1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13 #include <linux/dcbnl.h>
14 #include <net/xfrm.h>
15
16 #include "otx2_reg.h"
17 #include "otx2_common.h"
18 #include "otx2_struct.h"
19 #include "cn10k.h"
20
otx2_is_pfc_enabled(struct otx2_nic * pfvf)21 static bool otx2_is_pfc_enabled(struct otx2_nic *pfvf)
22 {
23 return IS_ENABLED(CONFIG_DCB) && !!pfvf->pfc_en;
24 }
25
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)26 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
27 struct otx2_nic *pfvf, int qidx)
28 {
29 u64 incr = (u64)qidx << 32;
30 u64 *ptr;
31
32 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
33 stats->bytes = otx2_atomic64_add(incr, ptr);
34
35 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
36 stats->pkts = otx2_atomic64_add(incr, ptr);
37 }
38
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)39 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
40 struct otx2_nic *pfvf, int qidx)
41 {
42 u64 incr = (u64)qidx << 32;
43 u64 *ptr;
44
45 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
46 stats->bytes = otx2_atomic64_add(incr, ptr);
47
48 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
49 stats->pkts = otx2_atomic64_add(incr, ptr);
50 }
51
otx2_update_lmac_stats(struct otx2_nic * pfvf)52 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
53 {
54 struct msg_req *req;
55
56 if (!netif_running(pfvf->netdev))
57 return;
58
59 mutex_lock(&pfvf->mbox.lock);
60 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
61 if (!req) {
62 mutex_unlock(&pfvf->mbox.lock);
63 return;
64 }
65
66 otx2_sync_mbox_msg(&pfvf->mbox);
67 mutex_unlock(&pfvf->mbox.lock);
68 }
69
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)70 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
71 {
72 struct msg_req *req;
73
74 if (!netif_running(pfvf->netdev))
75 return;
76 mutex_lock(&pfvf->mbox.lock);
77 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
78 if (req)
79 otx2_sync_mbox_msg(&pfvf->mbox);
80 mutex_unlock(&pfvf->mbox.lock);
81 }
82
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)83 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
84 {
85 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
86
87 if (!pfvf->qset.rq)
88 return 0;
89
90 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
91 return 1;
92 }
93 EXPORT_SYMBOL(otx2_update_rq_stats);
94
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)95 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
96 {
97 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
98
99 if (!pfvf->qset.sq)
100 return 0;
101
102 if (qidx >= pfvf->hw.non_qos_queues) {
103 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
104 return 0;
105 }
106
107 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
108 return 1;
109 }
110 EXPORT_SYMBOL(otx2_update_sq_stats);
111
otx2_get_dev_stats(struct otx2_nic * pfvf)112 void otx2_get_dev_stats(struct otx2_nic *pfvf)
113 {
114 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
115
116 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
117 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
118 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
119 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
120 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
121 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
122 dev_stats->rx_mcast_frames +
123 dev_stats->rx_ucast_frames;
124
125 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
126 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
127 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
128 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
129 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
130 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
131 dev_stats->tx_mcast_frames +
132 dev_stats->tx_ucast_frames;
133 }
134
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)135 void otx2_get_stats64(struct net_device *netdev,
136 struct rtnl_link_stats64 *stats)
137 {
138 struct otx2_nic *pfvf = netdev_priv(netdev);
139 struct otx2_dev_stats *dev_stats;
140
141 otx2_get_dev_stats(pfvf);
142
143 dev_stats = &pfvf->hw.dev_stats;
144 stats->rx_bytes = dev_stats->rx_bytes;
145 stats->rx_packets = dev_stats->rx_frames;
146 stats->rx_dropped = dev_stats->rx_drops;
147 stats->multicast = dev_stats->rx_mcast_frames;
148
149 stats->tx_bytes = dev_stats->tx_bytes;
150 stats->tx_packets = dev_stats->tx_frames;
151 stats->tx_dropped = dev_stats->tx_drops;
152 }
153 EXPORT_SYMBOL(otx2_get_stats64);
154
155 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)156 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
157 {
158 struct nix_set_mac_addr *req;
159 int err;
160
161 mutex_lock(&pfvf->mbox.lock);
162 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
163 if (!req) {
164 mutex_unlock(&pfvf->mbox.lock);
165 return -ENOMEM;
166 }
167
168 ether_addr_copy(req->mac_addr, mac);
169
170 err = otx2_sync_mbox_msg(&pfvf->mbox);
171 mutex_unlock(&pfvf->mbox.lock);
172 return err;
173 }
174
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)175 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
176 struct net_device *netdev)
177 {
178 struct nix_get_mac_addr_rsp *rsp;
179 struct mbox_msghdr *msghdr;
180 struct msg_req *req;
181 int err;
182
183 mutex_lock(&pfvf->mbox.lock);
184 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
185 if (!req) {
186 mutex_unlock(&pfvf->mbox.lock);
187 return -ENOMEM;
188 }
189
190 err = otx2_sync_mbox_msg(&pfvf->mbox);
191 if (err) {
192 mutex_unlock(&pfvf->mbox.lock);
193 return err;
194 }
195
196 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
197 if (IS_ERR(msghdr)) {
198 mutex_unlock(&pfvf->mbox.lock);
199 return PTR_ERR(msghdr);
200 }
201 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
202 eth_hw_addr_set(netdev, rsp->mac_addr);
203 mutex_unlock(&pfvf->mbox.lock);
204
205 return 0;
206 }
207
otx2_set_mac_address(struct net_device * netdev,void * p)208 int otx2_set_mac_address(struct net_device *netdev, void *p)
209 {
210 struct otx2_nic *pfvf = netdev_priv(netdev);
211 struct sockaddr *addr = p;
212
213 if (!is_valid_ether_addr(addr->sa_data))
214 return -EADDRNOTAVAIL;
215
216 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
217 eth_hw_addr_set(netdev, addr->sa_data);
218 /* update dmac field in vlan offload rule */
219 if (netif_running(netdev) &&
220 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
221 otx2_install_rxvlan_offload_flow(pfvf);
222 /* update dmac address in ntuple and DMAC filter list */
223 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
224 otx2_dmacflt_update_pfmac_flow(pfvf);
225 } else {
226 return -EPERM;
227 }
228
229 return 0;
230 }
231 EXPORT_SYMBOL(otx2_set_mac_address);
232
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)233 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
234 {
235 struct nix_frs_cfg *req;
236 u16 maxlen;
237 int err;
238
239 maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
240
241 mutex_lock(&pfvf->mbox.lock);
242 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
243 if (!req) {
244 mutex_unlock(&pfvf->mbox.lock);
245 return -ENOMEM;
246 }
247
248 req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
249
250 /* Use max receive length supported by hardware for loopback devices */
251 if (is_otx2_lbkvf(pfvf->pdev))
252 req->maxlen = maxlen;
253
254 err = otx2_sync_mbox_msg(&pfvf->mbox);
255 mutex_unlock(&pfvf->mbox.lock);
256 return err;
257 }
258 EXPORT_SYMBOL(otx2_hw_set_mtu);
259
otx2_config_pause_frm(struct otx2_nic * pfvf)260 int otx2_config_pause_frm(struct otx2_nic *pfvf)
261 {
262 struct cgx_pause_frm_cfg *req;
263 int err;
264
265 if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev))
266 return 0;
267
268 mutex_lock(&pfvf->mbox.lock);
269 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
270 if (!req) {
271 err = -ENOMEM;
272 goto unlock;
273 }
274
275 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
276 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
277 req->set = 1;
278
279 err = otx2_sync_mbox_msg(&pfvf->mbox);
280 unlock:
281 mutex_unlock(&pfvf->mbox.lock);
282 return err;
283 }
284 EXPORT_SYMBOL(otx2_config_pause_frm);
285
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)286 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
287 {
288 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
289 struct nix_rss_flowkey_cfg_rsp *rsp;
290 struct nix_rss_flowkey_cfg *req;
291 int err;
292
293 mutex_lock(&pfvf->mbox.lock);
294 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
295 if (!req) {
296 mutex_unlock(&pfvf->mbox.lock);
297 return -ENOMEM;
298 }
299 req->mcam_index = -1; /* Default or reserved index */
300 req->flowkey_cfg = rss->flowkey_cfg;
301 req->group = DEFAULT_RSS_CONTEXT_GROUP;
302
303 err = otx2_sync_mbox_msg(&pfvf->mbox);
304 if (err)
305 goto fail;
306
307 rsp = (struct nix_rss_flowkey_cfg_rsp *)
308 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
309 if (IS_ERR(rsp)) {
310 err = PTR_ERR(rsp);
311 goto fail;
312 }
313
314 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
315 fail:
316 mutex_unlock(&pfvf->mbox.lock);
317 return err;
318 }
319
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id)320 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
321 {
322 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
323 const int index = rss->rss_size * ctx_id;
324 struct mbox *mbox = &pfvf->mbox;
325 struct otx2_rss_ctx *rss_ctx;
326 struct nix_aq_enq_req *aq;
327 int idx, err;
328
329 mutex_lock(&mbox->lock);
330 rss_ctx = rss->rss_ctx[ctx_id];
331 /* Get memory to put this msg */
332 for (idx = 0; idx < rss->rss_size; idx++) {
333 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
334 if (!aq) {
335 /* The shared memory buffer can be full.
