1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/utils/SkPolyUtils.h"
9
10 #include "include/core/SkRect.h"
11 #include "include/core/SkTypes.h"
12 #include "include/private/base/SkDebug.h"
13 #include "include/private/base/SkFloatingPoint.h"
14 #include "include/private/base/SkMalloc.h"
15 #include "include/private/base/SkTArray.h"
16 #include "include/private/base/SkTDArray.h"
17 #include "include/private/base/SkTemplates.h"
18 #include "src/base/SkTDPQueue.h"
19 #include "src/base/SkTInternalLList.h"
20 #include "src/base/SkVx.h"
21 #include "src/core/SkPointPriv.h"
22 #include "src/core/SkRectPriv.h"
23
24 #include <algorithm>
25 #include <cstdint>
26 #include <limits>
27 #include <new>
28
29 using namespace skia_private;
30
31 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
32
33 //////////////////////////////////////////////////////////////////////////////////
34 // Helper data structures and functions
35
36 struct OffsetSegment {
37 SkPoint fP0;
38 SkVector fV;
39 };
40
41 constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
42
43 // Computes perpDot for point p compared to segment defined by origin p0 and vector v.
44 // A positive value means the point is to the left of the segment,
45 // negative is to the right, 0 is collinear.
compute_side(const SkPoint & p0,const SkVector & v,const SkPoint & p)46 static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
47 SkVector w = p - p0;
48 SkScalar perpDot = v.cross(w);
49 if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
50 return ((perpDot > 0) ? 1 : -1);
51 }
52
53 return 0;
54 }
55
56 // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
SkGetPolygonWinding(const SkPoint * polygonVerts,int polygonSize)57 int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
58 if (polygonSize < 3) {
59 return 0;
60 }
61
62 // compute area and use sign to determine winding
63 SkScalar quadArea = 0;
64 SkVector v0 = polygonVerts[1] - polygonVerts[0];
65 for (int curr = 2; curr < polygonSize; ++curr) {
66 SkVector v1 = polygonVerts[curr] - polygonVerts[0];
67 quadArea += v0.cross(v1);
68 v0 = v1;
69 }
70 if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
71 return 0;
72 }
73 // 1 == ccw, -1 == cw
74 return (quadArea > 0) ? 1 : -1;
75 }
76
77 // Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
compute_offset_vector(const SkPoint & p0,const SkPoint & p1,SkScalar offset,int side,SkPoint * vector)78 bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
79 SkPoint* vector) {
80 SkASSERT(side == -1 || side == 1);
81 // if distances are equal, can just outset by the perpendicular
82 SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
83 if (!perp.setLength(offset*side)) {
84 return false;
85 }
86 *vector = perp;
87 return true;
88 }
89
90 // check interval to see if intersection is in segment
outside_interval(SkScalar numer,SkScalar denom,bool denomPositive)91 static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
92 return (denomPositive && (numer < 0 || numer > denom)) ||
93 (!denomPositive && (numer > 0 || numer < denom));
94 }
95
96 // special zero-length test when we're using vdotv as a denominator
zero_length(const SkPoint & v,SkScalar vdotv)97 static inline bool zero_length(const SkPoint& v, SkScalar vdotv) {
98 return !(SkIsFinite(v.fX, v.fY) && vdotv);
99 }
100
101 // Compute the intersection 'p' between segments s0 and s1, if any.
102 // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
103 // Returns false if there is no intersection.
104 // If the length squared of a segment is 0, then we treat the segment as degenerate
105 // and use only the first endpoint for tests.
compute_intersection(const OffsetSegment & s0,const OffsetSegment & s1,SkPoint * p,SkScalar * s,SkScalar * t)106 static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
107 SkPoint* p, SkScalar* s, SkScalar* t) {
108 const SkVector& v0 = s0.fV;
109 const SkVector& v1 = s1.fV;
110 SkVector w = s1.fP0 - s0.fP0;
111 SkScalar denom = v0.cross(v1);
112 bool denomPositive = (denom > 0);
113 SkScalar sNumer, tNumer;
114 if (SkScalarNearlyZero(denom, kCrossTolerance)) {
115 // segments are parallel, but not collinear
116 if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
117 !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
118 return false;
119 }
120
121 // Check for zero-length segments
122 SkScalar v0dotv0 = v0.dot(v0);
123 if (zero_length(v0, v0dotv0)) {
124 // Both are zero-length
125 SkScalar v1dotv1 = v1.dot(v1);
126 if (zero_length(v1, v1dotv1)) {
127 // Check if they're the same point
128 if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
129 *p = s0.fP0;
130 *s = 0;
131 *t = 0;
132 return true;
133 } else {
134 // Intersection is indeterminate
135 return false;
136 }
137 }
138 // Otherwise project segment0's origin onto segment1
139 tNumer = v1.dot(-w);
140 denom = v1dotv1;
141 if (outside_interval(tNumer, denom, true)) {
142 return false;
143 }
144 sNumer = 0;
145 } else {
146 // Project segment1's endpoints onto segment0
147 sNumer = v0.dot(w);
148 denom = v0dotv0;
149 tNumer = 0;
150 if (outside_interval(sNumer, denom, true)) {
151 // The first endpoint doesn't lie on segment0
152 // If segment1 is degenerate, then there's no collision
153 SkScalar v1dotv1 = v1.dot(v1);
154 if (zero_length(v1, v1dotv1)) {
155 return false;
156 }
157
158 // Otherwise try the other one
159 SkScalar oldSNumer = sNumer;
160 sNumer = v0.dot(w + v1);
161 tNumer = denom;
162 if (outside_interval(sNumer, denom, true)) {
163 // it's possible that segment1's interval surrounds segment0
164 // this is false if params have the same signs, and in that case no collision
165 if (sNumer*oldSNumer > 0) {
166 return false;
167 }
168 // otherwise project segment0's endpoint onto segment1 instead
169 sNumer = 0;
170 tNumer = v1.dot(-w);
171 denom = v1dotv1;
172 }
173 }
174 }
175 } else {
176 sNumer = w.cross(v1);
177 if (outside_interval(sNumer, denom, denomPositive)) {
178 return false;
179 }
180 tNumer = w.cross(v0);
181 if (outside_interval(tNumer, denom, denomPositive)) {
182 return false;
183 }
184 }
185
186 SkScalar localS = sNumer/denom;
187 SkScalar localT = tNumer/denom;
188
189 *p = s0.fP0 + v0*localS;
190 *s = localS;
191 *t = localT;
192
193 return true;
194 }
195
SkIsConvexPolygon(const SkPoint * polygonVerts,int polygonSize)196 bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
197 if (polygonSize < 3) {
198 return false;
199 }
200
201 SkScalar lastPerpDot = 0;
202 int xSignChangeCount = 0;
203 int ySignChangeCount = 0;
204
205 int prevIndex = polygonSize - 1;
206 int currIndex = 0;
207 int nextIndex = 1;
208 SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
209 SkScalar lastVx = v0.fX;
210 SkScalar lastVy = v0.fY;
211 SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
212 for (int i = 0; i < polygonSize; ++i) {
213 if (!polygonVerts[i].isFinite()) {
214 return false;
215 }
216
217 // Check that winding direction is always the same (otherwise we have a reflex vertex)
218 SkScalar perpDot = v0.cross(v1);
219 if (lastPerpDot*perpDot < 0) {
220 return false;
221 }
222 if (0 != perpDot) {
223 lastPerpDot = perpDot;
224 }
225
226 // Check that the signs of the edge vectors don't change more than twice per coordinate
