1 /*
2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/utils.h>
20 #include <plat/common/platform.h>
21
22 #include "psci_private.h"
23
24 /*
25 * SPD power management operations, expected to be supplied by the registered
26 * SPD on successful SP initialization
27 */
28 const spd_pm_ops_t *psci_spd_pm;
29
30 /*
31 * PSCI requested local power state map. This array is used to store the local
32 * power states requested by a CPU for power levels from level 1 to
33 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
34 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
35 * CPU are the same.
36 *
37 * During state coordination, the platform is passed an array containing the
38 * local states requested for a particular non cpu power domain by each cpu
39 * within the domain.
40 *
41 * TODO: Dense packing of the requested states will cause cache thrashing
42 * when multiple power domains write to it. If we allocate the requested
43 * states at each power level in a cache-line aligned per-domain memory,
44 * the cache thrashing can be avoided.
45 */
46 static plat_local_state_t
47 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
48
49 unsigned int psci_plat_core_count;
50
51 /*******************************************************************************
52 * Arrays that hold the platform's power domain tree information for state
53 * management of power domains.
54 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
55 * which is an ancestor of a CPU power domain.
56 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
57 ******************************************************************************/
58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
59 #if USE_COHERENT_MEM
60 __section(".tzfw_coherent_mem")
61 #endif
62 ;
63
64 /* Lock for PSCI state coordination */
65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
66
67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
68
69 /*******************************************************************************
70 * Pointer to functions exported by the platform to complete power mgmt. ops
71 ******************************************************************************/
72 const plat_psci_ops_t *psci_plat_pm_ops;
73
74 /******************************************************************************
75 * Check that the maximum power level supported by the platform makes sense
76 *****************************************************************************/
77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
78 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
79 assert_platform_max_pwrlvl_check);
80
81 #if PSCI_OS_INIT_MODE
82 /*******************************************************************************
83 * The power state coordination mode used in CPU_SUSPEND.
84 * Defaults to platform-coordinated mode.
85 ******************************************************************************/
86 suspend_mode_t psci_suspend_mode = PLAT_COORD;
87 #endif
88
89 /*
90 * The plat_local_state used by the platform is one of these types: RUN,
91 * RETENTION and OFF. The platform can define further sub-states for each type
92 * apart from RUN. This categorization is done to verify the sanity of the
93 * psci_power_state passed by the platform and to print debug information. The
94 * categorization is done on the basis of the following conditions:
95 *
96 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
97 *
98 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
99 * STATE_TYPE_RETN.
100 *
101 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
102 * STATE_TYPE_OFF.
103 */
104 typedef enum plat_local_state_type {
105 STATE_TYPE_RUN = 0,
106 STATE_TYPE_RETN,
107 STATE_TYPE_OFF
108 } plat_local_state_type_t;
109
110 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
112 {
113 if (state != 0U) {
114 if (state > PLAT_MAX_RET_STATE) {
115 return STATE_TYPE_OFF;
116 } else {
117 return STATE_TYPE_RETN;
118 }
119 } else {
120 return STATE_TYPE_RUN;
121 }
122 }
123
124 /******************************************************************************
125 * Check that the maximum retention level supported by the platform is less
126 * than the maximum off level.
127 *****************************************************************************/
128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
129 assert_platform_max_off_and_retn_state_check);
130
131 /******************************************************************************
132 * This function ensures that the power state parameter in a CPU_SUSPEND request
133 * is valid. If so, it returns the requested states for each power level.
134 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)135 int psci_validate_power_state(unsigned int power_state,
136 psci_power_state_t *state_info)
137 {
138 /* Check SBZ bits in power state are zero */
139 if (psci_check_power_state(power_state) != 0U)
140 return PSCI_E_INVALID_PARAMS;
141
142 assert(psci_plat_pm_ops->validate_power_state != NULL);
143
144 /* Validate the power_state using platform pm_ops */
145 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
146 }
147
148 /******************************************************************************
149 * This function retrieves the `psci_power_state_t` for system suspend from
150 * the platform.
151 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
153 {
154 /*
155 * Assert that the required pm_ops hook is implemented to ensure that
156 * the capability detected during psci_setup() is valid.
157 */
158 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
159
160 /*
161 * Query the platform for the power_state required for system suspend
162 */
163 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
164 }
165
166 #if PSCI_OS_INIT_MODE
167 /*******************************************************************************
168 * This function verifies that all the other cores at the 'end_pwrlvl' have been
169 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
170 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
171 * otherwise.
