xref: /aosp_15_r20/external/skia/src/utils/SkPolyUtils.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/utils/SkPolyUtils.h"
9 
10 #include "include/core/SkRect.h"
11 #include "include/core/SkTypes.h"
12 #include "include/private/base/SkDebug.h"
13 #include "include/private/base/SkFloatingPoint.h"
14 #include "include/private/base/SkMalloc.h"
15 #include "include/private/base/SkTArray.h"
16 #include "include/private/base/SkTDArray.h"
17 #include "include/private/base/SkTemplates.h"
18 #include "src/base/SkTDPQueue.h"
19 #include "src/base/SkTInternalLList.h"
20 #include "src/base/SkVx.h"
21 #include "src/core/SkPointPriv.h"
22 #include "src/core/SkRectPriv.h"
23 
24 #include <algorithm>
25 #include <cstdint>
26 #include <limits>
27 #include <new>
28 
29 using namespace skia_private;
30 
31 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
32 
33 //////////////////////////////////////////////////////////////////////////////////
34 // Helper data structures and functions
35 
36 struct OffsetSegment {
37     SkPoint fP0;
38     SkVector fV;
39 };
40 
41 constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
42 
43 // Computes perpDot for point p compared to segment defined by origin p0 and vector v.
44 // A positive value means the point is to the left of the segment,
45 // negative is to the right, 0 is collinear.
compute_side(const SkPoint & p0,const SkVector & v,const SkPoint & p)46 static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
47     SkVector w = p - p0;
48     SkScalar perpDot = v.cross(w);
49     if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
50         return ((perpDot > 0) ? 1 : -1);
51     }
52 
53     return 0;
54 }
55 
56 // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
SkGetPolygonWinding(const SkPoint * polygonVerts,int polygonSize)57 int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
58     if (polygonSize < 3) {
59         return 0;
60     }
61 
62     // compute area and use sign to determine winding
63     SkScalar quadArea = 0;
64     SkVector v0 = polygonVerts[1] - polygonVerts[0];
65     for (int curr = 2; curr < polygonSize; ++curr) {
66         SkVector v1 = polygonVerts[curr] - polygonVerts[0];
67         quadArea += v0.cross(v1);
68         v0 = v1;
69     }
70     if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
71         return 0;
72     }
73     // 1 == ccw, -1 == cw
74     return (quadArea > 0) ? 1 : -1;
75 }
76 
77 // Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
compute_offset_vector(const SkPoint & p0,const SkPoint & p1,SkScalar offset,int side,SkPoint * vector)78 bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
79                            SkPoint* vector) {
80     SkASSERT(side == -1 || side == 1);
81     // if distances are equal, can just outset by the perpendicular
82     SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
83     if (!perp.setLength(offset*side)) {
84         return false;
85     }
86     *vector = perp;
87     return true;
88 }
89 
90 // check interval to see if intersection is in segment
outside_interval(SkScalar numer,SkScalar denom,bool denomPositive)91 static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
92     return (denomPositive && (numer < 0 || numer > denom)) ||
93            (!denomPositive && (numer > 0 || numer < denom));
94 }
95 
96 // special zero-length test when we're using vdotv as a denominator
zero_length(const SkPoint & v,SkScalar vdotv)97 static inline bool zero_length(const SkPoint& v, SkScalar vdotv) {
98     return !(SkIsFinite(v.fX, v.fY) && vdotv);
99 }
100 
101 // Compute the intersection 'p' between segments s0 and s1, if any.
102 // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
103 // Returns false if there is no intersection.
104 // If the length squared of a segment is 0, then we treat the segment as degenerate
105 // and use only the first endpoint for tests.
compute_intersection(const OffsetSegment & s0,const OffsetSegment & s1,SkPoint * p,SkScalar * s,SkScalar * t)106 static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
107                                  SkPoint* p, SkScalar* s, SkScalar* t) {
108     const SkVector& v0 = s0.fV;
109     const SkVector& v1 = s1.fV;
110     SkVector w = s1.fP0 - s0.fP0;
111     SkScalar denom = v0.cross(v1);
112     bool denomPositive = (denom > 0);
113     SkScalar sNumer, tNumer;
114     if (SkScalarNearlyZero(denom, kCrossTolerance)) {
115         // segments are parallel, but not collinear
116         if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
117             !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
118             return false;
119         }
120 
121         // Check for zero-length segments
122         SkScalar v0dotv0 = v0.dot(v0);
123         if (zero_length(v0, v0dotv0)) {
124             // Both are zero-length
125             SkScalar v1dotv1 = v1.dot(v1);
126             if (zero_length(v1, v1dotv1)) {
127                 // Check if they're the same point
128                 if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
129                     *p = s0.fP0;
130                     *s = 0;
131                     *t = 0;
132                     return true;
133                 } else {
134                     // Intersection is indeterminate
135                     return false;
136                 }
137             }
138             // Otherwise project segment0's origin onto segment1
139             tNumer = v1.dot(-w);
140             denom = v1dotv1;
141             if (outside_interval(tNumer, denom, true)) {
142                 return false;
143             }
144             sNumer = 0;
145         } else {
146             // Project segment1's endpoints onto segment0
147             sNumer = v0.dot(w);
148             denom = v0dotv0;
149             tNumer = 0;
150             if (outside_interval(sNumer, denom, true)) {
151                 // The first endpoint doesn't lie on segment0
152                 // If segment1 is degenerate, then there's no collision
153                 SkScalar v1dotv1 = v1.dot(v1);
154                 if (zero_length(v1, v1dotv1)) {
155                     return false;
156                 }
157 
158                 // Otherwise try the other one
159                 SkScalar oldSNumer = sNumer;
160                 sNumer = v0.dot(w + v1);
161                 tNumer = denom;
162                 if (outside_interval(sNumer, denom, true)) {
163                     // it's possible that segment1's interval surrounds segment0
164                     // this is false if params have the same signs, and in that case no collision
165                     if (sNumer*oldSNumer > 0) {
166                         return false;
167                     }
168                     // otherwise project segment0's endpoint onto segment1 instead
169                     sNumer = 0;
170                     tNumer = v1.dot(-w);
171                     denom = v1dotv1;
172                 }
173             }
174         }
175     } else {
176         sNumer = w.cross(v1);
177         if (outside_interval(sNumer, denom, denomPositive)) {
178             return false;
179         }
180         tNumer = w.cross(v0);
181         if (outside_interval(tNumer, denom, denomPositive)) {
182             return false;
183         }
184     }
185 
186     SkScalar localS = sNumer/denom;
187     SkScalar localT = tNumer/denom;
188 
189     *p = s0.fP0 + v0*localS;
190     *s = localS;
191     *t = localT;
192 
193     return true;
194 }
195 
SkIsConvexPolygon(const SkPoint * polygonVerts,int polygonSize)196 bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
197     if (polygonSize < 3) {
198         return false;
199     }
200 
201     SkScalar lastPerpDot = 0;
202     int xSignChangeCount = 0;
203     int ySignChangeCount = 0;
204 
205     int prevIndex = polygonSize - 1;
206     int currIndex = 0;
207     int nextIndex = 1;
208     SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
209     SkScalar lastVx = v0.fX;
210     SkScalar lastVy = v0.fY;
211     SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
212     for (int i = 0; i < polygonSize; ++i) {
213         if (!polygonVerts[i].isFinite()) {
214             return false;
215         }
216 
217         // Check that winding direction is always the same (otherwise we have a reflex vertex)
218         SkScalar perpDot = v0.cross(v1);
219         if (lastPerpDot*perpDot < 0) {
220             return false;
221         }
222         if (0 != perpDot) {
223             lastPerpDot = perpDot;
224         }
225 
226         // Check that the signs of the edge vectors don't change more than twice per coordinate
227         if (lastVx*v1.fX < 0) {
228             xSignChangeCount++;
