xref: /aosp_15_r20/external/libaom/av1/encoder/allintra_vis.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2021, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 
14 #include "config/aom_config.h"
15 
16 #include "aom_util/aom_pthread.h"
17 
18 #if CONFIG_TFLITE
19 #include "tensorflow/lite/c/c_api.h"
20 #include "av1/encoder/deltaq4_model.c"
21 #endif
22 
23 #include "av1/common/common_data.h"
24 #include "av1/common/enums.h"
25 #include "av1/common/idct.h"
26 #include "av1/common/reconinter.h"
27 #include "av1/encoder/allintra_vis.h"
28 #include "av1/encoder/encoder.h"
29 #include "av1/encoder/ethread.h"
30 #include "av1/encoder/hybrid_fwd_txfm.h"
31 #include "av1/encoder/model_rd.h"
32 #include "av1/encoder/rdopt_utils.h"
33 
34 #define MB_WIENER_PRED_BLOCK_SIZE BLOCK_128X128
35 #define MB_WIENER_PRED_BUF_STRIDE 128
36 
av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON * cm,ThreadData * td)37 void av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON *cm, ThreadData *td) {
38   const int is_high_bitdepth = is_cur_buf_hbd(&td->mb.e_mbd);
39   assert(MB_WIENER_PRED_BLOCK_SIZE < BLOCK_SIZES_ALL);
40   const int buf_width = block_size_wide[MB_WIENER_PRED_BLOCK_SIZE];
41   const int buf_height = block_size_high[MB_WIENER_PRED_BLOCK_SIZE];
42   assert(buf_width == MB_WIENER_PRED_BUF_STRIDE);
43   const size_t buf_size =
44       (buf_width * buf_height * sizeof(*td->wiener_tmp_pred_buf))
45       << is_high_bitdepth;
46   CHECK_MEM_ERROR(cm, td->wiener_tmp_pred_buf, aom_memalign(32, buf_size));
47 }
48 
av1_dealloc_mb_wiener_var_pred_buf(ThreadData * td)49 void av1_dealloc_mb_wiener_var_pred_buf(ThreadData *td) {
50   aom_free(td->wiener_tmp_pred_buf);
51   td->wiener_tmp_pred_buf = NULL;
52 }
53 
av1_init_mb_wiener_var_buffer(AV1_COMP * cpi)54 void av1_init_mb_wiener_var_buffer(AV1_COMP *cpi) {
55   AV1_COMMON *cm = &cpi->common;
56 
57   // This block size is also used to determine number of workers in
58   // multi-threading. If it is changed, one needs to change it accordingly in
59   // "compute_num_ai_workers()".
60   cpi->weber_bsize = BLOCK_8X8;
61 
62   if (cpi->oxcf.enable_rate_guide_deltaq) {
63     if (cpi->mb_weber_stats && cpi->prep_rate_estimates &&
64         cpi->ext_rate_distribution)
65       return;
66   } else {
67     if (cpi->mb_weber_stats) return;
68   }
69 
70   CHECK_MEM_ERROR(cm, cpi->mb_weber_stats,
71                   aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
72                              sizeof(*cpi->mb_weber_stats)));
73 
74   if (cpi->oxcf.enable_rate_guide_deltaq) {
75     CHECK_MEM_ERROR(
76         cm, cpi->prep_rate_estimates,
77         aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
78                    sizeof(*cpi->prep_rate_estimates)));
79 
80     CHECK_MEM_ERROR(
81         cm, cpi->ext_rate_distribution,
82         aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
83                    sizeof(*cpi->ext_rate_distribution)));
84   }
85 }
86 
get_satd(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)87 static int64_t get_satd(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
88                         int mi_col) {
89   AV1_COMMON *const cm = &cpi->common;
90   const int mi_wide = mi_size_wide[bsize];
91   const int mi_high = mi_size_high[bsize];
92 
93   const int mi_step = mi_size_wide[cpi->weber_bsize];
94   int mb_stride = cpi->frame_info.mi_cols;
95   int mb_count = 0;
96   int64_t satd = 0;
97 
98   for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
99     for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
100       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
101         continue;
102 
103       satd += cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
104                   .satd;
105       ++mb_count;
106     }
107   }
108 
109   if (mb_count) satd = (int)(satd / mb_count);
110   satd = AOMMAX(1, satd);
111 
112   return (int)satd;
113 }
114 
get_sse(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)115 static int64_t get_sse(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
116                        int mi_col) {
117   AV1_COMMON *const cm = &cpi->common;
118   const int mi_wide = mi_size_wide[bsize];
119   const int mi_high = mi_size_high[bsize];
120 
121   const int mi_step = mi_size_wide[cpi->weber_bsize];
122   int mb_stride = cpi->frame_info.mi_cols;
123   int mb_count = 0;
124   int64_t distortion = 0;
125 
126   for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
127     for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
128       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
129         continue;
130 
131       distortion +=
132           cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
133               .distortion;
134       ++mb_count;
135     }
136   }
137 
138   if (mb_count) distortion = (int)(distortion / mb_count);
139   distortion = AOMMAX(1, distortion);
140 
141   return (int)distortion;
142 }
143 
get_max_scale(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)144 static double get_max_scale(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
145                             int mi_col) {
146   AV1_COMMON *const cm = &cpi->common;
147   const int mi_wide = mi_size_wide[bsize];
148   const int mi_high = mi_size_high[bsize];
149   const int mi_step = mi_size_wide[cpi->weber_bsize];
150   int mb_stride = cpi->frame_info.mi_cols;
151   double min_max_scale = 10.0;
152 
153   for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
154     for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
155       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
156         continue;
157       WeberStats *weber_stats =
158           &cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
159       if (weber_stats->max_scale < 1.0) continue;
160       if (weber_stats->max_scale < min_max_scale)
161         min_max_scale = weber_stats->max_scale;
162     }
163   }
164   return min_max_scale;
165 }
166 
get_window_wiener_var(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)167 static int get_window_wiener_var(AV1_COMP *const cpi, BLOCK_SIZE bsize,
168                                  int mi_row, int mi_col) {