172 ******************************************************************************/
psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
174 {
175 unsigned int my_idx, lvl;
176 unsigned int parent_idx = 0;
177 unsigned int cpu_start_idx, ncpus, cpu_idx;
178 plat_local_state_t local_state;
179
180 if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
181 return true;
182 }
183
184 my_idx = plat_my_core_pos();
185
186 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
187 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
188 }
189
190 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
191 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
192
193 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
194 cpu_idx++) {
195 local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
196 if (cpu_idx == my_idx) {
197 assert(is_local_state_run(local_state) != 0);
198 continue;
199 }
200
201 if (is_local_state_run(local_state) != 0) {
202 return false;
203 }
204 }
205
206 return true;
207 }
208 #endif
209
210 /*******************************************************************************
211 * This function verifies that all the other cores in the system have been
212 * turned OFF and the current CPU is the last running CPU in the system.
213 * Returns true, if the current CPU is the last ON CPU or false otherwise.
214 ******************************************************************************/
psci_is_last_on_cpu(void)215 bool psci_is_last_on_cpu(void)
216 {
217 unsigned int cpu_idx, my_idx = plat_my_core_pos();
218
219 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
220 if (cpu_idx == my_idx) {
221 assert(psci_get_aff_info_state() == AFF_STATE_ON);
222 continue;
223 }
224
225 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
226 VERBOSE("core=%u other than current core=%u %s\n",
227 cpu_idx, my_idx, "running in the system");
228 return false;
229 }
230 }
231
232 return true;
233 }
234
235 /*******************************************************************************
236 * This function verifies that all cores in the system have been turned ON.
237 * Returns true, if all CPUs are ON or false otherwise.
238 ******************************************************************************/
psci_are_all_cpus_on(void)239 static bool psci_are_all_cpus_on(void)
240 {
241 unsigned int cpu_idx;
242
243 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
244 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
245 return false;
246 }
247 }
248
249 return true;
250 }
251
252 /*******************************************************************************
253 * Routine to return the maximum power level to traverse to after a cpu has
254 * been physically powered up. It is expected to be called immediately after
255 * reset from assembler code.
256 ******************************************************************************/
get_power_on_target_pwrlvl(void)257 static unsigned int get_power_on_target_pwrlvl(void)
258 {
259 unsigned int pwrlvl;
260
261 /*
262 * Assume that this cpu was suspended and retrieve its target power
263 * level. If it is invalid then it could only have been turned off
264 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
265 * cpu can be turned off to.
266 */
267 pwrlvl = psci_get_suspend_pwrlvl();
268 if (pwrlvl == PSCI_INVALID_PWR_LVL)
269 pwrlvl = PLAT_MAX_PWR_LVL;
270 assert(pwrlvl < PSCI_INVALID_PWR_LVL);
271 return pwrlvl;
272 }
273
274 /******************************************************************************
275 * Helper function to update the requested local power state array. This array
276 * does not store the requested state for the CPU power level. Hence an
277 * assertion is added to prevent us from accessing the CPU power level.
278 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)279 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
280 unsigned int cpu_idx,
281 plat_local_state_t req_pwr_state)
282 {
283 assert(pwrlvl > PSCI_CPU_PWR_LVL);
284 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
285 (cpu_idx < psci_plat_core_count)) {
286 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
287 }
288 }
289
290 /******************************************************************************
291 * This function initializes the psci_req_local_pwr_states.
292 *****************************************************************************/
psci_init_req_local_pwr_states(void)293 void __init psci_init_req_local_pwr_states(void)
294 {
295 /* Initialize the requested state of all non CPU power domains as OFF */
296 unsigned int pwrlvl;
297 unsigned int core;
298
299 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
300 for (core = 0; core < psci_plat_core_count; core++) {
301 psci_req_local_pwr_states[pwrlvl][core] =
302 PLAT_MAX_OFF_STATE;
303 }
304 }
305 }
306
307 /******************************************************************************
308 * Helper function to return a reference to an array containing the local power
309 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
310 * array will be the number of cpu power domains of which this power domain is
311 * an ancestor. These requested states will be used to determine a suitable
312 * target state for this power domain during psci state coordination. An
313 * assertion is added to prevent us from accessing the CPU power level.
314 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)315 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
316 unsigned int cpu_idx)
317 {
318 assert(pwrlvl > PSCI_CPU_PWR_LVL);
319
320 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
321 (cpu_idx < psci_plat_core_count)) {
322 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
323 } else
324 return NULL;
325 }
326
327 #if PSCI_OS_INIT_MODE
328 /******************************************************************************
329 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
330 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
331 * local power states (state_info).
