1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig <[email protected]>
3 * Copyright (C) 2019-2020 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27
28 void
mir_rewrite_index_src_single(midgard_instruction * ins,unsigned old,unsigned new)29 mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old,
30 unsigned new)
31 {
32 mir_foreach_src(ins, i) {
33 if (ins->src[i] == old)
34 ins->src[i] = new;
35 }
36 }
37
38 void
mir_rewrite_index_dst_single(midgard_instruction * ins,unsigned old,unsigned new)39 mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old,
40 unsigned new)
41 {
42 if (ins->dest == old)
43 ins->dest = new;
44 }
45
46 static void
mir_rewrite_index_src_single_swizzle(midgard_instruction * ins,unsigned old,unsigned new,unsigned * swizzle)47 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old,
48 unsigned new, unsigned *swizzle)
49 {
50 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
51 if (ins->src[i] != old)
52 continue;
53
54 ins->src[i] = new;
55 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
56 }
57 }
58
59 void
mir_rewrite_index_src(compiler_context * ctx,unsigned old,unsigned new)60 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
61 {
62 mir_foreach_instr_global(ctx, ins) {
63 mir_rewrite_index_src_single(ins, old, new);
64 }
65 }
66
67 void
mir_rewrite_index_src_swizzle(compiler_context * ctx,unsigned old,unsigned new,unsigned * swizzle)68 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new,
69 unsigned *swizzle)
70 {
71 mir_foreach_instr_global(ctx, ins) {
72 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
73 }
74 }
75
76 void
mir_rewrite_index_dst(compiler_context * ctx,unsigned old,unsigned new)77 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
78 {
79 mir_foreach_instr_global(ctx, ins) {
80 mir_rewrite_index_dst_single(ins, old, new);
81 }
82
83 /* Implicitly written before the shader */
84 if (ctx->blend_input == old)
85 ctx->blend_input = new;
86
87 if (ctx->blend_src1 == old)
88 ctx->blend_src1 = new;
89 }
90
91 void
mir_rewrite_index(compiler_context * ctx,unsigned old,unsigned new)92 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
93 {
94 mir_rewrite_index_src(ctx, old, new);
95 mir_rewrite_index_dst(ctx, old, new);
96 }
97
98 unsigned
mir_use_count(compiler_context * ctx,unsigned value)99 mir_use_count(compiler_context *ctx, unsigned value)
100 {
101 unsigned used_count = 0;
102
103 mir_foreach_instr_global(ctx, ins) {
104 if (mir_has_arg(ins, value))
105 ++used_count;
106 }
107
108 if (ctx->blend_input == value)
109 ++used_count;
110
111 if (ctx->blend_src1 == value)
112 ++used_count;
113
114 return used_count;
115 }
116
117 /* Checks if a value is used only once (or totally dead), which is an important
118 * heuristic to figure out if certain optimizations are Worth It (TM) */
119
120 bool
mir_single_use(compiler_context * ctx,unsigned value)121 mir_single_use(compiler_context *ctx, unsigned value)
122 {
123 /* We can replicate constants in places so who cares */
124 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
125 return true;
126
127 return mir_use_count(ctx, value) <= 1;
128 }
129
130 bool
mir_nontrivial_mod(midgard_instruction * ins,unsigned i,bool check_swizzle)131 mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
