
796 return vdo_log_error_strerror(result,
797 "data_vio data allocation failure");
798
799 result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block",
800 &data_vio->compression.block);
801 if (result != VDO_SUCCESS) {
802 return vdo_log_error_strerror(result,
803 "data_vio compressed block allocation failure");
804 }
805
806 result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch",
807 &data_vio->scratch_block);
808 if (result != VDO_SUCCESS)
809 return vdo_log_error_strerror(result,
810 "data_vio scratch allocation failure");
811
812 result = vdo_create_bio(&bio);
813 if (result != VDO_SUCCESS)
814 return vdo_log_error_strerror(result,
815 "data_vio data bio allocation failure");
816
817 vdo_initialize_completion(&data_vio->decrement_completion, vdo,
818 VDO_DECREMENT_COMPLETION);
819 initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo);
820
821 return VDO_SUCCESS;
822 }
823
destroy_data_vio(struct data_vio * data_vio)824 static void destroy_data_vio(struct data_vio *data_vio)
825 {
826 if (data_vio == NULL)
827 return;
828
829 vdo_free_bio(vdo_forget(data_vio->vio.bio));
830 vdo_free(vdo_forget(data_vio->vio.data));
831 vdo_free(vdo_forget(data_vio->compression.block));
832 vdo_free(vdo_forget(data_vio->scratch_block));
833 }
834
835 /**
836 * make_data_vio_pool() - Initialize a data_vio pool.
837 * @vdo: The vdo to which the pool will belong.
838 * @pool_size: The number of data_vios in the pool.
839 * @discard_limit: The maximum number of data_vios which may be used for discards.
840 * @pool_ptr: A pointer to hold the newly allocated pool.
841 */
make_data_vio_pool(struct vdo * vdo,data_vio_count_t pool_size,data_vio_count_t discard_limit,struct data_vio_pool ** pool_ptr)842 int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size,
843 data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr)
844 {
845 int result;
846 struct data_vio_pool *pool;
847 data_vio_count_t i;
848
849 result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio,
850 __func__, &pool);
851 if (result != VDO_SUCCESS)
852 return result;
853
854 VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size),
855 "discard limit does not exceed pool size");
856 initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit,
857 discard_limit);
858 pool->discard_limiter.permitted_waiters = &pool->permitted_discards;
859 initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size);
860 pool->limiter.permitted_waiters = &pool->limiter.waiters;
861 INIT_LIST_HEAD(&pool->available);
862 spin_lock_init(&pool->lock);
863 vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
864 vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION);
865 vdo_prepare_completion(&pool->completion, process_release_callback,
866 process_release_callback, vdo->thread_config.cpu_thread,
867 NULL);
868
869 result = vdo_make_funnel_queue(&pool->queue);
870 if (result != VDO_SUCCESS) {
871 free_data_vio_pool(vdo_forget(pool));
872 return result;
873 }
874
875 for (i = 0; i < pool_size; i++) {
876 struct data_vio *data_vio = &pool->data_vios[i];
877
878 result = initialize_data_vio(data_vio, vdo);
879 if (result != VDO_SUCCESS) {
880 destroy_data_vio(data_vio);
881 free_data_vio_pool(pool);
882 return result;
883 }
884
885 list_add(&data_vio->pool_entry, &pool->available);
886 }
887
888 *pool_ptr = pool;
889 return VDO_SUCCESS;
890 }
891
892 /**
893 * free_data_vio_pool() - Free a data_vio_pool and the data_vios in it.
894 *
895 * All data_vios must be returned to the pool before calling this function.
896 */
free_data_vio_pool(struct data_vio_pool * pool)897 void free_data_vio_pool(struct data_vio_pool *pool)
898 {
899 struct data_vio *data_vio, *tmp;
900
901 if (pool == NULL)
902 return;
903
904 /*
905 * Pairs with the barrier in process_release_callback(). Possibly not needed since it
906 * caters to an enqueue vs. free race.
907 */
908 smp_mb();
909 BUG_ON(atomic_read(&pool->processing));
910
911 spin_lock(&pool->lock);
912 VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0),
913 "data_vio pool must not have %u busy entries when being freed",
914 pool->limiter.busy);
915 VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) &&
916 bio_list_empty(&pool->limiter.new_waiters)),
917 "data_vio pool must not have threads waiting to read or write when being freed");
918 VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) &&
919 bio_list_empty(&pool->discard_limiter.new_waiters)),
920 "data_vio pool must not have threads waiting to discard when being freed");
921 spin_unlock(&pool->lock);
922
923 list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) {
924 list_del_init(&data_vio->pool_entry);
925 destroy_data_vio(data_vio);
926 }
927
928 vdo_free_funnel_queue(vdo_forget(pool->queue));
929 vdo_free(pool);
930 }
931
acquire_permit(struct limiter * limiter)932 static bool acquire_permit(struct limiter *limiter)
933 {
934 if (limiter->busy >= limiter->limit)
935 return false;
936
937 WRITE_ONCE(limiter->busy, limiter->busy + 1);
938 if (limiter->max_busy < limiter->busy)
939 WRITE_ONCE(limiter->max_busy, limiter->busy);
940 return true;
941 }
942
wait_permit(struct limiter * limiter,struct bio * bio)943 static void wait_permit(struct limiter *limiter, struct bio *bio)
944 __releases(&limiter->pool->lock)
945 {
946 DEFINE_WAIT(wait);
947
948 bio_list_add(&limiter->new_waiters, bio);
949 prepare_to_wait_exclusive(&limiter->blocked_threads, &wait,
950 TASK_UNINTERRUPTIBLE);
951 spin_unlock(&limiter->pool->lock);
952 io_schedule();
953 finish_wait(&limiter->blocked_threads, &wait);
954 }
955
956 /**
957 * vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it.