227 if (lastVx*v1.fX < 0) {
228 xSignChangeCount++;
229 }
230 if (lastVy*v1.fY < 0) {
231 ySignChangeCount++;
232 }
233 if (xSignChangeCount > 2 || ySignChangeCount > 2) {
234 return false;
235 }
236 prevIndex = currIndex;
237 currIndex = nextIndex;
238 nextIndex = (currIndex + 1) % polygonSize;
239 if (v1.fX != 0) {
240 lastVx = v1.fX;
241 }
242 if (v1.fY != 0) {
243 lastVy = v1.fY;
244 }
245 v0 = v1;
246 v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
247 }
248
249 return true;
250 }
251
252 struct OffsetEdge {
253 OffsetEdge* fPrev;
254 OffsetEdge* fNext;
255 OffsetSegment fOffset;
256 SkPoint fIntersection;
257 SkScalar fTValue;
258 uint16_t fIndex;
259 uint16_t fEnd;
260
initOffsetEdge261 void init(uint16_t start = 0, uint16_t end = 0) {
262 fIntersection = fOffset.fP0;
263 fTValue = SK_ScalarMin;
264 fIndex = start;
265 fEnd = end;
266 }
267
268 // special intersection check that looks for endpoint intersection
checkIntersectionOffsetEdge269 bool checkIntersection(const OffsetEdge* that,
270 SkPoint* p, SkScalar* s, SkScalar* t) {
271 if (this->fEnd == that->fIndex) {
272 SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
273 if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
274 *p = p1;
275 *s = SK_Scalar1;
276 *t = 0;
277 return true;
278 }
279 }
280
281 return compute_intersection(this->fOffset, that->fOffset, p, s, t);
282 }
283
284 // computes the line intersection and then the "distance" from that to this
285 // this is really a signed squared distance, where negative means that
286 // the intersection lies inside this->fOffset
computeCrossingDistanceOffsetEdge287 SkScalar computeCrossingDistance(const OffsetEdge* that) {
288 const OffsetSegment& s0 = this->fOffset;
289 const OffsetSegment& s1 = that->fOffset;
290 const SkVector& v0 = s0.fV;
291 const SkVector& v1 = s1.fV;
292
293 SkScalar denom = v0.cross(v1);
294 if (SkScalarNearlyZero(denom, kCrossTolerance)) {
295 // segments are parallel
296 return SK_ScalarMax;
297 }
298
299 SkVector w = s1.fP0 - s0.fP0;
300 SkScalar localS = w.cross(v1) / denom;
301 if (localS < 0) {
302 localS = -localS;
303 } else {
304 localS -= SK_Scalar1;
305 }
306
307 localS *= SkScalarAbs(localS);
308 localS *= v0.dot(v0);
309
310 return localS;
311 }
312
313 };
314
remove_node(const OffsetEdge * node,OffsetEdge ** head)315 static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
316 // remove from linked list
317 node->fPrev->fNext = node->fNext;
318 node->fNext->fPrev = node->fPrev;
319 if (node == *head) {
320 *head = (node->fNext == node) ? nullptr : node->fNext;
321 }
322 }
323
324 //////////////////////////////////////////////////////////////////////////////////
325
326 // The objective here is to inset all of the edges by the given distance, and then
327 // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
328 // we should only be making left-hand turns (for cw polygons, we use the winding
329 // parameter to reverse this). We detect this by checking whether the second intersection
330 // on an edge is closer to its tail than the first one.
331 //
332 // We might also have the case that there is no intersection between two neighboring inset edges.
333 // In this case, one edge will lie to the right of the other and should be discarded along with
334 // its previous intersection (if any).
335 //
336 // Note: the assumption is that inputPolygon is convex and has no coincident points.
337 //
SkInsetConvexPolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,SkScalar inset,SkTDArray<SkPoint> * insetPolygon)338 bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
339 SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
340 if (inputPolygonSize < 3) {
341 return false;
342 }
343
344 // restrict this to match other routines
345 // practically we don't want anything bigger than this anyway
346 if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
347 return false;
348 }
349
350 // can't inset by a negative or non-finite amount
351 if (inset < -SK_ScalarNearlyZero || !SkIsFinite(inset)) {
352 return false;
353 }
354
355 // insetting close to zero just returns the original poly
356 if (inset <= SK_ScalarNearlyZero) {
357 for (int i = 0; i < inputPolygonSize; ++i) {
358 *insetPolygon->append() = inputPolygonVerts[i];
359 }
360 return true;
361 }
362
363 // get winding direction
364 int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
365 if (0 == winding) {
366 return false;
367 }
368
369 // set up
370 AutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
371 int prev = inputPolygonSize - 1;
372 for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
373 int next = (curr + 1) % inputPolygonSize;
374 if (!inputPolygonVerts[curr].isFinite()) {
375 return false;
376 }
377 // check for convexity just to be sure
378 if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
379 inputPolygonVerts[next])*winding < 0) {
380 return false;
381 }
382 SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
383 SkVector perp = SkVector::Make(-v.fY, v.fX);
384 perp.setLength(inset*winding);
385 edgeData[curr].fPrev = &edgeData[prev];
386 edgeData[curr].fNext = &edgeData[next];
387 edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
388 edgeData[curr].fOffset.fV = v;
389 edgeData[curr].init();
390 }
391
392 OffsetEdge* head = &edgeData[0];
393 OffsetEdge* currEdge = head;
394 OffsetEdge* prevEdge = currEdge->fPrev;
395 int insetVertexCount = inputPolygonSize;
396 unsigned int iterations = 0;
397 unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
398 while (head && prevEdge != currEdge) {
399 ++iterations;
400 // we should check each edge against each other edge at most once
401 if (iterations > maxIterations) {
402 return false;
403 }
404
405 SkScalar s, t;
406 SkPoint intersection;
407 if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
408 &intersection, &s, &t)) {
409 // if new intersection is further back on previous inset from the prior intersection
410 if (s < prevEdge->fTValue) {
411 // no point in considering this one again
412 remove_node(prevEdge, &head);
413 --insetVertexCount;
414 // go back one segment
415 prevEdge = prevEdge->fPrev;
416 // we've already considered this intersection, we're done
417 } else if (currEdge->fTValue > SK_ScalarMin &&
418 SkPointPriv::EqualsWithinTolerance(intersection,
419 currEdge->fIntersection,
420 1.0e-6f)) {
421 break;
422 } else {
423 // add intersection
424 currEdge->fIntersection = intersection;
425 currEdge->fTValue = t;
426
427 // go to next segment
428 prevEdge = currEdge;
429 currEdge = currEdge->fNext;
430 }
431 } else {
432 // if prev to right side of curr
433 int side = winding*compute_side(currEdge->fOffset.fP0,
434 currEdge->fOffset.fV,
435 prevEdge->fOffset.fP0);
436 if (side < 0 &&
437 side == winding*compute_side(currEdge->fOffset.fP0,
438 currEdge->fOffset.fV,
439 prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
440 // no point in considering this one again
441 remove_node(prevEdge, &head);
442 --insetVertexCount;
443 // go back one segment
444 prevEdge = prevEdge->fPrev;
445 } else {
446 // move to next segment
447 remove_node(currEdge, &head);
448 --insetVertexCount;