336 * Flush it and retry
337 */
338 err = otx2_sync_mbox_msg(mbox);
339 if (err) {
340 mutex_unlock(&mbox->lock);
341 return err;
342 }
343 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
344 if (!aq) {
345 mutex_unlock(&mbox->lock);
346 return -ENOMEM;
347 }
348 }
349
350 aq->rss.rq = rss_ctx->ind_tbl[idx];
351
352 /* Fill AQ info */
353 aq->qidx = index + idx;
354 aq->ctype = NIX_AQ_CTYPE_RSS;
355 aq->op = NIX_AQ_INSTOP_INIT;
356 }
357 err = otx2_sync_mbox_msg(mbox);
358 mutex_unlock(&mbox->lock);
359 return err;
360 }
361
otx2_set_rss_key(struct otx2_nic * pfvf)362 void otx2_set_rss_key(struct otx2_nic *pfvf)
363 {
364 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
365 u64 *key = (u64 *)&rss->key[4];
366 int idx;
367
368 /* 352bit or 44byte key needs to be configured as below
369 * NIX_LF_RX_SECRETX0 = key<351:288>
370 * NIX_LF_RX_SECRETX1 = key<287:224>
371 * NIX_LF_RX_SECRETX2 = key<223:160>
372 * NIX_LF_RX_SECRETX3 = key<159:96>
373 * NIX_LF_RX_SECRETX4 = key<95:32>
374 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
375 */
376 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
377 (u64)(*((u32 *)&rss->key)) << 32);
378 idx = sizeof(rss->key) / sizeof(u64);
379 while (idx > 0) {
380 idx--;
381 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
382 }
383 }
384
otx2_rss_init(struct otx2_nic * pfvf)385 int otx2_rss_init(struct otx2_nic *pfvf)
386 {
387 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
388 struct otx2_rss_ctx *rss_ctx;
389 int idx, ret = 0;
390
391 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
392
393 /* Init RSS key if it is not setup already */
394 if (!rss->enable)
395 netdev_rss_key_fill(rss->key, sizeof(rss->key));
396 otx2_set_rss_key(pfvf);
397
398 if (!netif_is_rxfh_configured(pfvf->netdev)) {
399 /* Set RSS group 0 as default indirection table */
400 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
401 GFP_KERNEL);
402 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
403 return -ENOMEM;
404
405 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
406 for (idx = 0; idx < rss->rss_size; idx++)
407 rss_ctx->ind_tbl[idx] =
408 ethtool_rxfh_indir_default(idx,
409 pfvf->hw.rx_queues);
410 }
411 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
412 if (ret)
413 return ret;
414
415 /* Flowkey or hash config to be used for generating flow tag */
416 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
417 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
418 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
419 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
420 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
421
422 ret = otx2_set_flowkey_cfg(pfvf);
423 if (ret)
424 return ret;
425
426 rss->enable = true;
427 return 0;
428 }
429
430 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)431 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
432 {
433 struct nix_lso_format *field;
434
435 field = (struct nix_lso_format *)&lso->fields[0];
436 lso->field_mask = GENMASK(18, 0);
437
438 /* IP's Length field */
439 field->layer = NIX_TXLAYER_OL3;
440 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
441 field->offset = v4 ? 2 : 4;
442 field->sizem1 = 1; /* i.e 2 bytes */
443 field->alg = NIX_LSOALG_ADD_PAYLEN;
444 field++;
445
446 /* No ID field in IPv6 header */
447 if (v4) {
448 /* Increment IPID */
449 field->layer = NIX_TXLAYER_OL3;
450 field->offset = 4;
451 field->sizem1 = 1; /* i.e 2 bytes */
452 field->alg = NIX_LSOALG_ADD_SEGNUM;
453 field++;
454 }
455
456 /* Update length in UDP header */
457 field->layer = NIX_TXLAYER_OL4;
458 field->offset = 4;
459 field->sizem1 = 1;
460 field->alg = NIX_LSOALG_ADD_PAYLEN;
461 }
462
463 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)464 void otx2_setup_segmentation(struct otx2_nic *pfvf)
465 {
466 struct nix_lso_format_cfg_rsp *rsp;
467 struct nix_lso_format_cfg *lso;
468 struct otx2_hw *hw = &pfvf->hw;
469 int err;
470
471 mutex_lock(&pfvf->mbox.lock);
472
473 /* UDPv4 segmentation */
474 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
475 if (!lso)
476 goto fail;
477
478 /* Setup UDP/IP header fields that HW should update per segment */
479 otx2_setup_udp_segmentation(lso, true);
480
481 err = otx2_sync_mbox_msg(&pfvf->mbox);
482 if (err)
483 goto fail;
484
485 rsp = (struct nix_lso_format_cfg_rsp *)
486 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
487 if (IS_ERR(rsp))
488 goto fail;
489
490 hw->lso_udpv4_idx = rsp->lso_format_idx;
491
492 /* UDPv6 segmentation */
493 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
494 if (!lso)
495 goto fail;
496
497 /* Setup UDP/IP header fields that HW should update per segment */
498 otx2_setup_udp_segmentation(lso, false);
499
500 err = otx2_sync_mbox_msg(&pfvf->mbox);
501 if (err)
502 goto fail;
503
504 rsp = (struct nix_lso_format_cfg_rsp *)
505 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
506 if (IS_ERR(rsp))
507 goto fail;
508
509 hw->lso_udpv6_idx = rsp->lso_format_idx;
510 mutex_unlock(&pfvf->mbox.lock);
511 return;
512 fail:
513 mutex_unlock(&pfvf->mbox.lock);
514 netdev_info(pfvf->netdev,
515 "Failed to get LSO index for UDP GSO offload, disabling\n");
516 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
517 }
518
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)519 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
520 {
521 /* Configure CQE interrupt coalescing parameters
522 *
523 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
524 * set 1 less than cq_ecount_wait. And cq_time_wait is in
525 * usecs, convert that to 100ns count.