958 *
959 * This will block if data_vios or discard permits are not available.
960 */
vdo_launch_bio(struct data_vio_pool * pool,struct bio * bio)961 void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio)
962 {
963 struct data_vio *data_vio;
964
965 VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state),
966 "data_vio_pool not quiescent on acquire");
967
968 bio->bi_private = (void *) jiffies;
969 spin_lock(&pool->lock);
970 if ((bio_op(bio) == REQ_OP_DISCARD) &&
971 !acquire_permit(&pool->discard_limiter)) {
972 wait_permit(&pool->discard_limiter, bio);
973 return;
974 }
975
976 if (!acquire_permit(&pool->limiter)) {
977 wait_permit(&pool->limiter, bio);
978 return;
979 }
980
981 data_vio = get_available_data_vio(pool);
982 spin_unlock(&pool->lock);
983 launch_bio(pool->completion.vdo, data_vio, bio);
984 }
985
986 /* Implements vdo_admin_initiator_fn. */
initiate_drain(struct admin_state * state)987 static void initiate_drain(struct admin_state *state)
988 {
989 bool drained;
990 struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state);
991
992 spin_lock(&pool->lock);
993 drained = check_for_drain_complete_locked(pool);
994 spin_unlock(&pool->lock);
995
996 if (drained)
997 vdo_finish_draining(state);
998 }
999
assert_on_vdo_cpu_thread(const struct vdo * vdo,const char * name)1000 static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name)
1001 {
1002 VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread),
1003 "%s called on cpu thread", name);
1004 }
1005
1006 /**
1007 * drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool.
1008 * @completion: The completion to notify when the pool has drained.
1009 */
drain_data_vio_pool(struct data_vio_pool * pool,struct vdo_completion * completion)1010 void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1011 {
1012 assert_on_vdo_cpu_thread(completion->vdo, __func__);
1013 vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion,
1014 initiate_drain);
1015 }
1016
1017 /**
1018 * resume_data_vio_pool() - Resume a data_vio pool.
1019 * @completion: The completion to notify when the pool has resumed.
1020 */
resume_data_vio_pool(struct data_vio_pool * pool,struct vdo_completion * completion)1021 void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1022 {
1023 assert_on_vdo_cpu_thread(completion->vdo, __func__);
1024 vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state));
1025 }
1026
dump_limiter(const char * name,struct limiter * limiter)1027 static void dump_limiter(const char *name, struct limiter *limiter)
1028 {
1029 vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy,
1030 limiter->limit, limiter->max_busy,
1031 ((bio_list_empty(&limiter->waiters) &&
1032 bio_list_empty(&limiter->new_waiters)) ?
1033 "no waiters" : "has waiters"));
1034 }
1035
1036 /**
1037 * dump_data_vio_pool() - Dump a data_vio pool to the log.
1038 * @dump_vios: Whether to dump the details of each busy data_vio as well.
1039 */
dump_data_vio_pool(struct data_vio_pool * pool,bool dump_vios)1040 void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios)
1041 {
1042 /*
1043 * In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the
1044 * second clock tick). These numbers were picked based on experiments with lab machines.
1045 */
1046 static const int ELEMENTS_PER_BATCH = 35;
1047 static const int SLEEP_FOR_SYSLOG = 4000;
1048
1049 if (pool == NULL)
1050 return;
1051
1052 spin_lock(&pool->lock);
1053 dump_limiter("data_vios", &pool->limiter);
1054 dump_limiter("discard permits", &pool->discard_limiter);
1055 if (dump_vios) {
1056 int i;
1057 int dumped = 0;
1058
1059 for (i = 0; i < pool->limiter.limit; i++) {
1060 struct data_vio *data_vio = &pool->data_vios[i];
1061
1062 if (!list_empty(&data_vio->pool_entry))
1063 continue;
1064
1065 dump_data_vio(data_vio);
1066 if (++dumped >= ELEMENTS_PER_BATCH) {
1067 spin_unlock(&pool->lock);
1068 dumped = 0;
1069 fsleep(SLEEP_FOR_SYSLOG);
1070 spin_lock(&pool->lock);
1071 }
1072 }
1073 }
1074
1075 spin_unlock(&pool->lock);
1076 }
1077
get_data_vio_pool_active_requests(struct data_vio_pool * pool)1078 data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool)
1079 {
1080 return READ_ONCE(pool->limiter.busy);
1081 }
1082
get_data_vio_pool_request_limit(struct data_vio_pool * pool)1083 data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool)
1084 {
1085 return READ_ONCE(pool->limiter.limit);
1086 }
1087
get_data_vio_pool_maximum_requests(struct data_vio_pool * pool)1088 data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool)
1089 {
1090 return READ_ONCE(pool->limiter.max_busy);
1091 }
1092
update_data_vio_error_stats(struct data_vio * data_vio)1093 static void update_data_vio_error_stats(struct data_vio *data_vio)
1094 {
1095 u8 index = 0;
1096 static const char * const operations[] = {
1097 [0] = "empty",
1098 [1] = "read",
1099 [2] = "write",
1100 [3] = "read-modify-write",
1101 [5] = "read+fua",
1102 [6] = "write+fua",
1103 [7] = "read-modify-write+fua",
1104 };
1105
1106 if (data_vio->read)
1107 index = 1;
1108
1109 if (data_vio->write)
1110 index += 2;
1111
1112 if (data_vio->fua)
1113 index += 4;
1114
1115 update_vio_error_stats(&data_vio->vio,
1116 "Completing %s vio for LBN %llu with error after %s",
1117 operations[index],
1118 (unsigned long long) data_vio->logical.lbn,
1119 get_data_vio_operation_name(data_vio));
1120 }
1121
1122 static void perform_cleanup_stage(struct data_vio *data_vio,
1123 enum data_vio_cleanup_stage stage);
1124
1125 /**
1126 * release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at
1127 * the end of processing a data_vio.
