1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 #include "data_direct.h"
47 
48 enum {
49 	MAX_PENDING_REG_MR = 8,
50 };
51 
52 #define MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS 4
53 #define MLX5_UMR_ALIGN 2048
54 
55 static void
56 create_mkey_callback(int status, struct mlx5_async_work *context);
57 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
58 				     u64 iova, int access_flags,
59 				     unsigned long page_size, bool populate,
60 				     int access_mode);
61 static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr);
62 
set_mkc_access_pd_addr_fields(void * mkc,int acc,u64 start_addr,struct ib_pd * pd)63 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
64 					  struct ib_pd *pd)
65 {
66 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
67 
68 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
69 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
70 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
71 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
72 	MLX5_SET(mkc, mkc, lr, 1);
73 
74 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
75 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
76 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
77 
78 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
79 		    (MLX5_CAP_GEN(dev->mdev,
80 				  relaxed_ordering_read_pci_enabled) &&
81 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
82 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
83 	}
84 
85 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
86 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
87 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
88 }
89 
assign_mkey_variant(struct mlx5_ib_dev * dev,u32 * mkey,u32 * in)90 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
91 {
92 	u8 key = atomic_inc_return(&dev->mkey_var);
93 	void *mkc;
94 
95 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
96 	MLX5_SET(mkc, mkc, mkey_7_0, key);
97 	*mkey = key;
98 }
99 
mlx5_ib_create_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mkey * mkey,u32 * in,int inlen)100 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
101 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
102 {
103 	int ret;
104 
105 	assign_mkey_variant(dev, &mkey->key, in);
106 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
107 	if (!ret)
108 		init_waitqueue_head(&mkey->wait);
109 
110 	return ret;
111 }
112 
mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey * async_create)113 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
114 {
115 	struct mlx5_ib_dev *dev = async_create->ent->dev;
116 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
117 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
118 
119 	MLX5_SET(create_mkey_in, async_create->in, opcode,
120 		 MLX5_CMD_OP_CREATE_MKEY);
121 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
122 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
123 				async_create->out, outlen, create_mkey_callback,
124 				&async_create->cb_work);
125 }
126 
127 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
128 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
129 
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)130 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
131 {
132 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
133 
134 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
135 }
136 
create_mkey_warn(struct mlx5_ib_dev * dev,int status,void * out)137 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
138 {
139 	if (status == -ENXIO) /* core driver is not available */
140 		return;
141 
142 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
143 	if (status != -EREMOTEIO) /* driver specific failure */
144 		return;
145 
146 	/* Failed in FW, print cmd out failure details */
147 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
148 }
149 
push_mkey_locked(struct mlx5_cache_ent * ent,u32 mkey)150 static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
151 {
152 	unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
153 	struct mlx5_mkeys_page *page;
154 
155 	lockdep_assert_held(&ent->mkeys_queue.lock);
156 	if (ent->mkeys_queue.ci >=
157 	    ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
158 		page = kzalloc(sizeof(*page), GFP_ATOMIC);
159 		if (!page)
160 			return -ENOMEM;
161 		ent->mkeys_queue.num_pages++;
162 		list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
163 	} else {
164 		page = list_last_entry(&ent->mkeys_queue.pages_list,
165 				       struct mlx5_mkeys_page, list);
166 	}
167 
168 	page->mkeys[tmp] = mkey;
169 	ent->mkeys_queue.ci++;
170 	return 0;
171 }
172 
pop_mkey_locked(struct mlx5_cache_ent * ent)173 static int pop_mkey_locked(struct mlx5_cache_ent *ent)
174 {
175 	unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
176 	struct mlx5_mkeys_page *last_page;
177 	u32 mkey;
178 
179 	lockdep_assert_held(&ent->mkeys_queue.lock);
180 	last_page = list_last_entry(&ent->mkeys_queue.pages_list,
181 				    struct mlx5_mkeys_page, list);
182 	mkey = last_page->mkeys[tmp];
183 	last_page->mkeys[tmp] = 0;
184 	ent->mkeys_queue.ci--;
185 	if (ent->mkeys_queue.num_pages > 1 && !tmp) {
186 		list_del(&last_page->list);
187 		ent->mkeys_queue.num_pages--;
188 		kfree(last_page);
189 	}
190 	return mkey;
191 }
192 
create_mkey_callback(int status,struct mlx5_async_work * context)193 static void create_mkey_callback(int status, struct mlx5_async_work *context)
194 {
195 	struct mlx5r_async_create_mkey *mkey_out =
196 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
197 	struct mlx5_cache_ent *ent = mkey_out->ent;
198 	struct mlx5_ib_dev *dev = ent->dev;
199 	unsigned long flags;
200 
201 	if (status) {
202 		create_mkey_warn(dev, status, mkey_out->out);
203 		kfree(mkey_out);
204 		spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
205 		ent->pending--;
206 		WRITE_ONCE(dev->fill_delay, 1);
207 		spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
208 		mod_timer(&dev->delay_timer, jiffies + HZ);
209 		return;
210 	}
211 
212 	mkey_out->mkey |= mlx5_idx_to_mkey(
213 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
214 	WRITE_ONCE(dev->cache.last_add, jiffies);
215 
216 	spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
217 	push_mkey_locked(ent, mkey_out->mkey);
218 	ent->pending--;
219 	/* If we are doing fill_to_high_water then keep going. */
220 	queue_adjust_cache_locked(ent);
221 	spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
222 	kfree(mkey_out);
223 }
224 
get_mkc_octo_size(unsigned int access_mode,unsigned int ndescs)225 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
226 {
227 	int ret = 0;
228 
229 	switch (access_mode) {
230 	case MLX5_MKC_ACCESS_MODE_MTT:
231 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 						   sizeof(struct mlx5_mtt));
233 		break;
234 	case MLX5_MKC_ACCESS_MODE_KSM:
235 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
236 						   sizeof(struct mlx5_klm));
237 		break;
238 	default:
239 		WARN_ON(1);
240 	}
241 	return ret;
242 }
243 
set_cache_mkc(struct mlx5_cache_ent * ent,void * mkc)244 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
245 {
246 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
247 				      ent->dev->umrc.pd);
248 	MLX5_SET(mkc, mkc, free, 1);
249 	MLX5_SET(mkc, mkc, umr_en, 1);
250 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
251 	MLX5_SET(mkc, mkc, access_mode_4_2,
252 		(ent->rb_key.access_mode >> 2) & 0x7);
253 	MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats);
254 
255 	MLX5_SET(mkc, mkc, translations_octword_size,
256 		 get_mkc_octo_size(ent->rb_key.access_mode,
257 				   ent->rb_key.ndescs));
258 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
259 }
260 
261 /* Asynchronously schedule new MRs to be populated in the cache. */
add_keys(struct mlx5_cache_ent * ent,unsigned int num)262 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
263 {
264 	struct mlx5r_async_create_mkey *async_create;
265 	void *mkc;
266 	int err = 0;
267 	int i;
268 
269 	for (i = 0; i < num; i++) {
270 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
271 				       GFP_KERNEL);
272 		if (!async_create)
273 			return -ENOMEM;
274 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
275 				   memory_key_mkey_entry);
276 		set_cache_mkc(ent, mkc);
277 		async_create->ent = ent;
278 
279 		spin_lock_irq(&ent->mkeys_queue.lock);
280 		if (ent->pending >= MAX_PENDING_REG_MR) {
281 			err = -EAGAIN;
282 			goto free_async_create;
283 		}
284 		ent->pending++;
285 		spin_unlock_irq(&ent->mkeys_queue.lock);
286 
287 		err = mlx5_ib_create_mkey_cb(async_create);
288 		if (err) {
289 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
290 			goto err_create_mkey;
291 		}
292 	}
293 
294 	return 0;
295 
296 err_create_mkey:
297 	spin_lock_irq(&ent->mkeys_queue.lock);
298 	ent->pending--;
299 free_async_create:
300 	spin_unlock_irq(&ent->mkeys_queue.lock);
301 	kfree(async_create);
302 	return err;
303 }
304 
305 /* Synchronously create a MR in the cache */
create_cache_mkey(struct mlx5_cache_ent * ent,u32 * mkey)306 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
307 {
308 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
309 	void *mkc;
310 	u32 *in;
311 	int err;
312 
313 	in = kzalloc(inlen, GFP_KERNEL);
314 	if (!in)
315 		return -ENOMEM;
316 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
317 	set_cache_mkc(ent, mkc);
318 
319 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
320 	if (err)
321 		goto free_in;
322 
323 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
324 free_in:
325 	kfree(in);
326 	return err;
327 }
328 
remove_cache_mr_locked(struct mlx5_cache_ent * ent)329 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
330 {
331 	u32 mkey;
332 
333 	lockdep_assert_held(&ent->mkeys_queue.lock);
334 	if (!ent->mkeys_queue.ci)
335 		return;
336 	mkey = pop_mkey_locked(ent);
337 	spin_unlock_irq(&ent->mkeys_queue.lock);
338 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
339 	spin_lock_irq(&ent->mkeys_queue.lock);
340 }
341 
resize_available_mrs(struct mlx5_cache_ent * ent,unsigned int target,bool limit_fill)342 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
343 				bool limit_fill)
344 	__acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
345 {
346 	int err;
347 
348 	lockdep_assert_held(&ent->mkeys_queue.lock);
349 
350 	while (true) {
351 		if (limit_fill)
352 			target = ent->limit * 2;
353 		if (target == ent->pending + ent->mkeys_queue.ci)
354 			return 0;
355 		if (target > ent->pending + ent->mkeys_queue.ci) {
356 			u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
357 
358 			spin_unlock_irq(&ent->mkeys_queue.lock);
359 			err = add_keys(ent, todo);
360 			if (err == -EAGAIN)
361 				usleep_range(3000, 5000);
362 			spin_lock_irq(&ent->mkeys_queue.lock);
363 			if (err) {
364 				if (err != -EAGAIN)
365 					return err;
366 			} else
367 				return 0;
368 		} else {
369 			remove_cache_mr_locked(ent);
370 		}
371 	}
372 }
373 
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)374 static ssize_t size_write(struct file *filp, const char __user *buf,
375 			  size_t count, loff_t *pos)
376 {
377 	struct mlx5_cache_ent *ent = filp->private_data;
378 	u32 target;
379 	int err;
380 
381 	err = kstrtou32_from_user(buf, count, 0, &target);
382 	if (err)
383 		return err;
384 
385 	/*
386 	 * Target is the new value of total_mrs the user requests, however we
387 	 * cannot free MRs that are in use. Compute the target value for stored
388 	 * mkeys.