332 *****************************************************************************/
psci_update_req_local_pwr_states(unsigned int end_pwrlvl,unsigned int cpu_idx,psci_power_state_t * state_info,plat_local_state_t * prev)333 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
334 unsigned int cpu_idx,
335 psci_power_state_t *state_info,
336 plat_local_state_t *prev)
337 {
338 unsigned int lvl;
339 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
340 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
341 #else
342 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
343 #endif
344 plat_local_state_t req_state;
345
346 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
347 /* Save the previous requested local power state */
348 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
349
350 /* Update the new requested local power state */
351 if (lvl <= end_pwrlvl) {
352 req_state = state_info->pwr_domain_state[lvl];
353 } else {
354 req_state = state_info->pwr_domain_state[end_pwrlvl];
355 }
356 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
357 }
358 }
359
360 /******************************************************************************
361 * Helper function to restore the previously saved requested local power states
362 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
363 *****************************************************************************/
psci_restore_req_local_pwr_states(unsigned int cpu_idx,plat_local_state_t * prev)364 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
365 plat_local_state_t *prev)
366 {
367 unsigned int lvl;
368 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
369 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
370 #else
371 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
372 #endif
373
374 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
375 /* Restore the previous requested local power state */
376 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
377 }
378 }
379 #endif
380
381 /*
382 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
383 * memory.
384 *
385 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
386 * it's accessed by both cached and non-cached participants. To serve the common
387 * minimum, perform a cache flush before read and after write so that non-cached
388 * participants operate on latest data in main memory.
389 *
390 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
391 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
392 * In both cases, no cache operations are required.
393 */
394
395 /*
396 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
397 * after any required cache maintenance operation.
398 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)399 static plat_local_state_t get_non_cpu_pd_node_local_state(
400 unsigned int parent_idx)
401 {
402 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
403 flush_dcache_range(
404 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
405 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
406 #endif
407 return psci_non_cpu_pd_nodes[parent_idx].local_state;
408 }
409
410 /*
411 * Update local state of non-CPU power domain node from a cached CPU; perform
412 * any required cache maintenance operation afterwards.
413 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)414 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
415 plat_local_state_t state)
416 {
417 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
418 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
419 flush_dcache_range(
420 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
421 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
422 #endif
423 }
424
425 /******************************************************************************
426 * Helper function to return the current local power state of each power domain
427 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
428 * function will be called after a cpu is powered on to find the local state
429 * each power domain has emerged from.
430 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)431 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
432 psci_power_state_t *target_state)
433 {
434 unsigned int parent_idx, lvl;
435 plat_local_state_t *pd_state = target_state->pwr_domain_state;
436
437 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
438 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
439
440 /* Copy the local power state from node to state_info */
441 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
442 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
443 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
444 }
445
446 /* Set the the higher levels to RUN */
447 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
448 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
449 }
450
451 /******************************************************************************
452 * Helper function to set the target local power state that each power domain
453 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
454 * enter. This function will be called after coordination of requested power
455 * states has been done for each power level.
456 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)457 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
458 const psci_power_state_t *target_state)
459 {
460 unsigned int parent_idx, lvl;
461 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
462
463 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
464
465 /*
466 * Need to flush as local_state might be accessed with Data Cache
467 * disabled during power on
468 */
469 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
470
471 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
472
473 /* Copy the local_state from state_info */
474 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
475 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
476 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
477 }
478 }
479
480 /*******************************************************************************
481 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
482 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)483 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
484 unsigned int end_lvl,
485 unsigned int *node_index)
486 {
487 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
488 unsigned int i;
489 unsigned int *node = node_index;
490
491 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
492 *node = parent_node;
493 node++;
494 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
495 }
496 }
497
498 /******************************************************************************
499 * This function is invoked post CPU power up and initialization. It sets the
500 * affinity info state, target power state and requested power state for the
501 * current CPU and all its ancestor power domains to RUN.
502 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)503 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
504 {
505 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
506 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
507
508 /* Reset the local_state to RUN for the non cpu power domains. */
509 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
510 set_non_cpu_pd_node_local_state(parent_idx,
511 PSCI_LOCAL_STATE_RUN);
512 psci_set_req_local_pwr_state(lvl,
513 cpu_idx,
514 PSCI_LOCAL_STATE_RUN);
515 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
516 }
517
518 /* Set the affinity info state to ON */
519 psci_set_aff_info_state(AFF_STATE_ON);
520
521 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
522 psci_flush_cpu_data(psci_svc_cpu_data);
523 }
524
525 /******************************************************************************
526 * This function is used in platform-coordinated mode.
527 *
528 * This function is passed the local power states requested for each power
529 * domain (state_info) between the current CPU domain and its ancestors until
530 * the target power level (end_pwrlvl). It updates the array of requested power
531 * states with this information.