1128 */
release_allocated_lock(struct vdo_completion * completion)1129 static void release_allocated_lock(struct vdo_completion *completion)
1130 {
1131 struct data_vio *data_vio = as_data_vio(completion);
1132
1133 assert_data_vio_in_allocated_zone(data_vio);
1134 release_data_vio_allocation_lock(data_vio, false);
1135 perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS);
1136 }
1137
1138 /** release_lock() - Release an uncontended LBN lock. */
release_lock(struct data_vio * data_vio,struct lbn_lock * lock)1139 static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1140 {
1141 struct int_map *lock_map = lock->zone->lbn_operations;
1142 struct data_vio *lock_holder;
1143
1144 if (!lock->locked) {
1145 /* The lock is not locked, so it had better not be registered in the lock map. */
1146 struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn);
1147
1148 VDO_ASSERT_LOG_ONLY((data_vio != lock_holder),
1149 "no logical block lock held for block %llu",
1150 (unsigned long long) lock->lbn);
1151 return;
1152 }
1153
1154 /* Release the lock by removing the lock from the map. */
1155 lock_holder = vdo_int_map_remove(lock_map, lock->lbn);
1156 VDO_ASSERT_LOG_ONLY((data_vio == lock_holder),
1157 "logical block lock mismatch for block %llu",
1158 (unsigned long long) lock->lbn);
1159 lock->locked = false;
1160 }
1161
1162 /** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */
transfer_lock(struct data_vio * data_vio,struct lbn_lock * lock)1163 static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1164 {
1165 struct data_vio *lock_holder, *next_lock_holder;
1166 int result;
1167
1168 VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked");
1169
1170 /* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */
1171 next_lock_holder =
1172 vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
1173
1174 /* Transfer the remaining lock waiters to the next lock holder. */
1175 vdo_waitq_transfer_all_waiters(&lock->waiters,
1176 &next_lock_holder->logical.waiters);
1177
1178 result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
1179 next_lock_holder, true, (void **) &lock_holder);
1180 if (result != VDO_SUCCESS) {
1181 continue_data_vio_with_error(next_lock_holder, result);
1182 return;
1183 }
1184
1185 VDO_ASSERT_LOG_ONLY((lock_holder == data_vio),
1186 "logical block lock mismatch for block %llu",
1187 (unsigned long long) lock->lbn);
1188 lock->locked = false;
1189
1190 /*
1191 * If there are still waiters, other data_vios must be trying to get the lock we just
1192 * transferred. We must ensure that the new lock holder doesn't block in the packer.
1193 */
1194 if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters))
1195 cancel_data_vio_compression(next_lock_holder);
1196
1197 /*
1198 * Avoid stack overflow on lock transfer.
1199 * FIXME: this is only an issue in the 1 thread config.
1200 */
1201 next_lock_holder->vio.completion.requeue = true;
1202 launch_locked_request(next_lock_holder);
1203 }
1204
1205 /**
1206 * release_logical_lock() - Release the logical block lock and flush generation lock at the end of
1207 * processing a data_vio.
1208 */
release_logical_lock(struct vdo_completion * completion)1209 static void release_logical_lock(struct vdo_completion *completion)
1210 {
1211 struct data_vio *data_vio = as_data_vio(completion);
1212 struct lbn_lock *lock = &data_vio->logical;
1213
1214 assert_data_vio_in_logical_zone(data_vio);
1215
1216 if (vdo_waitq_has_waiters(&lock->waiters))
1217 transfer_lock(data_vio, lock);
1218 else
1219 release_lock(data_vio, lock);
1220
1221 vdo_release_flush_generation_lock(data_vio);
1222 perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE);
1223 }
1224
1225 /** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */
clean_hash_lock(struct vdo_completion * completion)1226 static void clean_hash_lock(struct vdo_completion *completion)
1227 {
1228 struct data_vio *data_vio = as_data_vio(completion);
1229
1230 assert_data_vio_in_hash_zone(data_vio);
1231 if (completion->result != VDO_SUCCESS) {
1232 vdo_clean_failed_hash_lock(data_vio);
1233 return;
1234 }
1235
1236 vdo_release_hash_lock(data_vio);
1237 perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL);
1238 }
1239
1240 /**
1241 * finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up.
1242 *
1243 * If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the
1244 * pool.