389 	 */
390 	spin_lock_irq(&ent->mkeys_queue.lock);
391 	if (target < ent->in_use) {
392 		err = -EINVAL;
393 		goto err_unlock;
394 	}
395 	target = target - ent->in_use;
396 	if (target < ent->limit || target > ent->limit*2) {
397 		err = -EINVAL;
398 		goto err_unlock;
399 	}
400 	err = resize_available_mrs(ent, target, false);
401 	if (err)
402 		goto err_unlock;
403 	spin_unlock_irq(&ent->mkeys_queue.lock);
404 
405 	return count;
406 
407 err_unlock:
408 	spin_unlock_irq(&ent->mkeys_queue.lock);
409 	return err;
410 }
411 
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)412 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
413 			 loff_t *pos)
414 {
415 	struct mlx5_cache_ent *ent = filp->private_data;
416 	char lbuf[20];
417 	int err;
418 
419 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
420 		       ent->mkeys_queue.ci + ent->in_use);
421 	if (err < 0)
422 		return err;
423 
424 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
425 }
426 
427 static const struct file_operations size_fops = {
428 	.owner	= THIS_MODULE,
429 	.open	= simple_open,
430 	.write	= size_write,
431 	.read	= size_read,
432 };
433 
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)434 static ssize_t limit_write(struct file *filp, const char __user *buf,
435 			   size_t count, loff_t *pos)
436 {
437 	struct mlx5_cache_ent *ent = filp->private_data;
438 	u32 var;
439 	int err;
440 
441 	err = kstrtou32_from_user(buf, count, 0, &var);
442 	if (err)
443 		return err;
444 
445 	/*
446 	 * Upon set we immediately fill the cache to high water mark implied by
447 	 * the limit.
448 	 */
449 	spin_lock_irq(&ent->mkeys_queue.lock);
450 	ent->limit = var;
451 	err = resize_available_mrs(ent, 0, true);
452 	spin_unlock_irq(&ent->mkeys_queue.lock);
453 	if (err)
454 		return err;
455 	return count;
456 }
457 
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)458 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
459 			  loff_t *pos)
460 {
461 	struct mlx5_cache_ent *ent = filp->private_data;
462 	char lbuf[20];
463 	int err;
464 
465 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
466 	if (err < 0)
467 		return err;
468 
469 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
470 }
471 
472 static const struct file_operations limit_fops = {
473 	.owner	= THIS_MODULE,
474 	.open	= simple_open,
475 	.write	= limit_write,
476 	.read	= limit_read,
477 };
478 
someone_adding(struct mlx5_mkey_cache * cache)479 static bool someone_adding(struct mlx5_mkey_cache *cache)
480 {
481 	struct mlx5_cache_ent *ent;
482 	struct rb_node *node;
483 	bool ret;
484 
485 	mutex_lock(&cache->rb_lock);
486 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
487 		ent = rb_entry(node, struct mlx5_cache_ent, node);
488 		spin_lock_irq(&ent->mkeys_queue.lock);
489 		ret = ent->mkeys_queue.ci < ent->limit;
490 		spin_unlock_irq(&ent->mkeys_queue.lock);
491 		if (ret) {
492 			mutex_unlock(&cache->rb_lock);
493 			return true;
494 		}
495 	}
496 	mutex_unlock(&cache->rb_lock);
497 	return false;
498 }
499 
500 /*
501  * Check if the bucket is outside the high/low water mark and schedule an async
502  * update. The cache refill has hysteresis, once the low water mark is hit it is
503  * refilled up to the high mark.
504  */
queue_adjust_cache_locked(struct mlx5_cache_ent * ent)505 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
506 {
507 	lockdep_assert_held(&ent->mkeys_queue.lock);
508 
509 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
510 		return;
511 	if (ent->mkeys_queue.ci < ent->limit) {
512 		ent->fill_to_high_water = true;
513 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
514 	} else if (ent->fill_to_high_water &&
515 		   ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
516 		/*
517 		 * Once we start populating due to hitting a low water mark
518 		 * continue until we pass the high water mark.
519 		 */
520 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
521 	} else if (ent->mkeys_queue.ci == 2 * ent->limit) {
522 		ent->fill_to_high_water = false;
523 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
524 		/* Queue deletion of excess entries */
525 		ent->fill_to_high_water = false;
526 		if (ent->pending)
527 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
528 					   msecs_to_jiffies(1000));
529 		else
530 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
531 	}
532 }
533 
clean_keys(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent)534 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
535 {
536 	u32 mkey;
537 
538 	spin_lock_irq(&ent->mkeys_queue.lock);
539 	while (ent->mkeys_queue.ci) {
540 		mkey = pop_mkey_locked(ent);
541 		spin_unlock_irq(&ent->mkeys_queue.lock);
542 		mlx5_core_destroy_mkey(dev->mdev, mkey);
543 		spin_lock_irq(&ent->mkeys_queue.lock);
544 	}
545 	ent->tmp_cleanup_scheduled = false;
546 	spin_unlock_irq(&ent->mkeys_queue.lock);
547 }
548 
__cache_work_func(struct mlx5_cache_ent * ent)549 static void __cache_work_func(struct mlx5_cache_ent *ent)
550 {
551 	struct mlx5_ib_dev *dev = ent->dev;
552 	struct mlx5_mkey_cache *cache = &dev->cache;
553 	int err;
554 
555 	spin_lock_irq(&ent->mkeys_queue.lock);
556 	if (ent->disabled)
557 		goto out;
558 
559 	if (ent->fill_to_high_water &&
560 	    ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
561 	    !READ_ONCE(dev->fill_delay)) {
562 		spin_unlock_irq(&ent->mkeys_queue.lock);
563 		err = add_keys(ent, 1);
564 		spin_lock_irq(&ent->mkeys_queue.lock);
565 		if (ent->disabled)
566 			goto out;
567 		if (err) {
568 			/*
569 			 * EAGAIN only happens if there are pending MRs, so we
570 			 * will be rescheduled when storing them. The only
571 			 * failure path here is ENOMEM.
572 			 */
573 			if (err != -EAGAIN) {
574 				mlx5_ib_warn(
575 					dev,
576 					"add keys command failed, err %d\n",
577 					err);
578 				queue_delayed_work(cache->wq, &ent->dwork,
579 						   msecs_to_jiffies(1000));
580 			}
581 		}
582 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
583 		bool need_delay;
584 
585 		/*
586 		 * The remove_cache_mr() logic is performed as garbage
587 		 * collection task. Such task is intended to be run when no
588 		 * other active processes are running.
589 		 *
590 		 * The need_resched() will return TRUE if there are user tasks
591 		 * to be activated in near future.
592 		 *
593 		 * In such case, we don't execute remove_cache_mr() and postpone
594 		 * the garbage collection work to try to run in next cycle, in
595 		 * order to free CPU resources to other tasks.
596 		 */
597 		spin_unlock_irq(&ent->mkeys_queue.lock);
598 		need_delay = need_resched() || someone_adding(cache) ||
599 			     !time_after(jiffies,
600 					 READ_ONCE(cache->last_add) + 300 * HZ);
601 		spin_lock_irq(&ent->mkeys_queue.lock);
602 		if (ent->disabled)
603 			goto out;
604 		if (need_delay) {
605 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
606 			goto out;
607 		}
608 		remove_cache_mr_locked(ent);
609 		queue_adjust_cache_locked(ent);
610 	}
611 out:
612 	spin_unlock_irq(&ent->mkeys_queue.lock);
613 }
614 
delayed_cache_work_func(struct work_struct * work)615 static void delayed_cache_work_func(struct work_struct *work)
616 {
617 	struct mlx5_cache_ent *ent;
618 
619 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
620 	/* temp entries are never filled, only cleaned */
621 	if (ent->is_tmp)
622 		clean_keys(ent->dev, ent);
623 	else
624 		__cache_work_func(ent);
625 }
626 
cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,struct mlx5r_cache_rb_key key2)627 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
628 			     struct mlx5r_cache_rb_key key2)
629 {
630 	int res;
631 
632 	res = key1.ats - key2.ats;
633 	if (res)
634 		return res;
635 
636 	res = key1.access_mode - key2.access_mode;
637 	if (res)
638 		return res;
639 
640 	res = key1.access_flags - key2.access_flags;
641 	if (res)
642 		return res;
643 
644 	/*
645 	 * keep ndescs the last in the compare table since the find function
646 	 * searches for an exact match on all properties and only closest
647 	 * match in size.
648 	 */
649 	return key1.ndescs - key2.ndescs;
650 }
651 
mlx5_cache_ent_insert(struct mlx5_mkey_cache * cache,struct mlx5_cache_ent * ent)652 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
653 				 struct mlx5_cache_ent *ent)
654 {
655 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
656 	struct mlx5_cache_ent *cur;
657 	int cmp;
658 
659 	/* Figure out where to put new node */
660 	while (*new) {
661 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
662 		parent = *new;
663 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
664 		if (cmp > 0)
665 			new = &((*new)->rb_left);
666 		if (cmp < 0)
667 			new = &((*new)->rb_right);
668 		if (cmp == 0)
669 			return -EEXIST;
670 	}
671 
672 	/* Add new node and rebalance tree. */
673 	rb_link_node(&ent->node, parent, new);
674 	rb_insert_color(&ent->node, &cache->rb_root);
675 
676 	return 0;
677 }
678 
679 static struct mlx5_cache_ent *
mkey_cache_ent_from_rb_key(struct mlx5_ib_dev * dev,struct mlx5r_cache_rb_key rb_key)680 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
681 			   struct mlx5r_cache_rb_key rb_key)
682 {
683 	struct rb_node *node = dev->cache.rb_root.rb_node;
684 	struct mlx5_cache_ent *cur, *smallest = NULL;
685 	u64 ndescs_limit;
686 	int cmp;
687 
688 	/*
689 	 * Find the smallest ent with order >= requested_order.
690 	 */
691 	while (node) {
692 		cur = rb_entry(node, struct mlx5_cache_ent, node);
693 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
694 		if (cmp > 0) {
695 			smallest = cur;
696 			node = node->rb_left;
697 		}
698 		if (cmp < 0)
699 			node = node->rb_right;
700 		if (cmp == 0)
701 			return cur;
702 	}
703 
704 	/*
705 	 * Limit the usage of mkeys larger than twice the required size while
706 	 * also allowing the usage of smallest cache entry for small MRs.
707 	 */
708 	ndescs_limit = max_t(u64, rb_key.ndescs * 2,
709 			     MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS);
710 
711 	return (smallest &&
712 		smallest->rb_key.access_mode == rb_key.access_mode &&
713 		smallest->rb_key.access_flags == rb_key.access_flags &&
714 		smallest->rb_key.ats == rb_key.ats &&
715 		smallest->rb_key.ndescs <= ndescs_limit) ?