526 */
527 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
528 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
529 ((u64)pfvf->hw.cq_qcount_wait << 32) |
530 (pfvf->hw.cq_ecount_wait - 1));
531 }
532
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)533 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
534 dma_addr_t *dma)
535 {
536 unsigned int offset = 0;
537 struct page *page;
538 size_t sz;
539
540 sz = SKB_DATA_ALIGN(pool->rbsize);
541 sz = ALIGN(sz, OTX2_ALIGN);
542
543 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
544 if (unlikely(!page))
545 return -ENOMEM;
546
547 *dma = page_pool_get_dma_addr(page) + offset;
548 return 0;
549 }
550
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)551 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
552 dma_addr_t *dma)
553 {
554 u8 *buf;
555
556 if (pool->page_pool)
557 return otx2_alloc_pool_buf(pfvf, pool, dma);
558
559 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
560 if (unlikely(!buf))
561 return -ENOMEM;
562
563 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
564 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
565 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
566 page_frag_free(buf);
567 return -ENOMEM;
568 }
569
570 return 0;
571 }
572
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)573 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
574 dma_addr_t *dma)
575 {
576 int ret;
577
578 local_bh_disable();
579 ret = __otx2_alloc_rbuf(pfvf, pool, dma);
580 local_bh_enable();
581 return ret;
582 }
583
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)584 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
585 dma_addr_t *dma)
586 {
587 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma)))
588 return -ENOMEM;
589 return 0;
590 }
591
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)592 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
593 {
594 struct otx2_nic *pfvf = netdev_priv(netdev);
595
596 schedule_work(&pfvf->reset_task);
597 }
598 EXPORT_SYMBOL(otx2_tx_timeout);
599
otx2_get_mac_from_af(struct net_device * netdev)600 void otx2_get_mac_from_af(struct net_device *netdev)
601 {
602 struct otx2_nic *pfvf = netdev_priv(netdev);
603 int err;
604
605 err = otx2_hw_get_mac_addr(pfvf, netdev);
606 if (err)
607 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
608
609 /* If AF doesn't provide a valid MAC, generate a random one */
610 if (!is_valid_ether_addr(netdev->dev_addr))
611 eth_hw_addr_random(netdev);
612 }
613 EXPORT_SYMBOL(otx2_get_mac_from_af);
614
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)615 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
616 {
617 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
618 struct otx2_hw *hw = &pfvf->hw;
619 struct nix_txschq_config *req;
620 u64 schq, parent;
621 u64 dwrr_val;
622
623 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
624
625 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
626 if (!req)
627 return -ENOMEM;
628
629 req->lvl = lvl;
630 req->num_regs = 1;
631
632 schq_list = hw->txschq_list;
633 #ifdef CONFIG_DCB
634 if (txschq_for_pfc)
635 schq_list = pfvf->pfc_schq_list;
636 #endif
637
638 schq = schq_list[lvl][prio];
639 /* Set topology e.t.c configuration */
640 if (lvl == NIX_TXSCH_LVL_SMQ) {
641 req->reg[0] = NIX_AF_SMQX_CFG(schq);
642 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
643 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
644 (0x2ULL << 36);
645 /* Set link type for DWRR MTU selection on CN10K silicons */
646 if (!is_dev_otx2(pfvf->pdev))
647 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
648 (u64)hw->smq_link_type);
649 req->num_regs++;
650 /* MDQ config */
651 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
652 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
653 req->regval[1] = parent << 16;
654 req->num_regs++;
655 /* Set DWRR quantum */
656 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
657 req->regval[2] = dwrr_val;
658 } else if (lvl == NIX_TXSCH_LVL_TL4) {
659 int sdp_chan = hw->tx_chan_base + prio;
660
661 if (is_otx2_sdp_rep(pfvf->pdev))
662 prio = 0;
663 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
664 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
665 req->regval[0] = (u64)parent << 16;
666 req->num_regs++;
667 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
668 req->regval[1] = dwrr_val;
669 if (is_otx2_sdp_rep(pfvf->pdev)) {
670 req->num_regs++;
671 req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
672 req->regval[2] = BIT_ULL(12) | BIT_ULL(13) |
673 (sdp_chan & 0xff);
674 }
675 } else if (lvl == NIX_TXSCH_LVL_TL3) {
676 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
677 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
678 req->regval[0] = (u64)parent << 16;
679 req->num_regs++;
680 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
681 req->regval[1] = dwrr_val;
682 if (lvl == hw->txschq_link_cfg_lvl &&
683 !is_otx2_sdp_rep(pfvf->pdev)) {
684 req->num_regs++;
685 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
686 /* Enable this queue and backpressure
687 * and set relative channel
688 */
689 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
690 }
691 } else if (lvl == NIX_TXSCH_LVL_TL2) {
692 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
693 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
694 req->regval[0] = (u64)parent << 16;
695
696 req->num_regs++;
697 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
698 req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
699
700 if (lvl == hw->txschq_link_cfg_lvl &&
701 !is_otx2_sdp_rep(pfvf->pdev)) {
702 req->num_regs++;
703 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
704 /* Enable this queue and backpressure
705 * and set relative channel
706 */
707 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
708 }
709 } else if (lvl == NIX_TXSCH_LVL_TL1) {
710 /* Default config for TL1.
711 * For VF this is always ignored.
712 */
713
714 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
715 * clip it to 16384, so configuring a 24bit max value
716 * will work on both OTx2 and CN10K.