1245 */
finish_cleanup(struct data_vio * data_vio)1246 static void finish_cleanup(struct data_vio *data_vio)
1247 {
1248 struct vdo_completion *completion = &data_vio->vio.completion;
1249 u32 discard_size = min_t(u32, data_vio->remaining_discard,
1250 VDO_BLOCK_SIZE - data_vio->offset);
1251
1252 VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL,
1253 "complete data_vio has no allocation lock");
1254 VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL,
1255 "complete data_vio has no hash lock");
1256 if ((data_vio->remaining_discard <= discard_size) ||
1257 (completion->result != VDO_SUCCESS)) {
1258 struct data_vio_pool *pool = completion->vdo->data_vio_pool;
1259
1260 vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link);
1261 schedule_releases(pool);
1262 return;
1263 }
1264
1265 data_vio->remaining_discard -= discard_size;
1266 data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE);
1267 data_vio->read = data_vio->is_partial;
1268 data_vio->offset = 0;
1269 completion->requeue = true;
1270 data_vio->first_reference_operation_complete = false;
1271 launch_data_vio(data_vio, data_vio->logical.lbn + 1);
1272 }
1273
1274 /** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */
perform_cleanup_stage(struct data_vio * data_vio,enum data_vio_cleanup_stage stage)1275 static void perform_cleanup_stage(struct data_vio *data_vio,
1276 enum data_vio_cleanup_stage stage)
1277 {
1278 struct vdo *vdo = vdo_from_data_vio(data_vio);
1279
1280 switch (stage) {
1281 case VIO_RELEASE_HASH_LOCK:
1282 if (data_vio->hash_lock != NULL) {
1283 launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock);
1284 return;
1285 }
1286 fallthrough;
1287
1288 case VIO_RELEASE_ALLOCATED:
1289 if (data_vio_has_allocation(data_vio)) {
1290 launch_data_vio_allocated_zone_callback(data_vio,
1291 release_allocated_lock);
1292 return;
1293 }
1294 fallthrough;
1295
1296 case VIO_RELEASE_RECOVERY_LOCKS:
1297 if ((data_vio->recovery_sequence_number > 0) &&
1298 (READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) &&
1299 (data_vio->vio.completion.result != VDO_READ_ONLY))
1300 vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock");
1301 fallthrough;
1302
1303 case VIO_RELEASE_LOGICAL:
1304 launch_data_vio_logical_callback(data_vio, release_logical_lock);
1305 return;
1306
1307 default:
1308 finish_cleanup(data_vio);
1309 }
1310 }
1311
complete_data_vio(struct vdo_completion * completion)1312 void complete_data_vio(struct vdo_completion *completion)
1313 {
1314 struct data_vio *data_vio = as_data_vio(completion);
1315
1316 completion->error_handler = NULL;
1317 data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP;
1318 perform_cleanup_stage(data_vio,
1319 (data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL));
1320 }
1321
enter_read_only_mode(struct vdo_completion * completion)1322 static void enter_read_only_mode(struct vdo_completion *completion)
1323 {
1324 if (vdo_is_read_only(completion->vdo))
1325 return;
1326
1327 if (completion->result != VDO_READ_ONLY) {
1328 struct data_vio *data_vio = as_data_vio(completion);
1329
1330 vdo_log_error_strerror(completion->result,
1331 "Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s",
1332 (unsigned long long) data_vio->logical.lbn,
1333 (unsigned long long) data_vio->new_mapped.pbn,
1334 (unsigned long long) data_vio->mapped.pbn,
1335 (unsigned long long) data_vio->allocation.pbn,
1336 get_data_vio_operation_name(data_vio));
1337 }
1338
1339 vdo_enter_read_only_mode(completion->vdo, completion->result);
1340 }
1341
handle_data_vio_error(struct vdo_completion * completion)1342 void handle_data_vio_error(struct vdo_completion *completion)
1343 {
1344 struct data_vio *data_vio = as_data_vio(completion);
1345
1346 if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL))
1347 enter_read_only_mode(completion);
1348
1349 update_data_vio_error_stats(data_vio);
1350 complete_data_vio(completion);
1351 }
1352
1353 /**
1354 * get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a
1355 * data_vio.
1356 */
get_data_vio_operation_name(struct data_vio * data_vio)1357 const char *get_data_vio_operation_name(struct data_vio *data_vio)
1358 {
1359 BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) !=
1360 ARRAY_SIZE(ASYNC_OPERATION_NAMES));
1361
1362 return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ?
1363 ASYNC_OPERATION_NAMES[data_vio->last_async_operation] :
1364 "unknown async operation");
1365 }
1366
1367 /**
1368 * data_vio_allocate_data_block() - Allocate a data block.
1369 *
1370 * @write_lock_type: The type of write lock to obtain on the block.
1371 * @callback: The callback which will attempt an allocation in the current zone and continue if it
1372 * succeeds.
1373 * @error_handler: The handler for errors while allocating.
1374 */
data_vio_allocate_data_block(struct data_vio * data_vio,enum pbn_lock_type write_lock_type,vdo_action_fn callback,vdo_action_fn error_handler)1375 void data_vio_allocate_data_block(struct data_vio *data_vio,
1376 enum pbn_lock_type write_lock_type,
1377 vdo_action_fn callback, vdo_action_fn error_handler)
1378 {
1379 struct allocation *allocation = &data_vio->allocation;
1380
1381 VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK),
1382 "data_vio does not have an allocation");
1383 allocation->write_lock_type = write_lock_type;
1384 allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone);
1385 allocation->first_allocation_zone = allocation->zone->zone_number;
1386
1387 data_vio->vio.completion.error_handler = error_handler;
1388 launch_data_vio_allocated_zone_callback(data_vio, callback);
1389 }
1390
1391 /**
1392 * release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block.
1393 * @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten).
1394 *
1395 * If the reference to the locked block is still provisional, it will be released as well.
1396 */
release_data_vio_allocation_lock(struct data_vio * data_vio,bool reset)1397 void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset)
1398 {
1399 struct allocation *allocation = &data_vio->allocation;
1400 physical_block_number_t locked_pbn = allocation->pbn;
1401
1402 assert_data_vio_in_allocated_zone(data_vio);
1403
1404 if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock))
1405 allocation->pbn = VDO_ZERO_BLOCK;
1406
1407 vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn,
1408 vdo_forget(allocation->lock));
1409 }
1410
1411 /**
1412 * uncompress_data_vio() - Uncompress the data a data_vio has just read.
1413 * @mapping_state: The mapping state indicating which fragment to decompress.
1414 * @buffer: The buffer to receive the uncompressed data.