169   AV1_COMMON *const cm = &cpi->common;
170   const int mi_wide = mi_size_wide[bsize];
171   const int mi_high = mi_size_high[bsize];
172 
173   const int mi_step = mi_size_wide[cpi->weber_bsize];
174   int sb_wiener_var = 0;
175   int mb_stride = cpi->frame_info.mi_cols;
176   int mb_count = 0;
177   double base_num = 1;
178   double base_den = 1;
179   double base_reg = 1;
180 
181   for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
182     for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
183       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
184         continue;
185 
186       WeberStats *weber_stats =
187           &cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
188 
189       base_num += ((double)weber_stats->distortion) *
190                   sqrt((double)weber_stats->src_variance) *
191                   weber_stats->rec_pix_max;
192 
193       base_den += fabs(
194           weber_stats->rec_pix_max * sqrt((double)weber_stats->src_variance) -
195           weber_stats->src_pix_max * sqrt((double)weber_stats->rec_variance));
196 
197       base_reg += sqrt((double)weber_stats->distortion) *
198                   sqrt((double)weber_stats->src_pix_max) * 0.1;
199       ++mb_count;
200     }
201   }
202 
203   sb_wiener_var =
204       (int)(((base_num + base_reg) / (base_den + base_reg)) / mb_count);
205   sb_wiener_var = AOMMAX(1, sb_wiener_var);
206 
207   return (int)sb_wiener_var;
208 }
209 
get_var_perceptual_ai(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)210 static int get_var_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize,
211                                  int mi_row, int mi_col) {
212   AV1_COMMON *const cm = &cpi->common;
213   const int mi_wide = mi_size_wide[bsize];
214   const int mi_high = mi_size_high[bsize];
215 
216   int sb_wiener_var = get_window_wiener_var(cpi, bsize, mi_row, mi_col);
217 
218   if (mi_row >= (mi_high / 2)) {
219     sb_wiener_var =
220         AOMMIN(sb_wiener_var,
221                get_window_wiener_var(cpi, bsize, mi_row - mi_high / 2, mi_col));
222   }
223   if (mi_row <= (cm->mi_params.mi_rows - mi_high - (mi_high / 2))) {
224     sb_wiener_var =
225         AOMMIN(sb_wiener_var,
226                get_window_wiener_var(cpi, bsize, mi_row + mi_high / 2, mi_col));
227   }
228   if (mi_col >= (mi_wide / 2)) {
229     sb_wiener_var =
230         AOMMIN(sb_wiener_var,
231                get_window_wiener_var(cpi, bsize, mi_row, mi_col - mi_wide / 2));
232   }
233   if (mi_col <= (cm->mi_params.mi_cols - mi_wide - (mi_wide / 2))) {
234     sb_wiener_var =
235         AOMMIN(sb_wiener_var,
236                get_window_wiener_var(cpi, bsize, mi_row, mi_col + mi_wide / 2));
237   }
238 
239   return sb_wiener_var;
240 }
241 
rate_estimator(const tran_low_t * qcoeff,int eob,TX_SIZE tx_size)242 static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
243   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
244 
245   assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
246   int rate_cost = 1;
247 
248   for (int idx = 0; idx < eob; ++idx) {
249     int abs_level = abs(qcoeff[scan_order->scan[idx]]);
250     rate_cost += (int)(log1p(abs_level) / log(2.0)) + 1 + (abs_level > 0);
251   }
252 
253   return (rate_cost << AV1_PROB_COST_SHIFT);
254 }
255 
av1_calc_mb_wiener_var_row(AV1_COMP * const cpi,MACROBLOCK * x,MACROBLOCKD * xd,const int mi_row,int16_t * src_diff,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,double * sum_rec_distortion,double * sum_est_rate,uint8_t * pred_buffer)256 void av1_calc_mb_wiener_var_row(AV1_COMP *const cpi, MACROBLOCK *x,
257                                 MACROBLOCKD *xd, const int mi_row,
258                                 int16_t *src_diff, tran_low_t *coeff,
259                                 tran_low_t *qcoeff, tran_low_t *dqcoeff,
260                                 double *sum_rec_distortion,
261                                 double *sum_est_rate, uint8_t *pred_buffer) {
262   AV1_COMMON *const cm = &cpi->common;
263   uint8_t *buffer = cpi->source->y_buffer;
264   int buf_stride = cpi->source->y_stride;
265   MB_MODE_INFO mbmi;
266   memset(&mbmi, 0, sizeof(mbmi));
267   MB_MODE_INFO *mbmi_ptr = &mbmi;
268   xd->mi = &mbmi_ptr;
269   const BLOCK_SIZE bsize = cpi->weber_bsize;
270   const TX_SIZE tx_size = max_txsize_lookup[bsize];
271   const int block_size = tx_size_wide[tx_size];
272   const int coeff_count = block_size * block_size;
273   const int mb_step = mi_size_wide[bsize];
274   const BitDepthInfo bd_info = get_bit_depth_info(xd);
275   const MultiThreadInfo *const mt_info = &cpi->mt_info;
276   const AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
277   AV1EncRowMultiThreadSync *const intra_row_mt_sync =
278       &cpi->ppi->intra_row_mt_sync;
279   const int mi_cols = cm->mi_params.mi_cols;
280   const int mt_thread_id = mi_row / mb_step;
281   // TODO(chengchen): test different unit step size
282   const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
283   const int mt_unit_cols = (mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
284   int mt_unit_col = 0;
285   const int is_high_bitdepth = is_cur_buf_hbd(xd);
286 
287   uint8_t *dst_buffer = pred_buffer;
288   const int dst_buffer_stride = MB_WIENER_PRED_BUF_STRIDE;
289 
290   if (is_high_bitdepth) {
291     uint16_t *pred_buffer_16 = (uint16_t *)pred_buffer;
292     dst_buffer = CONVERT_TO_BYTEPTR(pred_buffer_16);
293   }
294 
295   for (int mi_col = 0; mi_col < mi_cols; mi_col += mb_step) {
296     if (mi_col % mt_unit_step == 0) {
297       intra_mt->intra_sync_read_ptr(intra_row_mt_sync, mt_thread_id,
298                                     mt_unit_col);
299 #if CONFIG_MULTITHREAD
300       const int num_workers =
301           AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
302       if (num_workers > 1) {
303         const AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
304         pthread_mutex_lock(enc_row_mt->mutex_);
305         const bool exit = enc_row_mt->mb_wiener_mt_exit;
306         pthread_mutex_unlock(enc_row_mt->mutex_);
307         // Stop further processing in case any worker has encountered an error.