717 */
718 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
719 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
720
721 req->num_regs++;
722 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
723 req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
724
725 req->num_regs++;
726 req->reg[2] = NIX_AF_TL1X_CIR(schq);
727 req->regval[2] = 0;
728 }
729
730 return otx2_sync_mbox_msg(&pfvf->mbox);
731 }
732 EXPORT_SYMBOL(otx2_txschq_config);
733
otx2_smq_flush(struct otx2_nic * pfvf,int smq)734 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
735 {
736 struct nix_txschq_config *req;
737 int rc;
738
739 mutex_lock(&pfvf->mbox.lock);
740
741 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
742 if (!req) {
743 mutex_unlock(&pfvf->mbox.lock);
744 return -ENOMEM;
745 }
746
747 req->lvl = NIX_TXSCH_LVL_SMQ;
748 req->reg[0] = NIX_AF_SMQX_CFG(smq);
749 req->regval[0] |= BIT_ULL(49);
750 req->num_regs++;
751
752 rc = otx2_sync_mbox_msg(&pfvf->mbox);
753 mutex_unlock(&pfvf->mbox.lock);
754 return rc;
755 }
756 EXPORT_SYMBOL(otx2_smq_flush);
757
otx2_txsch_alloc(struct otx2_nic * pfvf)758 int otx2_txsch_alloc(struct otx2_nic *pfvf)
759 {
760 int chan_cnt = pfvf->hw.tx_chan_cnt;
761 struct nix_txsch_alloc_req *req;
762 struct nix_txsch_alloc_rsp *rsp;
763 int lvl, schq, rc;
764
765 /* Get memory to put this msg */
766 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
767 if (!req)
768 return -ENOMEM;
769
770 /* Request one schq per level */
771 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
772 req->schq[lvl] = 1;
773
774 if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) {
775 req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt;
776 req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt;
777 }
778
779 rc = otx2_sync_mbox_msg(&pfvf->mbox);
780 if (rc)
781 return rc;
782
783 rsp = (struct nix_txsch_alloc_rsp *)
784 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
785 if (IS_ERR(rsp))
786 return PTR_ERR(rsp);
787
788 /* Setup transmit scheduler list */
789 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
790 pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl];
791 for (schq = 0; schq < rsp->schq[lvl]; schq++)
792 pfvf->hw.txschq_list[lvl][schq] =
793 rsp->schq_list[lvl][schq];
794 }
795
796 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
797 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
798
799 return 0;
800 }
801
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)802 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
803 {
804 struct nix_txsch_free_req *free_req;
805 int err;
806
807 mutex_lock(&pfvf->mbox.lock);
808
809 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
810 if (!free_req) {
811 mutex_unlock(&pfvf->mbox.lock);
812 netdev_err(pfvf->netdev,
813 "Failed alloc txschq free req\n");
814 return;
815 }
816
817 free_req->schq_lvl = lvl;
818 free_req->schq = schq;
819
820 err = otx2_sync_mbox_msg(&pfvf->mbox);
821 if (err) {
822 netdev_err(pfvf->netdev,
823 "Failed stop txschq %d at level %d\n", schq, lvl);
824 }
825
826 mutex_unlock(&pfvf->mbox.lock);
827 }
828 EXPORT_SYMBOL(otx2_txschq_free_one);
829
otx2_txschq_stop(struct otx2_nic * pfvf)830 void otx2_txschq_stop(struct otx2_nic *pfvf)
831 {
832 int lvl, schq, idx;
833
834 /* free non QOS TLx nodes */
835 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
836 for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) {
837 otx2_txschq_free_one(pfvf, lvl,
838 pfvf->hw.txschq_list[lvl][idx]);
839 }
840 }
841
842 /* Clear the txschq list */
843 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
844 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
845 pfvf->hw.txschq_list[lvl][schq] = 0;
846 }
847
848 }
849
otx2_sqb_flush(struct otx2_nic * pfvf)850 void otx2_sqb_flush(struct otx2_nic *pfvf)
851 {
852 int qidx, sqe_tail, sqe_head;
853 struct otx2_snd_queue *sq;
854 u64 incr, *ptr, val;
855
856 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
857 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
858 sq = &pfvf->qset.sq[qidx];
859 if (!sq->sqb_ptrs)
860 continue;
861
862 incr = (u64)qidx << 32;
863 val = otx2_atomic64_add(incr, ptr);
864 sqe_head = (val >> 20) & 0x3F;
865 sqe_tail = (val >> 28) & 0x3F;
866 if (sqe_head != sqe_tail)
867 usleep_range(50, 60);
868 }
869 }
870
871 /* RED and drop levels of CQ on packet reception.
872 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
873 */
874 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
875 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
876
877 /* RED and drop levels of AURA for packet reception.
878 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
879 * Eg: For RQ length 1K, for pass/drop level 204/230.
880 * RED accepts pkts if free pointers > 102 & <= 205.
881 * Drops pkts if free pointers < 102.
882 */
883 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
884 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
885 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
886
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)887 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
888 {
889 struct otx2_qset *qset = &pfvf->qset;
890 struct nix_aq_enq_req *aq;
891
892 /* Get memory to put this msg */
893 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
894 if (!aq)
895 return -ENOMEM;
896
897 aq->rq.cq = qidx;
898 aq->rq.ena = 1;
899 aq->rq.pb_caching = 1;
900 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
901 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
902 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
903 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
904 aq->rq.qint_idx = 0;
905 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
906 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
907 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
908 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
909 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
910 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
911
912 /* Fill AQ info */
913 aq->qidx = qidx;
914 aq->ctype = NIX_AQ_CTYPE_RQ;
915 aq->op = NIX_AQ_INSTOP_INIT;
916
917 return otx2_sync_mbox_msg(&pfvf->mbox);
918 }
919
otx2_sq_aq_init(void * dev,u16 qidx,u8 chan_offset,u16 sqb_aura)920 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura)
921 {
922 struct otx2_nic *pfvf = dev;
923 struct otx2_snd_queue *sq;
924 struct nix_aq_enq_req *aq;
925
926 sq = &pfvf->qset.sq[qidx];
927 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
928 /* Get memory to put this msg */
929 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
930 if (!aq)
931 return -ENOMEM;
932
933 aq->sq.cq = pfvf->hw.rx_queues + qidx;
934 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
935 aq->sq.cq_ena = 1;
936 aq->sq.ena = 1;
937 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
938 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
939 aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset;
940 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
941 aq->sq.sqb_aura = sqb_aura;
942 aq->sq.sq_int_ena = NIX_SQINT_BITS;
943 aq->sq.qint_idx = 0;
944 /* Due pipelining impact minimum 2000 unused SQ CQE's
945 * need to maintain to avoid CQ overflow.
946 */
947 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
948
949 /* Fill AQ info */
950 aq->qidx = qidx;
951 aq->ctype = NIX_AQ_CTYPE_SQ;
952 aq->op = NIX_AQ_INSTOP_INIT;
953
954 return otx2_sync_mbox_msg(&pfvf->mbox);
955 }
956
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)957 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
958 {
959 struct otx2_qset *qset = &pfvf->qset;
960 struct otx2_snd_queue *sq;
961 struct otx2_pool *pool;
962 u8 chan_offset;
963 int err;
964
965 pool = &pfvf->qset.pool[sqb_aura];
966 sq = &qset->sq[qidx];
967 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
968 sq->sqe_cnt = qset->sqe_cnt;
969
970 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
971 if (err)
972 return err;
973
974 /* Allocate memory for NIX SQE (which includes NIX SG) and CPT SG.
975 * SG of NIX and CPT are same in size. Allocate memory for CPT SG
976 * same as NIX SQE for base address alignment.
977 * Layout of a NIX SQE and CPT SG entry:
978 * -----------------------------
979 * | CPT Scatter Gather |
980 * | (SQE SIZE) |
981 * | |
982 * -----------------------------
983 * | NIX SQE |
984 * | (SQE SIZE) |
985 * | |
986 * -----------------------------
987 */
988 err = qmem_alloc(pfvf->dev, &sq->sqe_ring, qset->sqe_cnt,
989 sq->sqe_size * 2);
990 if (err)
991 return err;
992
993 err = qmem_alloc(pfvf->dev, &sq->cpt_resp, qset->sqe_cnt, 64);
994 if (err)
995 return err;
996
997 if (qidx < pfvf->hw.tx_queues) {
998 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
999 TSO_HEADER_SIZE);
1000 if (err)
1001 return err;
1002 }
1003
1004 sq->sqe_base = sq->sqe->base;
1005 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
1006 if (!sq->sg)
1007 return -ENOMEM;
1008
1009 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
1010 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
1011 sizeof(*sq->timestamps));
1012 if (err) {
1013 kfree(sq->sg);
1014 sq->sg = NULL;
1015 return err;
1016 }
1017 }
1018
1019 sq->head = 0;
1020 sq->cons_head = 0;
1021 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
1022 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
1023 /* Set SQE threshold to 10% of total SQEs */
1024 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
1025 sq->aura_id = sqb_aura;
1026 sq->aura_fc_addr = pool->fc_addr->base;
1027 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
1028
1029 sq->stats.bytes = 0;
1030 sq->stats.pkts = 0;
1031
1032 chan_offset = qidx % pfvf->hw.tx_chan_cnt;
1033 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura);
1034 if (err) {
1035 kfree(sq->sg);
1036 sq->sg = NULL;
1037 return err;
1038 }
1039
1040 return 0;
1041
1042 }
1043
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)1044 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
1045 {
1046 struct otx2_qset *qset = &pfvf->qset;
1047 int err, pool_id, non_xdp_queues;
1048 struct nix_aq_enq_req *aq;
1049 struct otx2_cq_queue *cq;
1050
1051 cq = &qset->cq[qidx];
1052 cq->cq_idx = qidx;
1053 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
1054 if (qidx < pfvf->hw.rx_queues) {
1055 cq->cq_type = CQ_RX;
1056 cq->cint_idx = qidx;
1057 cq->cqe_cnt = qset->rqe_cnt;
1058 if (pfvf->xdp_prog)
1059 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1060 } else if (qidx < non_xdp_queues) {
1061 cq->cq_type = CQ_TX;
1062 cq->cint_idx = qidx - pfvf->hw.rx_queues;
1063 cq->cqe_cnt = qset->sqe_cnt;
1064 } else {
1065 if (pfvf->hw.xdp_queues &&
1066 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1067 cq->cq_type = CQ_XDP;
1068 cq->cint_idx = qidx - non_xdp_queues;
1069 cq->cqe_cnt = qset->sqe_cnt;
1070 } else {
1071 cq->cq_type = CQ_QOS;
1072 cq->cint_idx = qidx - non_xdp_queues -
1073 pfvf->hw.xdp_queues;
1074 cq->cqe_cnt = qset->sqe_cnt;
1075 }
1076 }
1077 cq->cqe_size = pfvf->qset.xqe_size;
1078
1079 /* Allocate memory for CQEs */
1080 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1081 if (err)
1082 return err;
1083
1084 /* Save CQE CPU base for faster reference */
1085 cq->cqe_base = cq->cqe->base;
1086 /* In case where all RQs auras point to single pool,
1087 * all CQs receive buffer pool also point to same pool.
