1 /**
2 * Copyright 2024 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "LegacyResampler"
18
19 #include <algorithm>
20 #include <chrono>
21 #include <iomanip>
22 #include <ostream>
23
24 #include <android-base/logging.h>
25 #include <android-base/properties.h>
26 #include <ftl/enum.h>
27
28 #include <input/Resampler.h>
29 #include <utils/Timers.h>
30
31 namespace android {
32 namespace {
33
34 const bool IS_DEBUGGABLE_BUILD =
35 #if defined(__ANDROID__)
36 android::base::GetBoolProperty("ro.debuggable", false);
37 #else
38 true;
39 #endif
40
41 /**
42 * Log debug messages about timestamp and coordinates of event resampling.
43 * Enable this via "adb shell setprop log.tag.LegacyResamplerResampling DEBUG"
44 * (requires restart)
45 */
debugResampling()46 bool debugResampling() {
47 if (!IS_DEBUGGABLE_BUILD) {
48 static const bool DEBUG_TRANSPORT_RESAMPLING =
49 __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling",
50 ANDROID_LOG_INFO);
51 return DEBUG_TRANSPORT_RESAMPLING;
52 }
53 return __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling", ANDROID_LOG_INFO);
54 }
55
56 using std::chrono::nanoseconds;
57
58 constexpr std::chrono::milliseconds RESAMPLE_LATENCY{5};
59
60 constexpr std::chrono::milliseconds RESAMPLE_MIN_DELTA{2};
61
62 constexpr std::chrono::milliseconds RESAMPLE_MAX_DELTA{20};
63
64 constexpr std::chrono::milliseconds RESAMPLE_MAX_PREDICTION{8};
65
canResampleTool(ToolType toolType)66 bool canResampleTool(ToolType toolType) {
67 return toolType == ToolType::FINGER || toolType == ToolType::MOUSE ||
68 toolType == ToolType::STYLUS || toolType == ToolType::UNKNOWN;
69 }
70
lerp(float a,float b,float alpha)71 inline float lerp(float a, float b, float alpha) {
72 return a + alpha * (b - a);
73 }
74
calculateResampledCoords(const PointerCoords & a,const PointerCoords & b,float alpha)75 PointerCoords calculateResampledCoords(const PointerCoords& a, const PointerCoords& b,
76 float alpha) {
77 // We use the value of alpha to initialize resampledCoords with the latest sample information.
78 PointerCoords resampledCoords = (alpha < 1.0f) ? a : b;
79 resampledCoords.isResampled = true;
80 resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X, lerp(a.getX(), b.getX(), alpha));
81 resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, lerp(a.getY(), b.getY(), alpha));
82 return resampledCoords;
83 }
84
equalXY(const PointerCoords & a,const PointerCoords & b)85 bool equalXY(const PointerCoords& a, const PointerCoords& b) {
86 return (a.getX() == b.getX()) && (a.getY() == b.getY());
87 }
88
setMotionEventPointerCoords(MotionEvent & motionEvent,size_t sampleIndex,size_t pointerIndex,const PointerCoords & pointerCoords)89 void setMotionEventPointerCoords(MotionEvent& motionEvent, size_t sampleIndex, size_t pointerIndex,
90 const PointerCoords& pointerCoords) {
91 // Ideally, we should not cast away const. In this particular case, it's safe to cast away const
92 // and dereference getHistoricalRawPointerCoords returned pointer because motionEvent is a
93 // nonconst reference to a MotionEvent object, so mutating the object should not be undefined
94 // behavior; moreover, the invoked method guarantees to return a valid pointer. Otherwise, it
95 // fatally logs. Alternatively, we could've created a new MotionEvent from scratch, but this
96 // approach is simpler and more efficient.