308         if (exit) break;
309       }
310 #endif
311     }
312 
313     PREDICTION_MODE best_mode = DC_PRED;
314     int best_intra_cost = INT_MAX;
315     const int mi_width = mi_size_wide[bsize];
316     const int mi_height = mi_size_high[bsize];
317     set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
318                           mi_row, mi_col);
319     set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
320                    AOMMIN(mi_row + mi_height, cm->mi_params.mi_rows),
321                    AOMMIN(mi_col + mi_width, cm->mi_params.mi_cols));
322     set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
323                  av1_num_planes(cm));
324     xd->mi[0]->bsize = bsize;
325     xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
326     // Set above and left mbmi to NULL as they are not available in the
327     // preprocessing stage.
328     // They are used to detemine intra edge filter types in intra prediction.
329     if (xd->up_available) {
330       xd->above_mbmi = NULL;
331     }
332     if (xd->left_available) {
333       xd->left_mbmi = NULL;
334     }
335     uint8_t *mb_buffer =
336         buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE;
337     for (PREDICTION_MODE mode = INTRA_MODE_START; mode < INTRA_MODE_END;
338          ++mode) {
339       // TODO(chengchen): Here we use src instead of reconstructed frame as
340       // the intra predictor to make single and multithread version match.
341       // Ideally we want to use the reconstructed.
342       av1_predict_intra_block(
343           xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
344           block_size, block_size, tx_size, mode, 0, 0, FILTER_INTRA_MODES,
345           mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
346       av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
347                          mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
348       av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
349       int intra_cost = aom_satd(coeff, coeff_count);
350       if (intra_cost < best_intra_cost) {
351         best_intra_cost = intra_cost;
352         best_mode = mode;
353       }
354     }
355 
356     av1_predict_intra_block(
357         xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
358         block_size, block_size, tx_size, best_mode, 0, 0, FILTER_INTRA_MODES,
359         mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
360     av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
361                        mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
362     av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
363 
364     const struct macroblock_plane *const p = &x->plane[0];
365     uint16_t eob;
366     const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
367     QUANT_PARAM quant_param;
368     int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
369     av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
370 #if CONFIG_AV1_HIGHBITDEPTH
371     if (is_cur_buf_hbd(xd)) {
372       av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
373                                     scan_order, &quant_param);
374     } else {
375       av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
376                              scan_order, &quant_param);
377     }
378 #else
379     av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, scan_order,
380                            &quant_param);
381 #endif  // CONFIG_AV1_HIGHBITDEPTH
382 
383     if (cpi->oxcf.enable_rate_guide_deltaq) {
384       const int rate_cost = rate_estimator(qcoeff, eob, tx_size);
385       cpi->prep_rate_estimates[(mi_row / mb_step) * cpi->frame_info.mi_cols +
386                                (mi_col / mb_step)] = rate_cost;
387     }
388 
389     av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst_buffer,
390                                 dst_buffer_stride, eob, 0);
391     WeberStats *weber_stats =
392         &cpi->mb_weber_stats[(mi_row / mb_step) * cpi->frame_info.mi_cols +
393                              (mi_col / mb_step)];
394 
395     weber_stats->rec_pix_max = 1;
396     weber_stats->rec_variance = 0;
397     weber_stats->src_pix_max = 1;
398     weber_stats->src_variance = 0;
399     weber_stats->distortion = 0;
400 
401     int64_t src_mean = 0;
402     int64_t rec_mean = 0;
403     int64_t dist_mean = 0;
404 
405     for (int pix_row = 0; pix_row < block_size; ++pix_row) {
406       for (int pix_col = 0; pix_col < block_size; ++pix_col) {
407         int src_pix, rec_pix;
408 #if CONFIG_AV1_HIGHBITDEPTH
409         if (is_cur_buf_hbd(xd)) {
410           uint16_t *src = CONVERT_TO_SHORTPTR(mb_buffer);
411           uint16_t *rec = CONVERT_TO_SHORTPTR(dst_buffer);
412           src_pix = src[pix_row * buf_stride + pix_col];
413           rec_pix = rec[pix_row * dst_buffer_stride + pix_col];
414         } else {
415           src_pix = mb_buffer[pix_row * buf_stride + pix_col];
416           rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
417         }
418 #else
419         src_pix = mb_buffer[pix_row * buf_stride + pix_col];
420         rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
421 #endif
422         src_mean += src_pix;
423         rec_mean += rec_pix;
424         dist_mean += src_pix - rec_pix;
425         weber_stats->src_variance += src_pix * src_pix;
