1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18
ath9k_hw_analog_shift_regwrite(struct ath_hw * ah,u32 reg,u32 val)19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21 REG_WRITE(ah, reg, val);
22
23 if (ah->config.analog_shiftreg)
24 udelay(100);
25 }
26
ath9k_hw_analog_shift_rmw(struct ath_hw * ah,u32 reg,u32 mask,u32 shift,u32 val)27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
29 {
30 REG_RMW(ah, reg, ((val << shift) & mask), mask);
31
32 if (ah->config.analog_shiftreg)
33 udelay(100);
34 }
35
ath9k_hw_interpolate(u16 target,u16 srcLeft,u16 srcRight,int16_t targetLeft,int16_t targetRight)36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 int16_t targetLeft, int16_t targetRight)
38 {
39 int16_t rv;
40
41 if (srcRight == srcLeft) {
42 rv = targetLeft;
43 } else {
44 rv = (int16_t) (((target - srcLeft) * targetRight +
45 (srcRight - target) * targetLeft) /
46 (srcRight - srcLeft));
47 }
48 return rv;
49 }
50
ath9k_hw_get_lower_upper_index(u8 target,u8 * pList,u16 listSize,u16 * indexL,u16 * indexR)51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 u16 *indexL, u16 *indexR)
53 {
54 u16 i;
55
56 if (target <= pList[0]) {
57 *indexL = *indexR = 0;
58 return true;
59 }
60 if (target >= pList[listSize - 1]) {
61 *indexL = *indexR = (u16) (listSize - 1);
62 return true;
63 }
64
65 for (i = 0; i < listSize - 1; i++) {
66 if (pList[i] == target) {
67 *indexL = *indexR = i;
68 return true;
69 }
70 if (target < pList[i + 1]) {
71 *indexL = i;
72 *indexR = (u16) (i + 1);
73 return false;
74 }
75 }
76 return false;
77 }
78
ath9k_hw_usb_gen_fill_eeprom(struct ath_hw * ah,u16 * eep_data,int eep_start_loc,int size)79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 int eep_start_loc, int size)
81 {
82 int i = 0, j, addr;
83 u32 addrdata[8];
84 u32 data[8];
85
86 for (addr = 0; addr < size; addr++) {
87 addrdata[i] = AR5416_EEPROM_OFFSET +
88 ((addr + eep_start_loc) << AR5416_EEPROM_S);
89 i++;
90 if (i == 8) {
91 REG_READ_MULTI(ah, addrdata, data, i);
92
93 for (j = 0; j < i; j++) {
94 *eep_data = data[j];
95 eep_data++;
96 }
97 i = 0;
98 }
99 }
100
101 if (i != 0) {
102 REG_READ_MULTI(ah, addrdata, data, i);
103
104 for (j = 0; j < i; j++) {
105 *eep_data = data[j];
106 eep_data++;
107 }
108 }
109 }
110
ath9k_hw_nvram_read_array(u16 * blob,size_t blob_size,off_t offset,u16 * data)111 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
112 off_t offset, u16 *data)
113 {
114 if (offset >= blob_size)
115 return false;
116
117 *data = blob[offset];
118 return true;
119 }
120
ath9k_hw_nvram_read_firmware(const struct firmware * eeprom_blob,off_t offset,u16 * data)121 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
122 off_t offset, u16 *data)
123 {
124 return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
125 eeprom_blob->size / sizeof(u16),
126 offset, data);
127 }
128
ath9k_hw_nvram_read_nvmem(struct ath_hw * ah,off_t offset,u16 * data)129 static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
130 u16 *data)
131 {
132 return ath9k_hw_nvram_read_array(ah->nvmem_blob,
133 ah->nvmem_blob_len / sizeof(u16),
134 offset, data);
135 }
136
ath9k_hw_nvram_read(struct ath_hw * ah,u32 off,u16 * data)137 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
138 {
139 struct ath_common *common = ath9k_hw_common(ah);
140 bool ret;
141
142 if (ah->nvmem_blob)
143 ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
144 else if (ah->eeprom_blob)
145 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146 else
147 ret = common->bus_ops->eeprom_read(common, off, data);
148
149 if (!ret)
150 ath_dbg(common, EEPROM,
151 "unable to read eeprom region at offset %u\n", off);
152
153 return ret;
154 }
155
ath9k_hw_nvram_swap_data(struct ath_hw * ah,bool * swap_needed,int size)156 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
157 {
158 u16 magic;
