xref: /aosp_15_r20/external/eigen/unsupported/test/polynomialsolver.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Manuel Yguel <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/Polynomials>
12 #include <iostream>
13 #include <algorithm>
14 
15 using namespace std;
16 
17 namespace Eigen {
18 namespace internal {
19 template<int Size>
20 struct increment_if_fixed_size
21 {
22   enum {
23     ret = (Size == Dynamic) ? Dynamic : Size+1
24   };
25 };
26 }
27 }
28 
29 template<typename PolynomialType>
polyder(const PolynomialType & p)30 PolynomialType polyder(const PolynomialType& p)
31 {
32   typedef typename PolynomialType::Scalar Scalar;
33   PolynomialType res(p.size());
34   for(Index i=1; i<p.size(); ++i)
35     res[i-1] = p[i]*Scalar(i);
36   res[p.size()-1] = 0.;
37   return res;
38 }
39 
40 template<int Deg, typename POLYNOMIAL, typename SOLVER>
aux_evalSolver(const POLYNOMIAL & pols,SOLVER & psolve)41 bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
42 {
43   typedef typename POLYNOMIAL::Scalar Scalar;
44   typedef typename POLYNOMIAL::RealScalar RealScalar;
45 
46   typedef typename SOLVER::RootsType    RootsType;
47   typedef Matrix<RealScalar,Deg,1>      EvalRootsType;
48 
49   const Index deg = pols.size()-1;
50 
51   // Test template constructor from coefficient vector
52   SOLVER solve_constr (pols);
53 
54   psolve.compute( pols );
55   const RootsType& roots( psolve.roots() );
56   EvalRootsType evr( deg );
57   POLYNOMIAL pols_der = polyder(pols);
58   EvalRootsType der( deg );
59   for( int i=0; i<roots.size(); ++i ){
60     evr[i] = std::abs( poly_eval( pols, roots[i] ) );
61     der[i] = numext::maxi(RealScalar(1.), std::abs( poly_eval( pols_der, roots[i] ) ));
62   }
63 
64   // we need to divide by the magnitude of the derivative because
65   // with a high derivative is very small error in the value of the root
66   // yiels a very large error in the polynomial evaluation.
67   bool evalToZero = (evr.cwiseQuotient(der)).isZero( test_precision<Scalar>() );
68   if( !evalToZero )
69   {
70     cerr << "WRONG root: " << endl;
71     cerr << "Polynomial: " << pols.transpose() << endl;
72     cerr << "Roots found: " << roots.transpose() << endl;
73     cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
74     cerr << endl;
75   }
76 
77   std::vector<RealScalar> rootModuli( roots.size() );
78   Map< EvalRootsType > aux( &rootModuli[0], roots.size() );
79   aux = roots.array().abs();
80   std::sort( rootModuli.begin(), rootModuli.end() );
81   bool distinctModuli=true;
82   for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i )
83   {
84     if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){
85       distinctModuli = false; }
86   }
87   VERIFY( evalToZero || !distinctModuli );
88 
89   return distinctModuli;
90 }
91 
92 
93 
94 
95 
96 
97 
98 template<int Deg, typename POLYNOMIAL>
evalSolver(const POLYNOMIAL & pols)99 void evalSolver( const POLYNOMIAL& pols )
100 {
101   typedef typename POLYNOMIAL::Scalar Scalar;
102 
103   typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType;
104 
105   PolynomialSolverType psolve;
106   aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve );
107 }
108 
109 
110 
111 
112 template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS >
evalSolverSugarFunction(const POLYNOMIAL & pols,const ROOTS & roots,const REAL_ROOTS & real_roots)113 void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots )
114 {
115   using std::sqrt;
116   typedef typename POLYNOMIAL::Scalar Scalar;
117   typedef typename POLYNOMIAL::RealScalar RealScalar;
118 
119   typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType;
120 
121   PolynomialSolverType psolve;
122   if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) )
123   {
124     //It is supposed that
125     // 1) the roots found are correct
126     // 2) the roots have distinct moduli
127 
128     //Test realRoots
129     std::vector< RealScalar > calc_realRoots;
130     psolve.realRoots( calc_realRoots,  test_precision<RealScalar>());
131     VERIFY_IS_EQUAL( calc_realRoots.size() , (size_t)real_roots.size() );