426         weber_stats->rec_variance += rec_pix * rec_pix;
427         weber_stats->src_pix_max = AOMMAX(weber_stats->src_pix_max, src_pix);
428         weber_stats->rec_pix_max = AOMMAX(weber_stats->rec_pix_max, rec_pix);
429         weber_stats->distortion += (src_pix - rec_pix) * (src_pix - rec_pix);
430       }
431     }
432 
433     if (cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
434       *sum_rec_distortion += weber_stats->distortion;
435       int est_block_rate = 0;
436       int64_t est_block_dist = 0;
437       model_rd_sse_fn[MODELRD_LEGACY](cpi, x, bsize, 0, weber_stats->distortion,
438                                       pix_num, &est_block_rate,
439                                       &est_block_dist);
440       *sum_est_rate += est_block_rate;
441     }
442 
443     weber_stats->src_variance -= (src_mean * src_mean) / pix_num;
444     weber_stats->rec_variance -= (rec_mean * rec_mean) / pix_num;
445     weber_stats->distortion -= (dist_mean * dist_mean) / pix_num;
446     weber_stats->satd = best_intra_cost;
447 
448     qcoeff[0] = 0;
449     int max_scale = 0;
450     for (int idx = 1; idx < coeff_count; ++idx) {
451       const int abs_qcoeff = abs(qcoeff[idx]);
452       max_scale = AOMMAX(max_scale, abs_qcoeff);
453     }
454     weber_stats->max_scale = max_scale;
455 
456     if ((mi_col + mb_step) % mt_unit_step == 0 ||
457         (mi_col + mb_step) >= mi_cols) {
458       intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
459                                      mt_unit_col, mt_unit_cols);
460       ++mt_unit_col;
461     }
462   }
463   // Set the pointer to null since mbmi is only allocated inside this function.
464   xd->mi = NULL;
465 }
466 
calc_mb_wiener_var(AV1_COMP * const cpi,double * sum_rec_distortion,double * sum_est_rate)467 static void calc_mb_wiener_var(AV1_COMP *const cpi, double *sum_rec_distortion,
468                                double *sum_est_rate) {
469   MACROBLOCK *x = &cpi->td.mb;
470   MACROBLOCKD *xd = &x->e_mbd;
471   const BLOCK_SIZE bsize = cpi->weber_bsize;
472   const int mb_step = mi_size_wide[bsize];
473   DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
474   DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
475   DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
476   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
477   for (int mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) {
478     av1_calc_mb_wiener_var_row(cpi, x, xd, mi_row, src_diff, coeff, qcoeff,
479                                dqcoeff, sum_rec_distortion, sum_est_rate,
480                                cpi->td.wiener_tmp_pred_buf);
481   }
482 }
483 
estimate_wiener_var_norm(AV1_COMP * const cpi,const BLOCK_SIZE norm_block_size)484 static int64_t estimate_wiener_var_norm(AV1_COMP *const cpi,
485                                         const BLOCK_SIZE norm_block_size) {
486   const AV1_COMMON *const cm = &cpi->common;
487   int64_t norm_factor = 1;
488   assert(norm_block_size >= BLOCK_16X16 && norm_block_size <= BLOCK_128X128);
489   const int norm_step = mi_size_wide[norm_block_size];
490   double sb_wiener_log = 0;
491   double sb_count = 0;
492   for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
493     for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) {
494       const int sb_wiener_var =
495           get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
496       const int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
497       const int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
498       const double scaled_satd = (double)satd / sqrt((double)sse);
499       sb_wiener_log += scaled_satd * log(sb_wiener_var);
500       sb_count += scaled_satd;
501     }
502   }
503   if (sb_count > 0) norm_factor = (int64_t)(exp(sb_wiener_log / sb_count));
504   norm_factor = AOMMAX(1, norm_factor);
505 
506   return norm_factor;
507 }
508 
automatic_intra_tools_off(AV1_COMP * cpi,const double sum_rec_distortion,const double sum_est_rate)509 static void automatic_intra_tools_off(AV1_COMP *cpi,
510                                       const double sum_rec_distortion,
511                                       const double sum_est_rate) {
512   if (!cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) return;
513 
514   // Thresholds
515   const int high_quality_qindex = 128;
516   const double high_quality_bpp = 2.0;
517   const double high_quality_dist_per_pix = 4.0;
518 
519   AV1_COMMON *const cm = &cpi->common;
520   const int qindex = cm->quant_params.base_qindex;
521   const double dist_per_pix =
522       (double)sum_rec_distortion / (cm->width * cm->height);
523   // The estimate bpp is not accurate, an empirical constant 100 is divided.
524   const double estimate_bpp = sum_est_rate / (cm->width * cm->height * 100);
525 
526   if (qindex < high_quality_qindex && estimate_bpp > high_quality_bpp &&
527       dist_per_pix < high_quality_dist_per_pix) {
528     cpi->oxcf.intra_mode_cfg.enable_smooth_intra = 0;
529     cpi->oxcf.intra_mode_cfg.enable_paeth_intra = 0;
530     cpi->oxcf.intra_mode_cfg.enable_cfl_intra = 0;
531     cpi->oxcf.intra_mode_cfg.enable_diagonal_intra = 0;
532   }
533 }
534 
ext_rate_guided_quantization(AV1_COMP * cpi)535 static void ext_rate_guided_quantization(AV1_COMP *cpi) {
536   // Calculation uses 8x8.