1088 */
1089 pool_id = ((cq->cq_type == CQ_RX) &&
1090 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1091 cq->rbpool = &qset->pool[pool_id];
1092 cq->refill_task_sched = false;
1093
1094 /* Get memory to put this msg */
1095 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1096 if (!aq)
1097 return -ENOMEM;
1098
1099 aq->cq.ena = 1;
1100 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1101 aq->cq.caching = 1;
1102 aq->cq.base = cq->cqe->iova;
1103 aq->cq.cint_idx = cq->cint_idx;
1104 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1105 aq->cq.qint_idx = 0;
1106 aq->cq.avg_level = 255;
1107
1108 if (qidx < pfvf->hw.rx_queues) {
1109 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1110 aq->cq.drop_ena = 1;
1111
1112 if (!is_otx2_lbkvf(pfvf->pdev)) {
1113 /* Enable receive CQ backpressure */
1114 aq->cq.bp_ena = 1;
1115 #ifdef CONFIG_DCB
1116 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1117 #else
1118 aq->cq.bpid = pfvf->bpid[0];
1119 #endif
1120
1121 /* Set backpressure level is same as cq pass level */
1122 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1123 }
1124 }
1125
1126 /* Fill AQ info */
1127 aq->qidx = qidx;
1128 aq->ctype = NIX_AQ_CTYPE_CQ;
1129 aq->op = NIX_AQ_INSTOP_INIT;
1130
1131 return otx2_sync_mbox_msg(&pfvf->mbox);
1132 }
1133
otx2_pool_refill_task(struct work_struct * work)1134 static void otx2_pool_refill_task(struct work_struct *work)
1135 {
1136 struct otx2_cq_queue *cq;
1137 struct refill_work *wrk;
1138 struct otx2_nic *pfvf;
1139 int qidx;
1140
1141 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1142 pfvf = wrk->pf;
1143 qidx = wrk - pfvf->refill_wrk;
1144 cq = &pfvf->qset.cq[qidx];
1145
1146 cq->refill_task_sched = false;
1147
1148 local_bh_disable();
1149 napi_schedule(wrk->napi);
1150 local_bh_enable();
1151 }
1152
otx2_config_nix_queues(struct otx2_nic * pfvf)1153 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1154 {
1155 int qidx, err;
1156
1157 /* Initialize RX queues */
1158 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1159 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1160
1161 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1162 if (err)
1163 return err;
1164 }
1165
1166 /* Initialize TX queues */
1167 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1168 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1169
1170 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1171 if (err)
1172 return err;
1173 }
1174
1175 /* Initialize completion queues */
1176 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1177 err = otx2_cq_init(pfvf, qidx);
1178 if (err)
1179 return err;
1180 }
1181
1182 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1183 NIX_LF_CQ_OP_STATUS);
1184
1185 /* Initialize work queue for receive buffer refill */
1186 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1187 sizeof(struct refill_work), GFP_KERNEL);
1188 if (!pfvf->refill_wrk)
1189 return -ENOMEM;
1190
1191 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1192 pfvf->refill_wrk[qidx].pf = pfvf;
1193 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1194 otx2_pool_refill_task);
1195 }
1196 return 0;
1197 }
1198
otx2_config_nix(struct otx2_nic * pfvf)1199 int otx2_config_nix(struct otx2_nic *pfvf)
1200 {
1201 struct nix_lf_alloc_req *nixlf;
1202 struct nix_lf_alloc_rsp *rsp;
1203 int err;
1204
1205 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1206
1207 /* Get memory to put this msg */
1208 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1209 if (!nixlf)
1210 return -ENOMEM;
1211
1212 /* Set RQ/SQ/CQ counts */
1213 nixlf->rq_cnt = pfvf->hw.rx_queues;
1214 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1215 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1216 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1217 nixlf->rss_grps = MAX_RSS_GROUPS;
1218 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1219 /* We don't know absolute NPA LF idx attached.
1220 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1221 * NPA LF attached to this RVU PF/VF.
1222 */
1223 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1224 /* Disable alignment pad, enable L2 length check,
1225 * enable L4 TCP/UDP checksum verification.
1226 */
1227 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1228
1229 err = otx2_sync_mbox_msg(&pfvf->mbox);
1230 if (err)
1231 return err;
1232
1233 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1234 &nixlf->hdr);
1235 if (IS_ERR(rsp))
1236 return PTR_ERR(rsp);
1237
1238 if (rsp->qints < 1)
1239 return -ENXIO;
1240
1241 return rsp->hdr.rc;
1242 }
1243
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1244 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1245 {
1246 struct otx2_qset *qset = &pfvf->qset;
1247 struct otx2_hw *hw = &pfvf->hw;
1248 struct otx2_snd_queue *sq;
1249 int sqb, qidx;
1250 u64 iova, pa;
1251
1252 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1253 sq = &qset->sq[qidx];
1254 if (!sq->sqb_ptrs)
1255 continue;
1256 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1257 if (!sq->sqb_ptrs[sqb])
1258 continue;
1259 iova = sq->sqb_ptrs[sqb];
1260 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1261 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1262 DMA_FROM_DEVICE,
1263 DMA_ATTR_SKIP_CPU_SYNC);
1264 put_page(virt_to_page(phys_to_virt(pa)));
1265 }
1266 sq->sqb_count = 0;
1267 }
1268 }
1269
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1270 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1271 u64 iova, int size)
1272 {
1273 struct page *page;
1274 u64 pa;
1275
1276 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1277 page = virt_to_head_page(phys_to_virt(pa));
1278
1279 if (pool->page_pool) {
1280 page_pool_put_full_page(pool->page_pool, page, true);
1281 } else {
1282 dma_unmap_page_attrs(pfvf->dev, iova, size,
1283 DMA_FROM_DEVICE,
1284 DMA_ATTR_SKIP_CPU_SYNC);
1285
1286 put_page(page);
1287 }
1288 }
1289
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1290 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1291 {
1292 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1293 struct otx2_pool *pool;
1294 u64 iova;
1295
1296 if (type == AURA_NIX_SQ) {
1297 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1298 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1299 size = pfvf->hw.sqb_size;
1300 }
1301 if (type == AURA_NIX_RQ) {
1302 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1303 pool_end = pfvf->hw.rqpool_cnt;
1304 size = pfvf->rbsize;
1305 }
1306
1307 /* Free SQB and RQB pointers from the aura pool */
1308 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1309 iova = otx2_aura_allocptr(pfvf, pool_id);
1310 pool = &pfvf->qset.pool[pool_id];
1311 while (iova) {
1312 if (type == AURA_NIX_RQ)
1313 iova -= OTX2_HEAD_ROOM;
1314
1315 otx2_free_bufs(pfvf, pool, iova, size);
1316
1317 iova = otx2_aura_allocptr(pfvf, pool_id);
1318 }
1319 }
1320 }
1321
otx2_aura_pool_free(struct otx2_nic * pfvf)1322 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1323 {
1324 struct otx2_pool *pool;
1325 int pool_id;
1326
1327 if (!pfvf->qset.pool)
1328 return;
1329
1330 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1331 pool = &pfvf->qset.pool[pool_id];
1332 qmem_free(pfvf->dev, pool->stack);
1333 qmem_free(pfvf->dev, pool->fc_addr);
1334 page_pool_destroy(pool->page_pool);
1335 pool->page_pool = NULL;
1336 }
1337 devm_kfree(pfvf->dev, pfvf->qset.pool);
1338 pfvf->qset.pool = NULL;
1339 }
1340
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1341 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1342 int pool_id, int numptrs)
1343 {
1344 struct npa_aq_enq_req *aq;
1345 struct otx2_pool *pool;
1346 int err;
1347
1348 pool = &pfvf->qset.pool[pool_id];
1349
1350 /* Allocate memory for HW to update Aura count.