229         }
230         if (lastVy*v1.fY < 0) {
231             ySignChangeCount++;
232         }
233         if (xSignChangeCount > 2 || ySignChangeCount > 2) {
234             return false;
235         }
236         prevIndex = currIndex;
237         currIndex = nextIndex;
238         nextIndex = (currIndex + 1) % polygonSize;
239         if (v1.fX != 0) {
240             lastVx = v1.fX;
241         }
242         if (v1.fY != 0) {
243             lastVy = v1.fY;
244         }
245         v0 = v1;
246         v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
247     }
248 
249     return true;
250 }
251 
252 struct OffsetEdge {
253     OffsetEdge*   fPrev;
254     OffsetEdge*   fNext;
255     OffsetSegment fOffset;
256     SkPoint       fIntersection;
257     SkScalar      fTValue;
258     uint16_t      fIndex;
259     uint16_t      fEnd;
260 
initOffsetEdge261     void init(uint16_t start = 0, uint16_t end = 0) {
262         fIntersection = fOffset.fP0;
263         fTValue = SK_ScalarMin;
264         fIndex = start;
265         fEnd = end;
266     }
267 
268     // special intersection check that looks for endpoint intersection
checkIntersectionOffsetEdge269     bool checkIntersection(const OffsetEdge* that,
270                            SkPoint* p, SkScalar* s, SkScalar* t) {
271         if (this->fEnd == that->fIndex) {
272             SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
273             if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
274                 *p = p1;
275                 *s = SK_Scalar1;
276                 *t = 0;
277                 return true;
278             }
279         }
280 
281         return compute_intersection(this->fOffset, that->fOffset, p, s, t);
282     }
283 
284     // computes the line intersection and then the "distance" from that to this
285     // this is really a signed squared distance, where negative means that
286     // the intersection lies inside this->fOffset
computeCrossingDistanceOffsetEdge287     SkScalar computeCrossingDistance(const OffsetEdge* that) {
288         const OffsetSegment& s0 = this->fOffset;
289         const OffsetSegment& s1 = that->fOffset;
290         const SkVector& v0 = s0.fV;
291         const SkVector& v1 = s1.fV;
292 
293         SkScalar denom = v0.cross(v1);
294         if (SkScalarNearlyZero(denom, kCrossTolerance)) {
295             // segments are parallel
296             return SK_ScalarMax;
297         }
298 
299         SkVector w = s1.fP0 - s0.fP0;
300         SkScalar localS = w.cross(v1) / denom;
301         if (localS < 0) {
302             localS = -localS;
303         } else {
304             localS -= SK_Scalar1;
305         }
306 
307         localS *= SkScalarAbs(localS);
308         localS *= v0.dot(v0);
309 
310         return localS;
311     }
312 
313 };
314 
remove_node(const OffsetEdge * node,OffsetEdge ** head)315 static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
316     // remove from linked list
317     node->fPrev->fNext = node->fNext;
318     node->fNext->fPrev = node->fPrev;
319     if (node == *head) {
320         *head = (node->fNext == node) ? nullptr : node->fNext;
321     }
322 }
323 
324 //////////////////////////////////////////////////////////////////////////////////
325 
326 // The objective here is to inset all of the edges by the given distance, and then
327 // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
328 // we should only be making left-hand turns (for cw polygons, we use the winding
329 // parameter to reverse this). We detect this by checking whether the second intersection
330 // on an edge is closer to its tail than the first one.
331 //
332 // We might also have the case that there is no intersection between two neighboring inset edges.
333 // In this case, one edge will lie to the right of the other and should be discarded along with
334 // its previous intersection (if any).
335 //
336 // Note: the assumption is that inputPolygon is convex and has no coincident points.
337 //
SkInsetConvexPolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,SkScalar inset,SkTDArray<SkPoint> * insetPolygon)338 bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
339                           SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
340     if (inputPolygonSize < 3) {
341         return false;
342     }
343 
344     // restrict this to match other routines
345     // practically we don't want anything bigger than this anyway
346     if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
347         return false;
348     }
349 
350     // can't inset by a negative or non-finite amount
351     if (inset < -SK_ScalarNearlyZero || !SkIsFinite(inset)) {
352         return false;
353     }
354 
355     // insetting close to zero just returns the original poly
356     if (inset <= SK_ScalarNearlyZero) {
357         for (int i = 0; i < inputPolygonSize; ++i) {
358             *insetPolygon->append() = inputPolygonVerts[i];
359         }
360         return true;
361     }
362 
363     // get winding direction
364     int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
365     if (0 == winding) {
366         return false;
367     }
368 
369     // set up
370     AutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
371     int prev = inputPolygonSize - 1;
372     for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
373         int next = (curr + 1) % inputPolygonSize;
374         if (!inputPolygonVerts[curr].isFinite()) {
375             return false;
376         }
377         // check for convexity just to be sure
378         if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
379                          inputPolygonVerts[next])*winding < 0) {
380             return false;
381         }
382         SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
383         SkVector perp = SkVector::Make(-v.fY, v.fX);
384         perp.setLength(inset*winding);
385         edgeData[curr].fPrev = &edgeData[prev];
386         edgeData[curr].fNext = &edgeData[next];
387         edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
388         edgeData[curr].fOffset.fV = v;
389         edgeData[curr].init();
390     }
391 
392     OffsetEdge* head = &edgeData[0];
393     OffsetEdge* currEdge = head;
394     OffsetEdge* prevEdge = currEdge->fPrev;
395     int insetVertexCount = inputPolygonSize;
396     unsigned int iterations = 0;
397     unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
398     while (head && prevEdge != currEdge) {
399         ++iterations;
400         // we should check each edge against each other edge at most once
401         if (iterations > maxIterations) {
402             return false;
403         }
404 
405         SkScalar s, t;
406         SkPoint intersection;
407         if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
408                                  &intersection, &s, &t)) {
409             // if new intersection is further back on previous inset from the prior intersection
410             if (s < prevEdge->fTValue) {
411                 // no point in considering this one again
412                 remove_node(prevEdge, &head);
413                 --insetVertexCount;
414                 // go back one segment
415                 prevEdge = prevEdge->fPrev;
416             // we've already considered this intersection, we're done
417             } else if (currEdge->fTValue > SK_ScalarMin &&
418                        SkPointPriv::EqualsWithinTolerance(intersection,
419                                                           currEdge->fIntersection,
420                                                           1.0e-6f)) {
421                 break;
422             } else {
423                 // add intersection
424                 currEdge->fIntersection = intersection;
425                 currEdge->fTValue = t;
426 
427                 // go to next segment
428                 prevEdge = currEdge;
429                 currEdge = currEdge->fNext;
430             }
431         } else {
432             // if prev to right side of curr
433             int side = winding*compute_side(currEdge->fOffset.fP0,
434                                             currEdge->fOffset.fV,
435                                             prevEdge->fOffset.fP0);
436             if (side < 0 &&
437                 side == winding*compute_side(currEdge->fOffset.fP0,
438                                              currEdge->fOffset.fV,
439                                              prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
440                 // no point in considering this one again
441                 remove_node(prevEdge, &head);
442                 --insetVertexCount;