97 PointerCoords& motionEventCoords = const_cast<PointerCoords&>(
98 *(motionEvent.getHistoricalRawPointerCoords(pointerIndex, sampleIndex)));
99 motionEventCoords.setAxisValue(AMOTION_EVENT_AXIS_X, pointerCoords.getX());
100 motionEventCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, pointerCoords.getY());
101 motionEventCoords.isResampled = pointerCoords.isResampled;
102 }
103
operator <<(std::ostream & os,const PointerCoords & pointerCoords)104 std::ostream& operator<<(std::ostream& os, const PointerCoords& pointerCoords) {
105 os << "(" << pointerCoords.getX() << ", " << pointerCoords.getY() << ")";
106 return os;
107 }
108
109 } // namespace
110
updateLatestSamples(const MotionEvent & motionEvent)111 void LegacyResampler::updateLatestSamples(const MotionEvent& motionEvent) {
112 const size_t numSamples = motionEvent.getHistorySize() + 1;
113 const size_t latestIndex = numSamples - 1;
114 const size_t secondToLatestIndex = (latestIndex > 0) ? (latestIndex - 1) : 0;
115 for (size_t sampleIndex = secondToLatestIndex; sampleIndex < numSamples; ++sampleIndex) {
116 PointerMap pointerMap;
117 for (size_t pointerIndex = 0; pointerIndex < motionEvent.getPointerCount();
118 ++pointerIndex) {
119 pointerMap.insert(Pointer{*(motionEvent.getPointerProperties(pointerIndex)),
120 *(motionEvent.getHistoricalRawPointerCoords(pointerIndex,
121 sampleIndex))});
122 }
123 mLatestSamples.pushBack(
124 Sample{nanoseconds{motionEvent.getHistoricalEventTime(sampleIndex)}, pointerMap});
125 }
126 }
127
messageToSample(const InputMessage & message)128 LegacyResampler::Sample LegacyResampler::messageToSample(const InputMessage& message) {
129 PointerMap pointerMap;
130 for (uint32_t i = 0; i < message.body.motion.pointerCount; ++i) {
131 pointerMap.insert(Pointer{message.body.motion.pointers[i].properties,
132 message.body.motion.pointers[i].coords});
133 }
134 return Sample{nanoseconds{message.body.motion.eventTime}, pointerMap};
135 }
136
pointerPropertiesResampleable(const Sample & target,const Sample & auxiliary)137 bool LegacyResampler::pointerPropertiesResampleable(const Sample& target, const Sample& auxiliary) {
138 for (const Pointer& pointer : target.pointerMap) {
139 const std::optional<Pointer> auxiliaryPointer =
140 auxiliary.pointerMap.find(PointerMap::PointerId{pointer.properties.id});
141 if (!auxiliaryPointer.has_value()) {
142 LOG_IF(INFO, debugResampling())
143 << "Not resampled. Auxiliary sample does not contain all pointers from target.";
144 return false;
145 }
146 if (pointer.properties.toolType != auxiliaryPointer->properties.toolType) {
147 LOG_IF(INFO, debugResampling()) << "Not resampled. Pointer ToolType mismatch.";
148 return false;
149 }
150 if (!canResampleTool(pointer.properties.toolType)) {
151 LOG_IF(INFO, debugResampling())
152 << "Not resampled. Cannot resample "
153 << ftl::enum_string(pointer.properties.toolType) << " ToolType.";
154 return false;
155 }
156 }
157 return true;
158 }
159
canInterpolate(const InputMessage & message) const160 bool LegacyResampler::canInterpolate(const InputMessage& message) const {
161 LOG_IF(FATAL, mLatestSamples.empty())
162 << "Not resampled. mLatestSamples must not be empty to interpolate.";
163
164 const Sample& pastSample = *(mLatestSamples.end() - 1);
165 const Sample& futureSample = messageToSample(message);
166
167 if (!pointerPropertiesResampleable(pastSample, futureSample)) {
168 return false;