1351 * Alloc one cache line, so that it fits all FC_STYPE modes.
1352 */
1353 if (!pool->fc_addr) {
1354 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1355 if (err)
1356 return err;
1357 }
1358
1359 /* Initialize this aura's context via AF */
1360 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1361 if (!aq) {
1362 /* Shared mbox memory buffer is full, flush it and retry */
1363 err = otx2_sync_mbox_msg(&pfvf->mbox);
1364 if (err)
1365 return err;
1366 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1367 if (!aq)
1368 return -ENOMEM;
1369 }
1370
1371 aq->aura_id = aura_id;
1372 /* Will be filled by AF with correct pool context address */
1373 aq->aura.pool_addr = pool_id;
1374 aq->aura.pool_caching = 1;
1375 aq->aura.shift = ilog2(numptrs) - 8;
1376 aq->aura.count = numptrs;
1377 aq->aura.limit = numptrs;
1378 aq->aura.avg_level = 255;
1379 aq->aura.ena = 1;
1380 aq->aura.fc_ena = 1;
1381 aq->aura.fc_addr = pool->fc_addr->iova;
1382 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1383
1384 /* Enable backpressure for RQ aura */
1385 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1386 aq->aura.bp_ena = 0;
1387 /* If NIX1 LF is attached then specify NIX1_RX.
1388 *
1389 * Below NPA_AURA_S[BP_ENA] is set according to the
1390 * NPA_BPINTF_E enumeration given as:
1391 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1392 * NIX0_RX is 0x0 + 0*0x1 = 0
1393 * NIX1_RX is 0x0 + 1*0x1 = 1
1394 * But in HRM it is given that
1395 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1396 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1397 * enumerated by NPA_BPINTF_E."
1398 */
1399 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1400 aq->aura.bp_ena = 1;
1401 #ifdef CONFIG_DCB
1402 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1403 #else
1404 aq->aura.nix0_bpid = pfvf->bpid[0];
1405 #endif
1406
1407 /* Set backpressure level for RQ's Aura */
1408 aq->aura.bp = RQ_BP_LVL_AURA;
1409 }
1410
1411 /* Fill AQ info */
1412 aq->ctype = NPA_AQ_CTYPE_AURA;
1413 aq->op = NPA_AQ_INSTOP_INIT;
1414
1415 return 0;
1416 }
1417
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1418 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1419 int stack_pages, int numptrs, int buf_size, int type)
1420 {
1421 struct page_pool_params pp_params = { 0 };
1422 struct npa_aq_enq_req *aq;
1423 struct otx2_pool *pool;
1424 int err;
1425
1426 pool = &pfvf->qset.pool[pool_id];
1427 /* Alloc memory for stack which is used to store buffer pointers */
1428 err = qmem_alloc(pfvf->dev, &pool->stack,
1429 stack_pages, pfvf->hw.stack_pg_bytes);
1430 if (err)
1431 return err;
1432
1433 pool->rbsize = buf_size;
1434
1435 /* Initialize this pool's context via AF */
1436 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1437 if (!aq) {
1438 /* Shared mbox memory buffer is full, flush it and retry */
1439 err = otx2_sync_mbox_msg(&pfvf->mbox);
1440 if (err) {
1441 qmem_free(pfvf->dev, pool->stack);
1442 return err;
1443 }
1444 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1445 if (!aq) {
1446 qmem_free(pfvf->dev, pool->stack);
1447 return -ENOMEM;
1448 }
1449 }
1450
1451 aq->aura_id = pool_id;
1452 aq->pool.stack_base = pool->stack->iova;
1453 aq->pool.stack_caching = 1;
1454 aq->pool.ena = 1;
1455 aq->pool.buf_size = buf_size / 128;
1456 aq->pool.stack_max_pages = stack_pages;
1457 aq->pool.shift = ilog2(numptrs) - 8;
1458 aq->pool.ptr_start = 0;
1459 aq->pool.ptr_end = ~0ULL;
1460
1461 /* Fill AQ info */
1462 aq->ctype = NPA_AQ_CTYPE_POOL;
1463 aq->op = NPA_AQ_INSTOP_INIT;
1464
1465 if (type != AURA_NIX_RQ) {
1466 pool->page_pool = NULL;
1467 return 0;
1468 }
1469
1470 pp_params.order = get_order(buf_size);
1471 pp_params.flags = PP_FLAG_DMA_MAP;
1472 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1473 pp_params.nid = NUMA_NO_NODE;
1474 pp_params.dev = pfvf->dev;
1475 pp_params.dma_dir = DMA_FROM_DEVICE;
1476 pool->page_pool = page_pool_create(&pp_params);
1477 if (IS_ERR(pool->page_pool)) {
1478 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1479 return PTR_ERR(pool->page_pool);
1480 }
1481
1482 return 0;
1483 }
1484
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1485 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1486 {
1487 int qidx, pool_id, stack_pages, num_sqbs;
1488 struct otx2_qset *qset = &pfvf->qset;
1489 struct otx2_hw *hw = &pfvf->hw;
1490 struct otx2_snd_queue *sq;
1491 struct otx2_pool *pool;
1492 dma_addr_t bufptr;
1493 int err, ptr;
1494
1495 /* Calculate number of SQBs needed.
1496 *
1497 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1498 * Last SQE is used for pointing to next SQB.