443                 // go back one segment
444                 prevEdge = prevEdge->fPrev;
445             } else {
446                 // move to next segment
447                 remove_node(currEdge, &head);
448                 --insetVertexCount;
449                 currEdge = currEdge->fNext;
450             }
451         }
452     }
453 
454     // store all the valid intersections that aren't nearly coincident
455     // TODO: look at the main algorithm and see if we can detect these better
456     insetPolygon->reset();
457     if (!head) {
458         return false;
459     }
460 
461     static constexpr SkScalar kCleanupTolerance = 0.01f;
462     if (insetVertexCount >= 0) {
463         insetPolygon->reserve(insetVertexCount);
464     }
465     int currIndex = 0;
466     *insetPolygon->append() = head->fIntersection;
467     currEdge = head->fNext;
468     while (currEdge != head) {
469         if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
470                                                 (*insetPolygon)[currIndex],
471                                                 kCleanupTolerance)) {
472             *insetPolygon->append() = currEdge->fIntersection;
473             currIndex++;
474         }
475         currEdge = currEdge->fNext;
476     }
477     // make sure the first and last points aren't coincident
478     if (currIndex >= 1 &&
479         SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
480                                             kCleanupTolerance)) {
481         insetPolygon->pop_back();
482     }
483 
484     return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->size());
485 }
486 
487 ///////////////////////////////////////////////////////////////////////////////////////////
488 
489 // compute the number of points needed for a circular join when offsetting a reflex vertex
SkComputeRadialSteps(const SkVector & v1,const SkVector & v2,SkScalar offset,SkScalar * rotSin,SkScalar * rotCos,int * n)490 bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
491                           SkScalar* rotSin, SkScalar* rotCos, int* n) {
492     const SkScalar kRecipPixelsPerArcSegment = 0.25f;
493 
494     SkScalar rCos = v1.dot(v2);
495     if (!SkIsFinite(rCos)) {
496         return false;
497     }
498     SkScalar rSin = v1.cross(v2);
499     if (!SkIsFinite(rSin)) {
500         return false;
501     }
502     SkScalar theta = SkScalarATan2(rSin, rCos);
503 
504     SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
505     // limit the number of steps to at most max uint16_t (that's all we can index)
506     // knock one value off the top to account for rounding
507     if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
508         return false;
509     }
510     int steps = SkScalarRoundToInt(floatSteps);
511 
512     SkScalar dTheta = steps > 0 ? theta / steps : 0;
513     *rotSin = SkScalarSin(dTheta);
514     *rotCos = SkScalarCos(dTheta);
515     // Our offset may be so large that we end up with a tiny dTheta, in which case we
516     // lose precision when computing rotSin and rotCos.
517     if (steps > 0 && (*rotSin == 0 || *rotCos == 1)) {
518         return false;
519     }
520     *n = steps;
521     return true;
522 }
523 
524 ///////////////////////////////////////////////////////////////////////////////////////////
525 
526 // a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
left(const SkPoint & p0,const SkPoint & p1)527 static bool left(const SkPoint& p0, const SkPoint& p1) {
528     return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
529 }
530 
531 // a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
right(const SkPoint & p0,const SkPoint & p1)532 static bool right(const SkPoint& p0, const SkPoint& p1) {
533     return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
534 }
535 
536 struct Vertex {
LeftVertex537     static bool Left(const Vertex& qv0, const Vertex& qv1) {
538         return left(qv0.fPosition, qv1.fPosition);
539     }
540 
541     // packed to fit into 16 bytes (one cache line)
542     SkPoint  fPosition;
543     uint16_t fIndex;       // index in unsorted polygon
544     uint16_t fPrevIndex;   // indices for previous and next vertex in unsorted polygon
545     uint16_t fNextIndex;
546     uint16_t fFlags;
547 };
548 
549 enum VertexFlags {
550     kPrevLeft_VertexFlag = 0x1,
551     kNextLeft_VertexFlag = 0x2,
552 };
553 
554 struct ActiveEdge {
ActiveEdgeActiveEdge555     ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
ActiveEdgeActiveEdge556     ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
557         : fSegment({ p0, v })
558         , fIndex0(index0)
559         , fIndex1(index1)
560         , fAbove(nullptr)
561         , fBelow(nullptr)
562         , fRed(true) {
563         fChild[0] = nullptr;
564         fChild[1] = nullptr;
565     }
566 
567     // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
568     // This is only used to verify the edgelist -- the actual test for insertion/deletion is much
569     // simpler because we can make certain assumptions then.
aboveIfLeftActiveEdge570     bool aboveIfLeft(const ActiveEdge* that) const {
571         const SkPoint& p0 = this->fSegment.fP0;
572         const SkPoint& q0 = that->fSegment.fP0;
573         SkASSERT(p0.fX <= q0.fX);
574         SkVector d = q0 - p0;
575         const SkVector& v = this->fSegment.fV;
576         const SkVector& w = that->fSegment.fV;
577         // The idea here is that if the vector between the origins of the two segments (d)
578         // rotates counterclockwise up to the vector representing the "this" segment (v),
579         // then we know that "this" is above "that". If the result is clockwise we say it's below.
580         if (this->fIndex0 != that->fIndex0) {
581             SkScalar cross = d.cross(v);
582             if (cross > kCrossTolerance) {
583                 return true;
584             } else if (cross < -kCrossTolerance) {
585                 return false;
586             }
587         } else if (this->fIndex1 == that->fIndex1) {
588             return false;
589         }
590         // At this point either the two origins are nearly equal or the origin of "that"
591         // lies on dv. So then we try the same for the vector from the tail of "this"
592         // to the head of "that". Again, ccw means "this" is above "that".
593         // d = that.P1 - this.P0
594         //   = that.fP0 + that.fV - this.fP0
595         //   = that.fP0 - this.fP0 + that.fV
596         //   = old_d + that.fV
597         d += w;
598         SkScalar cross = d.cross(v);
599         if (cross > kCrossTolerance) {
600             return true;
601         } else if (cross < -kCrossTolerance) {
602             return false;
603         }
604         // If the previous check fails, the two segments are nearly collinear
605         // First check y-coord of first endpoints
606         if (p0.fX < q0.fX) {
607             return (p0.fY >= q0.fY);
608         } else if (p0.fY > q0.fY) {
609             return true;
610         } else if (p0.fY < q0.fY) {
611             return false;
612         }
613         // The first endpoints are the same, so check the other endpoint
614         SkPoint p1 = p0 + v;
615         SkPoint q1 = q0 + w;
616         if (p1.fX < q1.fX) {
617             return (p1.fY >= q1.fY);
618         } else {
619             return (p1.fY > q1.fY);
620         }
621     }
622 
623     // same as leftAndAbove(), but generalized
aboveActiveEdge624     bool above(const ActiveEdge* that) const {
625         const SkPoint& p0 = this->fSegment.fP0;
626         const SkPoint& q0 = that->fSegment.fP0;
627         if (right(p0, q0)) {
628             return !that->aboveIfLeft(this);
629         } else {
630             return this->aboveIfLeft(that);
631         }
632     }
633 
intersectActiveEdge634     bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
635         // check first to see if these edges are neighbors in the polygon
636         if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
637             this->fIndex0 == index1 || this->fIndex1 == index1) {
638             return false;
639         }
640 
641         // We don't need the exact intersection point so we can do a simpler test here.
642         const SkPoint& p0 = this->fSegment.fP0;
643         const SkVector& v = this->fSegment.fV;
644         SkPoint p1 = p0 + v;
645         SkPoint q1 = q0 + w;
646 
647         // We assume some x-overlap due to how the edgelist works
648         // This allows us to simplify our test
649         // We need some slop here because storing the vector and recomputing the second endpoint
650         // doesn't necessary give us the original result in floating point.