716 		       smallest :
717 		       NULL;
718 }
719 
_mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent,int access_flags)720 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
721 					struct mlx5_cache_ent *ent,
722 					int access_flags)
723 {
724 	struct mlx5_ib_mr *mr;
725 	int err;
726 
727 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
728 	if (!mr)
729 		return ERR_PTR(-ENOMEM);
730 
731 	spin_lock_irq(&ent->mkeys_queue.lock);
732 	ent->in_use++;
733 
734 	if (!ent->mkeys_queue.ci) {
735 		queue_adjust_cache_locked(ent);
736 		ent->miss++;
737 		spin_unlock_irq(&ent->mkeys_queue.lock);
738 		err = create_cache_mkey(ent, &mr->mmkey.key);
739 		if (err) {
740 			spin_lock_irq(&ent->mkeys_queue.lock);
741 			ent->in_use--;
742 			spin_unlock_irq(&ent->mkeys_queue.lock);
743 			kfree(mr);
744 			return ERR_PTR(err);
745 		}
746 	} else {
747 		mr->mmkey.key = pop_mkey_locked(ent);
748 		queue_adjust_cache_locked(ent);
749 		spin_unlock_irq(&ent->mkeys_queue.lock);
750 	}
751 	mr->mmkey.cache_ent = ent;
752 	mr->mmkey.type = MLX5_MKEY_MR;
753 	mr->mmkey.rb_key = ent->rb_key;
754 	mr->mmkey.cacheable = true;
755 	init_waitqueue_head(&mr->mmkey.wait);
756 	return mr;
757 }
758 
get_unchangeable_access_flags(struct mlx5_ib_dev * dev,int access_flags)759 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
760 					 int access_flags)
761 {
762 	int ret = 0;
763 
764 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
765 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
766 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
767 		ret |= IB_ACCESS_REMOTE_ATOMIC;
768 
769 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
770 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
771 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
772 		ret |= IB_ACCESS_RELAXED_ORDERING;
773 
774 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
775 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
776 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
777 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
778 		ret |= IB_ACCESS_RELAXED_ORDERING;
779 
780 	return ret;
781 }
782 
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,int access_flags,int access_mode,int ndescs)783 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
784 				       int access_flags, int access_mode,
785 				       int ndescs)
786 {
787 	struct mlx5r_cache_rb_key rb_key = {
788 		.ndescs = ndescs,
789 		.access_mode = access_mode,
790 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
791 	};
792 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
793 
794 	if (!ent)
795 		return ERR_PTR(-EOPNOTSUPP);
796 
797 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
798 }
799 
mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)800 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
801 {
802 	if (!mlx5_debugfs_root || dev->is_rep)
803 		return;
804 
805 	debugfs_remove_recursive(dev->cache.fs_root);
806 	dev->cache.fs_root = NULL;
807 }
808 
mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent)809 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
810 					    struct mlx5_cache_ent *ent)
811 {
812 	int order = order_base_2(ent->rb_key.ndescs);
813 	struct dentry *dir;
814 
815 	if (!mlx5_debugfs_root || dev->is_rep)
816 		return;
817 
818 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
819 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
820 
821 	sprintf(ent->name, "%d", order);
822 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
823 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
824 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
825 	debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
826 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
827 }
828 
mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev * dev)829 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
830 {
831 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
832 	struct mlx5_mkey_cache *cache = &dev->cache;
833 
834 	if (!mlx5_debugfs_root || dev->is_rep)
835 		return;
836 
837 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
838 }
839 
delay_time_func(struct timer_list * t)840 static void delay_time_func(struct timer_list *t)
841 {
842 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
843 
844 	WRITE_ONCE(dev->fill_delay, 0);
845 }
846 
mlx5r_mkeys_init(struct mlx5_cache_ent * ent)847 static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
848 {
849 	struct mlx5_mkeys_page *page;
850 
851 	page = kzalloc(sizeof(*page), GFP_KERNEL);
852 	if (!page)
853 		return -ENOMEM;
854 	INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
855 	spin_lock_init(&ent->mkeys_queue.lock);
856 	list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
857 	ent->mkeys_queue.num_pages++;
858 	return 0;
859 }
860 
mlx5r_mkeys_uninit(struct mlx5_cache_ent * ent)861 static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
862 {
863 	struct mlx5_mkeys_page *page;
864 
865 	WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
866 	page = list_last_entry(&ent->mkeys_queue.pages_list,
867 			       struct mlx5_mkeys_page, list);
868 	list_del(&page->list);
869 	kfree(page);
870 }
871 
872 struct mlx5_cache_ent *
mlx5r_cache_create_ent_locked(struct mlx5_ib_dev * dev,struct mlx5r_cache_rb_key rb_key,bool persistent_entry)873 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
874 			      struct mlx5r_cache_rb_key rb_key,
875 			      bool persistent_entry)
876 {
877 	struct mlx5_cache_ent *ent;
878 	int order;
879 	int ret;
880 
881 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
882 	if (!ent)
883 		return ERR_PTR(-ENOMEM);
884 
885 	ret = mlx5r_mkeys_init(ent);
886 	if (ret)
887 		goto mkeys_err;
888 	ent->rb_key = rb_key;
889 	ent->dev = dev;
890 	ent->is_tmp = !persistent_entry;
891 
892 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
893 
894 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
895 	if (ret)
896 		goto ent_insert_err;
897 
898 	if (persistent_entry) {
899 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
900 			order = MLX5_IMR_KSM_CACHE_ENTRY;
901 		else
902 			order = order_base_2(rb_key.ndescs) - 2;
903 
904 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
905 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
906 		    mlx5r_umr_can_load_pas(dev, 0))
907 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
908 		else
909 			ent->limit = 0;
910 
911 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
912 	}
913 
914 	return ent;
915 ent_insert_err:
916 	mlx5r_mkeys_uninit(ent);
917 mkeys_err:
918 	kfree(ent);
919 	return ERR_PTR(ret);
920 }
921 
mlx5r_destroy_cache_entries(struct mlx5_ib_dev * dev)922 static void mlx5r_destroy_cache_entries(struct mlx5_ib_dev *dev)
923 {
924 	struct rb_root *root = &dev->cache.rb_root;
925 	struct mlx5_cache_ent *ent;
926 	struct rb_node *node;
927 
928 	mutex_lock(&dev->cache.rb_lock);
929 	node = rb_first(root);
930 	while (node) {
931 		ent = rb_entry(node, struct mlx5_cache_ent, node);
932 		node = rb_next(node);
933 		clean_keys(dev, ent);
934 		rb_erase(&ent->node, root);
935 		mlx5r_mkeys_uninit(ent);
936 		kfree(ent);
937 	}
938 	mutex_unlock(&dev->cache.rb_lock);
939 }
940 
mlx5_mkey_cache_init(struct mlx5_ib_dev * dev)941 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
942 {
943 	struct mlx5_mkey_cache *cache = &dev->cache;
944 	struct rb_root *root = &dev->cache.rb_root;
945 	struct mlx5r_cache_rb_key rb_key = {
946 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
947 	};
948 	struct mlx5_cache_ent *ent;
949 	struct rb_node *node;
950 	int ret;
951 	int i;
952 
953 	mutex_init(&dev->slow_path_mutex);
954 	mutex_init(&dev->cache.rb_lock);
955 	dev->cache.rb_root = RB_ROOT;
956 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
957 	if (!cache->wq) {
958 		mlx5_ib_warn(dev, "failed to create work queue\n");
959 		return -ENOMEM;
960 	}
961 
962 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
963 	timer_setup(&dev->delay_timer, delay_time_func, 0);
964 	mlx5_mkey_cache_debugfs_init(dev);
965 	mutex_lock(&cache->rb_lock);
966 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
967 		rb_key.ndescs = MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS << i;
968 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
969 		if (IS_ERR(ent)) {
970 			ret = PTR_ERR(ent);
971 			goto err;
972 		}
973 	}
974 
975 	ret = mlx5_odp_init_mkey_cache(dev);
976 	if (ret)
977 		goto err;
978 
979 	mutex_unlock(&cache->rb_lock);
980 	for (node = rb_first(root); node; node = rb_next(node)) {
981 		ent = rb_entry(node, struct mlx5_cache_ent, node);
982 		spin_lock_irq(&ent->mkeys_queue.lock);
983 		queue_adjust_cache_locked(ent);
984 		spin_unlock_irq(&ent->mkeys_queue.lock);
985 	}
986 
987 	return 0;
988 
989 err:
990 	mutex_unlock(&cache->rb_lock);
991 	mlx5_mkey_cache_debugfs_cleanup(dev);
992 	mlx5r_destroy_cache_entries(dev);
993 	destroy_workqueue(cache->wq);
994 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
995 	return ret;
996 }
997 
mlx5_mkey_cache_cleanup(struct mlx5_ib_dev * dev)998 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
999 {
1000 	struct rb_root *root = &dev->cache.rb_root;
1001 	struct mlx5_cache_ent *ent;
1002 	struct rb_node *node;
1003 
1004 	if (!dev->cache.wq)
1005 		return;
1006 
1007 	mutex_lock(&dev->cache.rb_lock);
1008 	for (node = rb_first(root); node; node = rb_next(node)) {
1009 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1010 		spin_lock_irq(&ent->mkeys_queue.lock);
1011 		ent->disabled = true;
1012 		spin_unlock_irq(&ent->mkeys_queue.lock);
1013 		cancel_delayed_work(&ent->dwork);
1014 	}
1015 	mutex_unlock(&dev->cache.rb_lock);
1016 
1017 	/*
1018 	 * After all entries are disabled and will not reschedule on WQ,
1019 	 * flush it and all async commands.
1020 	 */
1021 	flush_workqueue(dev->cache.wq);
1022 
1023 	mlx5_mkey_cache_debugfs_cleanup(dev);
1024 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1025 
1026 	/* At this point all entries are disabled and have no concurrent work. */
1027 	mlx5r_destroy_cache_entries(dev);
1028 
1029 	destroy_workqueue(dev->cache.wq);
1030 	del_timer_sync(&dev->delay_timer);
1031 }
1032 
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)1033 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1034 {
1035 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1036 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1037 	struct mlx5_ib_mr *mr;
1038 	void *mkc;
1039 	u32 *in;
1040 	int err;
1041 
1042 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1043 	if (!mr)
1044 		return ERR_PTR(-ENOMEM);
1045 
1046 	in = kzalloc(inlen, GFP_KERNEL);
1047 	if (!in) {
1048 		err = -ENOMEM;
1049 		goto err_free;
1050 	}
1051 
1052 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1053 
1054 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1055 	MLX5_SET(mkc, mkc, length64, 1);
1056 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1057 				      pd);
1058 	MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
1059 
1060 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1061 	if (err)
1062 		goto err_in;
1063 
1064 	kfree(in);
1065 	mr->mmkey.type = MLX5_MKEY_MR;
1066 	mr->ibmr.lkey = mr->mmkey.key;
1067 	mr->ibmr.rkey = mr->mmkey.key;
1068 	mr->umem = NULL;
1069 
1070 	return &mr->ibmr;
1071 
1072 err_in:
1073 	kfree(in);
1074 
1075 err_free:
1076 	kfree(mr);
1077 
1078 	return ERR_PTR(err);
1079 }
1080 
get_octo_len(u64 addr,u64 len,int page_shift)1081 static int get_octo_len(u64 addr, u64 len, int page_shift)
1082 {
1083 	u64 page_size = 1ULL << page_shift;
1084 	u64 offset;
1085 	int npages;
1086 
1087 	offset = addr & (page_size - 1);
1088 	npages = ALIGN(len + offset, page_size) >> page_shift;
1089 	return (npages + 1) / 2;
1090 }
1091 
mkey_cache_max_order(struct mlx5_ib_dev * dev)1092 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1093 {
1094 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1095 		return MKEY_CACHE_LAST_STD_ENTRY;
1096 	return MLX5_MAX_UMR_SHIFT;
1097 }
1098 
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,u64 length,int access_flags,u64 iova)1099 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1100 			  u64 length, int access_flags, u64 iova)
1101 {
1102 	mr->ibmr.lkey = mr->mmkey.key;
1103 	mr->ibmr.rkey = mr->mmkey.key;
1104 	mr->ibmr.length = length;
1105 	mr->ibmr.device = &dev->ib_dev;
1106 	mr->ibmr.iova = iova;
1107 	mr->access_flags = access_flags;
1108 }
1109 
mlx5_umem_dmabuf_default_pgsz(struct ib_umem * umem,u64 iova)1110 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1111 						  u64 iova)
1112 {
1113 	/*
1114 	 * The alignment of iova has already been checked upon entering
1115 	 * UVERBS_METHOD_REG_DMABUF_MR
1116 	 */
1117 	umem->iova = iova;
1118 	return PAGE_SIZE;
1119 }
1120 
alloc_cacheable_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags,int access_mode)1121 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1122 					     struct ib_umem *umem, u64 iova,
1123 					     int access_flags, int access_mode)
1124 {
1125 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1126 	struct mlx5r_cache_rb_key rb_key = {};
1127 	struct mlx5_cache_ent *ent;
1128 	struct mlx5_ib_mr *mr;
1129 	unsigned long page_size;
1130 
1131 	if (umem->is_dmabuf)
1132 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1133 	else
1134 		page_size = mlx5_umem_mkc_find_best_pgsz(dev, umem, iova);
1135 	if (WARN_ON(!page_size))
1136 		return ERR_PTR(-EINVAL);
1137 
1138 	rb_key.access_mode = access_mode;
1139 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1140 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1141 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1142 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1143 	/*
1144 	 * If the MR can't come from the cache then synchronously create an uncached
1145 	 * one.
