1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package flate
6
7import (
8	"math"
9	"math/bits"
10	"sort"
11)
12
13// hcode is a huffman code with a bit code and bit length.
14type hcode struct {
15	code, len uint16
16}
17
18type huffmanEncoder struct {
19	codes     []hcode
20	freqcache []literalNode
21	bitCount  [17]int32
22	lns       byLiteral // stored to avoid repeated allocation in generate
23	lfs       byFreq    // stored to avoid repeated allocation in generate
24}
25
26type literalNode struct {
27	literal uint16
28	freq    int32
29}
30
31// A levelInfo describes the state of the constructed tree for a given depth.
32type levelInfo struct {
33	// Our level.  for better printing
34	level int32
35
36	// The frequency of the last node at this level
37	lastFreq int32
38
39	// The frequency of the next character to add to this level
40	nextCharFreq int32
41
42	// The frequency of the next pair (from level below) to add to this level.
43	// Only valid if the "needed" value of the next lower level is 0.
44	nextPairFreq int32
45
46	// The number of chains remaining to generate for this level before moving
47	// up to the next level
48	needed int32
49}
50
51// set sets the code and length of an hcode.
52func (h *hcode) set(code uint16, length uint16) {
53	h.len = length
54	h.code = code
55}
56
57func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
58
59func newHuffmanEncoder(size int) *huffmanEncoder {
60	return &huffmanEncoder{codes: make([]hcode, size)}
61}
62
63// Generates a HuffmanCode corresponding to the fixed literal table.
64func generateFixedLiteralEncoding() *huffmanEncoder {
65	h := newHuffmanEncoder(maxNumLit)
66	codes := h.codes
67	var ch uint16
68	for ch = 0; ch < maxNumLit; ch++ {
69		var bits uint16
70		var size uint16
71		switch {
72		case ch < 144:
73			// size 8, 000110000  .. 10111111
74			bits = ch + 48
75			size = 8
76		case ch < 256:
77			// size 9, 110010000 .. 111111111
78			bits = ch + 400 - 144
79			size = 9
80		case ch < 280:
81			// size 7, 0000000 .. 0010111
82			bits = ch - 256
83			size = 7
84		default:
85			// size 8, 11000000 .. 11000111
86			bits = ch + 192 - 280
87			size = 8
88		}
89		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
90	}
91	return h
92}
93
94func generateFixedOffsetEncoding() *huffmanEncoder {
95	h := newHuffmanEncoder(30)
96	codes := h.codes
97	for ch := range codes {
98		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
99	}
100	return h
101}
102
103var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
104var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
105
106func (h *huffmanEncoder) bitLength(freq []int32) int {
107	var total int
108	for i, f := range freq {
109		if f != 0 {
110			total += int(f) * int(h.codes[i].len)
111		}
112	}
113	return total
114}
115
116const maxBitsLimit = 16
117
118// bitCounts computes the number of literals assigned to each bit size in the Huffman encoding.
119// It is only called when list.length >= 3.
120// The cases of 0, 1, and 2 literals are handled by special case code.
121//
122// list is an array of the literals with non-zero frequencies
123// and their associated frequencies. The array is in order of increasing
124// frequency and has as its last element a special element with frequency
125// MaxInt32.
126//
127// maxBits is the maximum number of bits that should be used to encode any literal.
128// It must be less than 16.
129//
130// bitCounts returns an integer slice in which slice[i] indicates the number of literals
131// that should be encoded in i bits.
132func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
133	if maxBits >= maxBitsLimit {
134		panic("flate: maxBits too large")
135	}
136	n := int32(len(list))
137	list = list[0 : n+1]
138	list[n] = maxNode()
139
140	// The tree can't have greater depth than n - 1, no matter what. This
141	// saves a little bit of work in some small cases
142	if maxBits > n-1 {
143		maxBits = n - 1
144	}
145
146	// Create information about each of the levels.
147	// A bogus "Level 0" whose sole purpose is so that
148	// level1.prev.needed==0.  This makes level1.nextPairFreq
149	// be a legitimate value that never gets chosen.
150	var levels [maxBitsLimit]levelInfo
151	// leafCounts[i] counts the number of literals at the left
152	// of ancestors of the rightmost node at level i.
153	// leafCounts[i][j] is the number of literals at the left
154	// of the level j ancestor.
155	var leafCounts [maxBitsLimit][maxBitsLimit]int32
156
157	for level := int32(1); level <= maxBits; level++ {
158		// For every level, the first two items are the first two characters.
159		// We initialize the levels as if we had already figured this out.
160		levels[level] = levelInfo{
161			level:        level,
162			lastFreq:     list[1].freq,
163			nextCharFreq: list[2].freq,
164			nextPairFreq: list[0].freq + list[1].freq,
165		}
166		leafCounts[level][level] = 2
167		if level == 1 {
168			levels[level].nextPairFreq = math.MaxInt32
169		}
170	}
171
172	// We need a total of 2*n - 2 items at top level and have already generated 2.
173	levels[maxBits].needed = 2*n - 4
174
175	level := maxBits
176	for {
177		l := &levels[level]
178		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
179			// We've run out of both leafs and pairs.
180			// End all calculations for this level.