132 {
133 bool is_int = midgard_is_integer_op(ins->op);
134
135 if (is_int) {
136 if (ins->src_shift[i])
137 return true;
138 } else {
139 if (ins->src_neg[i])
140 return true;
141 if (ins->src_abs[i])
142 return true;
143 }
144
145 if (ins->dest_type != ins->src_types[i])
146 return true;
147
148 if (check_swizzle) {
149 for (unsigned c = 0; c < 16; ++c) {
150 if (!(ins->mask & (1 << c)))
151 continue;
152 if (ins->swizzle[i][c] != c)
153 return true;
154 }
155 }
156
157 return false;
158 }
159
160 bool
mir_nontrivial_outmod(midgard_instruction * ins)161 mir_nontrivial_outmod(midgard_instruction *ins)
162 {
163 bool is_int = midgard_is_integer_op(ins->op);
164 unsigned mod = ins->outmod;
165
166 if (ins->dest_type != ins->src_types[1])
167 return true;
168
169 if (is_int)
170 return mod != midgard_outmod_keeplo;
171 else
172 return mod != midgard_outmod_none;
173 }
174
175 /* 128 / sz = exp2(log2(128 / sz))
176 * = exp2(log2(128) - log2(sz))
177 * = exp2(7 - log2(sz))
178 * = 1 << (7 - log2(sz))
179 */
180
181 static unsigned
mir_components_for_bits(unsigned bits)182 mir_components_for_bits(unsigned bits)
183 {
184 return 1 << (7 - util_logbase2(bits));
185 }
186
187 unsigned
mir_components_for_type(nir_alu_type T)188 mir_components_for_type(nir_alu_type T)
189 {
190 unsigned sz = nir_alu_type_get_type_size(T);
191 return mir_components_for_bits(sz);
192 }
193
194 uint16_t
mir_from_bytemask(uint16_t bytemask,unsigned bits)195 mir_from_bytemask(uint16_t bytemask, unsigned bits)
196 {
197 unsigned value = 0;
198 unsigned count = bits / 8;
199
200 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
201 bool a = (bytemask & (1 << c)) != 0;
202
203 for (unsigned q = c; q < count; ++q)
204 assert(((bytemask & (1 << q)) != 0) == a);
205
206 value |= (a << d);
207 }
208
209 return value;
210 }
211
212 /* Rounds up a bytemask to fill a given component count. Iterate each
213 * component, and check if any bytes in the component are masked on */
214
215 uint16_t
mir_round_bytemask_up(uint16_t mask,unsigned bits)216 mir_round_bytemask_up(uint16_t mask, unsigned bits)
217 {
218 unsigned bytes = bits / 8;
219 unsigned maxmask = mask_of(bytes);
220 unsigned channels = mir_components_for_bits(bits);
221
222 for (unsigned c = 0; c < channels; ++c) {
223 unsigned submask = maxmask << (c * bytes);
224
225 if (mask & submask)
226 mask |= submask;
227 }
228
229 return mask;
230 }
231
232 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
233
234 uint16_t
mir_bytemask(midgard_instruction * ins)235 mir_bytemask(midgard_instruction *ins)
236 {
237 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
238 return pan_to_bytemask(type_size, ins->mask);
239 }
240
241 void
mir_set_bytemask(midgard_instruction * ins,uint16_t bytemask)242 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
243 {
244 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
245 ins->mask = mir_from_bytemask(bytemask, type_size);
246 }
247
248 /*
249 * Checks if we should use an upper destination override, rather than the lower
250 * one in the IR. If yes, returns the bytes to shift by. If no, returns zero
251 * for a lower override and negative for no override.