532 *
533 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
534 * retrieves the states requested by all the cpus of which the power domain at
535 * that level is an ancestor. It passes this information to the platform to
536 * coordinate and return the target power state. If the target state for a level
537 * is RUN then subsequent levels are not considered. At the CPU level, state
538 * coordination is not required. Hence, the requested and the target states are
539 * the same.
540 *
541 * The 'state_info' is updated with the target state for each level between the
542 * CPU and the 'end_pwrlvl' and returned to the caller.
543 *
544 * This function will only be invoked with data cache enabled and while
545 * powering down a core.
546 *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)547 void psci_do_state_coordination(unsigned int end_pwrlvl,
548 psci_power_state_t *state_info)
549 {
550 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
551 unsigned int start_idx;
552 unsigned int ncpus;
553 plat_local_state_t target_state, *req_states;
554
555 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
556 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
557
558 /* For level 0, the requested state will be equivalent
559 to target state */
560 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
561
562 /* First update the requested power state */
563 psci_set_req_local_pwr_state(lvl, cpu_idx,
564 state_info->pwr_domain_state[lvl]);
565
566 /* Get the requested power states for this power level */
567 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
568 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
569
570 /*
571 * Let the platform coordinate amongst the requested states at
572 * this power level and return the target local power state.
573 */
574 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
575 target_state = plat_get_target_pwr_state(lvl,
576 req_states,
577 ncpus);
578
579 state_info->pwr_domain_state[lvl] = target_state;
580
581 /* Break early if the negotiated target power state is RUN */
582 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
583 break;
584
585 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
586 }
587
588 /*
589 * This is for cases when we break out of the above loop early because
590 * the target power state is RUN at a power level < end_pwlvl.
591 * We update the requested power state from state_info and then
592 * set the target state as RUN.
593 */
594 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
595 psci_set_req_local_pwr_state(lvl, cpu_idx,
596 state_info->pwr_domain_state[lvl]);
597 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
598
599 }
600 }
601
602 #if PSCI_OS_INIT_MODE
603 /******************************************************************************
604 * This function is used in OS-initiated mode.
605 *
606 * This function is passed the local power states requested for each power
607 * domain (state_info) between the current CPU domain and its ancestors until
608 * the target power level (end_pwrlvl), and ensures the requested power states
609 * are valid. It updates the array of requested power states with this
610 * information.
611 *
612 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
613 * retrieves the states requested by all the cpus of which the power domain at
614 * that level is an ancestor. It passes this information to the platform to
615 * coordinate and return the target power state. If the requested state does
616 * not match the target state, the request is denied.
617 *
618 * The 'state_info' is not modified.
619 *
620 * This function will only be invoked with data cache enabled and while
621 * powering down a core.
622 *****************************************************************************/
psci_validate_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)623 int psci_validate_state_coordination(unsigned int end_pwrlvl,
624 psci_power_state_t *state_info)
625 {
626 int rc = PSCI_E_SUCCESS;
627 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
628 unsigned int start_idx;
629 unsigned int ncpus;
630 plat_local_state_t target_state, *req_states;
631 plat_local_state_t prev[PLAT_MAX_PWR_LVL];
632
633 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
634 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
635
636 /*
637 * Save a copy of the previous requested local power states and update
638 * the new requested local power states.
639 */
640 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
641
642 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
643 /* Get the requested power states for this power level */
644 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
645 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
646
647 /*
648 * Let the platform coordinate amongst the requested states at
649 * this power level and return the target local power state.
650 */
651 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
652 target_state = plat_get_target_pwr_state(lvl,
653 req_states,
654 ncpus);
655
656 /*
657 * Verify that the requested power state matches the target
658 * local power state.
659 */
660 if (state_info->pwr_domain_state[lvl] != target_state) {
661 if (target_state == PSCI_LOCAL_STATE_RUN) {
662 rc = PSCI_E_DENIED;
663 } else {
664 rc = PSCI_E_INVALID_PARAMS;
665 }
666 goto exit;
667 }
668
669 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
670 }
671
672 /*
673 * Verify that the current core is the last running core at the
674 * specified power level.
675 */
676 lvl = state_info->last_at_pwrlvl;
677 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
678 rc = PSCI_E_DENIED;
679 }
680
681 exit:
682 if (rc != PSCI_E_SUCCESS) {
683 /* Restore the previous requested local power states. */
684 psci_restore_req_local_pwr_states(cpu_idx, prev);
685 return rc;
686 }
687
688 return rc;
689 }
690 #endif
691
692 /******************************************************************************
693 * This function validates a suspend request by making sure that if a standby
694 * state is requested then no power level is turned off and the highest power
695 * level is placed in a standby/retention state.