1146 	 */
1147 	if (!ent) {
1148 		mutex_lock(&dev->slow_path_mutex);
1149 		mr = reg_create(pd, umem, iova, access_flags, page_size, false, access_mode);
1150 		mutex_unlock(&dev->slow_path_mutex);
1151 		if (IS_ERR(mr))
1152 			return mr;
1153 		mr->mmkey.rb_key = rb_key;
1154 		mr->mmkey.cacheable = true;
1155 		return mr;
1156 	}
1157 
1158 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1159 	if (IS_ERR(mr))
1160 		return mr;
1161 
1162 	mr->ibmr.pd = pd;
1163 	mr->umem = umem;
1164 	mr->page_shift = order_base_2(page_size);
1165 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1166 
1167 	return mr;
1168 }
1169 
1170 static struct ib_mr *
reg_create_crossing_vhca_mr(struct ib_pd * pd,u64 iova,u64 length,int access_flags,u32 crossed_lkey)1171 reg_create_crossing_vhca_mr(struct ib_pd *pd, u64 iova, u64 length, int access_flags,
1172 			    u32 crossed_lkey)
1173 {
1174 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1175 	int access_mode = MLX5_MKC_ACCESS_MODE_CROSSING;
1176 	struct mlx5_ib_mr *mr;
1177 	void *mkc;
1178 	int inlen;
1179 	u32 *in;
1180 	int err;
1181 
1182 	if (!MLX5_CAP_GEN(dev->mdev, crossing_vhca_mkey))
1183 		return ERR_PTR(-EOPNOTSUPP);
1184 
1185 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1186 	if (!mr)
1187 		return ERR_PTR(-ENOMEM);
1188 
1189 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1190 	in = kvzalloc(inlen, GFP_KERNEL);
1191 	if (!in) {
1192 		err = -ENOMEM;
1193 		goto err_1;
1194 	}
1195 
1196 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1197 	MLX5_SET(mkc, mkc, crossing_target_vhca_id,
1198 		 MLX5_CAP_GEN(dev->mdev, vhca_id));
1199 	MLX5_SET(mkc, mkc, translations_octword_size, crossed_lkey);
1200 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1201 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1202 
1203 	/* for this crossing mkey IOVA should be 0 and len should be IOVA + len */
1204 	set_mkc_access_pd_addr_fields(mkc, access_flags, 0, pd);
1205 	MLX5_SET64(mkc, mkc, len, iova + length);
1206 
1207 	MLX5_SET(mkc, mkc, free, 0);
1208 	MLX5_SET(mkc, mkc, umr_en, 0);
1209 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1210 	if (err)
1211 		goto err_2;
1212 
1213 	mr->mmkey.type = MLX5_MKEY_MR;
1214 	set_mr_fields(dev, mr, length, access_flags, iova);
1215 	mr->ibmr.pd = pd;
1216 	kvfree(in);
1217 	mlx5_ib_dbg(dev, "crossing mkey = 0x%x\n", mr->mmkey.key);
1218 
1219 	return &mr->ibmr;
1220 err_2:
1221 	kvfree(in);
1222 err_1:
1223 	kfree(mr);
1224 	return ERR_PTR(err);
1225 }
1226 
1227 /*
1228  * If ibmr is NULL it will be allocated by reg_create.
1229  * Else, the given ibmr will be used.
1230  */
reg_create(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags,unsigned long page_size,bool populate,int access_mode)1231 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1232 				     u64 iova, int access_flags,
1233 				     unsigned long page_size, bool populate,
1234 				     int access_mode)
1235 {
1236 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1237 	struct mlx5_ib_mr *mr;
1238 	__be64 *pas;
1239 	void *mkc;
1240 	int inlen;
1241 	u32 *in;
1242 	int err;
1243 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)) &&
1244 		(access_mode == MLX5_MKC_ACCESS_MODE_MTT);
1245 	bool ksm_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
1246 
1247 	if (!page_size)
1248 		return ERR_PTR(-EINVAL);
1249 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1250 	if (!mr)
1251 		return ERR_PTR(-ENOMEM);
1252 
1253 	mr->ibmr.pd = pd;
1254 	mr->access_flags = access_flags;
1255 	mr->page_shift = order_base_2(page_size);
1256 
1257 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1258 	if (populate)
1259 		inlen += sizeof(*pas) *
1260 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1261 	in = kvzalloc(inlen, GFP_KERNEL);
1262 	if (!in) {
1263 		err = -ENOMEM;
1264 		goto err_1;
1265 	}
1266 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1267 	if (populate) {
1268 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND || ksm_mode)) {
1269 			err = -EINVAL;
1270 			goto err_2;
1271 		}
1272 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1273 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1274 	}
1275 
1276 	/* The pg_access bit allows setting the access flags
1277 	 * in the page list submitted with the command.
1278 	 */
1279 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1280 
1281 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1282 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1283 				      populate ? pd : dev->umrc.pd);
1284 	/* In case a data direct flow, overwrite the pdn field by its internal kernel PD */
1285 	if (umem->is_dmabuf && ksm_mode)
1286 		MLX5_SET(mkc, mkc, pd, dev->ddr.pdn);
1287 
1288 	MLX5_SET(mkc, mkc, free, !populate);
1289 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode);
1290 	MLX5_SET(mkc, mkc, umr_en, 1);
1291 
1292 	MLX5_SET64(mkc, mkc, len, umem->length);
1293 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1294 	if (ksm_mode)
1295 		MLX5_SET(mkc, mkc, translations_octword_size,
1296 			 get_octo_len(iova, umem->length, mr->page_shift) * 2);
1297 	else
1298 		MLX5_SET(mkc, mkc, translations_octword_size,
1299 			 get_octo_len(iova, umem->length, mr->page_shift));
1300 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1301 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1302 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1303 	if (populate) {
1304 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1305 			 get_octo_len(iova, umem->length, mr->page_shift));
1306 	}
1307 
1308 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1309 	if (err) {
1310 		mlx5_ib_warn(dev, "create mkey failed\n");
1311 		goto err_2;
1312 	}
1313 	mr->mmkey.type = MLX5_MKEY_MR;
1314 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1315 	mr->umem = umem;
1316 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1317 	kvfree(in);
1318 
1319 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1320 
1321 	return mr;
1322 
1323 err_2:
1324 	kvfree(in);
1325 err_1:
1326 	kfree(mr);
1327 	return ERR_PTR(err);
1328 }
1329 
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1330 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1331 				       u64 length, int acc, int mode)
1332 {
1333 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1334 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1335 	struct mlx5_ib_mr *mr;
1336 	void *mkc;
1337 	u32 *in;
1338 	int err;
1339 
1340 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1341 	if (!mr)
1342 		return ERR_PTR(-ENOMEM);
1343 
1344 	in = kzalloc(inlen, GFP_KERNEL);
1345 	if (!in) {
1346 		err = -ENOMEM;
1347 		goto err_free;
1348 	}
1349 
1350 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1351 
1352 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1353 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1354 	MLX5_SET64(mkc, mkc, len, length);
1355 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1356 
1357 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1358 	if (err)
1359 		goto err_in;
1360 
1361 	kfree(in);
1362 
1363 	set_mr_fields(dev, mr, length, acc, start_addr);
1364 
1365 	return &mr->ibmr;
1366 
1367 err_in:
1368 	kfree(in);
1369 
1370 err_free:
1371 	kfree(mr);
1372 
1373 	return ERR_PTR(err);
1374 }
1375 
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1376 int mlx5_ib_advise_mr(struct ib_pd *pd,
1377 		      enum ib_uverbs_advise_mr_advice advice,
1378 		      u32 flags,
1379 		      struct ib_sge *sg_list,
1380 		      u32 num_sge,
1381 		      struct uverbs_attr_bundle *attrs)
1382 {
1383 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1384 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1385 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1386 		return -EOPNOTSUPP;
1387 
1388 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1389 					 sg_list, num_sge);
1390 }
1391 
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1392 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1393 				struct ib_dm_mr_attr *attr,
1394 				struct uverbs_attr_bundle *attrs)
1395 {
1396 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1397 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1398 	u64 start_addr = mdm->dev_addr + attr->offset;
1399 	int mode;
1400 
1401 	switch (mdm->type) {
1402 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1403 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1404 			return ERR_PTR(-EINVAL);
1405 
1406 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1407 		start_addr -= pci_resource_start(dev->pdev, 0);
1408 		break;
1409 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1410 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1411 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1412 	case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1413 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1414 			return ERR_PTR(-EINVAL);
1415 
1416 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1417 		break;
1418 	default:
1419 		return ERR_PTR(-EINVAL);
1420 	}
1421 
1422 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1423 				 attr->access_flags, mode);
1424 }
1425 
create_real_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)1426 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1427 				    u64 iova, int access_flags)
1428 {
1429 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1430 	struct mlx5_ib_mr *mr = NULL;
1431 	bool xlt_with_umr;
1432 	int err;
1433 
1434 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1435 	if (xlt_with_umr) {
1436 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags,
1437 					MLX5_MKC_ACCESS_MODE_MTT);
1438 	} else {
1439 		unsigned long page_size =
1440 			mlx5_umem_mkc_find_best_pgsz(dev, umem, iova);
1441 
1442 		mutex_lock(&dev->slow_path_mutex);
1443 		mr = reg_create(pd, umem, iova, access_flags, page_size,
1444 				true, MLX5_MKC_ACCESS_MODE_MTT);
1445 		mutex_unlock(&dev->slow_path_mutex);
1446 	}
1447 	if (IS_ERR(mr)) {
1448 		ib_umem_release(umem);
1449 		return ERR_CAST(mr);
1450 	}
1451 
1452 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1453 
1454 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1455 
1456 	if (xlt_with_umr) {
1457 		/*
1458 		 * If the MR was created with reg_create then it will be
1459 		 * configured properly but left disabled. It is safe to go ahead
1460 		 * and configure it again via UMR while enabling it.