537   const int mb_step = mi_size_wide[cpi->weber_bsize];
538   // Accumulate to 16x16, step size is in the unit of mi.
539   const int block_step = 4;
540 
541   const char *filename = cpi->oxcf.rate_distribution_info;
542   FILE *pfile = fopen(filename, "r");
543   if (pfile == NULL) {
544     assert(pfile != NULL);
545     return;
546   }
547 
548   double ext_rate_sum = 0.0;
549   for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
550     for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
551       float val;
552       const int fields_converted = fscanf(pfile, "%f", &val);
553       if (fields_converted != 1) {
554         assert(fields_converted == 1);
555         fclose(pfile);
556         return;
557       }
558       ext_rate_sum += val;
559       cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
560                                  (col / mb_step)] = val;
561     }
562   }
563   fclose(pfile);
564 
565   int uniform_rate_sum = 0;
566   for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
567     for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
568       int rate_sum = 0;
569       for (int r = 0; r < block_step; r += mb_step) {
570         for (int c = 0; c < block_step; c += mb_step) {
571           const int mi_row = row + r;
572           const int mi_col = col + c;
573           rate_sum += cpi->prep_rate_estimates[(mi_row / mb_step) *
574                                                    cpi->frame_info.mi_cols +
575                                                (mi_col / mb_step)];
576         }
577       }
578       uniform_rate_sum += rate_sum;
579     }
580   }
581 
582   const double scale = uniform_rate_sum / ext_rate_sum;
583   cpi->ext_rate_scale = scale;
584 }
585 
av1_set_mb_wiener_variance(AV1_COMP * cpi)586 void av1_set_mb_wiener_variance(AV1_COMP *cpi) {
587   AV1_COMMON *const cm = &cpi->common;
588   const SequenceHeader *const seq_params = cm->seq_params;
589   if (aom_realloc_frame_buffer(
590           &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
591           seq_params->subsampling_y, seq_params->use_highbitdepth,
592           cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
593           NULL, cpi->alloc_pyramid, 0))
594     aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
595                        "Failed to allocate frame buffer");
596   av1_alloc_mb_wiener_var_pred_buf(&cpi->common, &cpi->td);
597   cpi->norm_wiener_variance = 0;
598 
599   MACROBLOCK *x = &cpi->td.mb;
600   MACROBLOCKD *xd = &x->e_mbd;
601   // xd->mi needs to be setup since it is used in av1_frame_init_quantizer.
602   MB_MODE_INFO mbmi;
603   memset(&mbmi, 0, sizeof(mbmi));
604   MB_MODE_INFO *mbmi_ptr = &mbmi;
605   xd->mi = &mbmi_ptr;
606   cm->quant_params.base_qindex = cpi->oxcf.rc_cfg.cq_level;
607   av1_frame_init_quantizer(cpi);
608 
609   double sum_rec_distortion = 0.0;
610   double sum_est_rate = 0.0;
611 
612   MultiThreadInfo *const mt_info = &cpi->mt_info;
613   const int num_workers =
614       AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
615   AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
616   intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read_dummy;
617   intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write_dummy;
618   // Calculate differential contrast for each block for the entire image.
619   // TODO(chengchen): properly accumulate the distortion and rate in
620   // av1_calc_mb_wiener_var_mt(). Until then, call calc_mb_wiener_var() if
621   // auto_intra_tools_off is true.
622   if (num_workers > 1 && !cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
623     intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read;
624     intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write;
625     av1_calc_mb_wiener_var_mt(cpi, num_workers, &sum_rec_distortion,
626                               &sum_est_rate);
627   } else {
628     calc_mb_wiener_var(cpi, &sum_rec_distortion, &sum_est_rate);
629   }
630 
631   // Determine whether to turn off several intra coding tools.
632   automatic_intra_tools_off(cpi, sum_rec_distortion, sum_est_rate);
633 
634   // Read external rate distribution and use it to guide delta quantization
635   if (cpi->oxcf.enable_rate_guide_deltaq) ext_rate_guided_quantization(cpi);
636 
637   const BLOCK_SIZE norm_block_size = cm->seq_params->sb_size;
638   cpi->norm_wiener_variance = estimate_wiener_var_norm(cpi, norm_block_size);
639   const int norm_step = mi_size_wide[norm_block_size];
640 
641   double sb_wiener_log = 0;
642   double sb_count = 0;
643   for (int its_cnt = 0; its_cnt < 2; ++its_cnt) {
644     sb_wiener_log = 0;
645     sb_count = 0;
646     for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
647       for (int mi_col = 0; mi_col < cm->mi_params.mi_cols;
648            mi_col += norm_step) {
649         int sb_wiener_var =
650             get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
651 
652         double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
653         double min_max_scale = AOMMAX(
654             1.0, get_max_scale(cpi, cm->seq_params->sb_size, mi_row, mi_col));
655 
656         beta = AOMMIN(beta, 4);
657         beta = AOMMAX(beta, 0.25);
658 
659         if (beta < 1 / min_max_scale) continue;
660 
661         sb_wiener_var = (int)(cpi->norm_wiener_variance / beta);
662 
663         int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
664         int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
665         double scaled_satd = (double)satd / sqrt((double)sse);
666         sb_wiener_log += scaled_satd * log(sb_wiener_var);
667         sb_count += scaled_satd;
668       }
669     }
670 
671     if (sb_count > 0)
672       cpi->norm_wiener_variance = (int64_t)(exp(sb_wiener_log / sb_count));
673     cpi->norm_wiener_variance = AOMMAX(1, cpi->norm_wiener_variance);
674   }
675 
676   // Set the pointer to null since mbmi is only allocated inside this function.