696 *
697 * It also ensures that the state level X will enter is not shallower than the
698 * state level X + 1 will enter.
699 *
700 * This validation will be enabled only for DEBUG builds as the platform is
701 * expected to perform these validations as well.
702 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)703 int psci_validate_suspend_req(const psci_power_state_t *state_info,
704 unsigned int is_power_down_state)
705 {
706 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
707 plat_local_state_t state;
708 plat_local_state_type_t req_state_type, deepest_state_type;
709 int i;
710
711 /* Find the target suspend power level */
712 target_lvl = psci_find_target_suspend_lvl(state_info);
713 if (target_lvl == PSCI_INVALID_PWR_LVL)
714 return PSCI_E_INVALID_PARAMS;
715
716 /* All power domain levels are in a RUN state to begin with */
717 deepest_state_type = STATE_TYPE_RUN;
718
719 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
720 state = state_info->pwr_domain_state[i];
721 req_state_type = find_local_state_type(state);
722
723 /*
724 * While traversing from the highest power level to the lowest,
725 * the state requested for lower levels has to be the same or
726 * deeper i.e. equal to or greater than the state at the higher
727 * levels. If this condition is true, then the requested state
728 * becomes the deepest state encountered so far.
729 */
730 if (req_state_type < deepest_state_type)
731 return PSCI_E_INVALID_PARAMS;
732 deepest_state_type = req_state_type;
733 }
734
735 /* Find the highest off power level */
736 max_off_lvl = psci_find_max_off_lvl(state_info);
737
738 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
739 max_retn_lvl = PSCI_INVALID_PWR_LVL;
740 if (target_lvl != max_off_lvl)
741 max_retn_lvl = target_lvl;
742
743 /*
744 * If this is not a request for a power down state then max off level
745 * has to be invalid and max retention level has to be a valid power
746 * level.
747 */
748 if ((is_power_down_state == 0U) &&
749 ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
750 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
751 return PSCI_E_INVALID_PARAMS;
752
753 return PSCI_E_SUCCESS;
754 }
755
756 /******************************************************************************
757 * This function finds the highest power level which will be powered down
758 * amongst all the power levels specified in the 'state_info' structure
759 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)760 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
761 {
762 int i;
763
764 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
765 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
766 return (unsigned int) i;
767 }
768
769 return PSCI_INVALID_PWR_LVL;
770 }
771
772 /******************************************************************************
773 * This functions finds the level of the highest power domain which will be
774 * placed in a low power state during a suspend operation.
775 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)776 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
777 {
778 int i;
779
780 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
781 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
782 return (unsigned int) i;
783 }
784
785 return PSCI_INVALID_PWR_LVL;
786 }
787
788 /*******************************************************************************
789 * This function is passed the highest level in the topology tree that the
790 * operation should be applied to and a list of node indexes. It picks up locks
791 * from the node index list in order of increasing power domain level in the
792 * range specified.
793 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)794 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
795 const unsigned int *parent_nodes)
796 {
797 unsigned int parent_idx;
798 unsigned int level;
799
800 /* No locking required for level 0. Hence start locking from level 1 */
801 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
802 parent_idx = parent_nodes[level - 1U];
803 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
804 }
805 }
806
807 /*******************************************************************************
808 * This function is passed the highest level in the topology tree that the
809 * operation should be applied to and a list of node indexes. It releases the
810 * locks in order of decreasing power domain level in the range specified.
811 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)812 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
813 const unsigned int *parent_nodes)
814 {
815 unsigned int parent_idx;
816 unsigned int level;
817
818 /* Unlock top down. No unlocking required for level 0. */
819 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
820 parent_idx = parent_nodes[level - 1U];
821 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
822 }
823 }
824
825 /*******************************************************************************
826 * This function determines the full entrypoint information for the requested
827 * PSCI entrypoint on power on/resume and returns it.
