1// Copyright 2012 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// MakeFunc implementation. 6 7package reflect 8 9import ( 10 "internal/abi" 11 "unsafe" 12) 13 14// makeFuncImpl is the closure value implementing the function 15// returned by MakeFunc. 16// The first three words of this type must be kept in sync with 17// methodValue and runtime.reflectMethodValue. 18// Any changes should be reflected in all three. 19type makeFuncImpl struct { 20 makeFuncCtxt 21 ftyp *funcType 22 fn func([]Value) []Value 23} 24 25// MakeFunc returns a new function of the given [Type] 26// that wraps the function fn. When called, that new function 27// does the following: 28// 29// - converts its arguments to a slice of Values. 30// - runs results := fn(args). 31// - returns the results as a slice of Values, one per formal result. 32// 33// The implementation fn can assume that the argument [Value] slice 34// has the number and type of arguments given by typ. 35// If typ describes a variadic function, the final Value is itself 36// a slice representing the variadic arguments, as in the 37// body of a variadic function. The result Value slice returned by fn 38// must have the number and type of results given by typ. 39// 40// The [Value.Call] method allows the caller to invoke a typed function 41// in terms of Values; in contrast, MakeFunc allows the caller to implement 42// a typed function in terms of Values. 43// 44// The Examples section of the documentation includes an illustration 45// of how to use MakeFunc to build a swap function for different types. 46func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value { 47 if typ.Kind() != Func { 48 panic("reflect: call of MakeFunc with non-Func type") 49 } 50 51 t := typ.common() 52 ftyp := (*funcType)(unsafe.Pointer(t)) 53 54 code := abi.FuncPCABI0(makeFuncStub) 55 56 // makeFuncImpl contains a stack map for use by the runtime 57 _, _, abid := funcLayout(ftyp, nil) 58 59 impl := &makeFuncImpl{ 60 makeFuncCtxt: makeFuncCtxt{ 61 fn: code, 62 stack: abid.stackPtrs, 63 argLen: abid.stackCallArgsSize, 64 regPtrs: abid.inRegPtrs, 65 }, 66 ftyp: ftyp, 67 fn: fn, 68 } 69 70 return Value{t, unsafe.Pointer(impl), flag(Func)} 71} 72 73// makeFuncStub is an assembly function that is the code half of 74// the function returned from MakeFunc. It expects a *callReflectFunc 75// as its context register, and its job is to invoke callReflect(ctxt, frame) 76// where ctxt is the context register and frame is a pointer to the first 77// word in the passed-in argument frame. 78func makeFuncStub() 79 80// The first 3 words of this type must be kept in sync with 81// makeFuncImpl and runtime.reflectMethodValue. 82// Any changes should be reflected in all three. 83type methodValue struct { 84 makeFuncCtxt 85 method int 86 rcvr Value 87} 88 89// makeMethodValue converts v from the rcvr+method index representation 90// of a method value to an actual method func value, which is 91// basically the receiver value with a special bit set, into a true 92// func value - a value holding an actual func. The output is 93// semantically equivalent to the input as far as the user of package 94// reflect can tell, but the true func representation can be handled 95// by code like Convert and Interface and Assign. 96func makeMethodValue(op string, v Value) Value { 97 if v.flag&flagMethod == 0 { 98 panic("reflect: internal error: invalid use of makeMethodValue") 99 } 100 101 // Ignoring the flagMethod bit, v describes the receiver, not the method type. 102 fl := v.flag & (flagRO | flagAddr | flagIndir) 103 fl |= flag(v.typ().Kind()) 104 rcvr := Value{v.typ(), v.ptr, fl} 105 106 // v.Type returns the actual type of the method value. 107 ftyp := (*funcType)(unsafe.Pointer(v.Type().(*rtype))) 108 109 code := methodValueCallCodePtr() 110 111 // methodValue contains a stack map for use by the runtime 112 _, _, abid := funcLayout(ftyp, nil) 113 fv := &methodValue{ 114 makeFuncCtxt: makeFuncCtxt{ 115 fn: code, 116 stack: abid.stackPtrs, 117 argLen: abid.stackCallArgsSize, 118 regPtrs: abid.inRegPtrs, 119 }, 120 method: int(v.flag) >> flagMethodShift, 121 rcvr: rcvr, 122 } 123 124 // Cause panic if method is not appropriate. 125 // The panic would still happen during the call if we omit this, 126 // but we want Interface() and other operations to fail early. 127 methodReceiver(op, fv.rcvr, fv.method) 128 129 return Value{ftyp.Common(), unsafe.Pointer(fv), v.flag&flagRO | flag(Func)} 130} 131 132func methodValueCallCodePtr() uintptr { 133 return abi.FuncPCABI0(methodValueCall) 134} 135 136// methodValueCall is an assembly function that is the code half of 137// the function returned from makeMethodValue. It expects a *methodValue 138// as its context register, and its job is to invoke callMethod(ctxt, frame) 139// where ctxt is the context register and frame is a pointer to the first 140// word in the passed-in argument frame. 141func methodValueCall() 142 143// This structure must be kept in sync with runtime.reflectMethodValue. 144// Any changes should be reflected in all both. 145type makeFuncCtxt struct { 146 fn uintptr 147 stack *bitVector // ptrmap for both stack args and results 148 argLen uintptr // just args 149 regPtrs abi.IntArgRegBitmap 150} 151 152// moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments 153// in args.Ints to args.Ptrs where the GC can see them. 154// 155// This is similar to what reflectcallmove does in the runtime, except 156// that happens on the return path, whereas this happens on the call path. 157// 158// nosplit because pointers are being held in uintptr slots in args, so 159// having our stack scanned now could lead to accidentally freeing 160// memory. 161// 162//go:nosplit 163func moveMakeFuncArgPtrs(ctxt *makeFuncCtxt, args *abi.RegArgs) { 164 for i, arg := range args.Ints { 165 // Avoid write barriers! Because our write barrier enqueues what 166 // was there before, we might enqueue garbage. 167 if ctxt.regPtrs.Get(i) { 168 *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = arg 169 } else { 170 // We *must* zero this space ourselves because it's defined in 171 // assembly code and the GC will scan these pointers. Otherwise, 172 // there will be garbage here. 173 *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = 0 174 } 175 } 176} 177