677   xd->mi = NULL;
678   aom_free_frame_buffer(&cm->cur_frame->buf);
679   av1_dealloc_mb_wiener_var_pred_buf(&cpi->td);
680 }
681 
get_rate_guided_quantizer(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)682 static int get_rate_guided_quantizer(AV1_COMP *const cpi, BLOCK_SIZE bsize,
683                                      int mi_row, int mi_col) {
684   // Calculation uses 8x8.
685   const int mb_step = mi_size_wide[cpi->weber_bsize];
686   // Accumulate to 16x16
687   const int block_step = mi_size_wide[BLOCK_16X16];
688   double sb_rate_hific = 0.0;
689   double sb_rate_uniform = 0.0;
690   for (int row = mi_row; row < mi_row + mi_size_wide[bsize];
691        row += block_step) {
692     for (int col = mi_col; col < mi_col + mi_size_high[bsize];
693          col += block_step) {
694       sb_rate_hific +=
695           cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
696                                      (col / mb_step)];
697 
698       for (int r = 0; r < block_step; r += mb_step) {
699         for (int c = 0; c < block_step; c += mb_step) {
700           const int this_row = row + r;
701           const int this_col = col + c;
702           sb_rate_uniform +=
703               cpi->prep_rate_estimates[(this_row / mb_step) *
704                                            cpi->frame_info.mi_cols +
705                                        (this_col / mb_step)];
706         }
707       }
708     }
709   }
710   sb_rate_hific *= cpi->ext_rate_scale;
711 
712   const double weight = 1.0;
713   const double rate_diff =
714       weight * (sb_rate_hific - sb_rate_uniform) / sb_rate_uniform;
715   double scale = pow(2, rate_diff);
716 
717   scale = scale * scale;
718   double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
719   scale = 1.0 / AOMMIN(1.0 / scale, min_max_scale);
720 
721   AV1_COMMON *const cm = &cpi->common;
722   const int base_qindex = cm->quant_params.base_qindex;
723   int offset =
724       av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, scale);
725   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
726   const int max_offset = delta_q_info->delta_q_res * 10;
727   offset = AOMMIN(offset, max_offset - 1);
728   offset = AOMMAX(offset, -max_offset + 1);
729   int qindex = cm->quant_params.base_qindex + offset;
730   qindex = AOMMIN(qindex, MAXQ);
731   qindex = AOMMAX(qindex, MINQ);
732   if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
733 
734   return qindex;
735 }
736 
av1_get_sbq_perceptual_ai(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)737 int av1_get_sbq_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
738                               int mi_col) {
739   if (cpi->oxcf.enable_rate_guide_deltaq) {
740     return get_rate_guided_quantizer(cpi, bsize, mi_row, mi_col);
741   }
742 
743   AV1_COMMON *const cm = &cpi->common;
744   const int base_qindex = cm->quant_params.base_qindex;
745   int sb_wiener_var = get_var_perceptual_ai(cpi, bsize, mi_row, mi_col);
746   int offset = 0;
747   double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
748   double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
749   beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale);
750 
751   // Cap beta such that the delta q value is not much far away from the base q.
752   beta = AOMMIN(beta, 4);
753   beta = AOMMAX(beta, 0.25);
754   offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
755   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
756   offset = AOMMIN(offset, delta_q_info->delta_q_res * 20 - 1);
757   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 20 + 1);
758   int qindex = cm->quant_params.base_qindex + offset;
759   qindex = AOMMIN(qindex, MAXQ);
760   qindex = AOMMAX(qindex, MINQ);
761   if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
762 
763   return qindex;
764 }
765 
av1_init_mb_ur_var_buffer(AV1_COMP * cpi)766 void av1_init_mb_ur_var_buffer(AV1_COMP *cpi) {
767   AV1_COMMON *cm = &cpi->common;
768 
769   if (cpi->mb_delta_q) return;
770 
771   CHECK_MEM_ERROR(cm, cpi->mb_delta_q,
772                   aom_calloc(cpi->frame_info.mb_rows * cpi->frame_info.mb_cols,
773                              sizeof(*cpi->mb_delta_q)));
774 }
775 
776 #if CONFIG_TFLITE
model_predict(BLOCK_SIZE block_size,int num_cols,int num_rows,int bit_depth,uint8_t * y_buffer,int y_stride,float * predicts0,float * predicts1)777 static int model_predict(BLOCK_SIZE block_size, int num_cols, int num_rows,
778                          int bit_depth, uint8_t *y_buffer, int y_stride,
779                          float *predicts0, float *predicts1) {
780   // Create the model and interpreter options.
781   TfLiteModel *model =
782       TfLiteModelCreate(av1_deltaq4_model_file, av1_deltaq4_model_fsize);
783   if (model == NULL) return 1;
784 
785   TfLiteInterpreterOptions *options = TfLiteInterpreterOptionsCreate();
786   TfLiteInterpreterOptionsSetNumThreads(options, 2);
787   if (options == NULL) {
788     TfLiteModelDelete(model);
789     return 1;
790   }
791 
792   // Create the interpreter.
793   TfLiteInterpreter *interpreter = TfLiteInterpreterCreate(model, options);
794   if (interpreter == NULL) {
795     TfLiteInterpreterOptionsDelete(options);
796     TfLiteModelDelete(model);
797     return 1;
798   }
799 
800   // Allocate tensors and populate the input tensor data.
