1 // Copyright 2023 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for palette analysis.
11 //
12 // Author: Vincent Rabaud ([email protected])
13
14 #include "src/utils/palette.h"
15
16 #include <assert.h>
17 #include <stdlib.h>
18
19 #include "src/dsp/lossless_common.h"
20 #include "src/utils/color_cache_utils.h"
21 #include "src/utils/utils.h"
22 #include "src/webp/encode.h"
23 #include "src/webp/format_constants.h"
24
25 // -----------------------------------------------------------------------------
26
27 // Palette reordering for smaller sum of deltas (and for smaller storage).
28
PaletteCompareColorsForQsort(const void * p1,const void * p2)29 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
30 const uint32_t a = WebPMemToUint32((uint8_t*)p1);
31 const uint32_t b = WebPMemToUint32((uint8_t*)p2);
32 assert(a != b);
33 return (a < b) ? -1 : 1;
34 }
35
PaletteComponentDistance(uint32_t v)36 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
37 return (v <= 128) ? v : (256 - v);
38 }
39
40 // Computes a value that is related to the entropy created by the
41 // palette entry diff.
42 //
43 // Note that the last & 0xff is a no-operation in the next statement, but
44 // removed by most compilers and is here only for regularity of the code.
PaletteColorDistance(uint32_t col1,uint32_t col2)45 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
46 const uint32_t diff = VP8LSubPixels(col1, col2);
47 const int kMoreWeightForRGBThanForAlpha = 9;
48 uint32_t score;
49 score = PaletteComponentDistance((diff >> 0) & 0xff);
50 score += PaletteComponentDistance((diff >> 8) & 0xff);
51 score += PaletteComponentDistance((diff >> 16) & 0xff);
52 score *= kMoreWeightForRGBThanForAlpha;
53 score += PaletteComponentDistance((diff >> 24) & 0xff);
54 return score;
55 }
56
SwapColor(uint32_t * const col1,uint32_t * const col2)57 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
58 const uint32_t tmp = *col1;
59 *col1 = *col2;
60 *col2 = tmp;
61 }
62
SearchColorNoIdx(const uint32_t sorted[],uint32_t color,int num_colors)63 int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, int num_colors) {
64 int low = 0, hi = num_colors;
65 if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
66 while (1) {
67 const int mid = (low + hi) >> 1;
68 if (sorted[mid] == color) {
69 return mid;
70 } else if (sorted[mid] < color) {
71 low = mid;
72 } else {
73 hi = mid;
74 }
75 }
76 assert(0);
77 return 0;
78 }
79
PrepareMapToPalette(const uint32_t palette[],uint32_t num_colors,uint32_t sorted[],uint32_t idx_map[])80 void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
81 uint32_t sorted[], uint32_t idx_map[]) {
82 uint32_t i;
83 memcpy(sorted, palette, num_colors * sizeof(*sorted));
84 qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
85 for (i = 0; i < num_colors; ++i) {
86 idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
87 }
88 }
89
90 //------------------------------------------------------------------------------
91
92 #define COLOR_HASH_SIZE (MAX_PALETTE_SIZE * 4)
93 #define COLOR_HASH_RIGHT_SHIFT 22 // 32 - log2(COLOR_HASH_SIZE).
94
GetColorPalette(const WebPPicture * const pic,uint32_t * const palette)95 int GetColorPalette(const WebPPicture* const pic, uint32_t* const palette) {
96 int i;
97 int x, y;
98 int num_colors = 0;
99 uint8_t in_use[COLOR_HASH_SIZE] = {0};
100 uint32_t colors[COLOR_HASH_SIZE] = {0};
101 const uint32_t* argb = pic->argb;
102 const int width = pic->width;
103 const int height = pic->height;
104 uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0]
105 assert(pic != NULL);
106 assert(pic->use_argb);
107
108 for (y = 0; y < height; ++y) {
109 for (x = 0; x < width; ++x) {
110 int key;
111 if (argb[x] == last_pix) {
112 continue;
113 }
114 last_pix = argb[x];
115 key = VP8LHashPix(last_pix, COLOR_HASH_RIGHT_SHIFT);
116 while (1) {
117 if (!in_use[key]) {
118 colors[key] = last_pix;
119 in_use[key] = 1;
120 ++num_colors;
121 if (num_colors > MAX_PALETTE_SIZE) {
122 return MAX_PALETTE_SIZE + 1; // Exact count not needed.
123 }
124 break;
125 } else if (colors[key] == last_pix) {
126 break; // The color is already there.
127 } else {
128 // Some other color sits here, so do linear conflict resolution.
129 ++key;
130 key &= (COLOR_HASH_SIZE - 1); // Key mask.
131 }
132 }
133 }
134 argb += pic->argb_stride;
135 }
136
137 if (palette != NULL) { // Fill the colors into palette.