828 ******************************************************************************/
829 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)830 static int psci_get_ns_ep_info(entry_point_info_t *ep,
831 uintptr_t entrypoint,
832 u_register_t context_id)
833 {
834 u_register_t ep_attr, sctlr;
835 unsigned int daif, ee, mode;
836 u_register_t ns_scr_el3 = read_scr_el3();
837 u_register_t ns_sctlr_el1 = read_sctlr_el1();
838
839 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
840 read_sctlr_el2() : ns_sctlr_el1;
841 ee = 0;
842
843 ep_attr = NON_SECURE | EP_ST_DISABLE;
844 if ((sctlr & SCTLR_EE_BIT) != 0U) {
845 ep_attr |= EP_EE_BIG;
846 ee = 1;
847 }
848 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
849
850 ep->pc = entrypoint;
851 zeromem(&ep->args, sizeof(ep->args));
852 ep->args.arg0 = context_id;
853
854 /*
855 * Figure out whether the cpu enters the non-secure address space
856 * in aarch32 or aarch64
857 */
858 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
859
860 /*
861 * Check whether a Thumb entry point has been provided for an
862 * aarch64 EL
863 */
864 if ((entrypoint & 0x1UL) != 0UL)
865 return PSCI_E_INVALID_ADDRESS;
866
867 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
868
869 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
870 DISABLE_ALL_EXCEPTIONS);
871 } else {
872
873 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
874 MODE32_hyp : MODE32_svc;
875
876 /*
877 * TODO: Choose async. exception bits if HYP mode is not
878 * implemented according to the values of SCR.{AW, FW} bits
879 */
880 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
881
882 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
883 daif);
884 }
885
886 return PSCI_E_SUCCESS;
887 }
888 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)889 static int psci_get_ns_ep_info(entry_point_info_t *ep,
890 uintptr_t entrypoint,
891 u_register_t context_id)
892 {
893 u_register_t ep_attr;
894 unsigned int aif, ee, mode;
895 u_register_t scr = read_scr();
896 u_register_t ns_sctlr, sctlr;
897
898 /* Switch to non secure state */
899 write_scr(scr | SCR_NS_BIT);
900 isb();
901 ns_sctlr = read_sctlr();
902
903 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
904
905 /* Return to original state */
906 write_scr(scr);
907 isb();
908 ee = 0;
909
910 ep_attr = NON_SECURE | EP_ST_DISABLE;
911 if (sctlr & SCTLR_EE_BIT) {
912 ep_attr |= EP_EE_BIG;
913 ee = 1;
914 }
915 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
916
917 ep->pc = entrypoint;
918 zeromem(&ep->args, sizeof(ep->args));
919 ep->args.arg0 = context_id;
920
921 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
922
923 /*
924 * TODO: Choose async. exception bits if HYP mode is not
925 * implemented according to the values of SCR.{AW, FW} bits
926 */
927 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
928
929 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
930
931 return PSCI_E_SUCCESS;
932 }
933
934 #endif /* __aarch64__ */
935
936 /*******************************************************************************
937 * This function validates the entrypoint with the platform layer if the
938 * appropriate pm_ops hook is exported by the platform and returns the
939 * 'entry_point_info'.
940 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)941 int psci_validate_entry_point(entry_point_info_t *ep,
942 uintptr_t entrypoint,
943 u_register_t context_id)
944 {
945 int rc;
946
947 /* Validate the entrypoint using platform psci_ops */
948 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
949 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
950 if (rc != PSCI_E_SUCCESS)
951 return PSCI_E_INVALID_ADDRESS;
952 }
953
954 /*
955 * Verify and derive the re-entry information for
956 * the non-secure world from the non-secure state from
957 * where this call originated.
958 */
959 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
960 return rc;
961 }
962
963 /*******************************************************************************
964 * Generic handler which is called when a cpu is physically powered on. It
965 * traverses the node information and finds the highest power level powered
966 * off and performs generic, architectural, platform setup and state management
967 * to power on that power level and power levels below it.
968 * e.g. For a cpu that's been powered on, it will call the platform specific
969 * code to enable the gic cpu interface and for a cluster it will enable
970 * coherency at the interconnect level in addition to gic cpu interface.
971 ******************************************************************************/
psci_warmboot_entrypoint(void)972 void psci_warmboot_entrypoint(void)
973 {
974 unsigned int end_pwrlvl;
975 unsigned int cpu_idx = plat_my_core_pos();
976 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
977 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
978
979 /* Init registers that never change for the lifetime of TF-A */
980 cm_manage_extensions_el3();
981
982 /*
983 * Verify that we have been explicitly turned ON or resumed from
984 * suspend.
985 */
986 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
987 ERROR("Unexpected affinity info state.\n");
988 panic();
989 }
990
991 /*
992 * Get the maximum power domain level to traverse to after this cpu
993 * has been physically powered up.
994 */
995 end_pwrlvl = get_power_on_target_pwrlvl();
996
997 /* Get the parent nodes */
998 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
999
1000 /*
1001 * This function acquires the lock corresponding to each power level so
1002 * that by the time all locks are taken, the system topology is snapshot
1003 * and state management can be done safely.
1004 */
1005 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1006
1007 psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1008
1009 #if ENABLE_PSCI_STAT
1010 plat_psci_stat_accounting_stop(&state_info);
1011 #endif
1012
1013 /*
1014 * This CPU could be resuming from suspend or it could have just been
1015 * turned on. To distinguish between these 2 cases, we examine the
1016 * affinity state of the CPU:
1017 * - If the affinity state is ON_PENDING then it has just been
1018 * turned on.