132 
133     const RealScalar psPrec = sqrt( test_precision<RealScalar>() );
134 
135     for( size_t i=0; i<calc_realRoots.size(); ++i )
136     {
137       bool found = false;
138       for( size_t j=0; j<calc_realRoots.size()&& !found; ++j )
139       {
140         if( internal::isApprox( calc_realRoots[i], real_roots[j], psPrec ) ){
141           found = true; }
142       }
143       VERIFY( found );
144     }
145 
146     //Test greatestRoot
147     VERIFY( internal::isApprox( roots.array().abs().maxCoeff(),
148           abs( psolve.greatestRoot() ), psPrec ) );
149 
150     //Test smallestRoot
151     VERIFY( internal::isApprox( roots.array().abs().minCoeff(),
152           abs( psolve.smallestRoot() ), psPrec ) );
153 
154     bool hasRealRoot;
155     //Test absGreatestRealRoot
156     RealScalar r = psolve.absGreatestRealRoot( hasRealRoot );
157     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
158     if( hasRealRoot ){
159       VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) );  }
160 
161     //Test absSmallestRealRoot
162     r = psolve.absSmallestRealRoot( hasRealRoot );
163     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
164     if( hasRealRoot ){
165       VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); }
166 
167     //Test greatestRealRoot
168     r = psolve.greatestRealRoot( hasRealRoot );
169     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
170     if( hasRealRoot ){
171       VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); }
172 
173     //Test smallestRealRoot
174     r = psolve.smallestRealRoot( hasRealRoot );
175     VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
176     if( hasRealRoot ){
177     VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); }
178   }
179 }
180 
181 
182 template<typename _Scalar, int _Deg>
polynomialsolver(int deg)183 void polynomialsolver(int deg)
184 {
185   typedef typename NumTraits<_Scalar>::Real RealScalar;
186   typedef internal::increment_if_fixed_size<_Deg>     Dim;
187   typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType;
188   typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType;
189   typedef Matrix<RealScalar,_Deg,1>                   RealRootsType;
190 
191   cout << "Standard cases" << endl;
192   PolynomialType pols = PolynomialType::Random(deg+1);
193   evalSolver<_Deg,PolynomialType>( pols );
194 
195   cout << "Hard cases" << endl;
196   _Scalar multipleRoot = internal::random<_Scalar>();
197   EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot);
198   roots_to_monicPolynomial( allRoots, pols );
199   evalSolver<_Deg,PolynomialType>( pols );
200 
201   cout << "Test sugar" << endl;
202   RealRootsType realRoots = RealRootsType::Random(deg);
203   roots_to_monicPolynomial( realRoots, pols );
204   evalSolverSugarFunction<_Deg>(
205       pols,
206       realRoots.template cast <std::complex<RealScalar> >().eval(),
207       realRoots );
208 }
209 
EIGEN_DECLARE_TEST(polynomialsolver)210 EIGEN_DECLARE_TEST(polynomialsolver)
211 {
212   for(int i = 0; i < g_repeat; i++)
213   {
214     CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) );
215     CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) );
216     CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) );
217     CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) );
218     CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) );
219     CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) );
220     CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) );
221     CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) );
222 
223     CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>(
224             internal::random<int>(9,13)
225             )) );
226     CALL_SUBTEST_10((polynomialsolver<double,Dynamic>(
227             internal::random<int>(9,13)
228             )) );
229     CALL_SUBTEST_11((polynomialsolver<float,Dynamic>(1)) );
230     CALL_SUBTEST_12((polynomialsolver<std::complex<double>,Dynamic>(internal::random<int>(2,13))) );
231   }
232 }
233