1499 */
1500 num_sqbs = (hw->sqb_size / 128) - 1;
1501 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1502
1503 /* Get no of stack pages needed */
1504 stack_pages =
1505 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1506
1507 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1508 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1509 /* Initialize aura context */
1510 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1511 if (err)
1512 goto fail;
1513
1514 /* Initialize pool context */
1515 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1516 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1517 if (err)
1518 goto fail;
1519 }
1520
1521 /* Flush accumulated messages */
1522 err = otx2_sync_mbox_msg(&pfvf->mbox);
1523 if (err)
1524 goto fail;
1525
1526 /* Allocate pointers and free them to aura/pool */
1527 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1528 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1529 pool = &pfvf->qset.pool[pool_id];
1530
1531 sq = &qset->sq[qidx];
1532 sq->sqb_count = 0;
1533 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1534 if (!sq->sqb_ptrs) {
1535 err = -ENOMEM;
1536 goto err_mem;
1537 }
1538
1539 for (ptr = 0; ptr < num_sqbs; ptr++) {
1540 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1541 if (err)
1542 goto err_mem;
1543 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1544 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1545 }
1546 }
1547
1548 err_mem:
1549 return err ? -ENOMEM : 0;
1550
1551 fail:
1552 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1553 otx2_aura_pool_free(pfvf);
1554 return err;
1555 }
1556
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1557 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1558 {
1559 struct otx2_hw *hw = &pfvf->hw;
1560 int stack_pages, pool_id, rq;
1561 struct otx2_pool *pool;
1562 int err, ptr, num_ptrs;
1563 dma_addr_t bufptr;
1564
1565 num_ptrs = pfvf->qset.rqe_cnt;
1566
1567 stack_pages =
1568 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1569
1570 for (rq = 0; rq < hw->rx_queues; rq++) {
1571 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1572 /* Initialize aura context */
1573 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1574 if (err)
1575 goto fail;
1576 }
1577 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1578 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1579 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1580 if (err)
1581 goto fail;
1582 }
1583
1584 /* Flush accumulated messages */
1585 err = otx2_sync_mbox_msg(&pfvf->mbox);
1586 if (err)
1587 goto fail;
1588
1589 /* Allocate pointers and free them to aura/pool */
1590 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1591 pool = &pfvf->qset.pool[pool_id];
1592 for (ptr = 0; ptr < num_ptrs; ptr++) {
1593 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1594 if (err)
1595 return -ENOMEM;
1596 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1597 bufptr + OTX2_HEAD_ROOM);
1598 }
1599 }
1600 return 0;
1601 fail:
1602 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1603 otx2_aura_pool_free(pfvf);
1604 return err;
1605 }
1606
otx2_config_npa(struct otx2_nic * pfvf)1607 int otx2_config_npa(struct otx2_nic *pfvf)
1608 {
1609 struct otx2_qset *qset = &pfvf->qset;
1610 struct npa_lf_alloc_req *npalf;
1611 struct otx2_hw *hw = &pfvf->hw;
1612 int aura_cnt;
1613
1614 /* Pool - Stack of free buffer pointers
1615 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1616 */
1617
1618 if (!hw->pool_cnt)
1619 return -EINVAL;
1620
1621 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1622 sizeof(struct otx2_pool), GFP_KERNEL);
1623 if (!qset->pool)
1624 return -ENOMEM;
1625
1626 /* Get memory to put this msg */
1627 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1628 if (!npalf)
1629 return -ENOMEM;
1630
1631 /* Set aura and pool counts */
1632 npalf->nr_pools = hw->pool_cnt;
1633 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1634 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1635
1636 return otx2_sync_mbox_msg(&pfvf->mbox);
1637 }
1638
otx2_detach_resources(struct mbox * mbox)1639 int otx2_detach_resources(struct mbox *mbox)
1640 {
1641 struct rsrc_detach *detach;
1642
1643 mutex_lock(&mbox->lock);
1644 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1645 if (!detach) {
1646 mutex_unlock(&mbox->lock);
1647 return -ENOMEM;
1648 }
1649
1650 /* detach all */
1651 detach->partial = false;
1652
1653 /* Send detach request to AF */
1654 otx2_sync_mbox_msg(mbox);
1655 mutex_unlock(&mbox->lock);
1656 return 0;
1657 }
1658 EXPORT_SYMBOL(otx2_detach_resources);
1659
otx2_attach_npa_nix(struct otx2_nic * pfvf)1660 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1661 {
1662 struct rsrc_attach *attach;
1663 struct msg_req *msix;
1664 int err;
1665
1666 mutex_lock(&pfvf->mbox.lock);
1667 /* Get memory to put this msg */
1668 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1669 if (!attach) {
1670 mutex_unlock(&pfvf->mbox.lock);
1671 return -ENOMEM;
1672 }
1673
1674 attach->npalf = true;
1675 attach->nixlf = true;
1676
1677 /* Send attach request to AF */
1678 err = otx2_sync_mbox_msg(&pfvf->mbox);
1679 if (err) {
1680 mutex_unlock(&pfvf->mbox.lock);
1681 return err;
1682 }
1683
1684 pfvf->nix_blkaddr = BLKADDR_NIX0;
1685
1686 /* If the platform has two NIX blocks then LF may be
1687 * allocated from NIX1.
1688 */
1689 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1690 pfvf->nix_blkaddr = BLKADDR_NIX1;
1691
1692 /* Get NPA and NIX MSIX vector offsets */
1693 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1694 if (!msix) {
1695 mutex_unlock(&pfvf->mbox.lock);
1696 return -ENOMEM;
1697 }
1698
1699 err = otx2_sync_mbox_msg(&pfvf->mbox);
1700 if (err) {
1701 mutex_unlock(&pfvf->mbox.lock);
1702 return err;
1703 }
1704 mutex_unlock(&pfvf->mbox.lock);
1705
1706 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1707 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1708 dev_err(pfvf->dev,
1709 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1710 return -EINVAL;
1711 }
1712
1713 return 0;
1714 }
1715 EXPORT_SYMBOL(otx2_attach_npa_nix);
1716
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1717 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1718 {
1719 struct hwctx_disable_req *req;
1720
1721 mutex_lock(&mbox->lock);
1722 /* Request AQ to disable this context */
1723 if (npa)
1724 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1725 else
1726 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1727
1728 if (!req) {
1729 mutex_unlock(&mbox->lock);
1730 return;
1731 }
1732
1733 req->ctype = type;
1734
1735 if (otx2_sync_mbox_msg(mbox))
1736 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1737 __func__);
1738
1739 mutex_unlock(&mbox->lock);
1740 }
1741
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1742 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1743 {
1744 struct nix_bp_cfg_req *req;
1745
1746 if (enable)
1747 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1748 else
1749 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1750
1751 if (!req)
1752 return -ENOMEM;
1753
1754 req->chan_base = 0;
1755 if (otx2_is_pfc_enabled(pfvf)) {
1756 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1757 req->bpid_per_chan = 1;
1758 } else {
1759 req->chan_cnt = 1;
1760 req->bpid_per_chan = 0;
1761 }
1762
1763 return otx2_sync_mbox_msg(&pfvf->mbox);
1764 }
1765 EXPORT_SYMBOL(otx2_nix_config_bp);
1766
otx2_nix_cpt_config_bp(struct otx2_nic * pfvf,bool enable)1767 int otx2_nix_cpt_config_bp(struct otx2_nic *pfvf, bool enable)
1768 {
1769 struct nix_bp_cfg_req *req;
1770
1771 if (enable)
1772 req = otx2_mbox_alloc_msg_nix_cpt_bp_enable(&pfvf->mbox);
1773 else
1774 req = otx2_mbox_alloc_msg_nix_cpt_bp_disable(&pfvf->mbox);
1775
1776 if (!req)
1777 return -ENOMEM;
1778
1779 req->chan_base = 0;
1780 if (otx2_is_pfc_enabled(pfvf)) {
1781 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1782 req->bpid_per_chan = 1;
1783 } else {
1784 req->chan_cnt = 1;
1785 req->bpid_per_chan = 0;
1786 }
1787
1788 return otx2_sync_mbox_msg(&pfvf->mbox);
1789 }
1790 EXPORT_SYMBOL(otx2_nix_cpt_config_bp);
1791
1792 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1793 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1794 struct cgx_stats_rsp *rsp)
1795 {
1796 int id;
