xref: /aosp_15_r20/external/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011, 2013 Jitse Niesen <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_MATRIX_SQUARE_ROOT
11 #define EIGEN_MATRIX_SQUARE_ROOT
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
18 // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
19 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType & T,Index i,ResultType & sqrtT)20 void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, Index i, ResultType& sqrtT)
21 {
22   // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
23   //       in EigenSolver. If we expose it, we could call it directly from here.
24   typedef typename traits<MatrixType>::Scalar Scalar;
25   Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
26   EigenSolver<Matrix<Scalar,2,2> > es(block);
27   sqrtT.template block<2,2>(i,i)
28     = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
29 }
30 
31 // pre:  block structure of T is such that (i,j) is a 1x1 block,
32 //       all blocks of sqrtT to left of and below (i,j) are correct
33 // post: sqrtT(i,j) has the correct value
34 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType & T,Index i,Index j,ResultType & sqrtT)35 void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
36 {
37   typedef typename traits<MatrixType>::Scalar Scalar;
38   Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
39   sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
40 }
41 
42 // similar to compute1x1offDiagonalBlock()
43 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType & T,Index i,Index j,ResultType & sqrtT)44 void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
45 {
46   typedef typename traits<MatrixType>::Scalar Scalar;
47   Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
48   if (j-i > 1)
49     rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
50   Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
51   A += sqrtT.template block<2,2>(j,j).transpose();
52   sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
53 }
54 
55 // similar to compute1x1offDiagonalBlock()
56 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType & T,Index i,Index j,ResultType & sqrtT)57 void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
58 {
59   typedef typename traits<MatrixType>::Scalar Scalar;
60   Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
61   if (j-i > 2)
62     rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
63   Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
64   A += sqrtT.template block<2,2>(i,i);
65   sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
66 }
67 
68 // solves the equation A X + X B = C where all matrices are 2-by-2
69 template <typename MatrixType>
matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType & X,const MatrixType & A,const MatrixType & B,const MatrixType & C)70 void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
71 {
72   typedef typename traits<MatrixType>::Scalar Scalar;
73   Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
74   coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
75   coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
76   coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
77   coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
78   coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
79   coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
80   coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
81   coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
82   coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
83   coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
84   coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
85   coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
86 
87   Matrix<Scalar,4,1> rhs;
88   rhs.coeffRef(0) = C.coeff(0,0);
89   rhs.coeffRef(1) = C.coeff(0,1);
90   rhs.coeffRef(2) = C.coeff(1,0);
91   rhs.coeffRef(3) = C.coeff(1,1);
92 
93   Matrix<Scalar,4,1> result;
94   result = coeffMatrix.fullPivLu().solve(rhs);
95 
96   X.coeffRef(0,0) = result.coeff(0);
97   X.coeffRef(0,1) = result.coeff(1);
98   X.coeffRef(1,0) = result.coeff(2);
99   X.coeffRef(1,1) = result.coeff(3);
100 }
101 
102 // similar to compute1x1offDiagonalBlock()
103 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType & T,Index i,Index j,ResultType & sqrtT)104 void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
105 {
106   typedef typename traits<MatrixType>::Scalar Scalar;
107   Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
108   Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
109   Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
110   if (j-i > 2)
111     C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
112   Matrix<Scalar,2,2> X;
113   matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
114   sqrtT.template block<2,2>(i,j) = X;
115 }
116 
117 // pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
118 // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
119 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_diagonal(const MatrixType & T,ResultType & sqrtT)120 void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
121 {
122   using std::sqrt;
123   const Index size = T.rows();
124   for (Index i = 0; i < size; i++) {
125     if (i == size - 1 || T.coeff(i+1, i) == 0) {
126       eigen_assert(T(i,i) >= 0);
127       sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
128     }
129     else {
130       matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
131       ++i;
132     }
133   }
134 }
135 
136 // pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
137 // post: sqrtT is the square root of T.
138 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType & T,ResultType & sqrtT)139 void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
140 {
141   const Index size = T.rows();
142   for (Index j = 1; j < size; j++) {
143       if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
144 	continue;
145     for (Index i = j-1; i >= 0; i--) {
146       if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
147 	continue;
148       bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
149       bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
150       if (iBlockIs2x2 && jBlockIs2x2)
151         matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
152       else if (iBlockIs2x2 && !jBlockIs2x2)
153         matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
154       else if (!iBlockIs2x2 && jBlockIs2x2)
155         matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
156       else if (!iBlockIs2x2 && !jBlockIs2x2)
157         matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
158     }
159   }
160 }
161 
162 } // end of namespace internal
163 
164 /** \ingroup MatrixFunctions_Module
165   * \brief Compute matrix square root of quasi-triangular matrix.
166   *
167   * \tparam  MatrixType  type of \p arg, the argument of matrix square root,
168   *                      expected to be an instantiation of the Matrix class template.
169   * \tparam  ResultType  type of \p result, where result is to be stored.
170   * \param[in]  arg      argument of matrix square root.
171   * \param[out] result   matrix square root of upper Hessenberg part of \p arg.
172   *
173   * This function computes the square root of the upper quasi-triangular matrix stored in the upper
174   * Hessenberg part of \p arg.  Only the upper Hessenberg part of \p result is updated, the rest is
175   * not touched.  See MatrixBase::sqrt() for details on how this computation is implemented.
176   *
177   * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
178   */
179 template <typename MatrixType, typename ResultType>
matrix_sqrt_quasi_triangular(const MatrixType & arg,ResultType & result)180 void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
181 {
182   eigen_assert(arg.rows() == arg.cols());
183   result.resize(arg.rows(), arg.cols());
184   internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
185   internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
186 }
187 
188 
189 /** \ingroup MatrixFunctions_Module
190   * \brief Compute matrix square root of triangular matrix.