801   TfLiteInterpreterAllocateTensors(interpreter);
802   TfLiteTensor *input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
803   if (input_tensor == NULL) {
804     TfLiteInterpreterDelete(interpreter);
805     TfLiteInterpreterOptionsDelete(options);
806     TfLiteModelDelete(model);
807     return 1;
808   }
809 
810   size_t input_size = TfLiteTensorByteSize(input_tensor);
811   float *input_data = aom_calloc(input_size, 1);
812   if (input_data == NULL) {
813     TfLiteInterpreterDelete(interpreter);
814     TfLiteInterpreterOptionsDelete(options);
815     TfLiteModelDelete(model);
816     return 1;
817   }
818 
819   const int num_mi_w = mi_size_wide[block_size];
820   const int num_mi_h = mi_size_high[block_size];
821   for (int row = 0; row < num_rows; ++row) {
822     for (int col = 0; col < num_cols; ++col) {
823       const int row_offset = (row * num_mi_h) << 2;
824       const int col_offset = (col * num_mi_w) << 2;
825 
826       uint8_t *buf = y_buffer + row_offset * y_stride + col_offset;
827       int r = row_offset, pos = 0;
828       const float base = (float)((1 << bit_depth) - 1);
829       while (r < row_offset + (num_mi_h << 2)) {
830         for (int c = 0; c < (num_mi_w << 2); ++c) {
831           input_data[pos++] = bit_depth > 8
832                                   ? (float)*CONVERT_TO_SHORTPTR(buf + c) / base
833                                   : (float)*(buf + c) / base;
834         }
835         buf += y_stride;
836         ++r;
837       }
838       TfLiteTensorCopyFromBuffer(input_tensor, input_data, input_size);
839 
840       // Execute inference.
841       if (TfLiteInterpreterInvoke(interpreter) != kTfLiteOk) {
842         TfLiteInterpreterDelete(interpreter);
843         TfLiteInterpreterOptionsDelete(options);
844         TfLiteModelDelete(model);
845         return 1;
846       }
847 
848       // Extract the output tensor data.
849       const TfLiteTensor *output_tensor =
850           TfLiteInterpreterGetOutputTensor(interpreter, 0);
851       if (output_tensor == NULL) {
852         TfLiteInterpreterDelete(interpreter);
853         TfLiteInterpreterOptionsDelete(options);
854         TfLiteModelDelete(model);
855         return 1;
856       }
857 
858       size_t output_size = TfLiteTensorByteSize(output_tensor);
859       float output_data[2];
860 
861       TfLiteTensorCopyToBuffer(output_tensor, output_data, output_size);
862       predicts0[row * num_cols + col] = output_data[0];
863       predicts1[row * num_cols + col] = output_data[1];
864     }
865   }
866 
867   // Dispose of the model and interpreter objects.
868   TfLiteInterpreterDelete(interpreter);
869   TfLiteInterpreterOptionsDelete(options);
870   TfLiteModelDelete(model);
871   aom_free(input_data);
872   return 0;
873 }
874 
av1_set_mb_ur_variance(AV1_COMP * cpi)875 void av1_set_mb_ur_variance(AV1_COMP *cpi) {
876   const AV1_COMMON *cm = &cpi->common;
877   const CommonModeInfoParams *const mi_params = &cm->mi_params;
878   uint8_t *y_buffer = cpi->source->y_buffer;
879   const int y_stride = cpi->source->y_stride;
880   const int block_size = cpi->common.seq_params->sb_size;
881   const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
882 
883   const int num_mi_w = mi_size_wide[block_size];
884   const int num_mi_h = mi_size_high[block_size];
885   const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
886   const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
887 
888   // TODO(sdeng): fit a better model_1; disable it at this time.
889   float *mb_delta_q0, *mb_delta_q1, delta_q_avg0 = 0.0f;
890   CHECK_MEM_ERROR(cm, mb_delta_q0,
891                   aom_calloc(num_rows * num_cols, sizeof(float)));
892   CHECK_MEM_ERROR(cm, mb_delta_q1,
893                   aom_calloc(num_rows * num_cols, sizeof(float)));
894 
895   if (model_predict(block_size, num_cols, num_rows, bit_depth, y_buffer,
896                     y_stride, mb_delta_q0, mb_delta_q1)) {
897     aom_internal_error(cm->error, AOM_CODEC_ERROR,
898                        "Failed to call TFlite functions.");
899   }
900 
901   // Loop through each SB block.
902   for (int row = 0; row < num_rows; ++row) {
903     for (int col = 0; col < num_cols; ++col) {
904       const int index = row * num_cols + col;
905       delta_q_avg0 += mb_delta_q0[index];
906     }
907   }
908 
909   delta_q_avg0 /= (float)(num_rows * num_cols);
910 
911   float scaling_factor;
912   const float cq_level = (float)cpi->oxcf.rc_cfg.cq_level / (float)MAXQ;
913   if (cq_level < delta_q_avg0) {
914     scaling_factor = cq_level / delta_q_avg0;
915   } else {
916     scaling_factor = 1.0f - (cq_level - delta_q_avg0) / (1.0f - delta_q_avg0);
917   }
918 
919   for (int row = 0; row < num_rows; ++row) {
920     for (int col = 0; col < num_cols; ++col) {
921       const int index = row * num_cols + col;
922       cpi->mb_delta_q[index] =
923           RINT((float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ *
924                scaling_factor * (mb_delta_q0[index] - delta_q_avg0));
925     }
926   }
927 
928   aom_free(mb_delta_q0);
929   aom_free(mb_delta_q1);
930 }
931 #else  // !CONFIG_TFLITE
av1_set_mb_ur_variance(AV1_COMP * cpi)932 void av1_set_mb_ur_variance(AV1_COMP *cpi) {
933   const AV1_COMMON *cm = &cpi->common;
934   const CommonModeInfoParams *const mi_params = &cm->mi_params;
935   const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
936   uint8_t *y_buffer = cpi->source->y_buffer;
937   const int y_stride = cpi->source->y_stride;
938   const int block_size = cpi->common.seq_params->sb_size;
939 
940   const int num_mi_w = mi_size_wide[block_size];
941   const int num_mi_h = mi_size_high[block_size];
942   const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
943   const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
944 
945   int *mb_delta_q[2];
946   CHECK_MEM_ERROR(cm, mb_delta_q[0],
947                   aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[0])));
948   CHECK_MEM_ERROR(cm, mb_delta_q[1],
949                   aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[1])));
950 
951   // Approximates the model change between current version (Spet 2021) and the
952   // baseline (July 2021).