1019 * - Else it is resuming from suspend.
1020 *
1021 * Depending on the type of warm reset identified, choose the right set
1022 * of power management handler and perform the generic, architecture
1023 * and platform specific handling.
1024 */
1025 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1026 psci_cpu_on_finish(cpu_idx, &state_info);
1027 else
1028 psci_cpu_suspend_finish(cpu_idx, &state_info);
1029
1030 /*
1031 * Generic management: Now we just need to retrieve the
1032 * information that we had stashed away during the cpu_on
1033 * call to set this cpu on its way.
1034 */
1035 cm_prepare_el3_exit_ns();
1036
1037 /*
1038 * Set the requested and target state of this CPU and all the higher
1039 * power domains which are ancestors of this CPU to run.
1040 */
1041 psci_set_pwr_domains_to_run(end_pwrlvl);
1042
1043 #if ENABLE_PSCI_STAT
1044 /*
1045 * Update PSCI stats.
1046 * Caches are off when writing stats data on the power down path.
1047 * Since caches are now enabled, it's necessary to do cache
1048 * maintenance before reading that same data.
1049 */
1050 psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1051 #endif
1052
1053 /*
1054 * This loop releases the lock corresponding to each power level
1055 * in the reverse order to which they were acquired.
1056 */
1057 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1058 }
1059
1060 /*******************************************************************************
1061 * This function initializes the set of hooks that PSCI invokes as part of power
1062 * management operation. The power management hooks are expected to be provided
1063 * by the SPD, after it finishes all its initialization
1064 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)1065 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1066 {
1067 assert(pm != NULL);
1068 psci_spd_pm = pm;
1069
1070 if (pm->svc_migrate != NULL)
1071 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1072
1073 if (pm->svc_migrate_info != NULL)
1074 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1075 | define_psci_cap(PSCI_MIG_INFO_TYPE);
1076 }
1077
1078 /*******************************************************************************
1079 * This function invokes the migrate info hook in the spd_pm_ops. It performs
1080 * the necessary return value validation. If the Secure Payload is UP and
1081 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1082 * is resident through the mpidr parameter. Else the value of the parameter on
1083 * return is undefined.
1084 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)1085 int psci_spd_migrate_info(u_register_t *mpidr)
1086 {
1087 int rc;
1088
1089 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1090 return PSCI_E_NOT_SUPPORTED;
1091
1092 rc = psci_spd_pm->svc_migrate_info(mpidr);
1093
1094 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1095 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1096
1097 return rc;
1098 }
1099
1100
1101 /*******************************************************************************
1102 * This function prints the state of all power domains present in the
1103 * system
1104 ******************************************************************************/
psci_print_power_domain_map(void)1105 void psci_print_power_domain_map(void)
1106 {
1107 #if LOG_LEVEL >= LOG_LEVEL_INFO
1108 unsigned int idx;
1109 plat_local_state_t state;
1110 plat_local_state_type_t state_type;
1111
1112 /* This array maps to the PSCI_STATE_X definitions in psci.h */
1113 static const char * const psci_state_type_str[] = {
1114 "ON",
1115 "RETENTION",
1116 "OFF",
1117 };
1118
1119 INFO("PSCI Power Domain Map:\n");
1120 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1121 idx++) {
1122 state_type = find_local_state_type(
1123 psci_non_cpu_pd_nodes[idx].local_state);
1124 INFO(" Domain Node : Level %u, parent_node %u,"
1125 " State %s (0x%x)\n",
1126 psci_non_cpu_pd_nodes[idx].level,
1127 psci_non_cpu_pd_nodes[idx].parent_node,
1128 psci_state_type_str[state_type],
1129 psci_non_cpu_pd_nodes[idx].local_state);
1130 }
1131
1132 for (idx = 0; idx < psci_plat_core_count; idx++) {
1133 state = psci_get_cpu_local_state_by_idx(idx);
1134 state_type = find_local_state_type(state);
1135 INFO(" CPU Node : MPID 0x%llx, parent_node %u,"
1136 " State %s (0x%x)\n",
1137 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1138 psci_cpu_pd_nodes[idx].parent_node,
1139 psci_state_type_str[state_type],
1140 psci_get_cpu_local_state_by_idx(idx));
1141 }
1142 #endif
1143 }
1144
1145 /******************************************************************************
1146 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1147 * have ever been powered up would have set its MPDIR value to something other
1148 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1149 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1150 * meaningful only when called on the primary CPU during early boot.