1461 		 */
1462 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1463 		if (err) {
1464 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1465 			return ERR_PTR(err);
1466 		}
1467 	}
1468 	return &mr->ibmr;
1469 }
1470 
create_user_odp_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1471 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1472 					u64 iova, int access_flags,
1473 					struct ib_udata *udata)
1474 {
1475 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1476 	struct ib_umem_odp *odp;
1477 	struct mlx5_ib_mr *mr;
1478 	int err;
1479 
1480 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1481 		return ERR_PTR(-EOPNOTSUPP);
1482 
1483 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1484 	if (err)
1485 		return ERR_PTR(err);
1486 	if (!start && length == U64_MAX) {
1487 		if (iova != 0)
1488 			return ERR_PTR(-EINVAL);
1489 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1490 			return ERR_PTR(-EINVAL);
1491 
1492 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1493 		if (IS_ERR(mr))
1494 			return ERR_CAST(mr);
1495 		return &mr->ibmr;
1496 	}
1497 
1498 	/* ODP requires xlt update via umr to work. */
1499 	if (!mlx5r_umr_can_load_pas(dev, length))
1500 		return ERR_PTR(-EINVAL);
1501 
1502 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1503 			      &mlx5_mn_ops);
1504 	if (IS_ERR(odp))
1505 		return ERR_CAST(odp);
1506 
1507 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags,
1508 				MLX5_MKC_ACCESS_MODE_MTT);
1509 	if (IS_ERR(mr)) {
1510 		ib_umem_release(&odp->umem);
1511 		return ERR_CAST(mr);
1512 	}
1513 	xa_init(&mr->implicit_children);
1514 
1515 	odp->private = mr;
1516 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1517 	if (err)
1518 		goto err_dereg_mr;
1519 
1520 	err = mlx5_ib_init_odp_mr(mr);
1521 	if (err)
1522 		goto err_dereg_mr;
1523 	return &mr->ibmr;
1524 
1525 err_dereg_mr:
1526 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1527 	return ERR_PTR(err);
1528 }
1529 
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1530 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1531 				  u64 iova, int access_flags,
1532 				  struct ib_udata *udata)
1533 {
1534 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1535 	struct ib_umem *umem;
1536 	int err;
1537 
1538 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1539 		return ERR_PTR(-EOPNOTSUPP);
1540 
1541 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1542 		    start, iova, length, access_flags);
1543 
1544 	err = mlx5r_umr_resource_init(dev);
1545 	if (err)
1546 		return ERR_PTR(err);
1547 
1548 	if (access_flags & IB_ACCESS_ON_DEMAND)
1549 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1550 					  udata);
1551 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1552 	if (IS_ERR(umem))
1553 		return ERR_CAST(umem);
1554 	return create_real_mr(pd, umem, iova, access_flags);
1555 }
1556 
mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment * attach)1557 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1558 {
1559 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1560 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1561 
1562 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1563 
1564 	if (!umem_dmabuf->sgt || !mr)
1565 		return;
1566 
1567 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1568 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1569 }
1570 
1571 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1572 	.allow_peer2peer = 1,
1573 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1574 };
1575 
1576 static struct ib_mr *
reg_user_mr_dmabuf(struct ib_pd * pd,struct device * dma_device,u64 offset,u64 length,u64 virt_addr,int fd,int access_flags,int access_mode)1577 reg_user_mr_dmabuf(struct ib_pd *pd, struct device *dma_device,
1578 		   u64 offset, u64 length, u64 virt_addr,
1579 		   int fd, int access_flags, int access_mode)
1580 {
1581 	bool pinned_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
1582 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1583 	struct mlx5_ib_mr *mr = NULL;
1584 	struct ib_umem_dmabuf *umem_dmabuf;
1585 	int err;
1586 
1587 	err = mlx5r_umr_resource_init(dev);
1588 	if (err)
1589 		return ERR_PTR(err);
1590 
1591 	if (!pinned_mode)
1592 		umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev,
1593 						 offset, length, fd,
1594 						 access_flags,
1595 						 &mlx5_ib_dmabuf_attach_ops);
1596 	else
1597 		umem_dmabuf = ib_umem_dmabuf_get_pinned_with_dma_device(&dev->ib_dev,
1598 				dma_device, offset, length,
1599 				fd, access_flags);
1600 
1601 	if (IS_ERR(umem_dmabuf)) {
1602 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1603 			    PTR_ERR(umem_dmabuf));
1604 		return ERR_CAST(umem_dmabuf);
1605 	}
1606 
1607 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1608 				access_flags, access_mode);
1609 	if (IS_ERR(mr)) {
1610 		ib_umem_release(&umem_dmabuf->umem);
1611 		return ERR_CAST(mr);
1612 	}
1613 
1614 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1615 
1616 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1617 	umem_dmabuf->private = mr;
1618 	if (!pinned_mode) {
1619 		err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1620 		if (err)
1621 			goto err_dereg_mr;
1622 	} else {
1623 		mr->data_direct = true;
1624 	}
1625 
1626 	err = mlx5_ib_init_dmabuf_mr(mr);
1627 	if (err)
1628 		goto err_dereg_mr;
1629 	return &mr->ibmr;
1630 
1631 err_dereg_mr:
1632 	__mlx5_ib_dereg_mr(&mr->ibmr);
1633 	return ERR_PTR(err);
1634 }
1635 
1636 static struct ib_mr *
reg_user_mr_dmabuf_by_data_direct(struct ib_pd * pd,u64 offset,u64 length,u64 virt_addr,int fd,int access_flags)1637 reg_user_mr_dmabuf_by_data_direct(struct ib_pd *pd, u64 offset,
1638 				  u64 length, u64 virt_addr,
1639 				  int fd, int access_flags)
1640 {
1641 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1642 	struct mlx5_data_direct_dev *data_direct_dev;
1643 	struct ib_mr *crossing_mr;
1644 	struct ib_mr *crossed_mr;
1645 	int ret = 0;
1646 
1647 	/* As of HW behaviour the IOVA must be page aligned in KSM mode */
1648 	if (!PAGE_ALIGNED(virt_addr) || (access_flags & IB_ACCESS_ON_DEMAND))
1649 		return ERR_PTR(-EOPNOTSUPP);
1650 
1651 	mutex_lock(&dev->data_direct_lock);
1652 	data_direct_dev = dev->data_direct_dev;
1653 	if (!data_direct_dev) {
1654 		ret = -EINVAL;
1655 		goto end;
1656 	}
1657 
1658 	/* The device's 'data direct mkey' was created without RO flags to
1659 	 * simplify things and allow for a single mkey per device.
1660 	 * Since RO is not a must, mask it out accordingly.
1661 	 */
1662 	access_flags &= ~IB_ACCESS_RELAXED_ORDERING;
1663 	crossed_mr = reg_user_mr_dmabuf(pd, &data_direct_dev->pdev->dev,
1664 					offset, length, virt_addr, fd,
1665 					access_flags, MLX5_MKC_ACCESS_MODE_KSM);
1666 	if (IS_ERR(crossed_mr)) {
1667 		ret = PTR_ERR(crossed_mr);
1668 		goto end;
1669 	}
1670 
1671 	mutex_lock(&dev->slow_path_mutex);
1672 	crossing_mr = reg_create_crossing_vhca_mr(pd, virt_addr, length, access_flags,
1673 						  crossed_mr->lkey);
1674 	mutex_unlock(&dev->slow_path_mutex);
1675 	if (IS_ERR(crossing_mr)) {
1676 		__mlx5_ib_dereg_mr(crossed_mr);
1677 		ret = PTR_ERR(crossing_mr);
1678 		goto end;
1679 	}
1680 
1681 	list_add_tail(&to_mmr(crossed_mr)->dd_node, &dev->data_direct_mr_list);
1682 	to_mmr(crossing_mr)->dd_crossed_mr = to_mmr(crossed_mr);
1683 	to_mmr(crossing_mr)->data_direct = true;
1684 end:
1685 	mutex_unlock(&dev->data_direct_lock);
1686 	return ret ? ERR_PTR(ret) : crossing_mr;
1687 }
1688 
mlx5_ib_reg_user_mr_dmabuf(struct ib_pd * pd,u64 offset,u64 length,u64 virt_addr,int fd,int access_flags,struct uverbs_attr_bundle * attrs)1689 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1690 					 u64 length, u64 virt_addr,
1691 					 int fd, int access_flags,
1692 					 struct uverbs_attr_bundle *attrs)
1693 {
1694 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1695 	int mlx5_access_flags = 0;
1696 	int err;
1697 
1698 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1699 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1700 		return ERR_PTR(-EOPNOTSUPP);
1701 
1702 	if (uverbs_attr_is_valid(attrs, MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS)) {
1703 		err = uverbs_get_flags32(&mlx5_access_flags, attrs,
1704 					 MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS,
1705 					 MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT);
1706 		if (err)
1707 			return ERR_PTR(err);
1708 	}
1709 
1710 	mlx5_ib_dbg(dev,
1711 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x, mlx5_access_flags 0x%x\n",
1712 		    offset, virt_addr, length, fd, access_flags, mlx5_access_flags);
1713 
1714 	/* dmabuf requires xlt update via umr to work. */
1715 	if (!mlx5r_umr_can_load_pas(dev, length))
1716 		return ERR_PTR(-EINVAL);
1717 
1718 	if (mlx5_access_flags & MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT)
1719 		return reg_user_mr_dmabuf_by_data_direct(pd, offset, length, virt_addr,
1720 							 fd, access_flags);
1721 
1722 	return reg_user_mr_dmabuf(pd, pd->device->dma_device,
1723 				  offset, length, virt_addr,
1724 				  fd, access_flags, MLX5_MKC_ACCESS_MODE_MTT);
1725 }
1726 
1727 /*
1728  * True if the change in access flags can be done via UMR, only some access
1729  * flags can be updated.
1730  */
can_use_umr_rereg_access(struct mlx5_ib_dev * dev,unsigned int current_access_flags,unsigned int target_access_flags)1731 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1732 				     unsigned int current_access_flags,
1733 				     unsigned int target_access_flags)
1734 {
1735 	unsigned int diffs = current_access_flags ^ target_access_flags;
1736 
1737 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1738 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1739 		      IB_ACCESS_REMOTE_ATOMIC))
1740 		return false;
1741 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1742 				      target_access_flags);
1743 }
1744 
can_use_umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_umem * new_umem,int new_access_flags,u64 iova,unsigned long * page_size)1745 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1746 				  struct ib_umem *new_umem,
1747 				  int new_access_flags, u64 iova,
1748 				  unsigned long *page_size)
1749 {
1750 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1751 
1752 	/* We only track the allocated sizes of MRs from the cache */
1753 	if (!mr->mmkey.cache_ent)
1754 		return false;
1755 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1756 		return false;
1757 
1758 	*page_size = mlx5_umem_mkc_find_best_pgsz(dev, new_umem, iova);
1759 	if (WARN_ON(!*page_size))
1760 		return false;
1761 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1762 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1763 }
1764 
umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_pd * pd,int access_flags,int flags,struct ib_umem * new_umem,u64 iova,unsigned long page_size)1765 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1766 			 int access_flags, int flags, struct ib_umem *new_umem,
1767 			 u64 iova, unsigned long page_size)
1768 {
1769 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1770 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1771 	struct ib_umem *old_umem = mr->umem;
1772 	int err;
1773 
1774 	/*
1775 	 * To keep everything simple the MR is revoked before we start to mess
1776 	 * with it. This ensure the change is atomic relative to any use of the
1777 	 * MR.