449 currEdge = currEdge->fNext;
450 }
451 }
452 }
453
454 // store all the valid intersections that aren't nearly coincident
455 // TODO: look at the main algorithm and see if we can detect these better
456 insetPolygon->reset();
457 if (!head) {
458 return false;
459 }
460
461 static constexpr SkScalar kCleanupTolerance = 0.01f;
462 if (insetVertexCount >= 0) {
463 insetPolygon->reserve(insetVertexCount);
464 }
465 int currIndex = 0;
466 *insetPolygon->append() = head->fIntersection;
467 currEdge = head->fNext;
468 while (currEdge != head) {
469 if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
470 (*insetPolygon)[currIndex],
471 kCleanupTolerance)) {
472 *insetPolygon->append() = currEdge->fIntersection;
473 currIndex++;
474 }
475 currEdge = currEdge->fNext;
476 }
477 // make sure the first and last points aren't coincident
478 if (currIndex >= 1 &&
479 SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
480 kCleanupTolerance)) {
481 insetPolygon->pop_back();
482 }
483
484 return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->size());
485 }
486
487 ///////////////////////////////////////////////////////////////////////////////////////////
488
489 // compute the number of points needed for a circular join when offsetting a reflex vertex
SkComputeRadialSteps(const SkVector & v1,const SkVector & v2,SkScalar offset,SkScalar * rotSin,SkScalar * rotCos,int * n)490 bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
491 SkScalar* rotSin, SkScalar* rotCos, int* n) {
492 const SkScalar kRecipPixelsPerArcSegment = 0.25f;
493
494 SkScalar rCos = v1.dot(v2);
495 if (!SkIsFinite(rCos)) {
496 return false;
497 }
498 SkScalar rSin = v1.cross(v2);
499 if (!SkIsFinite(rSin)) {
500 return false;
501 }
502 SkScalar theta = SkScalarATan2(rSin, rCos);
503
504 SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
505 // limit the number of steps to at most max uint16_t (that's all we can index)
506 // knock one value off the top to account for rounding
507 if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
508 return false;
509 }
510 int steps = SkScalarRoundToInt(floatSteps);
511
512 SkScalar dTheta = steps > 0 ? theta / steps : 0;
513 *rotSin = SkScalarSin(dTheta);
514 *rotCos = SkScalarCos(dTheta);
515 // Our offset may be so large that we end up with a tiny dTheta, in which case we
516 // lose precision when computing rotSin and rotCos.
517 if (steps > 0 && (*rotSin == 0 || *rotCos == 1)) {
518 return false;
519 }
520 *n = steps;
521 return true;
522 }
523
524 ///////////////////////////////////////////////////////////////////////////////////////////
525
526 // a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
left(const SkPoint & p0,const SkPoint & p1)527 static bool left(const SkPoint& p0, const SkPoint& p1) {
528 return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
529 }
530
531 // a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
right(const SkPoint & p0,const SkPoint & p1)532 static bool right(const SkPoint& p0, const SkPoint& p1) {
533 return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
534 }
535
536 struct Vertex {
LeftVertex537 static bool Left(const Vertex& qv0, const Vertex& qv1) {
538 return left(qv0.fPosition, qv1.fPosition);
539 }
540
541 // packed to fit into 16 bytes (one cache line)
542 SkPoint fPosition;
543 uint16_t fIndex; // index in unsorted polygon
544 uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
545 uint16_t fNextIndex;
546 uint16_t fFlags;
547 };
548
549 enum VertexFlags {
550 kPrevLeft_VertexFlag = 0x1,
551 kNextLeft_VertexFlag = 0x2,
552 };
553
554 struct ActiveEdge {
ActiveEdgeActiveEdge555 ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
ActiveEdgeActiveEdge556 ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
557 : fSegment({ p0, v })
558 , fIndex0(index0)
559 , fIndex1(index1)
560 , fAbove(nullptr)
561 , fBelow(nullptr)
562 , fRed(true) {
563 fChild[0] = nullptr;
564 fChild[1] = nullptr;
565 }
566
567 // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
568 // This is only used to verify the edgelist -- the actual test for insertion/deletion is much
569 // simpler because we can make certain assumptions then.
aboveIfLeftActiveEdge570 bool aboveIfLeft(const ActiveEdge* that) const {
571 const SkPoint& p0 = this->fSegment.fP0;
572 const SkPoint& q0 = that->fSegment.fP0;
573 SkASSERT(p0.fX <= q0.fX);
574 SkVector d = q0 - p0;
575 const SkVector& v = this->fSegment.fV;
576 const SkVector& w = that->fSegment.fV;
577 // The idea here is that if the vector between the origins of the two segments (d)
578 // rotates counterclockwise up to the vector representing the "this" segment (v),
579 // then we know that "this" is above "that". If the result is clockwise we say it's below.
580 if (this->fIndex0 != that->fIndex0) {
581 SkScalar cross = d.cross(v);
582 if (cross > kCrossTolerance) {
583 return true;
584 } else if (cross < -kCrossTolerance) {
585 return false;
586 }
587 } else if (this->fIndex1 == that->fIndex1) {
588 return false;
589 }
590 // At this point either the two origins are nearly equal or the origin of "that"
591 // lies on dv. So then we try the same for the vector from the tail of "this"
592 // to the head of "that". Again, ccw means "this" is above "that".
593 // d = that.P1 - this.P0
594 // = that.fP0 + that.fV - this.fP0
595 // = that.fP0 - this.fP0 + that.fV
596 // = old_d + that.fV
597 d += w;
598 SkScalar cross = d.cross(v);
599 if (cross > kCrossTolerance) {
600 return true;
601 } else if (cross < -kCrossTolerance) {
602 return false;
603 }
604 // If the previous check fails, the two segments are nearly collinear
605 // First check y-coord of first endpoints
606 if (p0.fX < q0.fX) {
607 return (p0.fY >= q0.fY);
608 } else if (p0.fY > q0.fY) {
609 return true;
610 } else if (p0.fY < q0.fY) {
611 return false;
612 }
613 // The first endpoints are the same, so check the other endpoint
614 SkPoint p1 = p0 + v;
615 SkPoint q1 = q0 + w;
616 if (p1.fX < q1.fX) {
617 return (p1.fY >= q1.fY);
618 } else {
619 return (p1.fY > q1.fY);
620 }
621 }
622
623 // same as leftAndAbove(), but generalized
aboveActiveEdge624 bool above(const ActiveEdge* that) const {
625 const SkPoint& p0 = this->fSegment.fP0;
626 const SkPoint& q0 = that->fSegment.fP0;
627 if (right(p0, q0)) {
628 return !that->aboveIfLeft(this);
629 } else {
630 return this->aboveIfLeft(that);
631 }
632 }
633
intersectActiveEdge634 bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
635 // check first to see if these edges are neighbors in the polygon
636 if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
637 this->fIndex0 == index1 || this->fIndex1 == index1) {
638 return false;
639 }
640
641 // We don't need the exact intersection point so we can do a simpler test here.
642 const SkPoint& p0 = this->fSegment.fP0;
643 const SkVector& v = this->fSegment.fV;
644 SkPoint p1 = p0 + v;
645 SkPoint q1 = q0 + w;
646
647 // We assume some x-overlap due to how the edgelist works
648 // This allows us to simplify our test
649 // We need some slop here because storing the vector and recomputing the second endpoint
650 // doesn't necessary give us the original result in floating point.