169 }
170
171 const nanoseconds delta = futureSample.eventTime - pastSample.eventTime;
172 if (delta < RESAMPLE_MIN_DELTA) {
173 LOG_IF(INFO, debugResampling())
174 << "Not resampled. Delta is too small: " << std::setprecision(3)
175 << std::chrono::duration<double, std::milli>{delta}.count() << "ms";
176 return false;
177 }
178 return true;
179 }
180
attemptInterpolation(nanoseconds resampleTime,const InputMessage & futureMessage) const181 std::optional<LegacyResampler::Sample> LegacyResampler::attemptInterpolation(
182 nanoseconds resampleTime, const InputMessage& futureMessage) const {
183 if (!canInterpolate(futureMessage)) {
184 return std::nullopt;
185 }
186 LOG_IF(FATAL, mLatestSamples.empty())
187 << "Not resampled. mLatestSamples must not be empty to interpolate.";
188
189 const Sample& pastSample = *(mLatestSamples.end() - 1);
190 const Sample& futureSample = messageToSample(futureMessage);
191
192 const nanoseconds delta = nanoseconds{futureSample.eventTime} - pastSample.eventTime;
193 const float alpha =
194 std::chrono::duration<float, std::nano>(resampleTime - pastSample.eventTime) / delta;
195
196 PointerMap resampledPointerMap;
197 for (const Pointer& pointer : pastSample.pointerMap) {
198 if (std::optional<Pointer> futureSamplePointer =
199 futureSample.pointerMap.find(PointerMap::PointerId{pointer.properties.id});
200 futureSamplePointer.has_value()) {
201 const PointerCoords& resampledCoords =
202 calculateResampledCoords(pointer.coords, futureSamplePointer->coords, alpha);
203 resampledPointerMap.insert(Pointer{pointer.properties, resampledCoords});
204 }
205 }
206 return Sample{resampleTime, resampledPointerMap};
207 }
208
canExtrapolate() const209 bool LegacyResampler::canExtrapolate() const {
210 if (mLatestSamples.size() < 2) {
211 LOG_IF(INFO, debugResampling()) << "Not resampled. Not enough data.";
212 return false;
213 }
214
215 const Sample& pastSample = *(mLatestSamples.end() - 2);
216 const Sample& presentSample = *(mLatestSamples.end() - 1);
217
218 if (!pointerPropertiesResampleable(presentSample, pastSample)) {
219 return false;
220 }
221
222 const nanoseconds delta = presentSample.eventTime - pastSample.eventTime;
223 if (delta < RESAMPLE_MIN_DELTA) {
224 LOG_IF(INFO, debugResampling())
225 << "Not resampled. Delta is too small: " << std::setprecision(3)
226 << std::chrono::duration<double, std::milli>{delta}.count() << "ms";
227 return false;
228 } else if (delta > RESAMPLE_MAX_DELTA) {
229 LOG_IF(INFO, debugResampling())
230 << "Not resampled. Delta is too large: " << std::setprecision(3)
231 << std::chrono::duration<double, std::milli>{delta}.count() << "ms";
232 return false;
233 }
234 return true;
235 }
236
attemptExtrapolation(nanoseconds resampleTime) const237 std::optional<LegacyResampler::Sample> LegacyResampler::attemptExtrapolation(
238 nanoseconds resampleTime) const {
239 if (!canExtrapolate()) {
240 return std::nullopt;
241 }
242 LOG_IF(FATAL, mLatestSamples.size() < 2)
243 << "Not resampled. mLatestSamples must have at least two samples to extrapolate.";
244
245 const Sample& pastSample = *(mLatestSamples.end() - 2);
246 const Sample& presentSample = *(mLatestSamples.end() - 1);
247
248 const nanoseconds delta = presentSample.eventTime - pastSample.eventTime;
249 // The farthest future time to which we can extrapolate. If the given resampleTime exceeds this,
250 // we use this value as the resample time target.