181			// To make sure we never come back to this level or any lower level,
182			// set nextPairFreq impossibly large.
183			l.needed = 0
184			levels[level+1].nextPairFreq = math.MaxInt32
185			level++
186			continue
187		}
188
189		prevFreq := l.lastFreq
190		if l.nextCharFreq < l.nextPairFreq {
191			// The next item on this row is a leaf node.
192			n := leafCounts[level][level] + 1
193			l.lastFreq = l.nextCharFreq
194			// Lower leafCounts are the same of the previous node.
195			leafCounts[level][level] = n
196			l.nextCharFreq = list[n].freq
197		} else {
198			// The next item on this row is a pair from the previous row.
199			// nextPairFreq isn't valid until we generate two
200			// more values in the level below
201			l.lastFreq = l.nextPairFreq
202			// Take leaf counts from the lower level, except counts[level] remains the same.
203			copy(leafCounts[level][:level], leafCounts[level-1][:level])
204			levels[l.level-1].needed = 2
205		}
206
207		if l.needed--; l.needed == 0 {
208			// We've done everything we need to do for this level.
209			// Continue calculating one level up. Fill in nextPairFreq
210			// of that level with the sum of the two nodes we've just calculated on
211			// this level.
212			if l.level == maxBits {
213				// All done!
214				break
215			}
216			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
217			level++
218		} else {
219			// If we stole from below, move down temporarily to replenish it.
220			for levels[level-1].needed > 0 {
221				level--
222			}
223		}
224	}
225
226	// Somethings is wrong if at the end, the top level is null or hasn't used
227	// all of the leaves.
228	if leafCounts[maxBits][maxBits] != n {
229		panic("leafCounts[maxBits][maxBits] != n")
230	}
231
232	bitCount := h.bitCount[:maxBits+1]
233	bits := 1
234	counts := &leafCounts[maxBits]
235	for level := maxBits; level > 0; level-- {
236		// chain.leafCount gives the number of literals requiring at least "bits"
237		// bits to encode.
238		bitCount[bits] = counts[level] - counts[level-1]
239		bits++
240	}
241	return bitCount
242}
243
244// Look at the leaves and assign them a bit count and an encoding as specified
245// in RFC 1951 3.2.2
246func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
247	code := uint16(0)
248	for n, bits := range bitCount {
249		code <<= 1
250		if n == 0 || bits == 0 {
251			continue
252		}
253		// The literals list[len(list)-bits] .. list[len(list)-bits]
254		// are encoded using "bits" bits, and get the values
255		// code, code + 1, ....  The code values are
256		// assigned in literal order (not frequency order).
257		chunk := list[len(list)-int(bits):]
258
259		h.lns.sort(chunk)
260		for _, node := range chunk {
261			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
262			code++
263		}
264		list = list[0 : len(list)-int(bits)]
265	}
266}
267
268// Update this Huffman Code object to be the minimum code for the specified frequency count.
269//
270// freq is an array of frequencies, in which freq[i] gives the frequency of literal i.
271// maxBits  The maximum number of bits to use for any literal.
272func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
273	if h.freqcache == nil {
274		// Allocate a reusable buffer with the longest possible frequency table.
275		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
276		// The largest of these is maxNumLit, so we allocate for that case.
277		h.freqcache = make([]literalNode, maxNumLit+1)
278	}
279	list := h.freqcache[:len(freq)+1]
280	// Number of non-zero literals
281	count := 0
282	// Set list to be the set of all non-zero literals and their frequencies
283	for i, f := range freq {
284		if f != 0 {
285			list[count] = literalNode{uint16(i), f}
286			count++
287		} else {
288			h.codes[i].len = 0
289		}
290	}
291
292	list = list[:count]
293	if count <= 2 {
294		// Handle the small cases here, because they are awkward for the general case code. With
295		// two or fewer literals, everything has bit length 1.
296		for i, node := range list {
297			// "list" is in order of increasing literal value.
298			h.codes[node.literal].set(uint16(i), 1)
299		}
300		return
301	}
302	h.lfs.sort(list)
303
304	// Get the number of literals for each bit count
305	bitCount := h.bitCounts(list, maxBits)
306	// And do the assignment
307	h.assignEncodingAndSize(bitCount, list)
308}
309
310type byLiteral []literalNode
311
312func (s *byLiteral) sort(a []literalNode) {
313	*s = byLiteral(a)
314	sort.Sort(s)
315}
316
317func (s byLiteral) Len() int { return len(s) }
318
319func (s byLiteral) Less(i, j int) bool {
320	return s[i].literal < s[j].literal
321}
322
323func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
324
325type byFreq []literalNode
326
327func (s *byFreq) sort(a []literalNode) {
328	*s = byFreq(a)
329	sort.Sort(s)
330}
331
332func (s byFreq) Len() int { return len(s) }
333
334func (s byFreq) Less(i, j int) bool {
335	if s[i].freq == s[j].freq {
336		return s[i].literal < s[j].literal
337	}
338	return s[i].freq < s[j].freq
339}
340
341func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
342
343func reverseBits(number uint16, bitLength byte) uint16 {
344	return bits.Reverse16(number << (16 - bitLength))
345}
346