651 // TODO: Store vector as double? Store endpoint as well?
652 SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
653
654 // if each segment straddles the other (i.e., the endpoints have different sides)
655 // then they intersect
656 bool result;
657 if (p0.fX < q0.fX) {
658 if (q1.fX < p1.fX) {
659 result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
660 } else {
661 result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
662 }
663 } else {
664 if (p1.fX < q1.fX) {
665 result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
666 } else {
667 result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
668 }
669 }
670 return result;
671 }
672
intersectActiveEdge673 bool intersect(const ActiveEdge* edge) {
674 return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
675 }
676
lessThanActiveEdge677 bool lessThan(const ActiveEdge* that) const {
678 SkASSERT(!this->above(this));
679 SkASSERT(!that->above(that));
680 SkASSERT(!(this->above(that) && that->above(this)));
681 return this->above(that);
682 }
683
equalsActiveEdge684 bool equals(uint16_t index0, uint16_t index1) const {
685 return (this->fIndex0 == index0 && this->fIndex1 == index1);
686 }
687
688 OffsetSegment fSegment;
689 uint16_t fIndex0; // indices for previous and next vertex in polygon
690 uint16_t fIndex1;
691 ActiveEdge* fChild[2];
692 ActiveEdge* fAbove;
693 ActiveEdge* fBelow;
694 int32_t fRed;
695 };
696
697 class ActiveEdgeList {
698 public:
ActiveEdgeList(int maxEdges)699 ActiveEdgeList(int maxEdges) {
700 fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
701 fCurrFree = 0;
702 fMaxFree = maxEdges;
703 }
~ActiveEdgeList()704 ~ActiveEdgeList() {
705 fTreeHead.fChild[1] = nullptr;
706 sk_free(fAllocation);
707 }
708
insert(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)709 bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
710 SkVector v = p1 - p0;
711 if (!v.isFinite()) {
712 return false;
713 }
714 // empty tree case -- easy
715 if (!fTreeHead.fChild[1]) {
716 ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
717 SkASSERT(root);
718 if (!root) {
719 return false;
720 }
721 root->fRed = false;
722 return true;
723 }
724
725 // set up helpers
726 ActiveEdge* top = &fTreeHead;
727 ActiveEdge *grandparent = nullptr;
728 ActiveEdge *parent = nullptr;
729 ActiveEdge *curr = top->fChild[1];
730 int dir = 0;
731 int last = 0; // ?
732 // predecessor and successor, for intersection check
733 ActiveEdge* pred = nullptr;
734 ActiveEdge* succ = nullptr;
735
736 // search down the tree
737 while (true) {
738 if (!curr) {
739 // check for intersection with predecessor and successor
740 if ((pred && pred->intersect(p0, v, index0, index1)) ||
741 (succ && succ->intersect(p0, v, index0, index1))) {
742 return false;
743 }
744 // insert new node at bottom
745 parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
746 SkASSERT(curr);
747 if (!curr) {
748 return false;
749 }
750 curr->fAbove = pred;
751 curr->fBelow = succ;
752 if (pred) {
753 if (pred->fSegment.fP0 == curr->fSegment.fP0 &&
754 pred->fSegment.fV == curr->fSegment.fV) {
755 return false;
756 }
757 pred->fBelow = curr;
758 }
759 if (succ) {
760 if (succ->fSegment.fP0 == curr->fSegment.fP0 &&
761 succ->fSegment.fV == curr->fSegment.fV) {
762 return false;
763 }
764 succ->fAbove = curr;
765 }
766 if (IsRed(parent)) {
767 int dir2 = (top->fChild[1] == grandparent);
768 if (curr == parent->fChild[last]) {
769 top->fChild[dir2] = SingleRotation(grandparent, !last);
770 } else {
771 top->fChild[dir2] = DoubleRotation(grandparent, !last);
772 }
773 }
774 break;
775 } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
776 // color flip
777 curr->fRed = true;
778 curr->fChild[0]->fRed = false;
779 curr->fChild[1]->fRed = false;
780 if (IsRed(parent)) {
781 int dir2 = (top->fChild[1] == grandparent);
782 if (curr == parent->fChild[last]) {
783 top->fChild[dir2] = SingleRotation(grandparent, !last);
784 } else {
785 top->fChild[dir2] = DoubleRotation(grandparent, !last);
786 }
787 }
788 }
789
790 last = dir;
791 int side;
792 // check to see if segment is above or below
793 if (curr->fIndex0 == index0) {
794 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
795 } else {
796 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
797 }
798 if (0 == side) {
799 return false;
800 }
801 dir = (side < 0);
802
803 if (0 == dir) {
804 succ = curr;
805 } else {
806 pred = curr;
807 }
808
809 // update helpers
810 if (grandparent) {
811 top = grandparent;
812 }
813 grandparent = parent;
814 parent = curr;
815 curr = curr->fChild[dir];
816 }
817
818 // update root and make it black
819 fTreeHead.fChild[1]->fRed = false;
820
821 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
822
823 return true;
824 }
825
826 // replaces edge p0p1 with p1p2
replace(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t index0,uint16_t index1,uint16_t index2)827 bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
828 uint16_t index0, uint16_t index1, uint16_t index2) {
829 if (!fTreeHead.fChild[1]) {
830 return false;
831 }
832
833 SkVector v = p2 - p1;
834 ActiveEdge* curr = &fTreeHead;
835 ActiveEdge* found = nullptr;
836 int dir = 1;
837
838 // search
839 while (curr->fChild[dir] != nullptr) {
840 // update helpers
841 curr = curr->fChild[dir];
842 // save found node
843 if (curr->equals(index0, index1)) {
844 found = curr;
845 break;
846 } else {
847 // check to see if segment is above or below
848 int side;
849 if (curr->fIndex1 == index1) {
850 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
851 } else {
852 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
853 }
854 if (0 == side) {
855 return false;
856 }
857 dir = (side < 0);
858 }
859 }
860
861 if (!found) {
862 return false;
863 }
864
865 // replace if found
866 ActiveEdge* pred = found->fAbove;
867 ActiveEdge* succ = found->fBelow;
868 // check deletion and insert intersection cases
869 if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
870 return false;
871 }
872 if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
873 return false;
874 }
875 found->fSegment.fP0 = p1;
876 found->fSegment.fV = v;
877 found->fIndex0 = index1;
878 found->fIndex1 = index2;