651         // TODO: Store vector as double? Store endpoint as well?
652         SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
653 
654         // if each segment straddles the other (i.e., the endpoints have different sides)
655         // then they intersect
656         bool result;
657         if (p0.fX < q0.fX) {
658             if (q1.fX < p1.fX) {
659                 result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
660             } else {
661                 result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
662             }
663         } else {
664             if (p1.fX < q1.fX) {
665                 result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
666             } else {
667                 result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
668             }
669         }
670         return result;
671     }
672 
intersectActiveEdge673     bool intersect(const ActiveEdge* edge) {
674         return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
675     }
676 
lessThanActiveEdge677     bool lessThan(const ActiveEdge* that) const {
678         SkASSERT(!this->above(this));
679         SkASSERT(!that->above(that));
680         SkASSERT(!(this->above(that) && that->above(this)));
681         return this->above(that);
682     }
683 
equalsActiveEdge684     bool equals(uint16_t index0, uint16_t index1) const {
685         return (this->fIndex0 == index0 && this->fIndex1 == index1);
686     }
687 
688     OffsetSegment fSegment;
689     uint16_t fIndex0;   // indices for previous and next vertex in polygon
690     uint16_t fIndex1;
691     ActiveEdge* fChild[2];
692     ActiveEdge* fAbove;
693     ActiveEdge* fBelow;
694     int32_t  fRed;
695 };
696 
697 class ActiveEdgeList {
698 public:
ActiveEdgeList(int maxEdges)699     ActiveEdgeList(int maxEdges) {
700         fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
701         fCurrFree = 0;
702         fMaxFree = maxEdges;
703     }
~ActiveEdgeList()704     ~ActiveEdgeList() {
705         fTreeHead.fChild[1] = nullptr;
706         sk_free(fAllocation);
707     }
708 
insert(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)709     bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
710         SkVector v = p1 - p0;
711         if (!v.isFinite()) {
712             return false;
713         }
714         // empty tree case -- easy
715         if (!fTreeHead.fChild[1]) {
716             ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
717             SkASSERT(root);
718             if (!root) {
719                 return false;
720             }
721             root->fRed = false;
722             return true;
723         }
724 
725         // set up helpers
726         ActiveEdge* top = &fTreeHead;
727         ActiveEdge *grandparent = nullptr;
728         ActiveEdge *parent = nullptr;
729         ActiveEdge *curr = top->fChild[1];
730         int dir = 0;
731         int last = 0; // ?
732         // predecessor and successor, for intersection check
733         ActiveEdge* pred = nullptr;
734         ActiveEdge* succ = nullptr;
735 
736         // search down the tree
737         while (true) {
738             if (!curr) {
739                 // check for intersection with predecessor and successor
740                 if ((pred && pred->intersect(p0, v, index0, index1)) ||
741                     (succ && succ->intersect(p0, v, index0, index1))) {
742                     return false;
743                 }
744                 // insert new node at bottom
745                 parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
746                 SkASSERT(curr);
747                 if (!curr) {
748                     return false;
749                 }
750                 curr->fAbove = pred;
751                 curr->fBelow = succ;
752                 if (pred) {
753                     if (pred->fSegment.fP0 == curr->fSegment.fP0 &&
754                         pred->fSegment.fV == curr->fSegment.fV) {
755                         return false;
756                     }
757                     pred->fBelow = curr;
758                 }
759                 if (succ) {
760                     if (succ->fSegment.fP0 == curr->fSegment.fP0 &&
761                         succ->fSegment.fV == curr->fSegment.fV) {
762                         return false;
763                     }
764                     succ->fAbove = curr;
765                 }
766                 if (IsRed(parent)) {
767                     int dir2 = (top->fChild[1] == grandparent);
768                     if (curr == parent->fChild[last]) {
769                         top->fChild[dir2] = SingleRotation(grandparent, !last);
770                     } else {
771                         top->fChild[dir2] = DoubleRotation(grandparent, !last);
772                     }
773                 }
774                 break;
775             } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
776                 // color flip
777                 curr->fRed = true;
778                 curr->fChild[0]->fRed = false;
779                 curr->fChild[1]->fRed = false;
780                 if (IsRed(parent)) {
781                     int dir2 = (top->fChild[1] == grandparent);
782                     if (curr == parent->fChild[last]) {
783                         top->fChild[dir2] = SingleRotation(grandparent, !last);
784                     } else {
785                         top->fChild[dir2] = DoubleRotation(grandparent, !last);
786                     }
787                 }
788             }
789 
790             last = dir;
791             int side;
792             // check to see if segment is above or below
793             if (curr->fIndex0 == index0) {
794                 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
795             } else {
796                 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
797             }
798             if (0 == side) {
799                 return false;
800             }
801             dir = (side < 0);
802 
803             if (0 == dir) {
804                 succ = curr;
805             } else {
806                 pred = curr;
807             }
808 
809             // update helpers
810             if (grandparent) {
811                 top = grandparent;
812             }
813             grandparent = parent;
814             parent = curr;
815             curr = curr->fChild[dir];
816         }
817 
818         // update root and make it black
819         fTreeHead.fChild[1]->fRed = false;
820 
821         SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
822 
823         return true;
824     }
825 
826     // replaces edge p0p1 with p1p2
replace(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t index0,uint16_t index1,uint16_t index2)827     bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
828                  uint16_t index0, uint16_t index1, uint16_t index2) {
829         if (!fTreeHead.fChild[1]) {
830             return false;
831         }
832 
833         SkVector v = p2 - p1;
834         ActiveEdge* curr = &fTreeHead;
835         ActiveEdge* found = nullptr;
836         int dir = 1;
837 
838         // search
839         while (curr->fChild[dir] != nullptr) {
840             // update helpers
841             curr = curr->fChild[dir];
842             // save found node
843             if (curr->equals(index0, index1)) {
844                 found = curr;
845                 break;
846             } else {
847                 // check to see if segment is above or below
848                 int side;
849                 if (curr->fIndex1 == index1) {
850                     side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
851                 } else {
852                     side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
853                 }
854                 if (0 == side) {
855                     return false;
856                 }
857                 dir = (side < 0);
858             }
859         }
860 
861         if (!found) {
862             return false;
863         }
864 
865         // replace if found
866         ActiveEdge* pred = found->fAbove;
867         ActiveEdge* succ = found->fBelow;
868         // check deletion and insert intersection cases
869         if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
870             return false;
871         }
872         if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
873             return false;
874         }