1778 	 */
1779 	err = mlx5r_umr_revoke_mr(mr);
1780 	if (err)
1781 		return err;
1782 
1783 	if (flags & IB_MR_REREG_PD) {
1784 		mr->ibmr.pd = pd;
1785 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1786 	}
1787 	if (flags & IB_MR_REREG_ACCESS) {
1788 		mr->access_flags = access_flags;
1789 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1790 	}
1791 
1792 	mr->ibmr.iova = iova;
1793 	mr->ibmr.length = new_umem->length;
1794 	mr->page_shift = order_base_2(page_size);
1795 	mr->umem = new_umem;
1796 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1797 	if (err) {
1798 		/*
1799 		 * The MR is revoked at this point so there is no issue to free
1800 		 * new_umem.
1801 		 */
1802 		mr->umem = old_umem;
1803 		return err;
1804 	}
1805 
1806 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1807 	ib_umem_release(old_umem);
1808 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1809 	return 0;
1810 }
1811 
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 iova,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1812 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1813 				    u64 length, u64 iova, int new_access_flags,
1814 				    struct ib_pd *new_pd,
1815 				    struct ib_udata *udata)
1816 {
1817 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1818 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1819 	int err;
1820 
1821 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || mr->data_direct)
1822 		return ERR_PTR(-EOPNOTSUPP);
1823 
1824 	mlx5_ib_dbg(
1825 		dev,
1826 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1827 		start, iova, length, new_access_flags);
1828 
1829 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1830 		return ERR_PTR(-EOPNOTSUPP);
1831 
1832 	if (!(flags & IB_MR_REREG_ACCESS))
1833 		new_access_flags = mr->access_flags;
1834 	if (!(flags & IB_MR_REREG_PD))
1835 		new_pd = ib_mr->pd;
1836 
1837 	if (!(flags & IB_MR_REREG_TRANS)) {
1838 		struct ib_umem *umem;
1839 
1840 		/* Fast path for PD/access change */
1841 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1842 					     new_access_flags)) {
1843 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1844 							new_access_flags);
1845 			if (err)
1846 				return ERR_PTR(err);
1847 			return NULL;
1848 		}
1849 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1850 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1851 			goto recreate;
1852 
1853 		/*
1854 		 * Only one active MR can refer to a umem at one time, revoke
1855 		 * the old MR before assigning the umem to the new one.
1856 		 */
1857 		err = mlx5r_umr_revoke_mr(mr);
1858 		if (err)
1859 			return ERR_PTR(err);
1860 		umem = mr->umem;
1861 		mr->umem = NULL;
1862 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1863 
1864 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1865 				      new_access_flags);
1866 	}
1867 
1868 	/*
1869 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1870 	 * but the logic around releasing the umem is different
1871 	 */
1872 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1873 		goto recreate;
1874 
1875 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1876 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1877 		struct ib_umem *new_umem;
1878 		unsigned long page_size;
1879 
1880 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1881 				       new_access_flags);
1882 		if (IS_ERR(new_umem))
1883 			return ERR_CAST(new_umem);
1884 
1885 		/* Fast path for PAS change */
1886 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1887 					  &page_size)) {
1888 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1889 					    new_umem, iova, page_size);
1890 			if (err) {
1891 				ib_umem_release(new_umem);
1892 				return ERR_PTR(err);
1893 			}
1894 			return NULL;
1895 		}
1896 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1897 	}
1898 
1899 	/*
1900 	 * Everything else has no state we can preserve, just create a new MR
1901 	 * from scratch
1902 	 */
1903 recreate:
1904 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1905 				   new_access_flags, udata);
1906 }
1907 
1908 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1909 mlx5_alloc_priv_descs(struct ib_device *device,
1910 		      struct mlx5_ib_mr *mr,
1911 		      int ndescs,
1912 		      int desc_size)
1913 {
1914 	struct mlx5_ib_dev *dev = to_mdev(device);
1915 	struct device *ddev = &dev->mdev->pdev->dev;
1916 	int size = ndescs * desc_size;
1917 	int add_size;
1918 	int ret;
1919 
1920 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1921 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1922 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1923 
1924 		add_size = min_t(int, end - size, add_size);
1925 	}
1926 
1927 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1928 	if (!mr->descs_alloc)
1929 		return -ENOMEM;
1930 
1931 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1932 
1933 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1934 	if (dma_mapping_error(ddev, mr->desc_map)) {
1935 		ret = -ENOMEM;
1936 		goto err;
1937 	}
1938 
1939 	return 0;
1940 err:
1941 	kfree(mr->descs_alloc);
1942 
1943 	return ret;
1944 }
1945 
1946 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1947 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1948 {
1949 	if (!mr->umem && !mr->data_direct &&
1950 	    mr->ibmr.type != IB_MR_TYPE_DM && mr->descs) {
1951 		struct ib_device *device = mr->ibmr.device;
1952 		int size = mr->max_descs * mr->desc_size;
1953 		struct mlx5_ib_dev *dev = to_mdev(device);
1954 
1955 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1956 				 DMA_TO_DEVICE);
1957 		kfree(mr->descs_alloc);
1958 		mr->descs = NULL;
1959 	}
1960 }
1961 
cache_ent_find_and_store(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)1962 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1963 				    struct mlx5_ib_mr *mr)
1964 {
1965 	struct mlx5_mkey_cache *cache = &dev->cache;
1966 	struct mlx5_cache_ent *ent;
1967 	int ret;
1968 
1969 	if (mr->mmkey.cache_ent) {
1970 		spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1971 		mr->mmkey.cache_ent->in_use--;
1972 		goto end;
1973 	}
1974 
1975 	mutex_lock(&cache->rb_lock);
1976 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1977 	if (ent) {
1978 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1979 			if (ent->disabled) {
1980 				mutex_unlock(&cache->rb_lock);
1981 				return -EOPNOTSUPP;
1982 			}
1983 			mr->mmkey.cache_ent = ent;
1984 			spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1985 			mutex_unlock(&cache->rb_lock);
1986 			goto end;
1987 		}
1988 	}
1989 
1990 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1991 	mutex_unlock(&cache->rb_lock);
1992 	if (IS_ERR(ent))
1993 		return PTR_ERR(ent);
1994 
1995 	mr->mmkey.cache_ent = ent;
1996 	spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1997 
1998 end:
1999 	ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
2000 	spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
2001 	return ret;
2002 }
2003 
mlx5_ib_revoke_data_direct_mr(struct mlx5_ib_mr * mr)2004 static int mlx5_ib_revoke_data_direct_mr(struct mlx5_ib_mr *mr)
2005 {
2006 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
2007 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
2008 	int err;
2009 
2010 	lockdep_assert_held(&dev->data_direct_lock);
2011 	mr->revoked = true;
2012 	err = mlx5r_umr_revoke_mr(mr);
2013 	if (WARN_ON(err))
2014 		return err;
2015 
2016 	ib_umem_dmabuf_revoke(umem_dmabuf);
2017 	return 0;
2018 }
2019 
mlx5_ib_revoke_data_direct_mrs(struct mlx5_ib_dev * dev)2020 void mlx5_ib_revoke_data_direct_mrs(struct mlx5_ib_dev *dev)
2021 {
2022 	struct mlx5_ib_mr *mr, *next;
2023 
2024 	lockdep_assert_held(&dev->data_direct_lock);
2025 
2026 	list_for_each_entry_safe(mr, next, &dev->data_direct_mr_list, dd_node) {
2027 		list_del(&mr->dd_node);
2028 		mlx5_ib_revoke_data_direct_mr(mr);
2029 	}
2030 }
2031 
mlx5_revoke_mr(struct mlx5_ib_mr * mr)2032 static int mlx5_revoke_mr(struct mlx5_ib_mr *mr)
2033 {
2034 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
2035 	struct mlx5_cache_ent *ent = mr->mmkey.cache_ent;
2036 	bool is_odp = is_odp_mr(mr);
2037 	bool is_odp_dma_buf = is_dmabuf_mr(mr) &&
2038 			!to_ib_umem_dmabuf(mr->umem)->pinned;
2039 	int ret = 0;
2040 
2041 	if (is_odp)
2042 		mutex_lock(&to_ib_umem_odp(mr->umem)->umem_mutex);
2043 
2044 	if (is_odp_dma_buf)
2045 		dma_resv_lock(to_ib_umem_dmabuf(mr->umem)->attach->dmabuf->resv, NULL);
2046 
2047 	if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr)) {
2048 		ent = mr->mmkey.cache_ent;
2049 		/* upon storing to a clean temp entry - schedule its cleanup */
2050 		spin_lock_irq(&ent->mkeys_queue.lock);
2051 		if (ent->is_tmp && !ent->tmp_cleanup_scheduled) {
2052 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork,
2053 					 msecs_to_jiffies(30 * 1000));
2054 			ent->tmp_cleanup_scheduled = true;
2055 		}
2056 		spin_unlock_irq(&ent->mkeys_queue.lock);
2057 		goto out;
2058 	}
2059 
2060 	if (ent) {
2061 		spin_lock_irq(&ent->mkeys_queue.lock);
2062 		ent->in_use--;
2063 		mr->mmkey.cache_ent = NULL;
2064 		spin_unlock_irq(&ent->mkeys_queue.lock);
2065 	}
2066 	ret = destroy_mkey(dev, mr);
2067 out:
2068 	if (is_odp) {
2069 		if (!ret)
2070 			to_ib_umem_odp(mr->umem)->private = NULL;
2071 		mutex_unlock(&to_ib_umem_odp(mr->umem)->umem_mutex);
2072 	}
2073 
2074 	if (is_odp_dma_buf) {
2075 		if (!ret)
2076 			to_ib_umem_dmabuf(mr->umem)->private = NULL;
2077 		dma_resv_unlock(to_ib_umem_dmabuf(mr->umem)->attach->dmabuf->resv);
2078 	}
2079 
2080 	return ret;
2081 }
2082 
__mlx5_ib_dereg_mr(struct ib_mr * ibmr)2083 static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr)
2084 {
2085 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2086 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
2087 	int rc;
2088 
2089 	/*
2090 	 * Any async use of the mr must hold the refcount, once the refcount
2091 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
2092 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
2093 	 */
2094 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2095 	    refcount_read(&mr->mmkey.usecount) != 0 &&
2096 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
2097 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
2098 
2099 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
2100 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2101 			   mr->sig, NULL, GFP_KERNEL);
2102 
2103 		if (mr->mtt_mr) {
2104 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2105 			if (rc)
2106 				return rc;
2107 			mr->mtt_mr = NULL;
2108 		}
2109 		if (mr->klm_mr) {
2110 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2111 			if (rc)
2112 				return rc;
2113 			mr->klm_mr = NULL;
2114 		}
2115 
2116 		if (mlx5_core_destroy_psv(dev->mdev,
2117 					  mr->sig->psv_memory.psv_idx))
2118 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2119 				     mr->sig->psv_memory.psv_idx);
2120 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2121 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2122 				     mr->sig->psv_wire.psv_idx);
2123 		kfree(mr->sig);
2124 		mr->sig = NULL;
2125 	}
2126 
2127 	/* Stop DMA */
2128 	rc = mlx5_revoke_mr(mr);
2129 	if (rc)
2130 		return rc;
2131 
2132 	if (mr->umem) {
2133 		bool is_odp = is_odp_mr(mr);
2134 
2135 		if (!is_odp)
2136 			atomic_sub(ib_umem_num_pages(mr->umem),
2137 				   &dev->mdev->priv.reg_pages);
2138 		ib_umem_release(mr->umem);
2139 		if (is_odp)
2140 			mlx5_ib_free_odp_mr(mr);
2141 	}
2142 
2143 	if (!mr->mmkey.cache_ent)
2144 		mlx5_free_priv_descs(mr);
2145 
2146 	kfree(mr);
2147 	return 0;
2148 }
2149 