879 // above and below should stay the same
880
881 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
882
883 return true;
884 }
885
remove(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)886 bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
887 if (!fTreeHead.fChild[1]) {
888 return false;
889 }
890
891 ActiveEdge* curr = &fTreeHead;
892 ActiveEdge* parent = nullptr;
893 ActiveEdge* grandparent = nullptr;
894 ActiveEdge* found = nullptr;
895 int dir = 1;
896
897 // search and push a red node down
898 while (curr->fChild[dir] != nullptr) {
899 int last = dir;
900
901 // update helpers
902 grandparent = parent;
903 parent = curr;
904 curr = curr->fChild[dir];
905 // save found node
906 if (curr->equals(index0, index1)) {
907 found = curr;
908 dir = 0;
909 } else {
910 // check to see if segment is above or below
911 int side;
912 if (curr->fIndex1 == index1) {
913 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
914 } else {
915 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
916 }
917 if (0 == side) {
918 return false;
919 }
920 dir = (side < 0);
921 }
922
923 // push the red node down
924 if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
925 if (IsRed(curr->fChild[!dir])) {
926 parent = parent->fChild[last] = SingleRotation(curr, dir);
927 } else {
928 ActiveEdge *s = parent->fChild[!last];
929
930 if (s != nullptr) {
931 if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
932 // color flip
933 parent->fRed = false;
934 s->fRed = true;
935 curr->fRed = true;
936 } else {
937 int dir2 = (grandparent->fChild[1] == parent);
938
939 if (IsRed(s->fChild[last])) {
940 grandparent->fChild[dir2] = DoubleRotation(parent, last);
941 } else if (IsRed(s->fChild[!last])) {
942 grandparent->fChild[dir2] = SingleRotation(parent, last);
943 }
944
945 // ensure correct coloring
946 curr->fRed = grandparent->fChild[dir2]->fRed = true;
947 grandparent->fChild[dir2]->fChild[0]->fRed = false;
948 grandparent->fChild[dir2]->fChild[1]->fRed = false;
949 }
950 }
951 }
952 }
953 }
954
955 // replace and remove if found
956 if (found) {
957 ActiveEdge* pred = found->fAbove;
958 ActiveEdge* succ = found->fBelow;
959 if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
960 return false;
961 }
962 if (found != curr) {
963 found->fSegment = curr->fSegment;
964 found->fIndex0 = curr->fIndex0;
965 found->fIndex1 = curr->fIndex1;
966 found->fAbove = curr->fAbove;
967 pred = found->fAbove;
968 // we don't need to set found->fBelow here
969 } else {
970 if (succ) {
971 succ->fAbove = pred;
972 }
973 }
974 if (pred) {
975 pred->fBelow = curr->fBelow;
976 }
977 parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
978
979 // no need to delete
980 curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
981 curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
982 if (fTreeHead.fChild[1]) {
983 fTreeHead.fChild[1]->fRed = false;
984 }
985 }
986
987 // update root and make it black
988 if (fTreeHead.fChild[1]) {
989 fTreeHead.fChild[1]->fRed = false;
990 }
991
992 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
993
994 return true;
995 }
996
997 private:
998 // allocator
allocate(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)999 ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
1000 if (fCurrFree >= fMaxFree) {
1001 return nullptr;
1002 }
1003 char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
1004 ++fCurrFree;
1005 return new(bytes) ActiveEdge(p0, p1, index0, index1);
1006 }
1007
1008 ///////////////////////////////////////////////////////////////////////////////////
1009 // Red-black tree methods
1010 ///////////////////////////////////////////////////////////////////////////////////
IsRed(const ActiveEdge * node)1011 static bool IsRed(const ActiveEdge* node) {
1012 return node && node->fRed;
1013 }
1014
SingleRotation(ActiveEdge * node,int dir)1015 static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
1016 ActiveEdge* tmp = node->fChild[!dir];
1017
1018 node->fChild[!dir] = tmp->fChild[dir];
1019 tmp->fChild[dir] = node;
1020
1021 node->fRed = true;
1022 tmp->fRed = false;
1023
1024 return tmp;
1025 }
1026
DoubleRotation(ActiveEdge * node,int dir)1027 static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
1028 node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
1029
1030 return SingleRotation(node, dir);
1031 }
1032
1033 // returns black link count
VerifyTree(const ActiveEdge * tree)1034 static int VerifyTree(const ActiveEdge* tree) {
1035 if (!tree) {
1036 return 1;
1037 }
1038
1039 const ActiveEdge* left = tree->fChild[0];
1040 const ActiveEdge* right = tree->fChild[1];
1041
1042 // no consecutive red links
1043 if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
1044 SkASSERT(false);
1045 return 0;
1046 }
1047
1048 // check secondary links
1049 if (tree->fAbove) {
1050 SkASSERT(tree->fAbove->fBelow == tree);
1051 SkASSERT(tree->fAbove->lessThan(tree));
1052 }
1053 if (tree->fBelow) {
1054 SkASSERT(tree->fBelow->fAbove == tree);
1055 SkASSERT(tree->lessThan(tree->fBelow));
1056 }
1057
1058 // violates binary tree order
1059 if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
1060 SkASSERT(false);
1061 return 0;
1062 }
1063
1064 int leftCount = VerifyTree(left);
1065 int rightCount = VerifyTree(right);
1066
1067 // return black link count
1068 if (leftCount != 0 && rightCount != 0) {
1069 // black height mismatch
1070 if (leftCount != rightCount) {
1071 SkASSERT(false);
1072 return 0;
1073 }
1074 return IsRed(tree) ? leftCount : leftCount + 1;
1075 } else {
1076 return 0;
1077 }
1078 }
1079
1080 ActiveEdge fTreeHead;
1081 char* fAllocation;
1082 int fCurrFree;
1083 int fMaxFree;
1084 };
1085
1086 // Here we implement a sweep line algorithm to determine whether the provided points
1087 // represent a simple polygon, i.e., the polygon is non-self-intersecting.
1088 // We first insert the vertices into a priority queue sorting horizontally from left to right.
1089 // Then as we pop the vertices from the queue we generate events which indicate that an edge
1090 // should be added or removed from an edge list. If any intersections are detected in the edge
1091 // list, then we know the polygon is self-intersecting and hence not simple.