252 */
253 signed
mir_upper_override(midgard_instruction * ins,unsigned inst_size)254 mir_upper_override(midgard_instruction *ins, unsigned inst_size)
255 {
256 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
257
258 /* If the sizes are the same, there's nothing to override */
259 if (type_size == inst_size)
260 return -1;
261
262 /* There are 16 bytes per vector, so there are (16/bytes)
263 * components per vector. So the magic half is half of
264 * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
265 * */
266
267 unsigned threshold = mir_components_for_bits(type_size) >> 1;
268
269 /* How many components did we shift over? */
270 unsigned zeroes = __builtin_ctz(ins->mask);
271
272 /* Did we hit the threshold? */
273 return (zeroes >= threshold) ? threshold : 0;
274 }
275
276 /* Creates a mask of the components of a node read by an instruction, by
277 * analyzing the swizzle with respect to the instruction's mask. E.g.:
278 *
279 * fadd r0.xz, r1.yyyy, r2.zwyx
280 *
281 * will return a mask of Z/Y for r2
282 */
283
284 static uint16_t
mir_bytemask_of_read_components_single(unsigned * swizzle,unsigned inmask,unsigned bits)285 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask,
286 unsigned bits)
287 {
288 unsigned cmask = 0;
289
290 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
291 if (!(inmask & (1 << c)))
292 continue;
293 cmask |= (1 << swizzle[c]);
294 }
295
296 return pan_to_bytemask(bits, cmask);
297 }
298
299 uint16_t
mir_bytemask_of_read_components_index(midgard_instruction * ins,unsigned i)300 mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
301 {
302 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi
303 * branch??) */
304 if (ins->compact_branch && ins->branch.conditional && (i == 0))
305 return 0xF;
306
307 /* ALU ops act componentwise so we need to pay attention to
308 * their mask. Texture/ldst does not so we don't clamp source
309 * readmasks based on the writemask */
310 unsigned qmask = ~0;
311
312 /* Handle dot products and things */
313 if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
314 unsigned props = alu_opcode_props[ins->op].props;
315
316 unsigned channel_override = GET_CHANNEL_COUNT(props);
317
318 if (channel_override)
319 qmask = mask_of(channel_override);
320 else
321 qmask = ins->mask;
322 }
323
324 return mir_bytemask_of_read_components_single(
325 ins->swizzle[i], qmask, nir_alu_type_get_type_size(ins->src_types[i]));
326 }
327
328 uint16_t
mir_bytemask_of_read_components(midgard_instruction * ins,unsigned node)329 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
330 {
331 uint16_t mask = 0;
332
333 if (node == ~0)
334 return 0;
335
336 mir_foreach_src(ins, i) {
337 if (ins->src[i] != node)
338 continue;
339 mask |= mir_bytemask_of_read_components_index(ins, i);
340 }
341
342 return mask;
343 }
344
345 /* Register allocation occurs after instruction scheduling, which is fine until
346 * we start needing to spill registers and therefore insert instructions into
347 * an already-scheduled program. We don't have to be terribly efficient about
348 * this, since spilling is already slow. So just semantically we need to insert
349 * the instruction into a new bundle before/after the bundle of the instruction
350 * in question */
351
352 static midgard_bundle
mir_bundle_for_op(compiler_context * ctx,midgard_instruction ins)353 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
354 {
355 midgard_instruction *u = mir_upload_ins(ctx, ins);
356
357 midgard_bundle bundle = {
358 .tag = ins.type,
359 .instruction_count = 1,
360 .instructions = {u},
361 };
362
363 if (bundle.tag == TAG_ALU_4) {
364 assert(OP_IS_MOVE(u->op));
365 u->unit = UNIT_VMUL;
366
367 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) +
368 sizeof(midgard_vector_alu);
369 bundle.padding = ~(bytes_emitted - 1) & 0xF;
370 bundle.control = ins.type | u->unit;
371 }
372
373 return bundle;
374 }
375
376 static unsigned
mir_bundle_idx_for_ins(midgard_instruction * tag,midgard_block * block)377 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
378 {
379 midgard_bundle *bundles = (midgard_bundle *)block->bundles.data;
380