1415 */
uncompress_data_vio(struct data_vio * data_vio,enum block_mapping_state mapping_state,char * buffer)1416 int uncompress_data_vio(struct data_vio *data_vio,
1417 enum block_mapping_state mapping_state, char *buffer)
1418 {
1419 int size;
1420 u16 fragment_offset, fragment_size;
1421 struct compressed_block *block = data_vio->compression.block;
1422 int result = vdo_get_compressed_block_fragment(mapping_state, block,
1423 &fragment_offset, &fragment_size);
1424
1425 if (result != VDO_SUCCESS) {
1426 vdo_log_debug("%s: compressed fragment error %d", __func__, result);
1427 return result;
1428 }
1429
1430 size = LZ4_decompress_safe((block->data + fragment_offset), buffer,
1431 fragment_size, VDO_BLOCK_SIZE);
1432 if (size != VDO_BLOCK_SIZE) {
1433 vdo_log_debug("%s: lz4 error", __func__);
1434 return VDO_INVALID_FRAGMENT;
1435 }
1436
1437 return VDO_SUCCESS;
1438 }
1439
1440 /**
1441 * modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle.
1442 * @completion: The data_vio which has just finished its read.
1443 *
1444 * This callback is registered in read_block().
1445 */
modify_for_partial_write(struct vdo_completion * completion)1446 static void modify_for_partial_write(struct vdo_completion *completion)
1447 {
1448 struct data_vio *data_vio = as_data_vio(completion);
1449 char *data = data_vio->vio.data;
1450 struct bio *bio = data_vio->user_bio;
1451
1452 assert_data_vio_on_cpu_thread(data_vio);
1453
1454 if (bio_op(bio) == REQ_OP_DISCARD) {
1455 memset(data + data_vio->offset, '\0', min_t(u32,
1456 data_vio->remaining_discard,
1457 VDO_BLOCK_SIZE - data_vio->offset));
1458 } else {
1459 copy_from_bio(bio, data + data_vio->offset);
1460 }
1461
1462 data_vio->is_zero = is_zero_block(data);
1463 data_vio->read = false;
1464 launch_data_vio_logical_callback(data_vio,
1465 continue_data_vio_with_block_map_slot);
1466 }
1467
complete_read(struct vdo_completion * completion)1468 static void complete_read(struct vdo_completion *completion)
1469 {
1470 struct data_vio *data_vio = as_data_vio(completion);
1471 char *data = data_vio->vio.data;
1472 bool compressed = vdo_is_state_compressed(data_vio->mapped.state);
1473
1474 assert_data_vio_on_cpu_thread(data_vio);
1475
1476 if (compressed) {
1477 int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data);
1478
1479 if (result != VDO_SUCCESS) {
1480 continue_data_vio_with_error(data_vio, result);
1481 return;
1482 }
1483 }
1484
1485 if (data_vio->write) {
1486 modify_for_partial_write(completion);
1487 return;
1488 }
1489
1490 if (compressed || data_vio->is_partial)
1491 copy_to_bio(data_vio->user_bio, data + data_vio->offset);
1492
1493 acknowledge_data_vio(data_vio);
1494 complete_data_vio(completion);
1495 }
1496
read_endio(struct bio * bio)1497 static void read_endio(struct bio *bio)
1498 {
1499 struct data_vio *data_vio = vio_as_data_vio(bio->bi_private);
1500 int result = blk_status_to_errno(bio->bi_status);
1501
1502 vdo_count_completed_bios(bio);
1503 if (result != VDO_SUCCESS) {
1504 continue_data_vio_with_error(data_vio, result);
1505 return;
1506 }
1507
1508 launch_data_vio_cpu_callback(data_vio, complete_read,
1509 CPU_Q_COMPLETE_READ_PRIORITY);
1510 }
1511
complete_zero_read(struct vdo_completion * completion)1512 static void complete_zero_read(struct vdo_completion *completion)
1513 {
1514 struct data_vio *data_vio = as_data_vio(completion);
1515
1516 assert_data_vio_on_cpu_thread(data_vio);
1517
1518 if (data_vio->is_partial) {
1519 memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE);
1520 if (data_vio->write) {
1521 modify_for_partial_write(completion);
1522 return;
1523 }
1524 } else {
1525 zero_fill_bio(data_vio->user_bio);
1526 }
1527
1528 complete_read(completion);
1529 }
1530
1531 /**
1532 * read_block() - Read a block asynchronously.
1533 *
1534 * This is the callback registered in read_block_mapping().
1535 */
read_block(struct vdo_completion * completion)1536 static void read_block(struct vdo_completion *completion)
1537 {
1538 struct data_vio *data_vio = as_data_vio(completion);
1539 struct vio *vio = as_vio(completion);
1540 int result = VDO_SUCCESS;
1541
1542 if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1543 launch_data_vio_cpu_callback(data_vio, complete_zero_read,
1544 CPU_Q_COMPLETE_VIO_PRIORITY);
1545 return;
1546 }
1547
1548 data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO;
1549 if (vdo_is_state_compressed(data_vio->mapped.state)) {
1550 result = vio_reset_bio(vio, (char *) data_vio->compression.block,
1551 read_endio, REQ_OP_READ, data_vio->mapped.pbn);
1552 } else {
1553 blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ);
1554
1555 if (data_vio->is_partial) {
1556 result = vio_reset_bio(vio, vio->data, read_endio, opf,
1557 data_vio->mapped.pbn);
1558 } else {
1559 /* A full 4k read. Use the incoming bio to avoid having to copy the data */
1560 bio_reset(vio->bio, vio->bio->bi_bdev, opf);
1561 bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio,
1562 data_vio->user_bio, GFP_KERNEL);
1563
1564 /* Copy over the original bio iovec and opflags. */
1565 vdo_set_bio_properties(vio->bio, vio, read_endio, opf,
1566 data_vio->mapped.pbn);
1567 }
1568 }
1569
1570 if (result != VDO_SUCCESS) {
1571 continue_data_vio_with_error(data_vio, result);
1572 return;
1573 }
1574
1575 vdo_submit_data_vio(data_vio);
1576 }
1577
1578 static inline struct data_vio *
reference_count_update_completion_as_data_vio(struct vdo_completion * completion)1579 reference_count_update_completion_as_data_vio(struct vdo_completion *completion)
1580 {
1581 if (completion->type == VIO_COMPLETION)
1582 return as_data_vio(completion);
1583
1584 return container_of(completion, struct data_vio, decrement_completion);
1585 }
1586
1587 /**
1588 * update_block_map() - Rendezvous of the data_vio and decrement completions after each has
1589 * made its reference updates. Handle any error from either, or proceed
1590 * to updating the block map.