875         found->fSegment.fP0 = p1;
876         found->fSegment.fV = v;
877         found->fIndex0 = index1;
878         found->fIndex1 = index2;
879         // above and below should stay the same
880 
881         SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
882 
883         return true;
884     }
885 
remove(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)886     bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
887         if (!fTreeHead.fChild[1]) {
888             return false;
889         }
890 
891         ActiveEdge* curr = &fTreeHead;
892         ActiveEdge* parent = nullptr;
893         ActiveEdge* grandparent = nullptr;
894         ActiveEdge* found = nullptr;
895         int dir = 1;
896 
897         // search and push a red node down
898         while (curr->fChild[dir] != nullptr) {
899             int last = dir;
900 
901             // update helpers
902             grandparent = parent;
903             parent = curr;
904             curr = curr->fChild[dir];
905             // save found node
906             if (curr->equals(index0, index1)) {
907                 found = curr;
908                 dir = 0;
909             } else {
910                 // check to see if segment is above or below
911                 int side;
912                 if (curr->fIndex1 == index1) {
913                     side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
914                 } else {
915                     side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
916                 }
917                 if (0 == side) {
918                     return false;
919                 }
920                 dir = (side < 0);
921             }
922 
923             // push the red node down
924             if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
925                 if (IsRed(curr->fChild[!dir])) {
926                     parent = parent->fChild[last] = SingleRotation(curr, dir);
927                 } else {
928                     ActiveEdge *s = parent->fChild[!last];
929 
930                     if (s != nullptr) {
931                         if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
932                             // color flip
933                             parent->fRed = false;
934                             s->fRed = true;
935                             curr->fRed = true;
936                         } else {
937                             int dir2 = (grandparent->fChild[1] == parent);
938 
939                             if (IsRed(s->fChild[last])) {
940                                 grandparent->fChild[dir2] = DoubleRotation(parent, last);
941                             } else if (IsRed(s->fChild[!last])) {
942                                 grandparent->fChild[dir2] = SingleRotation(parent, last);
943                             }
944 
945                             // ensure correct coloring
946                             curr->fRed = grandparent->fChild[dir2]->fRed = true;
947                             grandparent->fChild[dir2]->fChild[0]->fRed = false;
948                             grandparent->fChild[dir2]->fChild[1]->fRed = false;
949                         }
950                     }
951                 }
952             }
953         }
954 
955         // replace and remove if found
956         if (found) {
957             ActiveEdge* pred = found->fAbove;
958             ActiveEdge* succ = found->fBelow;
959             if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
960                 return false;
961             }
962             if (found != curr) {
963                 found->fSegment = curr->fSegment;
964                 found->fIndex0 = curr->fIndex0;
965                 found->fIndex1 = curr->fIndex1;
966                 found->fAbove = curr->fAbove;
967                 pred = found->fAbove;
968                 // we don't need to set found->fBelow here
969             } else {
970                 if (succ) {
971                     succ->fAbove = pred;
972                 }
973             }
974             if (pred) {
975                 pred->fBelow = curr->fBelow;
976             }
977             parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
978 
979             // no need to delete
980             curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
981             curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
982             if (fTreeHead.fChild[1]) {
983                 fTreeHead.fChild[1]->fRed = false;
984             }
985         }
986 
987         // update root and make it black
988         if (fTreeHead.fChild[1]) {
989             fTreeHead.fChild[1]->fRed = false;
990         }
991 
992         SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
993 
994         return true;
995     }
996 
997 private:
998     // allocator
allocate(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)999     ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
1000         if (fCurrFree >= fMaxFree) {
1001             return nullptr;
1002         }
1003         char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
1004         ++fCurrFree;
1005         return new(bytes) ActiveEdge(p0, p1, index0, index1);
1006     }
1007 
1008     ///////////////////////////////////////////////////////////////////////////////////
1009     // Red-black tree methods
1010     ///////////////////////////////////////////////////////////////////////////////////
IsRed(const ActiveEdge * node)1011     static bool IsRed(const ActiveEdge* node) {
1012         return node && node->fRed;
1013     }
1014 
SingleRotation(ActiveEdge * node,int dir)1015     static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
1016         ActiveEdge* tmp = node->fChild[!dir];
1017 
1018         node->fChild[!dir] = tmp->fChild[dir];
1019         tmp->fChild[dir] = node;
1020 
1021         node->fRed = true;
1022         tmp->fRed = false;
1023 
1024         return tmp;
1025     }
1026 
DoubleRotation(ActiveEdge * node,int dir)1027     static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
1028         node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
1029 
1030         return SingleRotation(node, dir);
1031     }
1032 
1033     // returns black link count
VerifyTree(const ActiveEdge * tree)1034     static int VerifyTree(const ActiveEdge* tree) {
1035         if (!tree) {
1036             return 1;
1037         }
1038 
1039         const ActiveEdge* left = tree->fChild[0];
1040         const ActiveEdge* right = tree->fChild[1];
1041 
1042         // no consecutive red links
1043         if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
1044             SkASSERT(false);
1045             return 0;
1046         }
1047 
1048         // check secondary links
1049         if (tree->fAbove) {
1050             SkASSERT(tree->fAbove->fBelow == tree);
1051             SkASSERT(tree->fAbove->lessThan(tree));
1052         }
1053         if (tree->fBelow) {
1054             SkASSERT(tree->fBelow->fAbove == tree);
1055             SkASSERT(tree->lessThan(tree->fBelow));
1056         }
1057 
1058         // violates binary tree order
1059         if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
1060             SkASSERT(false);
1061             return 0;
1062         }
1063 
1064         int leftCount = VerifyTree(left);
1065         int rightCount = VerifyTree(right);
1066 
1067         // return black link count
1068         if (leftCount != 0 && rightCount != 0) {
1069             // black height mismatch
1070             if (leftCount != rightCount) {
1071                 SkASSERT(false);
1072                 return 0;
1073             }
1074             return IsRed(tree) ? leftCount : leftCount + 1;
1075         } else {
1076             return 0;
1077         }
1078     }
1079 
1080     ActiveEdge fTreeHead;
1081     char*      fAllocation;
1082     int        fCurrFree;
1083     int        fMaxFree;
1084 };
1085 
1086 // Here we implement a sweep line algorithm to determine whether the provided points
1087 // represent a simple polygon, i.e., the polygon is non-self-intersecting.
1088 // We first insert the vertices into a priority queue sorting horizontally from left to right.
1089 // Then as we pop the vertices from the queue we generate events which indicate that an edge
1090 // should be added or removed from an edge list. If any intersections are detected in the edge
1091 // list, then we know the polygon is self-intersecting and hence not simple.