1151 *****************************************************************************/
psci_secondaries_brought_up(void)1152 int psci_secondaries_brought_up(void)
1153 {
1154 unsigned int idx, n_valid = 0U;
1155
1156 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1157 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1158 n_valid++;
1159 }
1160
1161 assert(n_valid > 0U);
1162
1163 return (n_valid > 1U) ? 1 : 0;
1164 }
1165
1166 /*******************************************************************************
1167 * Initiate power down sequence, by calling power down operations registered for
1168 * this CPU.
1169 ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)1170 void psci_pwrdown_cpu(unsigned int power_level)
1171 {
1172 psci_do_manage_extensions();
1173
1174 #if HW_ASSISTED_COHERENCY
1175 /*
1176 * With hardware-assisted coherency, the CPU drivers only initiate the
1177 * power down sequence, without performing cache-maintenance operations
1178 * in software. Data caches enabled both before and after this call.
1179 */
1180 prepare_cpu_pwr_dwn(power_level);
1181 #else
1182 /*
1183 * Without hardware-assisted coherency, the CPU drivers disable data
1184 * caches, then perform cache-maintenance operations in software.
1185 *
1186 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1187 * sequence, but that function will return with data caches disabled.
1188 * We must ensure that the stack memory is flushed out to memory before
1189 * we start popping from it again.
1190 */
1191 psci_do_pwrdown_cache_maintenance(power_level);
1192 #endif
1193 }
1194
1195 /*******************************************************************************
1196 * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1197 * online PE. Caller can pass suitable method to stop a remote core.
1198 *
1199 * 'wait_ms' is the timeout value in milliseconds for the other cores to
1200 * transition to power down state. Passing '0' makes it non-blocking.
1201 *
1202 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1203 * given timeout.
1204 ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))1205 int psci_stop_other_cores(unsigned int wait_ms,
1206 void (*stop_func)(u_register_t mpidr))
1207 {
1208 unsigned int idx, this_cpu_idx;
1209
1210 this_cpu_idx = plat_my_core_pos();
1211
1212 /* Invoke stop_func for each core */
1213 for (idx = 0U; idx < psci_plat_core_count; idx++) {
1214 /* skip current CPU */
1215 if (idx == this_cpu_idx) {
1216 continue;
1217 }
1218
1219 /* Check if the CPU is ON */
1220 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1221 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1222 }
1223 }
1224
1225 /* Need to wait for other cores to shutdown */
1226 if (wait_ms != 0U) {
1227 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1228 mdelay(1U);
1229 }
1230
1231 if (!psci_is_last_on_cpu()) {
1232 WARN("Failed to stop all cores!\n");
1233 psci_print_power_domain_map();
1234 return PSCI_E_DENIED;
1235 }
1236 }
1237
1238 return PSCI_E_SUCCESS;
1239 }
1240
1241 /*******************************************************************************
1242 * This function verifies that all the other cores in the system have been
1243 * turned OFF and the current CPU is the last running CPU in the system.
1244 * Returns true if the current CPU is the last ON CPU or false otherwise.
1245 *
1246 * This API has following differences with psci_is_last_on_cpu
1247 * 1. PSCI states are locked
1248 ******************************************************************************/
psci_is_last_on_cpu_safe(void)1249 bool psci_is_last_on_cpu_safe(void)
1250 {
1251 unsigned int this_core = plat_my_core_pos();
1252 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1253
1254 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1255
1256 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1257
1258 if (!psci_is_last_on_cpu()) {
1259 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1260 return false;
1261 }
1262
1263 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1264
1265 return true;
1266 }
1267
1268 /*******************************************************************************
1269 * This function verifies that all cores in the system have been turned ON.
1270 * Returns true, if all CPUs are ON or false otherwise.
1271 *
1272 * This API has following differences with psci_are_all_cpus_on
1273 * 1. PSCI states are locked
1274 ******************************************************************************/
psci_are_all_cpus_on_safe(void)1275 bool psci_are_all_cpus_on_safe(void)
1276 {
1277 unsigned int this_core = plat_my_core_pos();
1278 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1279
1280 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1281
1282 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1283
1284 if (!psci_are_all_cpus_on()) {
1285 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1286 return false;
1287 }
1288
1289 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1290
1291 return true;
1292 }
1293
1294 /*******************************************************************************
1295 * This function performs architectural feature specific management.
1296 * It ensures the architectural features are disabled during cpu
1297 * power off/suspend operations.
1298 ******************************************************************************/
psci_do_manage_extensions(void)1299 void psci_do_manage_extensions(void)
1300 {
1301 /*
1302 * On power down we need to disable statistical profiling extensions
1303 * before exiting coherency.
1304 */
1305 if (is_feat_spe_supported()) {
1306 spe_disable();
1307 }
1308
1309 }
1310