1591 * @completion: The completion of the write in progress.
1592 */
update_block_map(struct vdo_completion * completion)1593 static void update_block_map(struct vdo_completion *completion)
1594 {
1595 struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion);
1596
1597 assert_data_vio_in_logical_zone(data_vio);
1598
1599 if (!data_vio->first_reference_operation_complete) {
1600 /* Rendezvous, we're first */
1601 data_vio->first_reference_operation_complete = true;
1602 return;
1603 }
1604
1605 completion = &data_vio->vio.completion;
1606 vdo_set_completion_result(completion, data_vio->decrement_completion.result);
1607 if (completion->result != VDO_SUCCESS) {
1608 handle_data_vio_error(completion);
1609 return;
1610 }
1611
1612 completion->error_handler = handle_data_vio_error;
1613 if (data_vio->hash_lock != NULL)
1614 set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock);
1615 else
1616 completion->callback = complete_data_vio;
1617
1618 data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK;
1619 vdo_put_mapped_block(data_vio);
1620 }
1621
decrement_reference_count(struct vdo_completion * completion)1622 static void decrement_reference_count(struct vdo_completion *completion)
1623 {
1624 struct data_vio *data_vio = container_of(completion, struct data_vio,
1625 decrement_completion);
1626
1627 assert_data_vio_in_mapped_zone(data_vio);
1628
1629 vdo_set_completion_callback(completion, update_block_map,
1630 data_vio->logical.zone->thread_id);
1631 completion->error_handler = update_block_map;
1632 vdo_modify_reference_count(completion, &data_vio->decrement_updater);
1633 }
1634
increment_reference_count(struct vdo_completion * completion)1635 static void increment_reference_count(struct vdo_completion *completion)
1636 {
1637 struct data_vio *data_vio = as_data_vio(completion);
1638
1639 assert_data_vio_in_new_mapped_zone(data_vio);
1640
1641 if (data_vio->downgrade_allocation_lock) {
1642 /*
1643 * Now that the data has been written, it's safe to deduplicate against the
1644 * block. Downgrade the allocation lock to a read lock so it can be used later by
1645 * the hash lock. This is done here since it needs to happen sometime before we
1646 * return to the hash zone, and we are currently on the correct thread. For
1647 * compressed blocks, the downgrade will have already been done.
1648 */
1649 vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false);
1650 }
1651
1652 set_data_vio_logical_callback(data_vio, update_block_map);
1653 completion->error_handler = update_block_map;
1654 vdo_modify_reference_count(completion, &data_vio->increment_updater);
1655 }
1656
1657 /** journal_remapping() - Add a recovery journal entry for a data remapping. */
journal_remapping(struct vdo_completion * completion)1658 static void journal_remapping(struct vdo_completion *completion)
1659 {
1660 struct data_vio *data_vio = as_data_vio(completion);
1661
1662 assert_data_vio_in_journal_zone(data_vio);
1663
1664 data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING;
1665 data_vio->decrement_updater.zpbn = data_vio->mapped;
1666 if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1667 data_vio->first_reference_operation_complete = true;
1668 if (data_vio->mapped.pbn == VDO_ZERO_BLOCK)
1669 set_data_vio_logical_callback(data_vio, update_block_map);
1670 } else {
1671 set_data_vio_new_mapped_zone_callback(data_vio,
1672 increment_reference_count);
1673 }
1674
1675 if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1676 data_vio->first_reference_operation_complete = true;
1677 } else {
1678 vdo_set_completion_callback(&data_vio->decrement_completion,
1679 decrement_reference_count,
1680 data_vio->mapped.zone->thread_id);
1681 }
1682
1683 data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING;
1684 vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
1685 }
1686
1687 /**
1688 * read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write.
1689 *
1690 * Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate
1691 * journal entry referencing the removal of this LBN->PBN mapping.
1692 */
read_old_block_mapping(struct vdo_completion * completion)1693 static void read_old_block_mapping(struct vdo_completion *completion)
1694 {
1695 struct data_vio *data_vio = as_data_vio(completion);
1696
1697 assert_data_vio_in_logical_zone(data_vio);
1698
1699 data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE;
1700 set_data_vio_journal_callback(data_vio, journal_remapping);
1701 vdo_get_mapped_block(data_vio);
1702 }
1703
update_metadata_for_data_vio_write(struct data_vio * data_vio,struct pbn_lock * lock)1704 void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock)
1705 {
1706 data_vio->increment_updater = (struct reference_updater) {
1707 .operation = VDO_JOURNAL_DATA_REMAPPING,
1708 .increment = true,
1709 .zpbn = data_vio->new_mapped,
1710 .lock = lock,
1711 };
1712
1713 launch_data_vio_logical_callback(data_vio, read_old_block_mapping);
1714 }
1715
1716 /**
1717 * pack_compressed_data() - Attempt to pack the compressed data_vio into a block.