dereg_crossing_data_direct_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)2150 static int dereg_crossing_data_direct_mr(struct mlx5_ib_dev *dev,
2151 					struct mlx5_ib_mr *mr)
2152 {
2153 	struct mlx5_ib_mr *dd_crossed_mr = mr->dd_crossed_mr;
2154 	int ret;
2155 
2156 	ret = __mlx5_ib_dereg_mr(&mr->ibmr);
2157 	if (ret)
2158 		return ret;
2159 
2160 	mutex_lock(&dev->data_direct_lock);
2161 	if (!dd_crossed_mr->revoked)
2162 		list_del(&dd_crossed_mr->dd_node);
2163 
2164 	ret = __mlx5_ib_dereg_mr(&dd_crossed_mr->ibmr);
2165 	mutex_unlock(&dev->data_direct_lock);
2166 	return ret;
2167 }
2168 
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)2169 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
2170 {
2171 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2172 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
2173 
2174 	if (mr->data_direct)
2175 		return dereg_crossing_data_direct_mr(dev, mr);
2176 
2177 	return __mlx5_ib_dereg_mr(ibmr);
2178 }
2179 
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)2180 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2181 				   int access_mode, int page_shift)
2182 {
2183 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2184 	void *mkc;
2185 
2186 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2187 
2188 	/* This is only used from the kernel, so setting the PD is OK. */
2189 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
2190 	MLX5_SET(mkc, mkc, free, 1);
2191 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2192 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2193 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2194 	MLX5_SET(mkc, mkc, umr_en, 1);
2195 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2196 	if (access_mode == MLX5_MKC_ACCESS_MODE_PA ||
2197 	    access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2198 		MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
2199 }
2200 
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)2201 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2202 				  int ndescs, int desc_size, int page_shift,
2203 				  int access_mode, u32 *in, int inlen)
2204 {
2205 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2206 	int err;
2207 
2208 	mr->access_mode = access_mode;
2209 	mr->desc_size = desc_size;
2210 	mr->max_descs = ndescs;
2211 
2212 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2213 	if (err)
2214 		return err;
2215 
2216 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2217 
2218 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2219 	if (err)
2220 		goto err_free_descs;
2221 
2222 	mr->mmkey.type = MLX5_MKEY_MR;
2223 	mr->ibmr.lkey = mr->mmkey.key;
2224 	mr->ibmr.rkey = mr->mmkey.key;
2225 
2226 	return 0;
2227 
2228 err_free_descs:
2229 	mlx5_free_priv_descs(mr);
2230 	return err;
2231 }
2232 
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)2233 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2234 				u32 max_num_sg, u32 max_num_meta_sg,
2235 				int desc_size, int access_mode)
2236 {
2237 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2238 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2239 	int page_shift = 0;
2240 	struct mlx5_ib_mr *mr;
2241 	u32 *in;
2242 	int err;
2243 
2244 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2245 	if (!mr)
2246 		return ERR_PTR(-ENOMEM);
2247 
2248 	mr->ibmr.pd = pd;
2249 	mr->ibmr.device = pd->device;
2250 
2251 	in = kzalloc(inlen, GFP_KERNEL);
2252 	if (!in) {
2253 		err = -ENOMEM;
2254 		goto err_free;
2255 	}
2256 
2257 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2258 		page_shift = PAGE_SHIFT;
2259 
2260 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2261 				     access_mode, in, inlen);
2262 	if (err)
2263 		goto err_free_in;
2264 
2265 	mr->umem = NULL;
2266 	kfree(in);
2267 
2268 	return mr;
2269 
2270 err_free_in:
2271 	kfree(in);
2272 err_free:
2273 	kfree(mr);
2274 	return ERR_PTR(err);
2275 }
2276 
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)2277 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2278 				    int ndescs, u32 *in, int inlen)
2279 {
2280 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2281 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2282 				      inlen);
2283 }
2284 
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)2285 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2286 				    int ndescs, u32 *in, int inlen)
2287 {
2288 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2289 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2290 }
2291 
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)2292 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2293 				      int max_num_sg, int max_num_meta_sg,
2294 				      u32 *in, int inlen)
2295 {
2296 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2297 	u32 psv_index[2];
2298 	void *mkc;
2299 	int err;
2300 
2301 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2302 	if (!mr->sig)
2303 		return -ENOMEM;
2304 
2305 	/* create mem & wire PSVs */
2306 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2307 	if (err)
2308 		goto err_free_sig;
2309 
2310 	mr->sig->psv_memory.psv_idx = psv_index[0];
2311 	mr->sig->psv_wire.psv_idx = psv_index[1];
2312 
2313 	mr->sig->sig_status_checked = true;
2314 	mr->sig->sig_err_exists = false;
2315 	/* Next UMR, Arm SIGERR */
2316 	++mr->sig->sigerr_count;
2317 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2318 					 sizeof(struct mlx5_klm),
2319 					 MLX5_MKC_ACCESS_MODE_KLMS);
2320 	if (IS_ERR(mr->klm_mr)) {
2321 		err = PTR_ERR(mr->klm_mr);
2322 		goto err_destroy_psv;
2323 	}
2324 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2325 					 sizeof(struct mlx5_mtt),
2326 					 MLX5_MKC_ACCESS_MODE_MTT);
2327 	if (IS_ERR(mr->mtt_mr)) {
2328 		err = PTR_ERR(mr->mtt_mr);
2329 		goto err_free_klm_mr;
2330 	}
2331 
2332 	/* Set bsf descriptors for mkey */
2333 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2334 	MLX5_SET(mkc, mkc, bsf_en, 1);
2335 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2336 
2337 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2338 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2339 	if (err)
2340 		goto err_free_mtt_mr;
2341 
2342 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2343 			      mr->sig, GFP_KERNEL));
2344 	if (err)
2345 		goto err_free_descs;
2346 	return 0;
2347 
2348 err_free_descs:
2349 	destroy_mkey(dev, mr);
2350 	mlx5_free_priv_descs(mr);
2351 err_free_mtt_mr:
2352 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2353 	mr->mtt_mr = NULL;
2354 err_free_klm_mr:
2355 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2356 	mr->klm_mr = NULL;
2357 err_destroy_psv:
2358 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2359 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2360 			     mr->sig->psv_memory.psv_idx);
2361 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2362 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2363 			     mr->sig->psv_wire.psv_idx);
2364 err_free_sig:
2365 	kfree(mr->sig);
2366 
2367 	return err;
2368 }
2369 
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)2370 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2371 					enum ib_mr_type mr_type, u32 max_num_sg,
2372 					u32 max_num_meta_sg)
2373 {
2374 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2375 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2376 	int ndescs = ALIGN(max_num_sg, 4);
2377 	struct mlx5_ib_mr *mr;
2378 	u32 *in;
2379 	int err;
2380 
2381 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2382 	if (!mr)
2383 		return ERR_PTR(-ENOMEM);
2384 
2385 	in = kzalloc(inlen, GFP_KERNEL);
2386 	if (!in) {
2387 		err = -ENOMEM;
2388 		goto err_free;
2389 	}
2390 
2391 	mr->ibmr.device = pd->device;
2392 	mr->umem = NULL;
2393 
2394 	switch (mr_type) {
2395 	case IB_MR_TYPE_MEM_REG:
2396 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2397 		break;
2398 	case IB_MR_TYPE_SG_GAPS:
2399 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2400 		break;
2401 	case IB_MR_TYPE_INTEGRITY:
2402 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2403 						 max_num_meta_sg, in, inlen);
2404 		break;
2405 	default:
2406 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2407 		err = -EINVAL;
2408 	}
2409 
2410 	if (err)
2411 		goto err_free_in;
2412 
2413 	kfree(in);
2414 
2415 	return &mr->ibmr;
2416 
2417 err_free_in:
2418 	kfree(in);
2419 err_free:
2420 	kfree(mr);
2421 	return ERR_PTR(err);
2422 }
2423 
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2424 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2425 			       u32 max_num_sg)
2426 {
2427 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2428 }
2429 
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)2430 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2431 					 u32 max_num_sg, u32 max_num_meta_sg)
2432 {
2433 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2434 				  max_num_meta_sg);
2435 }
2436 
mlx5_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)2437 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2438 {
2439 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2440 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2441 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2442 	unsigned int ndescs;
2443 	u32 *in = NULL;
2444 	void *mkc;
2445 	int err;
2446 	struct mlx5_ib_alloc_mw req = {};
2447 	struct {
2448 		__u32	comp_mask;
2449 		__u32	response_length;
2450 	} resp = {};
2451 
2452 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2453 	if (err)
2454 		return err;
2455 
2456 	if (req.comp_mask || req.reserved1 || req.reserved2)
2457 		return -EOPNOTSUPP;
2458 
2459 	if (udata->inlen > sizeof(req) &&
2460 	    !ib_is_udata_cleared(udata, sizeof(req),
2461 				 udata->inlen - sizeof(req)))
2462 		return -EOPNOTSUPP;
2463 
2464 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2465 
2466 	in = kzalloc(inlen, GFP_KERNEL);
2467 	if (!in)
2468 		return -ENOMEM;
2469 
2470 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2471 
2472 	MLX5_SET(mkc, mkc, free, 1);
2473 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2474 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2475 	MLX5_SET(mkc, mkc, umr_en, 1);
2476 	MLX5_SET(mkc, mkc, lr, 1);
2477 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2478 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2479 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2480 
2481 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2482 	if (err)
2483 		goto free;
2484 
2485 	mw->mmkey.type = MLX5_MKEY_MW;
2486 	ibmw->rkey = mw->mmkey.key;
2487 	mw->mmkey.ndescs = ndescs;
2488 
2489 	resp.response_length =
2490 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2491 	if (resp.response_length) {
2492 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2493 		if (err)
2494 			goto free_mkey;
2495 	}
2496 
2497 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2498 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2499 		if (err)
2500 			goto free_mkey;
2501 	}
2502 
2503 	kfree(in);
2504 	return 0;
2505 
2506 free_mkey:
2507 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2508 free:
2509 	kfree(in);
2510 	return err;
2511 }
2512 
mlx5_ib_dealloc_mw(struct ib_mw * mw)2513 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2514 {
2515 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2516 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2517 
2518 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2519 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2520 		/*
2521 		 * pagefault_single_data_segment() may be accessing mmw
2522 		 * if the user bound an ODP MR to this MW.