159 u16 *eepdata;
160 int i;
161 bool needs_byteswap = false;
162 struct ath_common *common = ath9k_hw_common(ah);
163
164 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
165 ath_err(common, "Reading Magic # failed\n");
166 return -EIO;
167 }
168
169 if (swab16(magic) == AR5416_EEPROM_MAGIC) {
170 needs_byteswap = true;
171 ath_dbg(common, EEPROM,
172 "EEPROM needs byte-swapping to correct endianness.\n");
173 } else if (magic != AR5416_EEPROM_MAGIC) {
174 if (ath9k_hw_use_flash(ah)) {
175 ath_dbg(common, EEPROM,
176 "Ignoring invalid EEPROM magic (0x%04x).\n",
177 magic);
178 } else {
179 ath_err(common,
180 "Invalid EEPROM magic (0x%04x).\n", magic);
181 return -EINVAL;
182 }
183 }
184
185 if (needs_byteswap) {
186 if (ah->ah_flags & AH_NO_EEP_SWAP) {
187 ath_info(common,
188 "Ignoring endianness difference in EEPROM magic bytes.\n");
189 } else {
190 eepdata = (u16 *)(&ah->eeprom);
191
192 for (i = 0; i < size; i++)
193 eepdata[i] = swab16(eepdata[i]);
194 }
195 }
196
197 if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
198 *swap_needed = true;
199 ath_dbg(common, EEPROM,
200 "Big Endian EEPROM detected according to EEPMISC register.\n");
201 } else {
202 *swap_needed = false;
203 }
204
205 return 0;
206 }
207
ath9k_hw_nvram_validate_checksum(struct ath_hw * ah,int size)208 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
209 {
210 u32 i, sum = 0;
211 u16 *eepdata = (u16 *)(&ah->eeprom);
212 struct ath_common *common = ath9k_hw_common(ah);
213
214 for (i = 0; i < size; i++)
215 sum ^= eepdata[i];
216
217 if (sum != 0xffff) {
218 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
219 return false;
220 }
221
222 return true;
223 }
224
ath9k_hw_nvram_check_version(struct ath_hw * ah,int version,int minrev)225 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
226 {
227 struct ath_common *common = ath9k_hw_common(ah);
228
229 if (ah->eep_ops->get_eeprom_ver(ah) != version ||
230 ah->eep_ops->get_eeprom_rev(ah) < minrev) {
231 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
232 ah->eep_ops->get_eeprom_ver(ah),
233 ah->eep_ops->get_eeprom_rev(ah));
234 return false;
235 }
236
237 return true;
238 }
239
ath9k_hw_fill_vpd_table(u8 pwrMin,u8 pwrMax,u8 * pPwrList,u8 * pVpdList,u16 numIntercepts,u8 * pRetVpdList)240 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
241 u8 *pVpdList, u16 numIntercepts,
242 u8 *pRetVpdList)
243 {
244 u16 i, k;
245 u8 currPwr = pwrMin;
246 u16 idxL = 0, idxR = 0;
247
248 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
249 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
250 numIntercepts, &(idxL),
251 &(idxR));
252 if (idxR < 1)
253 idxR = 1;
254 if (idxL == numIntercepts - 1)
255 idxL = (u16) (numIntercepts - 2);
256 if (pPwrList[idxL] == pPwrList[idxR])
257 k = pVpdList[idxL];
258 else
259 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
260 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
261 (pPwrList[idxR] - pPwrList[idxL]));
262 pRetVpdList[i] = (u8) k;
263 currPwr += 2;
264 }
265 }
266
ath9k_hw_get_legacy_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_leg * powInfo,u16 numChannels,struct cal_target_power_leg * pNewPower,u16 numRates,bool isExtTarget)267 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
268 struct ath9k_channel *chan,
269 struct cal_target_power_leg *powInfo,
270 u16 numChannels,
271 struct cal_target_power_leg *pNewPower,
272 u16 numRates, bool isExtTarget)
273 {
274 struct chan_centers centers;
275 u16 clo, chi;
276 int i;
277 int matchIndex = -1, lowIndex = -1;
278 u16 freq;
279
280 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
281 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
282
283 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
284 IS_CHAN_2GHZ(chan))) {
285 matchIndex = 0;
286 } else {
287 for (i = 0; (i < numChannels) &&