1718 *
1719 * This is the callback registered in launch_compress_data_vio().
1720 */
pack_compressed_data(struct vdo_completion * completion)1721 static void pack_compressed_data(struct vdo_completion *completion)
1722 {
1723 struct data_vio *data_vio = as_data_vio(completion);
1724
1725 assert_data_vio_in_packer_zone(data_vio);
1726
1727 if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1728 get_data_vio_compression_status(data_vio).may_not_compress) {
1729 write_data_vio(data_vio);
1730 return;
1731 }
1732
1733 data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING;
1734 vdo_attempt_packing(data_vio);
1735 }
1736
1737 /**
1738 * compress_data_vio() - Do the actual work of compressing the data on a CPU queue.
1739 *
1740 * This callback is registered in launch_compress_data_vio().
1741 */
compress_data_vio(struct vdo_completion * completion)1742 static void compress_data_vio(struct vdo_completion *completion)
1743 {
1744 struct data_vio *data_vio = as_data_vio(completion);
1745 int size;
1746
1747 assert_data_vio_on_cpu_thread(data_vio);
1748
1749 /*
1750 * By putting the compressed data at the start of the compressed block data field, we won't
1751 * need to copy it if this data_vio becomes a compressed write agent.
1752 */
1753 size = LZ4_compress_default(data_vio->vio.data,
1754 data_vio->compression.block->data, VDO_BLOCK_SIZE,
1755 VDO_MAX_COMPRESSED_FRAGMENT_SIZE,
1756 (char *) vdo_get_work_queue_private_data());
1757 if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) {
1758 data_vio->compression.size = size;
1759 launch_data_vio_packer_callback(data_vio, pack_compressed_data);
1760 return;
1761 }
1762
1763 write_data_vio(data_vio);
1764 }
1765
1766 /**
1767 * launch_compress_data_vio() - Continue a write by attempting to compress the data.
1768 *
1769 * This is a re-entry point to vio_write used by hash locks.
1770 */
launch_compress_data_vio(struct data_vio * data_vio)1771 void launch_compress_data_vio(struct data_vio *data_vio)
1772 {
1773 VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block");
1774 VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL,
1775 "data_vio to compress has a hash_lock");
1776 VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio),
1777 "data_vio to compress has an allocation");
1778
1779 /*
1780 * There are 4 reasons why a data_vio which has reached this point will not be eligible for
1781 * compression:
1782 *
1783 * 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the
1784 * write request also requests FUA.
1785 *
1786 * 2) A data_vio should not be compressed when compression is disabled for the vdo.
1787 *
1788 * 3) A data_vio could be doing a partial write on behalf of a larger discard which has not
1789 * yet been acknowledged and hence blocking in the packer would be bad.
1790 *
1791 * 4) Some other data_vio may be waiting on this data_vio in which case blocking in the
1792 * packer would also be bad.
1793 */
1794 if (data_vio->fua ||
1795 !vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1796 ((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) ||
1797 (advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) {
1798 write_data_vio(data_vio);
1799 return;
1800 }
1801
1802 data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO;
1803 launch_data_vio_cpu_callback(data_vio, compress_data_vio,
1804 CPU_Q_COMPRESS_BLOCK_PRIORITY);
1805 }
1806
1807 /**
1808 * hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record
1809 * name as set).
1810
1811 * This callback is registered in prepare_for_dedupe().
1812 */
hash_data_vio(struct vdo_completion * completion)1813 static void hash_data_vio(struct vdo_completion *completion)
1814 {
1815 struct data_vio *data_vio = as_data_vio(completion);
1816
1817 assert_data_vio_on_cpu_thread(data_vio);
1818 VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed");
1819
1820 murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be,
1821 &data_vio->record_name);
1822
1823 data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones,
1824 &data_vio->record_name);
1825 data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK;
1826 launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock);
1827 }
1828
1829 /** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */
prepare_for_dedupe(struct data_vio * data_vio)1830 static void prepare_for_dedupe(struct data_vio *data_vio)
1831 {
1832 /* We don't care what thread we are on. */
1833 VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks");
1834
1835 /*
1836 * Before we can dedupe, we need to know the record name, so the first
1837 * step is to hash the block data.
1838 */
1839 data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO;
1840 launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY);
1841 }
1842
1843 /**
1844 * write_bio_finished() - This is the bio_end_io function registered in write_block() to be called
1845 * when a data_vio's write to the underlying storage has completed.
1846 */
write_bio_finished(struct bio * bio)1847 static void write_bio_finished(struct bio *bio)
1848 {
1849 struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private);
1850
1851 vdo_count_completed_bios(bio);
1852 vdo_set_completion_result(&data_vio->vio.completion,
1853 blk_status_to_errno(bio->bi_status));
1854 data_vio->downgrade_allocation_lock = true;
1855 update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock);
1856 }
1857
1858 /** write_data_vio() - Write a data block to storage without compression. */
write_data_vio(struct data_vio * data_vio)1859 void write_data_vio(struct data_vio *data_vio)
1860 {
1861 struct data_vio_compression_status status, new_status;
1862 int result;
1863
1864 if (!data_vio_has_allocation(data_vio)) {
1865 /*
1866 * There was no space to write this block and we failed to deduplicate or compress
1867 * it.