2523 		 */
2524 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2525 
2526 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2527 }
2528 
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)2529 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2530 			    struct ib_mr_status *mr_status)
2531 {
2532 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2533 	int ret = 0;
2534 
2535 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2536 		pr_err("Invalid status check mask\n");
2537 		ret = -EINVAL;
2538 		goto done;
2539 	}
2540 
2541 	mr_status->fail_status = 0;
2542 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2543 		if (!mmr->sig) {
2544 			ret = -EINVAL;
2545 			pr_err("signature status check requested on a non-signature enabled MR\n");
2546 			goto done;
2547 		}
2548 
2549 		mmr->sig->sig_status_checked = true;
2550 		if (!mmr->sig->sig_err_exists)
2551 			goto done;
2552 
2553 		if (ibmr->lkey == mmr->sig->err_item.key)
2554 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2555 			       sizeof(mr_status->sig_err));
2556 		else {
2557 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2558 			mr_status->sig_err.sig_err_offset = 0;
2559 			mr_status->sig_err.key = mmr->sig->err_item.key;
2560 		}
2561 
2562 		mmr->sig->sig_err_exists = false;
2563 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2564 	}
2565 
2566 done:
2567 	return ret;
2568 }
2569 
2570 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2571 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2572 			int data_sg_nents, unsigned int *data_sg_offset,
2573 			struct scatterlist *meta_sg, int meta_sg_nents,
2574 			unsigned int *meta_sg_offset)
2575 {
2576 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2577 	unsigned int sg_offset = 0;
2578 	int n = 0;
2579 
2580 	mr->meta_length = 0;
2581 	if (data_sg_nents == 1) {
2582 		n++;
2583 		mr->mmkey.ndescs = 1;
2584 		if (data_sg_offset)
2585 			sg_offset = *data_sg_offset;
2586 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2587 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2588 		if (meta_sg_nents == 1) {
2589 			n++;
2590 			mr->meta_ndescs = 1;
2591 			if (meta_sg_offset)
2592 				sg_offset = *meta_sg_offset;
2593 			else
2594 				sg_offset = 0;
2595 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2596 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2597 		}
2598 		ibmr->length = mr->data_length + mr->meta_length;
2599 	}
2600 
2601 	return n;
2602 }
2603 
2604 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2605 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2606 		   struct scatterlist *sgl,
2607 		   unsigned short sg_nents,
2608 		   unsigned int *sg_offset_p,
2609 		   struct scatterlist *meta_sgl,
2610 		   unsigned short meta_sg_nents,
2611 		   unsigned int *meta_sg_offset_p)
2612 {
2613 	struct scatterlist *sg = sgl;
2614 	struct mlx5_klm *klms = mr->descs;
2615 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2616 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2617 	int i, j = 0;
2618 
2619 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2620 	mr->ibmr.length = 0;
2621 
2622 	for_each_sg(sgl, sg, sg_nents, i) {
2623 		if (unlikely(i >= mr->max_descs))
2624 			break;
2625 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2626 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2627 		klms[i].key = cpu_to_be32(lkey);
2628 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2629 
2630 		sg_offset = 0;
2631 	}
2632 
2633 	if (sg_offset_p)
2634 		*sg_offset_p = sg_offset;
2635 
2636 	mr->mmkey.ndescs = i;
2637 	mr->data_length = mr->ibmr.length;
2638 
2639 	if (meta_sg_nents) {
2640 		sg = meta_sgl;
2641 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2642 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2643 			if (unlikely(i + j >= mr->max_descs))
2644 				break;
2645 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2646 						     sg_offset);
2647 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2648 							 sg_offset);
2649 			klms[i + j].key = cpu_to_be32(lkey);
2650 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2651 
2652 			sg_offset = 0;
2653 		}
2654 		if (meta_sg_offset_p)
2655 			*meta_sg_offset_p = sg_offset;
2656 
2657 		mr->meta_ndescs = j;
2658 		mr->meta_length = mr->ibmr.length - mr->data_length;
2659 	}
2660 
2661 	return i + j;
2662 }
2663 
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2664 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2665 {
2666 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2667 	__be64 *descs;
2668 
2669 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2670 		return -ENOMEM;
2671 
2672 	descs = mr->descs;
2673 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2674 
2675 	return 0;
2676 }
2677 
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2678 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2679 {
2680 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2681 	__be64 *descs;
2682 
2683 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2684 		return -ENOMEM;
2685 
2686 	descs = mr->descs;
2687 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2688 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2689 
2690 	return 0;
2691 }
2692 
2693 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2694 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2695 			 int data_sg_nents, unsigned int *data_sg_offset,
2696 			 struct scatterlist *meta_sg, int meta_sg_nents,
2697 			 unsigned int *meta_sg_offset)
2698 {
2699 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2700 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2701 	int n;
2702 
2703 	pi_mr->mmkey.ndescs = 0;
2704 	pi_mr->meta_ndescs = 0;
2705 	pi_mr->meta_length = 0;
2706 
2707 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2708 				   pi_mr->desc_size * pi_mr->max_descs,
2709 				   DMA_TO_DEVICE);
2710 
2711 	pi_mr->ibmr.page_size = ibmr->page_size;
2712 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2713 			   mlx5_set_page);
2714 	if (n != data_sg_nents)
2715 		return n;
2716 
2717 	pi_mr->data_iova = pi_mr->ibmr.iova;
2718 	pi_mr->data_length = pi_mr->ibmr.length;
2719 	pi_mr->ibmr.length = pi_mr->data_length;
2720 	ibmr->length = pi_mr->data_length;
2721 
2722 	if (meta_sg_nents) {
2723 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2724 		u64 iova = pi_mr->data_iova;
2725 
2726 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2727 				    meta_sg_offset, mlx5_set_page_pi);
2728 
2729 		pi_mr->meta_length = pi_mr->ibmr.length;
2730 		/*
2731 		 * PI address for the HW is the offset of the metadata address
2732 		 * relative to the first data page address.
2733 		 * It equals to first data page address + size of data pages +
2734 		 * metadata offset at the first metadata page
2735 		 */
2736 		pi_mr->pi_iova = (iova & page_mask) +
2737 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2738 				 (pi_mr->ibmr.iova & ~page_mask);
2739 		/*
2740 		 * In order to use one MTT MR for data and metadata, we register
2741 		 * also the gaps between the end of the data and the start of
2742 		 * the metadata (the sig MR will verify that the HW will access
2743 		 * to right addresses). This mapping is safe because we use
2744 		 * internal mkey for the registration.
2745 		 */
2746 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2747 		pi_mr->ibmr.iova = iova;
2748 		ibmr->length += pi_mr->meta_length;
2749 	}
2750 
2751 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2752 				      pi_mr->desc_size * pi_mr->max_descs,
2753 				      DMA_TO_DEVICE);
2754 
2755 	return n;
2756 }
2757 
2758 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2759 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2760 			 int data_sg_nents, unsigned int *data_sg_offset,
2761 			 struct scatterlist *meta_sg, int meta_sg_nents,
2762 			 unsigned int *meta_sg_offset)
2763 {
2764 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2765 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2766 	int n;
2767 
2768 	pi_mr->mmkey.ndescs = 0;
2769 	pi_mr->meta_ndescs = 0;
2770 	pi_mr->meta_length = 0;
2771 
2772 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2773 				   pi_mr->desc_size * pi_mr->max_descs,
2774 				   DMA_TO_DEVICE);
2775 
2776 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2777 			       meta_sg, meta_sg_nents, meta_sg_offset);
2778 
2779 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2780 				      pi_mr->desc_size * pi_mr->max_descs,
2781 				      DMA_TO_DEVICE);
2782 
2783 	/* This is zero-based memory region */
2784 	pi_mr->data_iova = 0;
2785 	pi_mr->ibmr.iova = 0;
2786 	pi_mr->pi_iova = pi_mr->data_length;
2787 	ibmr->length = pi_mr->ibmr.length;
2788 
2789 	return n;
2790 }
2791 
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2792 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2793 			 int data_sg_nents, unsigned int *data_sg_offset,
2794 			 struct scatterlist *meta_sg, int meta_sg_nents,
2795 			 unsigned int *meta_sg_offset)
2796 {
2797 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2798 	struct mlx5_ib_mr *pi_mr = NULL;
2799 	int n;
2800 
2801 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2802 
2803 	mr->mmkey.ndescs = 0;
2804 	mr->data_length = 0;
2805 	mr->data_iova = 0;
2806 	mr->meta_ndescs = 0;
2807 	mr->pi_iova = 0;
2808 	/*
2809 	 * As a performance optimization, if possible, there is no need to
2810 	 * perform UMR operation to register the data/metadata buffers.
2811 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2812 	 * Fallback to UMR only in case of a failure.
2813 	 */
2814 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2815 				    data_sg_offset, meta_sg, meta_sg_nents,
2816 				    meta_sg_offset);
2817 	if (n == data_sg_nents + meta_sg_nents)
2818 		goto out;
2819 	/*
2820 	 * As a performance optimization, if possible, there is no need to map
2821 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2822 	 * descriptors and fallback to KLM only in case of a failure.
2823 	 * It's more efficient for the HW to work with MTT descriptors
2824 	 * (especially in high load).
2825 	 * Use KLM (indirect access) only if it's mandatory.
2826 	 */
2827 	pi_mr = mr->mtt_mr;
2828 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2829 				     data_sg_offset, meta_sg, meta_sg_nents,
2830 				     meta_sg_offset);
2831 	if (n == data_sg_nents + meta_sg_nents)
2832 		goto out;
2833 
2834 	pi_mr = mr->klm_mr;
2835 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2836 				     data_sg_offset, meta_sg, meta_sg_nents,
2837 				     meta_sg_offset);
2838 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2839 		return -ENOMEM;
2840 
2841 out:
2842 	/* This is zero-based memory region */
2843 	ibmr->iova = 0;
2844 	mr->pi_mr = pi_mr;
2845 	if (pi_mr)
2846 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2847 	else
2848 		ibmr->sig_attrs->meta_length = mr->meta_length;
2849 
2850 	return 0;
2851 }
2852 
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2853 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2854 		      unsigned int *sg_offset)
2855 {
2856 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2857 	int n;
2858 
2859 	mr->mmkey.ndescs = 0;
2860 
2861 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2862 				   mr->desc_size * mr->max_descs,
2863 				   DMA_TO_DEVICE);
2864 
2865 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2866 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2867 				       NULL);
2868 	else
2869 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2870 				mlx5_set_page);
2871 
2872 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2873 				      mr->desc_size * mr->max_descs,
2874 				      DMA_TO_DEVICE);
2875 
2876 	return n;
2877 }
2878