288 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
289 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
290 IS_CHAN_2GHZ(chan))) {
291 matchIndex = i;
292 break;
293 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
294 IS_CHAN_2GHZ(chan)) && i > 0 &&
295 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
296 IS_CHAN_2GHZ(chan))) {
297 lowIndex = i - 1;
298 break;
299 }
300 }
301 if ((matchIndex == -1) && (lowIndex == -1))
302 matchIndex = i - 1;
303 }
304
305 if (matchIndex != -1) {
306 *pNewPower = powInfo[matchIndex];
307 } else {
308 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
309 IS_CHAN_2GHZ(chan));
310 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
311 IS_CHAN_2GHZ(chan));
312
313 for (i = 0; i < numRates; i++) {
314 pNewPower->tPow2x[i] =
315 (u8)ath9k_hw_interpolate(freq, clo, chi,
316 powInfo[lowIndex].tPow2x[i],
317 powInfo[lowIndex + 1].tPow2x[i]);
318 }
319 }
320 }
321
ath9k_hw_get_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_ht * powInfo,u16 numChannels,struct cal_target_power_ht * pNewPower,u16 numRates,bool isHt40Target)322 void ath9k_hw_get_target_powers(struct ath_hw *ah,
323 struct ath9k_channel *chan,
324 struct cal_target_power_ht *powInfo,
325 u16 numChannels,
326 struct cal_target_power_ht *pNewPower,
327 u16 numRates, bool isHt40Target)
328 {
329 struct chan_centers centers;
330 u16 clo, chi;
331 int i;
332 int matchIndex = -1, lowIndex = -1;
333 u16 freq;
334
335 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
336 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
337
338 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
339 matchIndex = 0;
340 } else {
341 for (i = 0; (i < numChannels) &&
342 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
343 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
344 IS_CHAN_2GHZ(chan))) {
345 matchIndex = i;
346 break;
347 } else
348 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
349 IS_CHAN_2GHZ(chan)) && i > 0 &&
350 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
351 IS_CHAN_2GHZ(chan))) {
352 lowIndex = i - 1;
353 break;
354 }
355 }
356 if ((matchIndex == -1) && (lowIndex == -1))
357 matchIndex = i - 1;
358 }
359
360 if (matchIndex != -1) {
361 *pNewPower = powInfo[matchIndex];
362 } else {
363 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
364 IS_CHAN_2GHZ(chan));
365 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
366 IS_CHAN_2GHZ(chan));
367
368 for (i = 0; i < numRates; i++) {
369 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
370 clo, chi,
371 powInfo[lowIndex].tPow2x[i],
372 powInfo[lowIndex + 1].tPow2x[i]);
373 }
374 }
375 }
376
ath9k_hw_get_max_edge_power(u16 freq,struct cal_ctl_edges * pRdEdgesPower,bool is2GHz,int num_band_edges)377 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
378 bool is2GHz, int num_band_edges)
379 {
380 u16 twiceMaxEdgePower = MAX_RATE_POWER;
381 int i;
382
383 for (i = 0; (i < num_band_edges) &&
384 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
385 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
386 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
387 break;
388 } else if ((i > 0) &&
389 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
390 is2GHz))) {
391 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
392 is2GHz) < freq &&
393 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
394 twiceMaxEdgePower =
395 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
396 }
397 break;
398 }
399 }
400
401 return twiceMaxEdgePower;
402 }
403
ath9k_hw_get_scaled_power(struct ath_hw * ah,u16 power_limit,u8 antenna_reduction)404 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
405 u8 antenna_reduction)
406 {
407 u16 reduction = antenna_reduction;
408
409 /*
410 * Reduce scaled Power by number of chains active
411 * to get the per chain tx power level.