SkIsSimplePolygon(const SkPoint * polygon,int polygonSize)1092 bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
1093     if (polygonSize < 3) {
1094         return false;
1095     }
1096 
1097     // If it's convex, it's simple
1098     if (SkIsConvexPolygon(polygon, polygonSize)) {
1099         return true;
1100     }
1101 
1102     // practically speaking, it takes too long to process large polygons
1103     if (polygonSize > 2048) {
1104         return false;
1105     }
1106 
1107     SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
1108     for (int i = 0; i < polygonSize; ++i) {
1109         Vertex newVertex;
1110         if (!polygon[i].isFinite()) {
1111             return false;
1112         }
1113         newVertex.fPosition = polygon[i];
1114         newVertex.fIndex = i;
1115         newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
1116         newVertex.fNextIndex = (i + 1) % polygonSize;
1117         newVertex.fFlags = 0;
1118         // The two edges adjacent to this vertex are the same, so polygon is not simple
1119         if (polygon[newVertex.fPrevIndex] == polygon[newVertex.fNextIndex]) {
1120             return false;
1121         }
1122         if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
1123             newVertex.fFlags |= kPrevLeft_VertexFlag;
1124         }
1125         if (left(polygon[newVertex.fNextIndex], polygon[i])) {
1126             newVertex.fFlags |= kNextLeft_VertexFlag;
1127         }
1128         vertexQueue.insert(newVertex);
1129     }
1130 
1131     // pop each vertex from the queue and generate events depending on
1132     // where it lies relative to its neighboring edges
1133     ActiveEdgeList sweepLine(polygonSize);
1134     while (vertexQueue.count() > 0) {
1135         const Vertex& v = vertexQueue.peek();
1136 
1137         // both to the right -- insert both
1138         if (v.fFlags == 0) {
1139             if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
1140                 break;
1141             }
1142             if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
1143                 break;
1144             }
1145         // both to the left -- remove both
1146         } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
1147             if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
1148                 break;
1149             }
1150             if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
1151                 break;
1152             }
1153         // one to left and right -- replace one with another
1154         } else {
1155             if (v.fFlags & kPrevLeft_VertexFlag) {
1156                 if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
1157                                        v.fPrevIndex, v.fIndex, v.fNextIndex)) {
1158                     break;
1159                 }
1160             } else {
1161                 SkASSERT(v.fFlags & kNextLeft_VertexFlag);
1162                 if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
1163                                        v.fNextIndex, v.fIndex, v.fPrevIndex)) {
1164                     break;
1165                 }
1166             }
1167         }
1168 
1169         vertexQueue.pop();
1170     }
1171 
1172     return (vertexQueue.count() == 0);
1173 }
1174 
1175 ///////////////////////////////////////////////////////////////////////////////////////////
1176 
1177 // helper function for SkOffsetSimplePolygon
setup_offset_edge(OffsetEdge * currEdge,const SkPoint & endpoint0,const SkPoint & endpoint1,uint16_t startIndex,uint16_t endIndex)1178 static void setup_offset_edge(OffsetEdge* currEdge,
1179                               const SkPoint& endpoint0, const SkPoint& endpoint1,
1180                               uint16_t startIndex, uint16_t endIndex) {
1181     currEdge->fOffset.fP0 = endpoint0;
1182     currEdge->fOffset.fV = endpoint1 - endpoint0;
1183     currEdge->init(startIndex, endIndex);
1184 }
1185 
is_reflex_vertex(const SkPoint * inputPolygonVerts,int winding,SkScalar offset,uint16_t prevIndex,uint16_t currIndex,uint16_t nextIndex)1186 static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
1187                              uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
1188     int side = compute_side(inputPolygonVerts[prevIndex],
1189                             inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
1190                             inputPolygonVerts[nextIndex]);
1191     // if reflex point, we need to add extra edges
1192     return (side*winding*offset < 0);
1193 }
1194 
SkOffsetSimplePolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,const SkRect & bounds,SkScalar offset,SkTDArray<SkPoint> * offsetPolygon,SkTDArray<int> * polygonIndices)1195 bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
1196                            const SkRect& bounds, SkScalar offset,
1197                            SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
1198     if (inputPolygonSize < 3) {
1199         return false;
1200     }
1201 
1202     // need to be able to represent all the vertices in the 16-bit indices
1203     if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
1204         return false;
1205     }
1206 
1207     if (!SkIsFinite(offset)) {
1208         return false;
1209     }
1210 
1211     // can't inset more than the half bounds of the polygon
1212     if (offset > std::min(SkTAbs(SkRectPriv::HalfWidth(bounds)),
1213                           SkTAbs(SkRectPriv::HalfHeight(bounds)))) {
1214         return false;
1215     }
1216 
1217     // offsetting close to zero just returns the original poly
1218     if (SkScalarNearlyZero(offset)) {
1219         for (int i = 0; i < inputPolygonSize; ++i) {
1220             *offsetPolygon->append() = inputPolygonVerts[i];
1221             if (polygonIndices) {
1222                 *polygonIndices->append() = i;
1223             }
1224         }
1225         return true;
1226     }
1227 
1228     // get winding direction
1229     int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
1230     if (0 == winding) {
1231         return false;
1232     }
1233 
1234     // build normals
1235     AutoSTMalloc<64, SkVector> normals(inputPolygonSize);
1236     unsigned int numEdges = 0;
1237     for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1238          currIndex < inputPolygonSize;
1239          prevIndex = currIndex, ++currIndex) {
1240         if (!inputPolygonVerts[currIndex].isFinite()) {
1241             return false;
1242         }
1243         int nextIndex = (currIndex + 1) % inputPolygonSize;
1244         if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
1245                                    offset, winding, &normals[currIndex])) {
1246             return false;
1247         }
1248         if (currIndex > 0) {
1249             // if reflex point, we need to add extra edges
1250             if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1251                                  prevIndex, currIndex, nextIndex)) {
1252                 SkScalar rotSin, rotCos;
1253                 int numSteps;
1254                 if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
1255                                           &rotSin, &rotCos, &numSteps)) {
1256                     return false;
1257                 }
1258                 numEdges += std::max(numSteps, 1);
1259             }
1260         }
1261         numEdges++;
1262     }
1263     // finish up the edge counting
1264     if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
1265         SkScalar rotSin, rotCos;
1266         int numSteps;
1267         if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
1268                                   &rotSin, &rotCos, &numSteps)) {
1269             return false;
1270         }
1271         numEdges += std::max(numSteps, 1);
1272     }
1273 
1274     // Make sure we don't overflow the max array count.
1275     // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
1276     // and we have a max of 2^16-1 original vertices.
1277     if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
1278         return false;
1279     }
1280 
1281     // build initial offset edge list
1282     STArray<64, OffsetEdge> edgeData(numEdges);
1283     OffsetEdge* prevEdge = nullptr;
1284     for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1285          currIndex < inputPolygonSize;
1286          prevIndex = currIndex, ++currIndex) {
1287         int nextIndex = (currIndex + 1) % inputPolygonSize;
1288         // if reflex point, fill in curve
1289         if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1290                              prevIndex, currIndex, nextIndex)) {
1291             SkScalar rotSin, rotCos;
1292             int numSteps;
1293             SkVector prevNormal = normals[prevIndex];
1294             if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
1295                                       &rotSin, &rotCos, &numSteps)) {
1296                 return false;
1297             }
1298             auto currEdge = edgeData.push_back_n(std::max(numSteps, 1));
1299             for (int i = 0; i < numSteps - 1; ++i) {
1300                 SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
1301                                                      prevNormal.fY*rotCos + prevNormal.fX*rotSin);
1302                 setup_offset_edge(currEdge,
1303                                   inputPolygonVerts[currIndex] + prevNormal,
1304                                   inputPolygonVerts[currIndex] + currNormal,
1305                                   currIndex, currIndex);
1306                 prevNormal = currNormal;
1307                 currEdge->fPrev = prevEdge;
1308                 if (prevEdge) {
1309                     prevEdge->fNext = currEdge;
1310                 }
1311                 prevEdge = currEdge;
1312                 ++currEdge;
1313             }
1314             setup_offset_edge(currEdge,
1315                               inputPolygonVerts[currIndex] + prevNormal,
1316                               inputPolygonVerts[currIndex] + normals[currIndex],
1317                               currIndex, currIndex);
1318             currEdge->fPrev = prevEdge;
1319             if (prevEdge) {
1320                 prevEdge->fNext = currEdge;
1321             }
1322             prevEdge = currEdge;
1323         }
1324 
1325         // Add the edge
1326         auto currEdge = edgeData.push_back_n(1);
1327         setup_offset_edge(currEdge,
1328                           inputPolygonVerts[currIndex] + normals[currIndex],
1329                           inputPolygonVerts[nextIndex] + normals[currIndex],
1330                           currIndex, nextIndex);
1331         currEdge->fPrev = prevEdge;
1332         if (prevEdge) {
1333             prevEdge->fNext = currEdge;
1334         }
1335         prevEdge = currEdge;
1336     }
1337     // close up the linked list
1338     SkASSERT(prevEdge);
1339     prevEdge->fNext = &edgeData[0];
1340     edgeData[0].fPrev = prevEdge;
1341 
1342     // now clip edges
1343     SkASSERT(edgeData.size() == (int)numEdges);
1344     auto head = &edgeData[0];
1345     auto currEdge = head;
1346     unsigned int offsetVertexCount = numEdges;
1347     unsigned long long iterations = 0;
1348     unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
1349     while (head && prevEdge != currEdge && offsetVertexCount > 0) {
1350         ++iterations;
1351         // we should check each edge against each other edge at most once
1352         if (iterations > maxIterations) {
1353             return false;
1354         }
1355 
1356         SkScalar s, t;
1357         SkPoint intersection;
1358         if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
1359             // if new intersection is further back on previous inset from the prior intersection
1360             if (s < prevEdge->fTValue) {
1361                 // no point in considering this one again
1362                 remove_node(prevEdge, &head);
1363                 --offsetVertexCount;
1364                 // go back one segment
1365                 prevEdge = prevEdge->fPrev;
1366                 // we've already considered this intersection, we're done
1367             } else if (currEdge->fTValue > SK_ScalarMin &&
1368                        SkPointPriv::EqualsWithinTolerance(intersection,
1369                                                           currEdge->fIntersection,
1370                                                           1.0e-6f)) {
1371                 break;
1372             } else {
1373                 // add intersection
1374                 currEdge->fIntersection = intersection;
1375                 currEdge->fTValue = t;
1376                 currEdge->fIndex = prevEdge->fEnd;
1377 
1378                 // go to next segment
1379                 prevEdge = currEdge;
1380                 currEdge = currEdge->fNext;
1381             }
1382         } else {
1383             // If there is no intersection, we want to minimize the distance between
1384             // the point where the segment lines cross and the segments themselves.