SkIsSimplePolygon(const SkPoint * polygon,int polygonSize)1092 bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
1093 if (polygonSize < 3) {
1094 return false;
1095 }
1096
1097 // If it's convex, it's simple
1098 if (SkIsConvexPolygon(polygon, polygonSize)) {
1099 return true;
1100 }
1101
1102 // practically speaking, it takes too long to process large polygons
1103 if (polygonSize > 2048) {
1104 return false;
1105 }
1106
1107 SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
1108 for (int i = 0; i < polygonSize; ++i) {
1109 Vertex newVertex;
1110 if (!polygon[i].isFinite()) {
1111 return false;
1112 }
1113 newVertex.fPosition = polygon[i];
1114 newVertex.fIndex = i;
1115 newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
1116 newVertex.fNextIndex = (i + 1) % polygonSize;
1117 newVertex.fFlags = 0;
1118 // The two edges adjacent to this vertex are the same, so polygon is not simple
1119 if (polygon[newVertex.fPrevIndex] == polygon[newVertex.fNextIndex]) {
1120 return false;
1121 }
1122 if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
1123 newVertex.fFlags |= kPrevLeft_VertexFlag;
1124 }
1125 if (left(polygon[newVertex.fNextIndex], polygon[i])) {
1126 newVertex.fFlags |= kNextLeft_VertexFlag;
1127 }
1128 vertexQueue.insert(newVertex);
1129 }
1130
1131 // pop each vertex from the queue and generate events depending on
1132 // where it lies relative to its neighboring edges
1133 ActiveEdgeList sweepLine(polygonSize);
1134 while (vertexQueue.count() > 0) {
1135 const Vertex& v = vertexQueue.peek();
1136
1137 // both to the right -- insert both
1138 if (v.fFlags == 0) {
1139 if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
1140 break;
1141 }
1142 if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
1143 break;
1144 }
1145 // both to the left -- remove both
1146 } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
1147 if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
1148 break;
1149 }
1150 if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
1151 break;
1152 }
1153 // one to left and right -- replace one with another
1154 } else {
1155 if (v.fFlags & kPrevLeft_VertexFlag) {
1156 if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
1157 v.fPrevIndex, v.fIndex, v.fNextIndex)) {
1158 break;
1159 }
1160 } else {
1161 SkASSERT(v.fFlags & kNextLeft_VertexFlag);
1162 if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
1163 v.fNextIndex, v.fIndex, v.fPrevIndex)) {
1164 break;
1165 }
1166 }
1167 }
1168
1169 vertexQueue.pop();
1170 }
1171
1172 return (vertexQueue.count() == 0);
1173 }
1174
1175 ///////////////////////////////////////////////////////////////////////////////////////////
1176
1177 // helper function for SkOffsetSimplePolygon
setup_offset_edge(OffsetEdge * currEdge,const SkPoint & endpoint0,const SkPoint & endpoint1,uint16_t startIndex,uint16_t endIndex)1178 static void setup_offset_edge(OffsetEdge* currEdge,
1179 const SkPoint& endpoint0, const SkPoint& endpoint1,
1180 uint16_t startIndex, uint16_t endIndex) {
1181 currEdge->fOffset.fP0 = endpoint0;
1182 currEdge->fOffset.fV = endpoint1 - endpoint0;
1183 currEdge->init(startIndex, endIndex);
1184 }
1185
is_reflex_vertex(const SkPoint * inputPolygonVerts,int winding,SkScalar offset,uint16_t prevIndex,uint16_t currIndex,uint16_t nextIndex)1186 static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
1187 uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
1188 int side = compute_side(inputPolygonVerts[prevIndex],
1189 inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
1190 inputPolygonVerts[nextIndex]);
1191 // if reflex point, we need to add extra edges
1192 return (side*winding*offset < 0);
1193 }
1194
SkOffsetSimplePolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,const SkRect & bounds,SkScalar offset,SkTDArray<SkPoint> * offsetPolygon,SkTDArray<int> * polygonIndices)1195 bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
1196 const SkRect& bounds, SkScalar offset,
1197 SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
1198 if (inputPolygonSize < 3) {
1199 return false;
1200 }
1201
1202 // need to be able to represent all the vertices in the 16-bit indices
1203 if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
1204 return false;
1205 }
1206
1207 if (!SkIsFinite(offset)) {
1208 return false;
1209 }
1210
1211 // can't inset more than the half bounds of the polygon
1212 if (offset > std::min(SkTAbs(SkRectPriv::HalfWidth(bounds)),
1213 SkTAbs(SkRectPriv::HalfHeight(bounds)))) {
1214 return false;
1215 }
1216
1217 // offsetting close to zero just returns the original poly
1218 if (SkScalarNearlyZero(offset)) {
1219 for (int i = 0; i < inputPolygonSize; ++i) {
1220 *offsetPolygon->append() = inputPolygonVerts[i];
1221 if (polygonIndices) {
1222 *polygonIndices->append() = i;
1223 }
1224 }
1225 return true;
1226 }
1227
1228 // get winding direction
1229 int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
1230 if (0 == winding) {
1231 return false;
1232 }
1233
1234 // build normals
1235 AutoSTMalloc<64, SkVector> normals(inputPolygonSize);
1236 unsigned int numEdges = 0;
1237 for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1238 currIndex < inputPolygonSize;
1239 prevIndex = currIndex, ++currIndex) {
1240 if (!inputPolygonVerts[currIndex].isFinite()) {
1241 return false;
1242 }
1243 int nextIndex = (currIndex + 1) % inputPolygonSize;
1244 if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
1245 offset, winding, &normals[currIndex])) {
1246 return false;
1247 }
1248 if (currIndex > 0) {
1249 // if reflex point, we need to add extra edges
1250 if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1251 prevIndex, currIndex, nextIndex)) {
1252 SkScalar rotSin, rotCos;
1253 int numSteps;
1254 if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
1255 &rotSin, &rotCos, &numSteps)) {
1256 return false;
1257 }
1258 numEdges += std::max(numSteps, 1);
1259 }
1260 }
1261 numEdges++;
1262 }
1263 // finish up the edge counting
1264 if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
1265 SkScalar rotSin, rotCos;
1266 int numSteps;
1267 if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
1268 &rotSin, &rotCos, &numSteps)) {
1269 return false;
1270 }
1271 numEdges += std::max(numSteps, 1);
1272 }
1273
1274 // Make sure we don't overflow the max array count.
1275 // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
1276 // and we have a max of 2^16-1 original vertices.
1277 if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
1278 return false;
1279 }
1280
1281 // build initial offset edge list
1282 STArray<64, OffsetEdge> edgeData(numEdges);
1283 OffsetEdge* prevEdge = nullptr;
1284 for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1285 currIndex < inputPolygonSize;
1286 prevIndex = currIndex, ++currIndex) {
1287 int nextIndex = (currIndex + 1) % inputPolygonSize;
1288 // if reflex point, fill in curve
1289 if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1290 prevIndex, currIndex, nextIndex)) {
1291 SkScalar rotSin, rotCos;
1292 int numSteps;
1293 SkVector prevNormal = normals[prevIndex];
1294 if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
1295 &rotSin, &rotCos, &numSteps)) {
1296 return false;
1297 }
1298 auto currEdge = edgeData.push_back_n(std::max(numSteps, 1));
1299 for (int i = 0; i < numSteps - 1; ++i) {
1300 SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
1301 prevNormal.fY*rotCos + prevNormal.fX*rotSin);
1302 setup_offset_edge(currEdge,
1303 inputPolygonVerts[currIndex] + prevNormal,
1304 inputPolygonVerts[currIndex] + currNormal,
1305 currIndex, currIndex);
1306 prevNormal = currNormal;
1307 currEdge->fPrev = prevEdge;
1308 if (prevEdge) {
1309 prevEdge->fNext = currEdge;
1310 }
1311 prevEdge = currEdge;
1312 ++currEdge;
1313 }
1314 setup_offset_edge(currEdge,
1315 inputPolygonVerts[currIndex] + prevNormal,
1316 inputPolygonVerts[currIndex] + normals[currIndex],
1317 currIndex, currIndex);
1318 currEdge->fPrev = prevEdge;
1319 if (prevEdge) {
1320 prevEdge->fNext = currEdge;
1321 }
1322 prevEdge = currEdge;
1323 }
1324
1325 // Add the edge
1326 auto currEdge = edgeData.push_back_n(1);
1327 setup_offset_edge(currEdge,
1328 inputPolygonVerts[currIndex] + normals[currIndex],
1329 inputPolygonVerts[nextIndex] + normals[currIndex],
1330 currIndex, nextIndex);
1331 currEdge->fPrev = prevEdge;
1332 if (prevEdge) {
1333 prevEdge->fNext = currEdge;
1334 }
1335 prevEdge = currEdge;
1336 }
1337 // close up the linked list
1338 SkASSERT(prevEdge);
1339 prevEdge->fNext = &edgeData[0];
1340 edgeData[0].fPrev = prevEdge;
1341
1342 // now clip edges
1343 SkASSERT(edgeData.size() == (int)numEdges);
1344 auto head = &edgeData[0];
1345 auto currEdge = head;
1346 unsigned int offsetVertexCount = numEdges;
1347 unsigned long long iterations = 0;
1348 unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
1349 while (head && prevEdge != currEdge && offsetVertexCount > 0) {
1350 ++iterations;
1351 // we should check each edge against each other edge at most once
1352 if (iterations > maxIterations) {
1353 return false;
1354 }
1355
1356 SkScalar s, t;
1357 SkPoint intersection;
1358 if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
1359 // if new intersection is further back on previous inset from the prior intersection
1360 if (s < prevEdge->fTValue) {
1361 // no point in considering this one again
1362 remove_node(prevEdge, &head);
1363 --offsetVertexCount;
1364 // go back one segment
1365 prevEdge = prevEdge->fPrev;
1366 // we've already considered this intersection, we're done
1367 } else if (currEdge->fTValue > SK_ScalarMin &&
1368 SkPointPriv::EqualsWithinTolerance(intersection,
1369 currEdge->fIntersection,
1370 1.0e-6f)) {
1371 break;
1372 } else {
1373 // add intersection
1374 currEdge->fIntersection = intersection;
1375 currEdge->fTValue = t;
1376 currEdge->fIndex = prevEdge->fEnd;
1377
1378 // go to next segment
1379 prevEdge = currEdge;
1380 currEdge = currEdge->fNext;
1381 }
1382 } else {
1383 // If there is no intersection, we want to minimize the distance between
1384 // the point where the segment lines cross and the segments themselves.