412 */
413 switch (ar5416_get_ntxchains(ah->txchainmask)) {
414 case 1:
415 break;
416 case 2:
417 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
418 break;
419 case 3:
420 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
421 break;
422 }
423
424 if (power_limit > reduction)
425 power_limit -= reduction;
426 else
427 power_limit = 0;
428
429 return min_t(u16, power_limit, MAX_RATE_POWER);
430 }
431
ath9k_hw_update_regulatory_maxpower(struct ath_hw * ah)432 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
433 {
434 struct ath_common *common = ath9k_hw_common(ah);
435 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
436
437 switch (ar5416_get_ntxchains(ah->txchainmask)) {
438 case 1:
439 break;
440 case 2:
441 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
442 break;
443 case 3:
444 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
445 break;
446 default:
447 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
448 break;
449 }
450 }
451
ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw * ah,struct ath9k_channel * chan,void * pRawDataSet,u8 * bChans,u16 availPiers,u16 tPdGainOverlap,u16 * pPdGainBoundaries,u8 * pPDADCValues,u16 numXpdGains)452 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
453 struct ath9k_channel *chan,
454 void *pRawDataSet,
455 u8 *bChans, u16 availPiers,
456 u16 tPdGainOverlap,
457 u16 *pPdGainBoundaries, u8 *pPDADCValues,
458 u16 numXpdGains)
459 {
460 int i, j, k;
461 int16_t ss;
462 u16 idxL = 0, idxR = 0, numPiers;
463 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
464 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
465 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
466 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
467 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
468 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
469
470 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
471 u8 minPwrT4[AR5416_NUM_PD_GAINS];
472 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
473 int16_t vpdStep;
474 int16_t tmpVal;
475 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
476 bool match;
477 int16_t minDelta = 0;
478 struct chan_centers centers;
479 int pdgain_boundary_default;
480 struct cal_data_per_freq *data_def = pRawDataSet;
481 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
482 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
483 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
484 int intercepts;
485
486 if (AR_SREV_9287(ah))
487 intercepts = AR9287_PD_GAIN_ICEPTS;
488 else
489 intercepts = AR5416_PD_GAIN_ICEPTS;
490
491 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
492 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
493
494 for (numPiers = 0; numPiers < availPiers; numPiers++) {
495 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
496 break;
497 }
498
499 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
500 IS_CHAN_2GHZ(chan)),
501 bChans, numPiers, &idxL, &idxR);
502
503 if (match) {
504 if (AR_SREV_9287(ah)) {
505 for (i = 0; i < numXpdGains; i++) {
506 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
507 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
508 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
509 data_9287[idxL].pwrPdg[i],
510 data_9287[idxL].vpdPdg[i],
511 intercepts,
512 vpdTableI[i]);
513 }
514 } else if (eeprom_4k) {
515 for (i = 0; i < numXpdGains; i++) {
516 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
517 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
518 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
519 data_4k[idxL].pwrPdg[i],
520 data_4k[idxL].vpdPdg[i],
521 intercepts,
522 vpdTableI[i]);
523 }
524 } else {
525 for (i = 0; i < numXpdGains; i++) {
526 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
527 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
528 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
529 data_def[idxL].pwrPdg[i],
530 data_def[idxL].vpdPdg[i],
531 intercepts,
532 vpdTableI[i]);
533 }
534 }
535 } else {
536 for (i = 0; i < numXpdGains; i++) {
537 if (AR_SREV_9287(ah)) {
538 pVpdL = data_9287[idxL].vpdPdg[i];
539 pPwrL = data_9287[idxL].pwrPdg[i];
540 pVpdR = data_9287[idxR].vpdPdg[i];
541 pPwrR = data_9287[idxR].pwrPdg[i];
542 } else if (eeprom_4k) {
543 pVpdL = data_4k[idxL].vpdPdg[i];
544 pPwrL = data_4k[idxL].pwrPdg[i];
545 pVpdR = data_4k[idxR].vpdPdg[i];
546 pPwrR = data_4k[idxR].pwrPdg[i];
547 } else {
548 pVpdL = data_def[idxL].vpdPdg[i];
549 pPwrL = data_def[idxL].pwrPdg[i];
550 pVpdR = data_def[idxR].vpdPdg[i];
551 pPwrR = data_def[idxR].pwrPdg[i];
552 }
553
554 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
555
556 maxPwrT4[i] =
557 min(pPwrL[intercepts - 1],
558 pPwrR[intercepts - 1]);
559
560
561 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
562 pPwrL, pVpdL,
563 intercepts,
564 vpdTableL[i]);
565 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
566 pPwrR, pVpdR,
567 intercepts,
568 vpdTableR[i]);
569
570 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
571 vpdTableI[i][j] =
572 (u8)(ath9k_hw_interpolate((u16)