138 num_colors = 0;
139 for (i = 0; i < COLOR_HASH_SIZE; ++i) {
140 if (in_use[i]) {
141 palette[num_colors] = colors[i];
142 ++num_colors;
143 }
144 }
145 qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
146 }
147 return num_colors;
148 }
149
150 #undef COLOR_HASH_SIZE
151 #undef COLOR_HASH_RIGHT_SHIFT
152
153 // -----------------------------------------------------------------------------
154
155 // The palette has been sorted by alpha. This function checks if the other
156 // components of the palette have a monotonic development with regards to
157 // position in the palette. If all have monotonic development, there is
158 // no benefit to re-organize them greedily. A monotonic development
159 // would be spotted in green-only situations (like lossy alpha) or gray-scale
160 // images.
PaletteHasNonMonotonousDeltas(const uint32_t * const palette,int num_colors)161 static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
162 int num_colors) {
163 uint32_t predict = 0x000000;
164 int i;
165 uint8_t sign_found = 0x00;
166 for (i = 0; i < num_colors; ++i) {
167 const uint32_t diff = VP8LSubPixels(palette[i], predict);
168 const uint8_t rd = (diff >> 16) & 0xff;
169 const uint8_t gd = (diff >> 8) & 0xff;
170 const uint8_t bd = (diff >> 0) & 0xff;
171 if (rd != 0x00) {
172 sign_found |= (rd < 0x80) ? 1 : 2;
173 }
174 if (gd != 0x00) {
175 sign_found |= (gd < 0x80) ? 8 : 16;
176 }
177 if (bd != 0x00) {
178 sign_found |= (bd < 0x80) ? 64 : 128;
179 }
180 predict = palette[i];
181 }
182 return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
183 }
184
PaletteSortMinimizeDeltas(const uint32_t * const palette_sorted,int num_colors,uint32_t * const palette)185 static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
186 int num_colors, uint32_t* const palette) {
187 uint32_t predict = 0x00000000;
188 int i, k;
189 memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
190 if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
191 // Find greedily always the closest color of the predicted color to minimize
192 // deltas in the palette. This reduces storage needs since the
193 // palette is stored with delta encoding.
194 for (i = 0; i < num_colors; ++i) {
195 int best_ix = i;
196 uint32_t best_score = ~0U;
197 for (k = i; k < num_colors; ++k) {
198 const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
199 if (best_score > cur_score) {
200 best_score = cur_score;
201 best_ix = k;
202 }
203 }
204 SwapColor(&palette[best_ix], &palette[i]);
205 predict = palette[i];
206 }
207 }
208
209 // -----------------------------------------------------------------------------
210 // Modified Zeng method from "A Survey on Palette Reordering
211 // Methods for Improving the Compression of Color-Indexed Images" by Armando J.
212 // Pinho and Antonio J. R. Neves.
213
214 // Finds the biggest cooccurrence in the matrix.
CoOccurrenceFindMax(const uint32_t * const cooccurrence,uint32_t num_colors,uint8_t * const c1,uint8_t * const c2)215 static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
216 uint32_t num_colors, uint8_t* const c1,
217 uint8_t* const c2) {
218 // Find the index that is most frequently located adjacent to other
219 // (different) indexes.
220 uint32_t best_sum = 0u;
221 uint32_t i, j, best_cooccurrence;
222 *c1 = 0u;
223 for (i = 0; i < num_colors; ++i) {
224 uint32_t sum = 0;
225 for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
226 if (sum > best_sum) {
227 best_sum = sum;
228 *c1 = i;
229 }
230 }
231 // Find the index that is most frequently found adjacent to *c1.
232 *c2 = 0u;
233 best_cooccurrence = 0u;
234 for (i = 0; i < num_colors; ++i) {
235 if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
236 best_cooccurrence = cooccurrence[*c1 * num_colors + i];
237 *c2 = i;
238 }
239 }
240 assert(*c1 != *c2);
241 }
242
243 // Builds the cooccurrence matrix
CoOccurrenceBuild(const WebPPicture * const pic,const uint32_t * const palette,uint32_t num_colors,uint32_t * cooccurrence)244 static int CoOccurrenceBuild(const WebPPicture* const pic,
245 const uint32_t* const palette, uint32_t num_colors,
246 uint32_t* cooccurrence) {
247 uint32_t *lines, *line_top, *line_current, *line_tmp;
248 int x, y;
249 const uint32_t* src = pic->argb;
250 uint32_t prev_pix = ~src[0];
251 uint32_t prev_idx = 0u;
252 uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
253 uint32_t palette_sorted[MAX_PALETTE_SIZE];
254 lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
255 if (lines == NULL) {
256 return 0;
257 }
258 line_top = &lines[0];
259 line_current = &lines[pic->width];
260 PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
261 for (y = 0; y < pic->height; ++y) {
262 for (x = 0; x < pic->width; ++x) {
263 const uint32_t pix = src[x];
264 if (pix != prev_pix) {
265 prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
266 prev_pix = pix;
267 }
268 line_current[x] = prev_idx;
269 // 4-connectivity is what works best as mentioned in "On the relation
270 // between Memon's and the modified Zeng's palette reordering methods".