251 const nanoseconds farthestPrediction =
252 presentSample.eventTime + std::min<nanoseconds>(delta / 2, RESAMPLE_MAX_PREDICTION);
253 const nanoseconds newResampleTime =
254 (resampleTime > farthestPrediction) ? (farthestPrediction) : (resampleTime);
255 LOG_IF(INFO, debugResampling() && newResampleTime == farthestPrediction)
256 << "Resample time is too far in the future. Adjusting prediction from "
257 << std::setprecision(3)
258 << std::chrono::duration<double, std::milli>{resampleTime - presentSample.eventTime}
259 .count()
260 << "ms to "
261 << std::chrono::duration<double, std::milli>{farthestPrediction -
262 presentSample.eventTime}
263 .count()
264 << "ms";
265 const float alpha =
266 std::chrono::duration<float, std::nano>(newResampleTime - pastSample.eventTime) / delta;
267
268 PointerMap resampledPointerMap;
269 for (const Pointer& pointer : presentSample.pointerMap) {
270 if (std::optional<Pointer> pastSamplePointer =
271 pastSample.pointerMap.find(PointerMap::PointerId{pointer.properties.id});
272 pastSamplePointer.has_value()) {
273 const PointerCoords& resampledCoords =
274 calculateResampledCoords(pastSamplePointer->coords, pointer.coords, alpha);
275 resampledPointerMap.insert(Pointer{pointer.properties, resampledCoords});
276 }
277 }
278 return Sample{newResampleTime, resampledPointerMap};
279 }
280
addSampleToMotionEvent(const Sample & sample,MotionEvent & motionEvent)281 inline void LegacyResampler::addSampleToMotionEvent(const Sample& sample,
282 MotionEvent& motionEvent) {
283 motionEvent.addSample(sample.eventTime.count(), sample.asPointerCoords().data(),
284 motionEvent.getId());
285 }
286
getResampleLatency() const287 nanoseconds LegacyResampler::getResampleLatency() const {
288 return RESAMPLE_LATENCY;
289 }
290
291 /**
292 * The resampler is unaware of ACTION_DOWN. Thus, it needs to constantly check for pointer IDs
293 * occurrences. This problem could be fixed if the resampler has access to the entire stream of
294 * MotionEvent actions. That way, both ACTION_DOWN and ACTION_UP will be visible; therefore,
295 * facilitating pointer tracking between samples.
296 */
overwriteMotionEventSamples(MotionEvent & motionEvent) const297 void LegacyResampler::overwriteMotionEventSamples(MotionEvent& motionEvent) const {
298 const size_t numSamples = motionEvent.getHistorySize() + 1;
299 for (size_t sampleIndex = 0; sampleIndex < numSamples; ++sampleIndex) {
300 overwriteStillPointers(motionEvent, sampleIndex);
301 overwriteOldPointers(motionEvent, sampleIndex);
302 }
303 }
304
overwriteStillPointers(MotionEvent & motionEvent,size_t sampleIndex) const305 void LegacyResampler::overwriteStillPointers(MotionEvent& motionEvent, size_t sampleIndex) const {
306 if (!mLastRealSample.has_value() || !mPreviousPrediction.has_value()) {
307 LOG_IF(INFO, debugResampling()) << "Still pointers not overwritten. Not enough data.";
308 return;
309 }
310 for (size_t pointerIndex = 0; pointerIndex < motionEvent.getPointerCount(); ++pointerIndex) {
311 const std::optional<Pointer> lastRealPointer = mLastRealSample->pointerMap.find(
312 PointerMap::PointerId{motionEvent.getPointerId(pointerIndex)});
313 const std::optional<Pointer> previousPointer = mPreviousPrediction->pointerMap.find(
314 PointerMap::PointerId{motionEvent.getPointerId(pointerIndex)});
315 // This could happen because resampler only receives ACTION_MOVE events.
316 if (!lastRealPointer.has_value() || !previousPointer.has_value()) {
317 continue;
318 }
319 const PointerCoords& pointerCoords =
320 *(motionEvent.getHistoricalRawPointerCoords(pointerIndex, sampleIndex));
321 if (equalXY(pointerCoords, lastRealPointer->coords)) {
322 LOG_IF(INFO, debugResampling())
323 << "Pointer ID: " << motionEvent.getPointerId(pointerIndex)
324 << " did not move. Overwriting its coordinates from " << pointerCoords << " to "
325 << previousPointer->coords;
326 setMotionEventPointerCoords(motionEvent, sampleIndex, pointerIndex,
327 previousPointer->coords);
328 }
329 }
330 }
331
overwriteOldPointers(MotionEvent & motionEvent,size_t sampleIndex) const332 void LegacyResampler::overwriteOldPointers(MotionEvent& motionEvent, size_t sampleIndex) const {
333 if (!mPreviousPrediction.has_value()) {
334 LOG_IF(INFO, debugResampling()) << "Old sample not overwritten. Not enough data.";
335 return;
336 }
337 if (nanoseconds{motionEvent.getHistoricalEventTime(sampleIndex)} <
338 mPreviousPrediction->eventTime) {
339 LOG_IF(INFO, debugResampling())
340 << "Motion event sample older than predicted sample. Overwriting event time from "
341 << std::setprecision(3)
342 << std::chrono::duration<double,
343 std::milli>{nanoseconds{motionEvent.getHistoricalEventTime(
344 sampleIndex)}}
345 .count()
346 << "ms to "
347 << std::chrono::duration<double, std::milli>{mPreviousPrediction->eventTime}.count()
348 << "ms";
349 for (size_t pointerIndex = 0; pointerIndex < motionEvent.getPointerCount();
350 ++pointerIndex) {
351 const std::optional<Pointer> previousPointer = mPreviousPrediction->pointerMap.find(
352 PointerMap::PointerId{motionEvent.getPointerId(pointerIndex)});
353 // This could happen because resampler only receives ACTION_MOVE events.