1385             OffsetEdge* prevPrevEdge = prevEdge->fPrev;
1386             OffsetEdge* currNextEdge = currEdge->fNext;
1387             SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
1388             SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
1389             // if both lead to direct collision
1390             if (dist0 < 0 && dist1 < 0) {
1391                 // check first to see if either represent parts of one contour
1392                 SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
1393                 bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1394                                                                           prevEdge->fOffset.fP0);
1395                 p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
1396                 bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1397                                                                          currNextEdge->fOffset.fP0);
1398 
1399                 // want to step along contour to find intersections rather than jump to new one
1400                 if (currSameContour && !prevSameContour) {
1401                     remove_node(currEdge, &head);
1402                     currEdge = currNextEdge;
1403                     --offsetVertexCount;
1404                     continue;
1405                 } else if (prevSameContour && !currSameContour) {
1406                     remove_node(prevEdge, &head);
1407                     prevEdge = prevPrevEdge;
1408                     --offsetVertexCount;
1409                     continue;
1410                 }
1411             }
1412 
1413             // otherwise minimize collision distance along segment
1414             if (dist0 < dist1) {
1415                 remove_node(prevEdge, &head);
1416                 prevEdge = prevPrevEdge;
1417             } else {
1418                 remove_node(currEdge, &head);
1419                 currEdge = currNextEdge;
1420             }
1421             --offsetVertexCount;
1422         }
1423     }
1424 
1425     // store all the valid intersections that aren't nearly coincident
1426     // TODO: look at the main algorithm and see if we can detect these better
1427     offsetPolygon->reset();
1428     if (!head || offsetVertexCount == 0 ||
1429         offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
1430         return false;
1431     }
1432 
1433     static constexpr SkScalar kCleanupTolerance = 0.01f;
1434     offsetPolygon->reserve(offsetVertexCount);
1435     int currIndex = 0;
1436     *offsetPolygon->append() = head->fIntersection;
1437     if (polygonIndices) {
1438         *polygonIndices->append() = head->fIndex;
1439     }
1440     currEdge = head->fNext;
1441     while (currEdge != head) {
1442         if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
1443                                                 (*offsetPolygon)[currIndex],
1444                                                 kCleanupTolerance)) {
1445             *offsetPolygon->append() = currEdge->fIntersection;
1446             if (polygonIndices) {
1447                 *polygonIndices->append() = currEdge->fIndex;
1448             }
1449             currIndex++;
1450         }
1451         currEdge = currEdge->fNext;
1452     }
1453     // make sure the first and last points aren't coincident
1454     if (currIndex >= 1 &&
1455         SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
1456                                             kCleanupTolerance)) {
1457         offsetPolygon->pop_back();
1458         if (polygonIndices) {
1459             polygonIndices->pop_back();
1460         }
1461     }
1462 
1463     // check winding of offset polygon (it should be same as the original polygon)
1464     SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->size());
1465 
1466     return (winding*offsetWinding > 0 &&
1467             SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->size()));
1468 }
1469 
1470 //////////////////////////////////////////////////////////////////////////////////////////
1471 
1472 struct TriangulationVertex {
1473     SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
1474 
1475     enum class VertexType { kConvex, kReflex };
1476 
1477     SkPoint    fPosition;
1478     VertexType fVertexType;
1479     uint16_t   fIndex;
1480     uint16_t   fPrevIndex;
1481     uint16_t   fNextIndex;
1482 };
1483 
compute_triangle_bounds(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkRect * bounds)1484 static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1485                                     SkRect* bounds) {
1486     skvx::float4 min, max;
1487     min = max = skvx::float4(p0.fX, p0.fY, p0.fX, p0.fY);
1488     skvx::float4 xy(p1.fX, p1.fY, p2.fX, p2.fY);
1489     min = skvx::min(min, xy);
1490     max = skvx::max(max, xy);
1491     bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
1492                     std::max(max[0], max[2]), std::max(max[1], max[3]));
1493 }
1494 
1495 // test to see if point p is in triangle p0p1p2.