1385 OffsetEdge* prevPrevEdge = prevEdge->fPrev;
1386 OffsetEdge* currNextEdge = currEdge->fNext;
1387 SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
1388 SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
1389 // if both lead to direct collision
1390 if (dist0 < 0 && dist1 < 0) {
1391 // check first to see if either represent parts of one contour
1392 SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
1393 bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1394 prevEdge->fOffset.fP0);
1395 p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
1396 bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1397 currNextEdge->fOffset.fP0);
1398
1399 // want to step along contour to find intersections rather than jump to new one
1400 if (currSameContour && !prevSameContour) {
1401 remove_node(currEdge, &head);
1402 currEdge = currNextEdge;
1403 --offsetVertexCount;
1404 continue;
1405 } else if (prevSameContour && !currSameContour) {
1406 remove_node(prevEdge, &head);
1407 prevEdge = prevPrevEdge;
1408 --offsetVertexCount;
1409 continue;
1410 }
1411 }
1412
1413 // otherwise minimize collision distance along segment
1414 if (dist0 < dist1) {
1415 remove_node(prevEdge, &head);
1416 prevEdge = prevPrevEdge;
1417 } else {
1418 remove_node(currEdge, &head);
1419 currEdge = currNextEdge;
1420 }
1421 --offsetVertexCount;
1422 }
1423 }
1424
1425 // store all the valid intersections that aren't nearly coincident
1426 // TODO: look at the main algorithm and see if we can detect these better
1427 offsetPolygon->reset();
1428 if (!head || offsetVertexCount == 0 ||
1429 offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
1430 return false;
1431 }
1432
1433 static constexpr SkScalar kCleanupTolerance = 0.01f;
1434 offsetPolygon->reserve(offsetVertexCount);
1435 int currIndex = 0;
1436 *offsetPolygon->append() = head->fIntersection;
1437 if (polygonIndices) {
1438 *polygonIndices->append() = head->fIndex;
1439 }
1440 currEdge = head->fNext;
1441 while (currEdge != head) {
1442 if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
1443 (*offsetPolygon)[currIndex],
1444 kCleanupTolerance)) {
1445 *offsetPolygon->append() = currEdge->fIntersection;
1446 if (polygonIndices) {
1447 *polygonIndices->append() = currEdge->fIndex;
1448 }
1449 currIndex++;
1450 }
1451 currEdge = currEdge->fNext;
1452 }
1453 // make sure the first and last points aren't coincident
1454 if (currIndex >= 1 &&
1455 SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
1456 kCleanupTolerance)) {
1457 offsetPolygon->pop_back();
1458 if (polygonIndices) {
1459 polygonIndices->pop_back();
1460 }
1461 }
1462
1463 // check winding of offset polygon (it should be same as the original polygon)
1464 SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->size());
1465
1466 return (winding*offsetWinding > 0 &&
1467 SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->size()));
1468 }
1469
1470 //////////////////////////////////////////////////////////////////////////////////////////
1471
1472 struct TriangulationVertex {
1473 SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
1474
1475 enum class VertexType { kConvex, kReflex };
1476
1477 SkPoint fPosition;
1478 VertexType fVertexType;
1479 uint16_t fIndex;
1480 uint16_t fPrevIndex;
1481 uint16_t fNextIndex;
1482 };
1483
compute_triangle_bounds(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkRect * bounds)1484 static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1485 SkRect* bounds) {
1486 skvx::float4 min, max;
1487 min = max = skvx::float4(p0.fX, p0.fY, p0.fX, p0.fY);
1488 skvx::float4 xy(p1.fX, p1.fY, p2.fX, p2.fY);
1489 min = skvx::min(min, xy);
1490 max = skvx::max(max, xy);
1491 bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
1492 std::max(max[0], max[2]), std::max(max[1], max[3]));
1493 }
1494
1495 // test to see if point p is in triangle p0p1p2.