953   const double model_change[] = { 3.0, 3.0 };
954   // The following parameters are fitted from user labeled data.
955   const double a[] = { -24.50 * 4.0, -17.20 * 4.0 };
956   const double b[] = { 0.004898, 0.003093 };
957   const double c[] = { (29.932 + model_change[0]) * 4.0,
958                        (42.100 + model_change[1]) * 4.0 };
959   int delta_q_avg[2] = { 0, 0 };
960   // Loop through each SB block.
961   for (int row = 0; row < num_rows; ++row) {
962     for (int col = 0; col < num_cols; ++col) {
963       double var = 0.0, num_of_var = 0.0;
964       const int index = row * num_cols + col;
965 
966       // Loop through each 8x8 block.
967       for (int mi_row = row * num_mi_h;
968            mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h;
969            mi_row += 2) {
970         for (int mi_col = col * num_mi_w;
971              mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w;
972              mi_col += 2) {
973           struct buf_2d buf;
974           const int row_offset_y = mi_row << 2;
975           const int col_offset_y = mi_col << 2;
976 
977           buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y;
978           buf.stride = y_stride;
979 
980           unsigned int block_variance;
981           block_variance = av1_get_perpixel_variance_facade(
982               cpi, xd, &buf, BLOCK_8X8, AOM_PLANE_Y);
983 
984           block_variance = AOMMAX(block_variance, 1);
985           var += log((double)block_variance);
986           num_of_var += 1.0;
987         }
988       }
989       var = exp(var / num_of_var);
990       mb_delta_q[0][index] = RINT(a[0] * exp(-b[0] * var) + c[0]);
991       mb_delta_q[1][index] = RINT(a[1] * exp(-b[1] * var) + c[1]);
992       delta_q_avg[0] += mb_delta_q[0][index];
993       delta_q_avg[1] += mb_delta_q[1][index];
994     }
995   }
996 
997   delta_q_avg[0] = RINT((double)delta_q_avg[0] / (num_rows * num_cols));
998   delta_q_avg[1] = RINT((double)delta_q_avg[1] / (num_rows * num_cols));
999 
1000   int model_idx;
1001   double scaling_factor;
1002   const int cq_level = cpi->oxcf.rc_cfg.cq_level;
1003   if (cq_level < delta_q_avg[0]) {
1004     model_idx = 0;
1005     scaling_factor = (double)cq_level / delta_q_avg[0];
1006   } else if (cq_level < delta_q_avg[1]) {
1007     model_idx = 2;
1008     scaling_factor =
1009         (double)(cq_level - delta_q_avg[0]) / (delta_q_avg[1] - delta_q_avg[0]);
1010   } else {
1011     model_idx = 1;
1012     scaling_factor = (double)(MAXQ - cq_level) / (MAXQ - delta_q_avg[1]);
1013   }
1014 
1015   const double new_delta_q_avg =
1016       delta_q_avg[0] + scaling_factor * (delta_q_avg[1] - delta_q_avg[0]);
1017   for (int row = 0; row < num_rows; ++row) {
1018     for (int col = 0; col < num_cols; ++col) {
1019       const int index = row * num_cols + col;
1020       if (model_idx == 2) {
1021         const double delta_q =
1022             mb_delta_q[0][index] +
1023             scaling_factor * (mb_delta_q[1][index] - mb_delta_q[0][index]);
1024         cpi->mb_delta_q[index] = RINT((double)cpi->oxcf.q_cfg.deltaq_strength /
1025                                       100.0 * (delta_q - new_delta_q_avg));
1026       } else {
1027         cpi->mb_delta_q[index] = RINT(
1028             (double)cpi->oxcf.q_cfg.deltaq_strength / 100.0 * scaling_factor *
1029             (mb_delta_q[model_idx][index] - delta_q_avg[model_idx]));
1030       }
1031     }
1032   }
1033 
1034   aom_free(mb_delta_q[0]);
1035   aom_free(mb_delta_q[1]);
1036 }
1037 #endif
1038 
av1_get_sbq_user_rating_based(AV1_COMP * const cpi,int mi_row,int mi_col)1039 int av1_get_sbq_user_rating_based(AV1_COMP *const cpi, int mi_row, int mi_col) {
1040   const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
1041   const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
1042   AV1_COMMON *const cm = &cpi->common;
1043   const int base_qindex = cm->quant_params.base_qindex;
1044   if (base_qindex == MINQ || base_qindex == MAXQ) return base_qindex;
1045 
1046   const int num_mi_w = mi_size_wide[bsize];
1047   const int num_mi_h = mi_size_high[bsize];
1048   const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
1049   const int index = (mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w);
1050   const int delta_q = cpi->mb_delta_q[index];
1051 
1052   int qindex = base_qindex + delta_q;
1053   qindex = AOMMIN(qindex, MAXQ);
1054   qindex = AOMMAX(qindex, MINQ + 1);
1055 
1056   return qindex;
1057 }
1058