1496 // for now assuming strictly inside -- if on the edge it's outside
point_in_triangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p)1497 static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1498                               const SkPoint& p) {
1499     SkVector v0 = p1 - p0;
1500     SkVector v1 = p2 - p1;
1501     SkScalar n = v0.cross(v1);
1502 
1503     SkVector w0 = p - p0;
1504     if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
1505         return false;
1506     }
1507 
1508     SkVector w1 = p - p1;
1509     if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
1510         return false;
1511     }
1512 
1513     SkVector v2 = p0 - p2;
1514     SkVector w2 = p - p2;
1515     if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
1516         return false;
1517     }
1518 
1519     return true;
1520 }
1521 
1522 // Data structure to track reflex vertices and check whether any are inside a given triangle
1523 class ReflexHash {
1524 public:
init(const SkRect & bounds,int vertexCount)1525     bool init(const SkRect& bounds, int vertexCount) {
1526         fBounds = bounds;
1527         fNumVerts = 0;
1528         SkScalar width = bounds.width();
1529         SkScalar height = bounds.height();
1530         if (!SkIsFinite(width, height)) {
1531             return false;
1532         }
1533 
1534         // We want vertexCount grid cells, roughly distributed to match the bounds ratio
1535         SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
1536         if (!SkIsFinite(hCount)) {
1537             return false;
1538         }
1539         fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1);
1540         fVCount = vertexCount/fHCount;
1541         fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
1542                             sk_ieee_float_divide(fVCount - 0.001f, height));
1543         if (!fGridConversion.isFinite()) {
1544             return false;
1545         }
1546 
1547         fGrid.resize(fHCount*fVCount);
1548         for (int i = 0; i < fGrid.size(); ++i) {
1549             fGrid[i].reset();
1550         }
1551 
1552         return true;
1553     }
1554 
add(TriangulationVertex * v)1555     void add(TriangulationVertex* v) {
1556         int index = hash(v);
1557         fGrid[index].addToTail(v);
1558         ++fNumVerts;
1559     }
1560 
remove(TriangulationVertex * v)1561     void remove(TriangulationVertex* v) {
1562         int index = hash(v);
1563         fGrid[index].remove(v);
1564         --fNumVerts;
1565     }
1566 
checkTriangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t ignoreIndex0,uint16_t ignoreIndex1) const1567     bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1568                        uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
1569         if (!fNumVerts) {
1570             return false;
1571         }
1572 
1573         SkRect triBounds;
1574         compute_triangle_bounds(p0, p1, p2, &triBounds);
1575         int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
1576         int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
1577         int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
1578         int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
1579 
1580         for (int v = v0; v <= v1; ++v) {
1581             for (int h = h0; h <= h1; ++h) {
1582                 int i = v * fHCount + h;
1583                 for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
1584                      reflexIter != fGrid[i].end(); ++reflexIter) {
1585                     TriangulationVertex* reflexVertex = *reflexIter;
1586                     if (reflexVertex->fIndex != ignoreIndex0 &&
1587                         reflexVertex->fIndex != ignoreIndex1 &&
1588                         point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
1589                         return true;
1590                     }
1591                 }
1592 
1593             }
1594         }
1595 
1596         return false;
1597     }
1598 
1599 private:
hash(TriangulationVertex * vert) const1600     int hash(TriangulationVertex* vert) const {
1601         int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
1602         int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
1603         SkASSERT(v*fHCount + h >= 0);
1604         return v*fHCount + h;
1605     }
1606 
1607     SkRect fBounds;
1608     int fHCount;
1609     int fVCount;
1610     int fNumVerts;
1611     // converts distance from the origin to a grid location (when cast to int)
1612     SkVector fGridConversion;
1613     SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
1614 };
1615 
1616 // Check to see if a reflex vertex has become a convex vertex after clipping an ear
reclassify_vertex(TriangulationVertex * p,const SkPoint * polygonVerts,int winding,ReflexHash * reflexHash,SkTInternalLList<TriangulationVertex> * convexList)1617 static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
1618                               int winding, ReflexHash* reflexHash,
1619                               SkTInternalLList<TriangulationVertex>* convexList) {
1620     if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
1621         SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
1622         SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
1623         if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1624             p->fVertexType = TriangulationVertex::VertexType::kConvex;
1625             reflexHash->remove(p);
1626             p->fPrev = p->fNext = nullptr;
1627             convexList->addToTail(p);
1628         }
1629     }
1630 }
1631 
SkTriangulateSimplePolygon(const SkPoint * polygonVerts,uint16_t * indexMap,int polygonSize,SkTDArray<uint16_t> * triangleIndices)1632 bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
1633                                 SkTDArray<uint16_t>* triangleIndices) {
1634     if (polygonSize < 3) {
1635         return false;
1636     }
1637     // need to be able to represent all the vertices in the 16-bit indices
1638     if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
1639         return false;
1640     }
1641 
1642     // get bounds
1643     SkRect bounds;
1644     if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
1645         return false;
1646     }
1647     // get winding direction
1648     // TODO: we do this for all the polygon routines -- might be better to have the client
1649     // compute it and pass it in
1650     int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
1651     if (0 == winding) {
1652         return false;
1653     }
1654 
1655     // Set up vertices
1656     AutoSTArray<64, TriangulationVertex> triangulationVertices(polygonSize);
1657     int prevIndex = polygonSize - 1;
1658     SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
1659     for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
1660         int nextIndex = (currIndex + 1) % polygonSize;
1661 
1662         triangulationVertices[currIndex] = TriangulationVertex{};
1663         triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
1664         triangulationVertices[currIndex].fIndex = currIndex;
1665         triangulationVertices[currIndex].fPrevIndex = prevIndex;
1666         triangulationVertices[currIndex].fNextIndex = nextIndex;
1667         SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
1668         if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1669             triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
1670         } else {
1671             triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
1672         }
1673 
1674         prevIndex = currIndex;
1675         v0 = v1;
1676     }
1677 
1678     // Classify initial vertices into a list of convex vertices and a hash of reflex vertices
1679     // TODO: possibly sort the convexList in some way to get better triangles
1680     SkTInternalLList<TriangulationVertex> convexList;
1681     ReflexHash reflexHash;
1682     if (!reflexHash.init(bounds, polygonSize)) {
1683         return false;
1684     }
1685     prevIndex = polygonSize - 1;
1686     for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
1687         TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
1688         if (TriangulationVertex::VertexType::kConvex == currType) {
1689             int nextIndex = (currIndex + 1) % polygonSize;
1690             TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
1691             TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
1692             // We prioritize clipping vertices with neighboring reflex vertices.
1693             // The intent here is that it will cull reflex vertices more quickly.
1694             if (TriangulationVertex::VertexType::kReflex == prevType ||
1695                 TriangulationVertex::VertexType::kReflex == nextType) {
1696                 convexList.addToHead(&triangulationVertices[currIndex]);
1697             } else {
1698                 convexList.addToTail(&triangulationVertices[currIndex]);
1699             }
1700         } else {
1701             // We treat near collinear vertices as reflex
1702             reflexHash.add(&triangulationVertices[currIndex]);
1703         }
1704     }
1705 
1706     // The general concept: We are trying to find three neighboring vertices where
1707     // no other vertex lies inside the triangle (an "ear"). If we find one, we clip
1708     // that ear off, and then repeat on the new polygon. Once we get down to three vertices
1709     // we have triangulated the entire polygon.
1710     // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
1711     // noting that only convex vertices can be potential ears, and we only need to check whether
1712     // any reflex vertices lie inside the ear.
1713     triangleIndices->reserve(triangleIndices->size() + 3 * (polygonSize - 2));
1714     int vertexCount = polygonSize;
1715     while (vertexCount > 3) {
1716         bool success = false;
1717         TriangulationVertex* earVertex = nullptr;
1718         TriangulationVertex* p0 = nullptr;
1719         TriangulationVertex* p2 = nullptr;
1720         // find a convex vertex to clip
1721         for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
1722              convexIter != convexList.end(); ++convexIter) {
1723             earVertex = *convexIter;
1724             SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
1725 
1726             p0 = &triangulationVertices[earVertex->fPrevIndex];
1727             p2 = &triangulationVertices[earVertex->fNextIndex];
1728 
1729             // see if any reflex vertices are inside the ear
1730             bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
1731                                                    p2->fPosition, p0->fIndex, p2->fIndex);
1732             if (failed) {
1733                 continue;
1734             }
1735 
1736             // found one we can clip
1737             success = true;
1738             break;
1739         }
1740         // If we can't find any ears to clip, this probably isn't a simple polygon
1741         if (!success) {
1742             return false;
1743         }
1744 
1745         // add indices
1746         auto indices = triangleIndices->append(3);
1747         indices[0] = indexMap[p0->fIndex];
1748         indices[1] = indexMap[earVertex->fIndex];
1749         indices[2] = indexMap[p2->fIndex];
1750 
1751         // clip the ear
1752         convexList.remove(earVertex);
1753         --vertexCount;
1754 
1755         // reclassify reflex verts
1756         p0->fNextIndex = earVertex->fNextIndex;
1757         reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
1758 
1759         p2->fPrevIndex = earVertex->fPrevIndex;
1760         reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
1761     }
1762 
1763     // output indices
1764     for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
1765          vertexIter != convexList.end(); ++vertexIter) {
1766         TriangulationVertex* vertex = *vertexIter;
1767         *triangleIndices->append() = indexMap[vertex->fIndex];
1768     }
1769 
1770     return true;
1771 }
1772 
1773 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
1774 
1775