1496 // for now assuming strictly inside -- if on the edge it's outside
point_in_triangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p)1497 static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1498 const SkPoint& p) {
1499 SkVector v0 = p1 - p0;
1500 SkVector v1 = p2 - p1;
1501 SkScalar n = v0.cross(v1);
1502
1503 SkVector w0 = p - p0;
1504 if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
1505 return false;
1506 }
1507
1508 SkVector w1 = p - p1;
1509 if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
1510 return false;
1511 }
1512
1513 SkVector v2 = p0 - p2;
1514 SkVector w2 = p - p2;
1515 if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
1516 return false;
1517 }
1518
1519 return true;
1520 }
1521
1522 // Data structure to track reflex vertices and check whether any are inside a given triangle
1523 class ReflexHash {
1524 public:
init(const SkRect & bounds,int vertexCount)1525 bool init(const SkRect& bounds, int vertexCount) {
1526 fBounds = bounds;
1527 fNumVerts = 0;
1528 SkScalar width = bounds.width();
1529 SkScalar height = bounds.height();
1530 if (!SkIsFinite(width, height)) {
1531 return false;
1532 }
1533
1534 // We want vertexCount grid cells, roughly distributed to match the bounds ratio
1535 SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
1536 if (!SkIsFinite(hCount)) {
1537 return false;
1538 }
1539 fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1);
1540 fVCount = vertexCount/fHCount;
1541 fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
1542 sk_ieee_float_divide(fVCount - 0.001f, height));
1543 if (!fGridConversion.isFinite()) {
1544 return false;
1545 }
1546
1547 fGrid.resize(fHCount*fVCount);
1548 for (int i = 0; i < fGrid.size(); ++i) {
1549 fGrid[i].reset();
1550 }
1551
1552 return true;
1553 }
1554
add(TriangulationVertex * v)1555 void add(TriangulationVertex* v) {
1556 int index = hash(v);
1557 fGrid[index].addToTail(v);
1558 ++fNumVerts;
1559 }
1560
remove(TriangulationVertex * v)1561 void remove(TriangulationVertex* v) {
1562 int index = hash(v);
1563 fGrid[index].remove(v);
1564 --fNumVerts;
1565 }
1566
checkTriangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t ignoreIndex0,uint16_t ignoreIndex1) const1567 bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1568 uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
1569 if (!fNumVerts) {
1570 return false;
1571 }
1572
1573 SkRect triBounds;
1574 compute_triangle_bounds(p0, p1, p2, &triBounds);
1575 int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
1576 int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
1577 int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
1578 int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
1579
1580 for (int v = v0; v <= v1; ++v) {
1581 for (int h = h0; h <= h1; ++h) {
1582 int i = v * fHCount + h;
1583 for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
1584 reflexIter != fGrid[i].end(); ++reflexIter) {
1585 TriangulationVertex* reflexVertex = *reflexIter;
1586 if (reflexVertex->fIndex != ignoreIndex0 &&
1587 reflexVertex->fIndex != ignoreIndex1 &&
1588 point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
1589 return true;
1590 }
1591 }
1592
1593 }
1594 }
1595
1596 return false;
1597 }
1598
1599 private:
hash(TriangulationVertex * vert) const1600 int hash(TriangulationVertex* vert) const {
1601 int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
1602 int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
1603 SkASSERT(v*fHCount + h >= 0);
1604 return v*fHCount + h;
1605 }
1606
1607 SkRect fBounds;
1608 int fHCount;
1609 int fVCount;
1610 int fNumVerts;
1611 // converts distance from the origin to a grid location (when cast to int)
1612 SkVector fGridConversion;
1613 SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
1614 };
1615
1616 // Check to see if a reflex vertex has become a convex vertex after clipping an ear
reclassify_vertex(TriangulationVertex * p,const SkPoint * polygonVerts,int winding,ReflexHash * reflexHash,SkTInternalLList<TriangulationVertex> * convexList)1617 static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
1618 int winding, ReflexHash* reflexHash,
1619 SkTInternalLList<TriangulationVertex>* convexList) {
1620 if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
1621 SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
1622 SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
1623 if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1624 p->fVertexType = TriangulationVertex::VertexType::kConvex;
1625 reflexHash->remove(p);
1626 p->fPrev = p->fNext = nullptr;
1627 convexList->addToTail(p);
1628 }
1629 }
1630 }
1631
SkTriangulateSimplePolygon(const SkPoint * polygonVerts,uint16_t * indexMap,int polygonSize,SkTDArray<uint16_t> * triangleIndices)1632 bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
1633 SkTDArray<uint16_t>* triangleIndices) {
1634 if (polygonSize < 3) {
1635 return false;
1636 }
1637 // need to be able to represent all the vertices in the 16-bit indices
1638 if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
1639 return false;
1640 }
1641
1642 // get bounds
1643 SkRect bounds;
1644 if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
1645 return false;
1646 }
1647 // get winding direction
1648 // TODO: we do this for all the polygon routines -- might be better to have the client
1649 // compute it and pass it in
1650 int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
1651 if (0 == winding) {
1652 return false;
1653 }
1654
1655 // Set up vertices
1656 AutoSTArray<64, TriangulationVertex> triangulationVertices(polygonSize);
1657 int prevIndex = polygonSize - 1;
1658 SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
1659 for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
1660 int nextIndex = (currIndex + 1) % polygonSize;
1661
1662 triangulationVertices[currIndex] = TriangulationVertex{};
1663 triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
1664 triangulationVertices[currIndex].fIndex = currIndex;
1665 triangulationVertices[currIndex].fPrevIndex = prevIndex;
1666 triangulationVertices[currIndex].fNextIndex = nextIndex;
1667 SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
1668 if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1669 triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
1670 } else {
1671 triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
1672 }
1673
1674 prevIndex = currIndex;
1675 v0 = v1;
1676 }
1677
1678 // Classify initial vertices into a list of convex vertices and a hash of reflex vertices
1679 // TODO: possibly sort the convexList in some way to get better triangles
1680 SkTInternalLList<TriangulationVertex> convexList;
1681 ReflexHash reflexHash;
1682 if (!reflexHash.init(bounds, polygonSize)) {
1683 return false;
1684 }
1685 prevIndex = polygonSize - 1;
1686 for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
1687 TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
1688 if (TriangulationVertex::VertexType::kConvex == currType) {
1689 int nextIndex = (currIndex + 1) % polygonSize;
1690 TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
1691 TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
1692 // We prioritize clipping vertices with neighboring reflex vertices.
1693 // The intent here is that it will cull reflex vertices more quickly.
1694 if (TriangulationVertex::VertexType::kReflex == prevType ||
1695 TriangulationVertex::VertexType::kReflex == nextType) {
1696 convexList.addToHead(&triangulationVertices[currIndex]);
1697 } else {
1698 convexList.addToTail(&triangulationVertices[currIndex]);
1699 }
1700 } else {
1701 // We treat near collinear vertices as reflex
1702 reflexHash.add(&triangulationVertices[currIndex]);
1703 }
1704 }
1705
1706 // The general concept: We are trying to find three neighboring vertices where
1707 // no other vertex lies inside the triangle (an "ear"). If we find one, we clip
1708 // that ear off, and then repeat on the new polygon. Once we get down to three vertices
1709 // we have triangulated the entire polygon.
1710 // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
1711 // noting that only convex vertices can be potential ears, and we only need to check whether
1712 // any reflex vertices lie inside the ear.
1713 triangleIndices->reserve(triangleIndices->size() + 3 * (polygonSize - 2));
1714 int vertexCount = polygonSize;
1715 while (vertexCount > 3) {
1716 bool success = false;
1717 TriangulationVertex* earVertex = nullptr;
1718 TriangulationVertex* p0 = nullptr;
1719 TriangulationVertex* p2 = nullptr;
1720 // find a convex vertex to clip
1721 for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
1722 convexIter != convexList.end(); ++convexIter) {
1723 earVertex = *convexIter;
1724 SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
1725
1726 p0 = &triangulationVertices[earVertex->fPrevIndex];
1727 p2 = &triangulationVertices[earVertex->fNextIndex];
1728
1729 // see if any reflex vertices are inside the ear
1730 bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
1731 p2->fPosition, p0->fIndex, p2->fIndex);
1732 if (failed) {
1733 continue;
1734 }
1735
1736 // found one we can clip
1737 success = true;
1738 break;
1739 }
1740 // If we can't find any ears to clip, this probably isn't a simple polygon
1741 if (!success) {
1742 return false;
1743 }
1744
1745 // add indices
1746 auto indices = triangleIndices->append(3);
1747 indices[0] = indexMap[p0->fIndex];
1748 indices[1] = indexMap[earVertex->fIndex];
1749 indices[2] = indexMap[p2->fIndex];
1750
1751 // clip the ear
1752 convexList.remove(earVertex);
1753 --vertexCount;
1754
1755 // reclassify reflex verts
1756 p0->fNextIndex = earVertex->fNextIndex;
1757 reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
1758
1759 p2->fPrevIndex = earVertex->fPrevIndex;
1760 reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
1761 }
1762
1763 // output indices
1764 for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
1765 vertexIter != convexList.end(); ++vertexIter) {
1766 TriangulationVertex* vertex = *vertexIter;
1767 *triangleIndices->append() = indexMap[vertex->fIndex];
1768 }
1769
1770 return true;
1771 }
1772
1773 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
1774
1775