1797
1798 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1799 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1800 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1801 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1802 }
1803
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1804 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1805 struct cgx_fec_stats_rsp *rsp)
1806 {
1807 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1808 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1809 }
1810
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1811 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1812 struct npa_lf_alloc_rsp *rsp)
1813 {
1814 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1815 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1816 }
1817 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1818
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1819 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1820 struct nix_lf_alloc_rsp *rsp)
1821 {
1822 pfvf->hw.sqb_size = rsp->sqb_size;
1823 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1824 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1825 pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt;
1826 pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt;
1827 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1828 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1829 pfvf->hw.cgx_links = rsp->cgx_links;
1830 pfvf->hw.lbk_links = rsp->lbk_links;
1831 pfvf->hw.tx_link = rsp->tx_link;
1832 }
1833 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1834
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1835 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1836 struct msix_offset_rsp *rsp)
1837 {
1838 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1839 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1840 }
1841 EXPORT_SYMBOL(mbox_handler_msix_offset);
1842
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1843 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1844 struct nix_bp_cfg_rsp *rsp)
1845 {
1846 int chan, chan_id;
1847
1848 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1849 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1850 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1851 }
1852 }
1853 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1854
otx2_free_cints(struct otx2_nic * pfvf,int n)1855 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1856 {
1857 struct otx2_qset *qset = &pfvf->qset;
1858 struct otx2_hw *hw = &pfvf->hw;
1859 int irq, qidx;
1860
1861 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1862 qidx < n;
1863 qidx++, irq++) {
1864 int vector = pci_irq_vector(pfvf->pdev, irq);
1865
1866 irq_set_affinity_hint(vector, NULL);
1867 free_cpumask_var(hw->affinity_mask[irq]);
1868 free_irq(vector, &qset->napi[qidx]);
1869 }
1870 }
1871 EXPORT_SYMBOL(otx2_free_cints);
1872
otx2_set_cints_affinity(struct otx2_nic * pfvf)1873 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1874 {
1875 struct otx2_hw *hw = &pfvf->hw;
1876 int vec, cpu, irq, cint;
1877
1878 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1879 cpu = cpumask_first(cpu_online_mask);
1880
1881 /* CQ interrupts */
1882 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1883 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1884 return;
1885
1886 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1887
1888 irq = pci_irq_vector(pfvf->pdev, vec);
1889 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1890
1891 cpu = cpumask_next(cpu, cpu_online_mask);
1892 if (unlikely(cpu >= nr_cpu_ids))
1893 cpu = 0;
1894 }
1895 }
1896
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1897 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1898 {
1899 if (is_otx2_lbkvf(pfvf->pdev)) {
1900 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1901 return hw->lbk_dwrr_mtu;
1902 }
1903
1904 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1905 return hw->rpm_dwrr_mtu;
1906 }
1907
otx2_get_max_mtu(struct otx2_nic * pfvf)1908 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1909 {
1910 struct nix_hw_info *rsp;
1911 struct msg_req *req;
1912 u16 max_mtu;
1913 int rc;
1914
1915 mutex_lock(&pfvf->mbox.lock);
1916
1917 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1918 if (!req) {
1919 rc = -ENOMEM;
1920 goto out;
1921 }
1922
1923 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1924 if (!rc) {
1925 rsp = (struct nix_hw_info *)
1926 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1927 if (IS_ERR(rsp)) {
1928 rc = PTR_ERR(rsp);
1929 goto out;
1930 }
1931
1932 /* HW counts VLAN insertion bytes (8 for double tag)
1933 * irrespective of whether SQE is requesting to insert VLAN
1934 * in the packet or not. Hence these 8 bytes have to be
1935 * discounted from max packet size otherwise HW will throw
1936 * SMQ errors
1937 */
1938 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1939
1940 /* Also save DWRR MTU, needed for DWRR weight calculation */
1941 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
1942 if (!pfvf->hw.dwrr_mtu)
1943 pfvf->hw.dwrr_mtu = 1;
1944 }
1945
1946 out:
1947 mutex_unlock(&pfvf->mbox.lock);
1948 if (rc) {
1949 dev_warn(pfvf->dev,
1950 "Failed to get MTU from hardware setting default value(1500)\n");
1951 max_mtu = 1500;
1952 }
1953 return max_mtu;
1954 }
1955 EXPORT_SYMBOL(otx2_get_max_mtu);
1956
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)1957 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
1958 {
1959 netdev_features_t changed = features ^ netdev->features;
1960 struct otx2_nic *pfvf = netdev_priv(netdev);
1961 bool ntuple = !!(features & NETIF_F_NTUPLE);
1962 bool tc = !!(features & NETIF_F_HW_TC);
1963
1964 if ((changed & NETIF_F_NTUPLE) && !ntuple)
1965 otx2_destroy_ntuple_flows(pfvf);
1966
1967 if ((changed & NETIF_F_NTUPLE) && ntuple) {
1968 if (!pfvf->flow_cfg->max_flows) {
1969 netdev_err(netdev,
1970 "Can't enable NTUPLE, MCAM entries not allocated\n");
1971 return -EINVAL;
1972 }
1973 }
1974
1975 if ((changed & NETIF_F_HW_TC) && !tc &&
1976 otx2_tc_flower_rule_cnt(pfvf)) {
1977 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
1978 return -EBUSY;
1979 }
1980
1981 if ((changed & NETIF_F_NTUPLE) && ntuple &&
1982 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
1983 netdev_err(netdev,
1984 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
1985 return -EINVAL;
1986 }
1987
1988 return 0;
1989 }
1990 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
1991
1992 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1993 int __weak \
1994 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
1995 struct _req_type *req, \
1996 struct _rsp_type *rsp) \
1997 { \
1998 /* Nothing to do here */ \
1999 return 0; \
2000 } \
2001 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
2002 MBOX_UP_CGX_MESSAGES
2003 MBOX_UP_MCS_MESSAGES
2004 #undef M
2005
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)2006 dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
2007 struct sk_buff *skb, int seg, int *len)
2008 {
2009 enum dma_data_direction dir = DMA_TO_DEVICE;
2010 const skb_frag_t *frag;
2011 struct page *page;
2012 int offset;
2013
2014 /* Crypto hardware need write permission for ipsec crypto offload */
2015 if (unlikely(xfrm_offload(skb))) {
2016 dir = DMA_BIDIRECTIONAL;
2017 skb = skb_unshare(skb, GFP_ATOMIC);
2018 }
2019
2020 /* First segment is always skb->data */
2021 if (!seg) {
2022 page = virt_to_page(skb->data);
2023 offset = offset_in_page(skb->data);
2024 *len = skb_headlen(skb);
2025 } else {
2026 frag = &skb_shinfo(skb)->frags[seg - 1];
2027 page = skb_frag_page(frag);
2028 offset = skb_frag_off(frag);
2029 *len = skb_frag_size(frag);
2030 }
2031 return otx2_dma_map_page(pfvf, page, offset, *len, dir);
2032 }
2033
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)2034 void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
2035 {
2036 enum dma_data_direction dir = DMA_TO_DEVICE;
2037 struct sk_buff *skb = NULL;
2038 int seg;
2039
2040 skb = (struct sk_buff *)sg->skb;
2041 if (unlikely(xfrm_offload(skb)))
2042 dir = DMA_BIDIRECTIONAL;
2043
2044 for (seg = 0; seg < sg->num_segs; seg++) {
2045 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
2046 sg->size[seg], dir);
2047 }
2048 sg->num_segs = 0;
2049 }
2050