354 if (!previousPointer.has_value()) {
355 continue;
356 }
357 setMotionEventPointerCoords(motionEvent, sampleIndex, pointerIndex,
358 previousPointer->coords);
359 }
360 }
361 }
362
resampleMotionEvent(nanoseconds frameTime,MotionEvent & motionEvent,const InputMessage * futureSample)363 void LegacyResampler::resampleMotionEvent(nanoseconds frameTime, MotionEvent& motionEvent,
364 const InputMessage* futureSample) {
365 const nanoseconds resampleTime = frameTime - RESAMPLE_LATENCY;
366
367 if (resampleTime.count() == motionEvent.getEventTime()) {
368 LOG_IF(INFO, debugResampling()) << "Not resampled. Resample time equals motion event time.";
369 return;
370 }
371
372 updateLatestSamples(motionEvent);
373
374 const std::optional<Sample> sample = (futureSample != nullptr)
375 ? (attemptInterpolation(resampleTime, *futureSample))
376 : (attemptExtrapolation(resampleTime));
377 if (sample.has_value()) {
378 addSampleToMotionEvent(*sample, motionEvent);
379 if (mPreviousPrediction.has_value()) {
380 overwriteMotionEventSamples(motionEvent);
381 }
382 // mPreviousPrediction is only updated whenever extrapolation occurs because extrapolation
383 // is about predicting upcoming scenarios.
384 if (futureSample == nullptr) {
385 mPreviousPrediction = sample;
386 }
387 }
388 LOG_IF(FATAL, mLatestSamples.empty()) << "mLatestSamples must contain at least one sample.";
389 mLastRealSample = *(mLatestSamples.end() - 1);
390 }
391
392 // --- FilteredLegacyResampler ---
393
FilteredLegacyResampler(float minCutoffFreq,float beta)394 FilteredLegacyResampler::FilteredLegacyResampler(float minCutoffFreq, float beta)
395 : mResampler{}, mMinCutoffFreq{minCutoffFreq}, mBeta{beta} {}
396
resampleMotionEvent(std::chrono::nanoseconds requestedFrameTime,MotionEvent & motionEvent,const InputMessage * futureSample)397 void FilteredLegacyResampler::resampleMotionEvent(std::chrono::nanoseconds requestedFrameTime,
398 MotionEvent& motionEvent,
399 const InputMessage* futureSample) {
400 mResampler.resampleMotionEvent(requestedFrameTime, motionEvent, futureSample);
401 const size_t numSamples = motionEvent.getHistorySize() + 1;
402 for (size_t sampleIndex = 0; sampleIndex < numSamples; ++sampleIndex) {
403 for (size_t pointerIndex = 0; pointerIndex < motionEvent.getPointerCount();
404 ++pointerIndex) {
405 const int32_t pointerId = motionEvent.getPointerProperties(pointerIndex)->id;
406 const nanoseconds eventTime =
407 nanoseconds{motionEvent.getHistoricalEventTime(sampleIndex)};
408 // Refer to the static function `setMotionEventPointerCoords` for a justification of
409 // casting away const.
410 PointerCoords& pointerCoords = const_cast<PointerCoords&>(
411 *(motionEvent.getHistoricalRawPointerCoords(pointerIndex, sampleIndex)));
412 const auto& [iter, _] = mFilteredPointers.try_emplace(pointerId, mMinCutoffFreq, mBeta);
413 iter->second.filter(eventTime, pointerCoords);
414 }
415 }
416 }
417
getResampleLatency() const418 std::chrono::nanoseconds FilteredLegacyResampler::getResampleLatency() const {
419 return mResampler.getResampleLatency();
420 }
421
422 } // namespace android
423