381 size_t count = (block->bundles.size / sizeof(midgard_bundle));
382
383 for (unsigned i = 0; i < count; ++i) {
384 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
385 if (bundles[i].instructions[j] == tag)
386 return i;
387 }
388 }
389
390 mir_print_instruction(tag);
391 unreachable("Instruction not scheduled in block");
392 }
393
394 midgard_instruction *
mir_insert_instruction_before_scheduled(compiler_context * ctx,midgard_block * block,midgard_instruction * tag,midgard_instruction ins)395 mir_insert_instruction_before_scheduled(compiler_context *ctx,
396 midgard_block *block,
397 midgard_instruction *tag,
398 midgard_instruction ins)
399 {
400 unsigned before = mir_bundle_idx_for_ins(tag, block);
401 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
402 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
403
404 midgard_bundle *bundles = (midgard_bundle *)block->bundles.data;
405 memmove(bundles + before + 1, bundles + before,
406 (count - before) * sizeof(midgard_bundle));
407 midgard_bundle *before_bundle = bundles + before + 1;
408
409 midgard_bundle new = mir_bundle_for_op(ctx, ins);
410 memcpy(bundles + before, &new, sizeof(new));
411
412 list_addtail(&new.instructions[0]->link,
413 &before_bundle->instructions[0]->link);
414 block->quadword_count += midgard_tag_props[new.tag].size;
415
416 return new.instructions[0];
417 }
418
419 midgard_instruction *
mir_insert_instruction_after_scheduled(compiler_context * ctx,midgard_block * block,midgard_instruction * tag,midgard_instruction ins)420 mir_insert_instruction_after_scheduled(compiler_context *ctx,
421 midgard_block *block,
422 midgard_instruction *tag,
423 midgard_instruction ins)
424 {
425 /* We need to grow the bundles array to add our new bundle */
426 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
427 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
428
429 /* Find the bundle that we want to insert after */
430 unsigned after = mir_bundle_idx_for_ins(tag, block);
431
432 /* All the bundles after that one, we move ahead by one */
433 midgard_bundle *bundles = (midgard_bundle *)block->bundles.data;
434 memmove(bundles + after + 2, bundles + after + 1,
435 (count - after - 1) * sizeof(midgard_bundle));
436 midgard_bundle *after_bundle = bundles + after;
437
438 midgard_bundle new = mir_bundle_for_op(ctx, ins);
439 memcpy(bundles + after + 1, &new, sizeof(new));
440 list_add(
441 &new.instructions[0]->link,
442 &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
443 block->quadword_count += midgard_tag_props[new.tag].size;
444
445 return new.instructions[0];
446 }
447
448 /* Flip the first-two arguments of a (binary) op. Currently ALU
449 * only, no known uses for ldst/tex */
450
451 void
mir_flip(midgard_instruction * ins)452 mir_flip(midgard_instruction *ins)
453 {
454 unsigned temp = ins->src[0];
455 ins->src[0] = ins->src[1];
456 ins->src[1] = temp;
457
458 assert(ins->type == TAG_ALU_4);
459
460 temp = ins->src_types[0];
461 ins->src_types[0] = ins->src_types[1];
462 ins->src_types[1] = temp;
463
464 temp = ins->src_abs[0];
465 ins->src_abs[0] = ins->src_abs[1];
466 ins->src_abs[1] = temp;
467
468 temp = ins->src_neg[0];
469 ins->src_neg[0] = ins->src_neg[1];
470 ins->src_neg[1] = temp;
471
472 temp = ins->src_invert[0];
473 ins->src_invert[0] = ins->src_invert[1];
474 ins->src_invert[1] = temp;
475
476 unsigned temp_swizzle[16];
477 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
478 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
479 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
480 }
481
482 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
483
484 void
mir_compute_temp_count(compiler_context * ctx)485 mir_compute_temp_count(compiler_context *ctx)
486 {
487 unsigned max_index = 0;
488
489 mir_foreach_instr_global(ctx, ins) {
490 if (ins->dest < SSA_FIXED_MINIMUM)
491 max_index = MAX2(max_index, ins->dest + 1);
492 }
493
494 if (ctx->blend_input != ~0)
495 max_index = MAX2(max_index, ctx->blend_input + 1);
496
497 if (ctx->blend_src1 != ~0)
498 max_index = MAX2(max_index, ctx->blend_src1 + 1);
499
500 ctx->temp_count = max_index;
501 }
502