1868 */
1869 continue_data_vio_with_error(data_vio, VDO_NO_SPACE);
1870 return;
1871 }
1872
1873 new_status = (struct data_vio_compression_status) {
1874 .stage = DATA_VIO_POST_PACKER,
1875 .may_not_compress = true,
1876 };
1877
1878 do {
1879 status = get_data_vio_compression_status(data_vio);
1880 } while ((status.stage != DATA_VIO_POST_PACKER) &&
1881 !set_data_vio_compression_status(data_vio, status, new_status));
1882
1883 /* Write the data from the data block buffer. */
1884 result = vio_reset_bio(&data_vio->vio, data_vio->vio.data,
1885 write_bio_finished, REQ_OP_WRITE,
1886 data_vio->allocation.pbn);
1887 if (result != VDO_SUCCESS) {
1888 continue_data_vio_with_error(data_vio, result);
1889 return;
1890 }
1891
1892 data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO;
1893 vdo_submit_data_vio(data_vio);
1894 }
1895
1896 /**
1897 * acknowledge_write_callback() - Acknowledge a write to the requestor.
1898 *
1899 * This callback is registered in allocate_block() and continue_write_with_block_map_slot().
1900 */
acknowledge_write_callback(struct vdo_completion * completion)1901 static void acknowledge_write_callback(struct vdo_completion *completion)
1902 {
1903 struct data_vio *data_vio = as_data_vio(completion);
1904 struct vdo *vdo = completion->vdo;
1905
1906 VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) ||
1907 (vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)),
1908 "%s() called on bio ack queue", __func__);
1909 VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio),
1910 "write VIO to be acknowledged has a flush generation lock");
1911 acknowledge_data_vio(data_vio);
1912 if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1913 /* This is a zero write or discard */
1914 update_metadata_for_data_vio_write(data_vio, NULL);
1915 return;
1916 }
1917
1918 prepare_for_dedupe(data_vio);
1919 }
1920
1921 /**
1922 * allocate_block() - Attempt to allocate a block in the current allocation zone.
1923 *
1924 * This callback is registered in continue_write_with_block_map_slot().
1925 */
allocate_block(struct vdo_completion * completion)1926 static void allocate_block(struct vdo_completion *completion)
1927 {
1928 struct data_vio *data_vio = as_data_vio(completion);
1929
1930 assert_data_vio_in_allocated_zone(data_vio);
1931
1932 if (!vdo_allocate_block_in_zone(data_vio))
1933 return;
1934
1935 completion->error_handler = handle_data_vio_error;
1936 WRITE_ONCE(data_vio->allocation_succeeded, true);
1937 data_vio->new_mapped = (struct zoned_pbn) {
1938 .zone = data_vio->allocation.zone,
1939 .pbn = data_vio->allocation.pbn,
1940 .state = VDO_MAPPING_STATE_UNCOMPRESSED,
1941 };
1942
1943 if (data_vio->fua ||
1944 data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
1945 prepare_for_dedupe(data_vio);
1946 return;
1947 }
1948
1949 data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
1950 launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
1951 }
1952
1953 /**
1954 * handle_allocation_error() - Handle an error attempting to allocate a block.
1955 *
1956 * This error handler is registered in continue_write_with_block_map_slot().
1957 */
handle_allocation_error(struct vdo_completion * completion)1958 static void handle_allocation_error(struct vdo_completion *completion)
1959 {
1960 struct data_vio *data_vio = as_data_vio(completion);
1961
1962 if (completion->result == VDO_NO_SPACE) {
1963 /* We failed to get an allocation, but we can try to dedupe. */
1964 vdo_reset_completion(completion);
1965 completion->error_handler = handle_data_vio_error;
1966 prepare_for_dedupe(data_vio);
1967 return;
1968 }
1969
1970 /* We got a "real" error, not just a failure to allocate, so fail the request. */
1971 handle_data_vio_error(completion);
1972 }
1973
assert_is_discard(struct data_vio * data_vio)1974 static int assert_is_discard(struct data_vio *data_vio)
1975 {
1976 int result = VDO_ASSERT(data_vio->is_discard,
1977 "data_vio with no block map page is a discard");
1978
1979 return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY);
1980 }
1981
1982 /**
1983 * continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map.
1984 *
1985 * This callback is registered in launch_read_data_vio().
1986 */
continue_data_vio_with_block_map_slot(struct vdo_completion * completion)1987 void continue_data_vio_with_block_map_slot(struct vdo_completion *completion)
1988 {
1989 struct data_vio *data_vio = as_data_vio(completion);
1990
1991 assert_data_vio_in_logical_zone(data_vio);
1992 if (data_vio->read) {
1993 set_data_vio_logical_callback(data_vio, read_block);
1994 data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ;
1995 vdo_get_mapped_block(data_vio);
1996 return;
1997 }
1998
1999 vdo_acquire_flush_generation_lock(data_vio);
2000
2001 if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
2002 /*
2003 * This is a discard for a block on a block map page which has not been allocated, so
2004 * there's nothing more we need to do.
2005 */
2006 completion->callback = complete_data_vio;
2007 continue_data_vio_with_error(data_vio, assert_is_discard(data_vio));
2008 return;
2009 }
2010
2011 /*
2012 * We need an allocation if this is neither a full-block discard nor a
2013 * full-block zero write.
2014 */
2015 if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) {
2016 data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block,
2017 handle_allocation_error);
2018 return;
2019 }
2020
2021 /*
2022 * We don't need to write any data, so skip allocation and just update the block map and
2023 * reference counts (via the journal).
2024 */
2025 data_vio->new_mapped.pbn = VDO_ZERO_BLOCK;
2026 if (data_vio->is_zero)
2027 data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED;
2028
2029 if (data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
2030 /* This is not the final block of a discard so we can't acknowledge it yet. */
2031 update_metadata_for_data_vio_write(data_vio, NULL);
2032 return;
2033 }
2034
2035 data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
2036 launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
2037 }
2038