191   *
192   * \tparam  MatrixType  type of \p arg, the argument of matrix square root,
193   *                      expected to be an instantiation of the Matrix class template.
194   * \tparam  ResultType  type of \p result, where result is to be stored.
195   * \param[in]  arg      argument of matrix square root.
196   * \param[out] result   matrix square root of upper triangular part of \p arg.
197   *
198   * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
199   * touched.  See MatrixBase::sqrt() for details on how this computation is implemented.
200   *
201   * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
202   */
203 template <typename MatrixType, typename ResultType>
matrix_sqrt_triangular(const MatrixType & arg,ResultType & result)204 void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
205 {
206   using std::sqrt;
207   typedef typename MatrixType::Scalar Scalar;
208 
209   eigen_assert(arg.rows() == arg.cols());
210 
211   // Compute square root of arg and store it in upper triangular part of result
212   // This uses that the square root of triangular matrices can be computed directly.
213   result.resize(arg.rows(), arg.cols());
214   for (Index i = 0; i < arg.rows(); i++) {
215     result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
216   }
217   for (Index j = 1; j < arg.cols(); j++) {
218     for (Index i = j-1; i >= 0; i--) {
219       // if i = j-1, then segment has length 0 so tmp = 0
220       Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
221       // denominator may be zero if original matrix is singular
222       result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
223     }
224   }
225 }
226 
227 
228 namespace internal {
229 
230 /** \ingroup MatrixFunctions_Module
231   * \brief Helper struct for computing matrix square roots of general matrices.
232   * \tparam  MatrixType  type of the argument of the matrix square root,
233   *                      expected to be an instantiation of the Matrix class template.
234   *
235   * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
236   */
237 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
238 struct matrix_sqrt_compute
239 {
240   /** \brief Compute the matrix square root
241     *
242     * \param[in]  arg     matrix whose square root is to be computed.
243     * \param[out] result  square root of \p arg.
244     *
245     * See MatrixBase::sqrt() for details on how this computation is implemented.
246     */
247   template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
248 };
249 
250 
251 // ********** Partial specialization for real matrices **********
252 
253 template <typename MatrixType>
254 struct matrix_sqrt_compute<MatrixType, 0>
255 {
256   typedef typename MatrixType::PlainObject PlainType;
257   template <typename ResultType>
258   static void run(const MatrixType &arg, ResultType &result)
259   {
260     eigen_assert(arg.rows() == arg.cols());
261 
262     // Compute Schur decomposition of arg
263     const RealSchur<PlainType> schurOfA(arg);
264     const PlainType& T = schurOfA.matrixT();
265     const PlainType& U = schurOfA.matrixU();
266 
267     // Compute square root of T
268     PlainType sqrtT = PlainType::Zero(arg.rows(), arg.cols());
269     matrix_sqrt_quasi_triangular(T, sqrtT);
270 
271     // Compute square root of arg
272     result = U * sqrtT * U.adjoint();
273   }
274 };
275 
276 
277 // ********** Partial specialization for complex matrices **********
278 
279 template <typename MatrixType>
280 struct matrix_sqrt_compute<MatrixType, 1>
281 {
282   typedef typename MatrixType::PlainObject PlainType;
283   template <typename ResultType>
284   static void run(const MatrixType &arg, ResultType &result)
285   {
286     eigen_assert(arg.rows() == arg.cols());
287 
288     // Compute Schur decomposition of arg
289     const ComplexSchur<PlainType> schurOfA(arg);
290     const PlainType& T = schurOfA.matrixT();
291     const PlainType& U = schurOfA.matrixU();
292 
293     // Compute square root of T
294     PlainType sqrtT;
295     matrix_sqrt_triangular(T, sqrtT);
296 
297     // Compute square root of arg
298     result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
299   }
300 };
301 
302 } // end namespace internal
303 
304 /** \ingroup MatrixFunctions_Module
305   *
306   * \brief Proxy for the matrix square root of some matrix (expression).
307   *
308   * \tparam Derived  Type of the argument to the matrix square root.
309   *
310   * This class holds the argument to the matrix square root until it
311   * is assigned or evaluated for some other reason (so the argument
312   * should not be changed in the meantime). It is the return type of
313   * MatrixBase::sqrt() and most of the time this is the only way it is
314   * used.
315   */
316 template<typename Derived> class MatrixSquareRootReturnValue
317 : public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
318 {
319   protected:
320     typedef typename internal::ref_selector<Derived>::type DerivedNested;
321 
322   public:
323     /** \brief Constructor.
324       *
325       * \param[in]  src  %Matrix (expression) forming the argument of the
326       * matrix square root.
327       */
328     explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
329 
330     /** \brief Compute the matrix square root.
331       *
332       * \param[out]  result  the matrix square root of \p src in the
333       * constructor.
334       */
335     template <typename ResultType>
336     inline void evalTo(ResultType& result) const
337     {
338       typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
339       typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
340       DerivedEvalType tmp(m_src);
341       internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
342     }
343 
344     Index rows() const { return m_src.rows(); }
345     Index cols() const { return m_src.cols(); }
346 
347   protected:
348     const DerivedNested m_src;
349 };
350 
351 namespace internal {
352 template<typename Derived>
353 struct traits<MatrixSquareRootReturnValue<Derived> >
354 {
355   typedef typename Derived::PlainObject ReturnType;
356 };
357 }
358 
359 template <typename Derived>
360 const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
361 {
362   eigen_assert(rows() == cols());
363   return MatrixSquareRootReturnValue<Derived>(derived());
364 }
365 
366 } // end namespace Eigen
367 
368 #endif // EIGEN_MATRIX_FUNCTION
369