573 FREQ2FBIN(centers.
574 synth_center,
575 IS_CHAN_2GHZ
576 (chan)),
577 bChans[idxL], bChans[idxR],
578 vpdTableL[i][j], vpdTableR[i][j]));
579 }
580 }
581 }
582
583 k = 0;
584
585 for (i = 0; i < numXpdGains; i++) {
586 if (i == (numXpdGains - 1))
587 pPdGainBoundaries[i] =
588 (u16)(maxPwrT4[i] / 2);
589 else
590 pPdGainBoundaries[i] =
591 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
592
593 pPdGainBoundaries[i] =
594 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
595
596 minDelta = 0;
597
598 if (i == 0) {
599 if (AR_SREV_9280_20_OR_LATER(ah))
600 ss = (int16_t)(0 - (minPwrT4[i] / 2));
601 else
602 ss = 0;
603 } else {
604 ss = (int16_t)((pPdGainBoundaries[i - 1] -
605 (minPwrT4[i] / 2)) -
606 tPdGainOverlap + 1 + minDelta);
607 }
608 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
609 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
610
611 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
612 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
613 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
614 ss++;
615 }
616
617 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
618 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
619 (minPwrT4[i] / 2));
620 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
621 tgtIndex : sizeCurrVpdTable;
622
623 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624 pPDADCValues[k++] = vpdTableI[i][ss++];
625 }
626
627 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
628 vpdTableI[i][sizeCurrVpdTable - 2]);
629 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
630
631 if (tgtIndex >= maxIndex) {
632 while ((ss <= tgtIndex) &&
633 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
634 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
635 (ss - maxIndex + 1) * vpdStep));
636 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
637 255 : tmpVal);
638 ss++;
639 }
640 }
641 }
642
643 if (eeprom_4k)
644 pdgain_boundary_default = 58;
645 else
646 pdgain_boundary_default = pPdGainBoundaries[i - 1];
647
648 while (i < AR5416_PD_GAINS_IN_MASK) {
649 pPdGainBoundaries[i] = pdgain_boundary_default;
650 i++;
651 }
652
653 while (k < AR5416_NUM_PDADC_VALUES) {
654 pPDADCValues[k] = pPDADCValues[k - 1];
655 k++;
656 }
657 }
658
ath9k_hw_eeprom_init(struct ath_hw * ah)659 int ath9k_hw_eeprom_init(struct ath_hw *ah)
660 {
661 if (AR_SREV_9300_20_OR_LATER(ah))
662 ah->eep_ops = &eep_ar9300_ops;
663 else if (AR_SREV_9287(ah)) {
664 ah->eep_ops = &eep_ar9287_ops;
665 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
666 ah->eep_ops = &eep_4k_ops;
667 } else {
668 ah->eep_ops = &eep_def_ops;
669 }
670
671 if (!ah->eep_ops->fill_eeprom(ah))
672 return -EIO;
673
674 return ah->eep_ops->check_eeprom(ah);
675 }
676