271 if (x > 0 && prev_idx != line_current[x - 1]) {
272 const uint32_t left_idx = line_current[x - 1];
273 ++cooccurrence[prev_idx * num_colors + left_idx];
274 ++cooccurrence[left_idx * num_colors + prev_idx];
275 }
276 if (y > 0 && prev_idx != line_top[x]) {
277 const uint32_t top_idx = line_top[x];
278 ++cooccurrence[prev_idx * num_colors + top_idx];
279 ++cooccurrence[top_idx * num_colors + prev_idx];
280 }
281 }
282 line_tmp = line_top;
283 line_top = line_current;
284 line_current = line_tmp;
285 src += pic->argb_stride;
286 }
287 WebPSafeFree(lines);
288 return 1;
289 }
290
291 struct Sum {
292 uint8_t index;
293 uint32_t sum;
294 };
295
PaletteSortModifiedZeng(const WebPPicture * const pic,const uint32_t * const palette_in,uint32_t num_colors,uint32_t * const palette)296 static int PaletteSortModifiedZeng(const WebPPicture* const pic,
297 const uint32_t* const palette_in,
298 uint32_t num_colors,
299 uint32_t* const palette) {
300 uint32_t i, j, ind;
301 uint8_t remapping[MAX_PALETTE_SIZE];
302 uint32_t* cooccurrence;
303 struct Sum sums[MAX_PALETTE_SIZE];
304 uint32_t first, last;
305 uint32_t num_sums;
306 // TODO(vrabaud) check whether one color images should use palette or not.
307 if (num_colors <= 1) return 1;
308 // Build the co-occurrence matrix.
309 cooccurrence =
310 (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
311 if (cooccurrence == NULL) {
312 return 0;
313 }
314 if (!CoOccurrenceBuild(pic, palette_in, num_colors, cooccurrence)) {
315 WebPSafeFree(cooccurrence);
316 return 0;
317 }
318
319 // Initialize the mapping list with the two best indices.
320 CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
321
322 // We need to append and prepend to the list of remapping. To this end, we
323 // actually define the next start/end of the list as indices in a vector (with
324 // a wrap around when the end is reached).
325 first = 0;
326 last = 1;
327 num_sums = num_colors - 2; // -2 because we know the first two values
328 if (num_sums > 0) {
329 // Initialize the sums with the first two remappings and find the best one
330 struct Sum* best_sum = &sums[0];
331 best_sum->index = 0u;
332 best_sum->sum = 0u;
333 for (i = 0, j = 0; i < num_colors; ++i) {
334 if (i == remapping[0] || i == remapping[1]) continue;
335 sums[j].index = i;
336 sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
337 cooccurrence[i * num_colors + remapping[1]];
338 if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
339 ++j;
340 }
341
342 while (num_sums > 0) {
343 const uint8_t best_index = best_sum->index;
344 // Compute delta to know if we need to prepend or append the best index.
345 int32_t delta = 0;
346 const int32_t n = num_colors - num_sums;
347 for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
348 const uint16_t l_j = remapping[(ind + j) % num_colors];
349 delta += (n - 1 - 2 * (int32_t)j) *
350 (int32_t)cooccurrence[best_index * num_colors + l_j];
351 }
352 if (delta > 0) {
353 first = (first == 0) ? num_colors - 1 : first - 1;
354 remapping[first] = best_index;
355 } else {
356 ++last;
357 remapping[last] = best_index;
358 }
359 // Remove best_sum from sums.
360 *best_sum = sums[num_sums - 1];
361 --num_sums;
362 // Update all the sums and find the best one.
363 best_sum = &sums[0];
364 for (i = 0; i < num_sums; ++i) {
365 sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
366 if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
367 }
368 }
369 }
370 assert((last + 1) % num_colors == first);
371 WebPSafeFree(cooccurrence);
372
373 // Re-map the palette.
374 for (i = 0; i < num_colors; ++i) {
375 palette[i] = palette_in[remapping[(first + i) % num_colors]];
376 }
377 return 1;
378 }
379
380 // -----------------------------------------------------------------------------
381
PaletteSort(PaletteSorting method,const struct WebPPicture * const pic,const uint32_t * const palette_sorted,uint32_t num_colors,uint32_t * const palette)382 int PaletteSort(PaletteSorting method, const struct WebPPicture* const pic,
383 const uint32_t* const palette_sorted, uint32_t num_colors,
384 uint32_t* const palette) {
385 switch (method) {
386 case kSortedDefault:
387 // Nothing to do, we have already sorted the palette.
388 memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
389 return 1;
390 case kMinimizeDelta:
391 PaletteSortMinimizeDeltas(palette_sorted, num_colors, palette);
392 return 1;
393 case kModifiedZeng:
394 return PaletteSortModifiedZeng(pic, palette_sorted, num_colors, palette);
395 case kUnusedPalette:
396 case kPaletteSortingNum:
397 break;
398 }
399
400 assert(0);
401 return 0;
402 }
403