1 /* 2 * Copyright (c) 2007-2009 Intel Corporation. All Rights Reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the 6 * "Software"), to deal in the Software without restriction, including 7 * without limitation the rights to use, copy, modify, merge, publish, 8 * distribute, sub license, and/or sell copies of the Software, and to 9 * permit persons to whom the Software is furnished to do so, subject to 10 * the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the 13 * next paragraph) shall be included in all copies or substantial portions 14 * of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 18 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 19 * IN NO EVENT SHALL INTEL AND/OR ITS SUPPLIERS BE LIABLE FOR 20 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 21 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 22 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 /* 25 * Video Acceleration (VA) API Specification 26 * 27 * Rev. 0.30 28 * <[email protected]> 29 * 30 * Revision History: 31 * rev 0.10 (12/10/2006 Jonathan Bian) - Initial draft 32 * rev 0.11 (12/15/2006 Jonathan Bian) - Fixed some errors 33 * rev 0.12 (02/05/2007 Jonathan Bian) - Added VC-1 data structures for slice level decode 34 * rev 0.13 (02/28/2007 Jonathan Bian) - Added GetDisplay() 35 * rev 0.14 (04/13/2007 Jonathan Bian) - Fixed MPEG-2 PictureParameter structure, cleaned up a few funcs. 36 * rev 0.15 (04/20/2007 Jonathan Bian) - Overhauled buffer management 37 * rev 0.16 (05/02/2007 Jonathan Bian) - Added error codes and fixed some issues with configuration 38 * rev 0.17 (05/07/2007 Jonathan Bian) - Added H.264/AVC data structures for slice level decode. 39 * rev 0.18 (05/14/2007 Jonathan Bian) - Added data structures for MPEG-4 slice level decode 40 * and MPEG-2 motion compensation. 41 * rev 0.19 (08/06/2007 Jonathan Bian) - Removed extra type for bitplane data. 42 * rev 0.20 (08/08/2007 Jonathan Bian) - Added missing fields to VC-1 PictureParameter structure. 43 * rev 0.21 (08/20/2007 Jonathan Bian) - Added image and subpicture support. 44 * rev 0.22 (08/27/2007 Jonathan Bian) - Added support for chroma-keying and global alpha. 45 * rev 0.23 (09/11/2007 Jonathan Bian) - Fixed some issues with images and subpictures. 46 * rev 0.24 (09/18/2007 Jonathan Bian) - Added display attributes. 47 * rev 0.25 (10/18/2007 Jonathan Bian) - Changed to use IDs only for some types. 48 * rev 0.26 (11/07/2007 Waldo Bastian) - Change vaCreateBuffer semantics 49 * rev 0.27 (11/19/2007 Matt Sottek) - Added DeriveImage 50 * rev 0.28 (12/06/2007 Jonathan Bian) - Added new versions of PutImage and AssociateSubpicture 51 * to enable scaling 52 * rev 0.29 (02/07/2008 Jonathan Bian) - VC1 parameter fixes, 53 * added VA_STATUS_ERROR_RESOLUTION_NOT_SUPPORTED 54 * rev 0.30 (03/01/2009 Jonathan Bian) - Added encoding support for H.264 BP and MPEG-4 SP and fixes 55 * for ISO C conformance. 56 * rev 0.31 (09/02/2009 Gwenole Beauchesne) - VC-1/H264 fields change for VDPAU and XvBA backend 57 * Application needs to relink with the new library. 58 * 59 * rev 0.31.1 (03/29/2009) - Data structure for JPEG encode 60 * rev 0.31.2 (01/13/2011 Anthony Pabon)- Added a flag to indicate Subpicture coordinates are screen 61 * screen relative rather than source video relative. 62 * rev 0.32.0 (01/13/2011 Xiang Haihao) - Add profile into VAPictureParameterBufferVC1 63 * update VAAPI to 0.32.0 64 * 65 * Acknowledgements: 66 * Some concepts borrowed from XvMC and XvImage. 67 * Waldo Bastian (Intel), Matt Sottek (Intel), Austin Yuan (Intel), and Gwenole Beauchesne (SDS) 68 * contributed to various aspects of the API. 69 */ 70 71 /** 72 * \file va.h 73 * \brief The Core API 74 * 75 * This file contains the \ref api_core "Core API". 76 */ 77 78 #ifndef _VA_H_ 79 #define _VA_H_ 80 81 #include <stddef.h> 82 #include <stdint.h> 83 #include <va/va_version.h> 84 85 #ifdef __cplusplus 86 extern "C" { 87 #endif 88 89 #if defined(__GNUC__) && !defined(__COVERITY__) 90 #define va_deprecated __attribute__((deprecated)) 91 #if __GNUC__ >= 6 92 #define va_deprecated_enum va_deprecated 93 #else 94 #define va_deprecated_enum 95 #endif 96 #else 97 #define va_deprecated 98 #define va_deprecated_enum 99 #endif 100 101 /** 102 * \mainpage Video Acceleration (VA) API 103 * 104 * \section intro Introduction 105 * 106 * The main motivation for VA-API (Video Acceleration API) is to 107 * enable hardware accelerated video decode and encode at various 108 * entry-points (VLD, IDCT, Motion Compensation etc.) for the 109 * prevailing coding standards today (MPEG-2, MPEG-4 ASP/H.263, MPEG-4 110 * AVC/H.264, VC-1/VMW3, and JPEG, HEVC/H265, VP8, VP9) and video pre/post 111 * processing 112 * 113 * VA-API is split into several modules: 114 * - \ref api_core 115 * - Encoder (H264, HEVC, JPEG, MPEG2, VP8, VP9) 116 * - \ref api_enc_h264 117 * - \ref api_enc_hevc 118 * - \ref api_enc_jpeg 119 * - \ref api_enc_mpeg2 120 * - \ref api_enc_vp8 121 * - \ref api_enc_vp9 122 * - \ref api_enc_av1 123 * - Decoder (HEVC, JPEG, VP8, VP9, AV1, VVC) 124 * - \ref api_dec_hevc 125 * - \ref api_dec_jpeg 126 * - \ref api_dec_vp8 127 * - \ref api_dec_vp9 128 * - \ref api_dec_av1 129 * - \ref api_dec_vvc 130 * - \ref api_vpp 131 * - \ref api_prot 132 * - FEI (H264, HEVC) 133 * - \ref api_fei 134 * - \ref api_fei_h264 135 * - \ref api_fei_hevc 136 * 137 * \section threading Multithreading Guide 138 * All VAAPI functions implemented in libva are thread-safe. For any VAAPI 139 * function that requires the implementation of a backend (e.g. hardware driver), 140 * the backend must ensure that its implementation is also thread-safe. If the 141 * backend implementation of a VAAPI function is not thread-safe then this should 142 * be considered as a bug against the backend implementation. 143 * 144 * It is assumed that none of the VAAPI functions will be called from signal 145 * handlers. 146 * 147 * Thread-safety in this context means that when VAAPI is being called by multiple 148 * concurrent threads, it will not crash or hang the OS, and VAAPI internal 149 * data structures will not be corrupted. When multiple threads are operating on 150 * the same VAAPI objects, it is the application's responsibility to synchronize 151 * these operations in order to generate the expected results. For example, using 152 * a single VAContext from multiple threads may generate unexpected results. 153 * 154 * Following pseudo code illustrates a multithreaded transcoding scenario, where 155 * one thread is handling the decoding operation and another thread is handling 156 * the encoding operation, while synchronizing the use of a common pool of 157 * surfaces. 158 * 159 * \code 160 * // Initialization 161 * dpy = vaGetDisplayDRM(fd); 162 * vaInitialize(dpy, ...); 163 * 164 * // Create surfaces required for decoding and subsequence encoding 165 * vaCreateSurfaces(dpy, VA_RT_FORMAT_YUV420, width, height, &surfaces[0], ...); 166 * 167 * // Set up a queue for the surfaces shared between decode and encode threads 168 * surface_queue = queue_create(); 169 * 170 * // Create decode_thread 171 * pthread_create(&decode_thread, NULL, decode, ...); 172 * 173 * // Create encode_thread 174 * pthread_create(&encode_thread, NULL, encode, ...); 175 * 176 * // Decode thread function 177 * decode() { 178 * // Find the decode entrypoint for H.264 179 * vaQueryConfigEntrypoints(dpy, h264_profile, entrypoints, ...); 180 * 181 * // Create a config for H.264 decode 182 * vaCreateConfig(dpy, h264_profile, VAEntrypointVLD, ...); 183 * 184 * // Create a context for decode 185 * vaCreateContext(dpy, config, width, height, VA_PROGRESSIVE, surfaces, 186 * num_surfaces, &decode_context); 187 * 188 * // Decode frames in the bitstream 189 * for (;;) { 190 * // Parse one frame and decode 191 * vaBeginPicture(dpy, decode_context, surfaces[surface_index]); 192 * vaRenderPicture(dpy, decode_context, buf, ...); 193 * vaEndPicture(dpy, decode_context); 194 * // Poll the decoding status and enqueue the surface in display order after 195 * // decoding is complete 196 * vaQuerySurfaceStatus(); 197 * enqueue(surface_queue, surface_index); 198 * } 199 * } 200 * 201 * // Encode thread function 202 * encode() { 203 * // Find the encode entrypoint for HEVC 204 * vaQueryConfigEntrypoints(dpy, hevc_profile, entrypoints, ...); 205 * 206 * // Create a config for HEVC encode 207 * vaCreateConfig(dpy, hevc_profile, VAEntrypointEncSlice, ...); 208 * 209 * // Create a context for encode 210 * vaCreateContext(dpy, config, width, height, VA_PROGRESSIVE, surfaces, 211 * num_surfaces, &encode_context); 212 * 213 * // Encode frames produced by the decoder 214 * for (;;) { 215 * // Dequeue the surface enqueued by the decoder 216 * surface_index = dequeue(surface_queue); 217 * // Encode using this surface as the source 218 * vaBeginPicture(dpy, encode_context, surfaces[surface_index]); 219 * vaRenderPicture(dpy, encode_context, buf, ...); 220 * vaEndPicture(dpy, encode_context); 221 * } 222 * } 223 * \endcode 224 */ 225 226 /** 227 * \defgroup api_core Core API 228 * 229 * @{ 230 */ 231 232 /** 233 Overview 234 235 The VA API is intended to provide an interface between a video decode/encode/processing 236 application (client) and a hardware accelerator (server), to off-load 237 video decode/encode/processing operations from the host to the hardware accelerator at various 238 entry-points. 239 240 The basic operation steps are: 241 242 - Negotiate a mutually acceptable configuration with the server to lock 243 down profile, entrypoints, and other attributes that will not change on 244 a frame-by-frame basis. 245 - Create a video decode, encode or processing context which represents a 246 "virtualized" hardware device 247 - Get and fill the render buffers with the corresponding data (depending on 248 profiles and entrypoints) 249 - Pass the render buffers to the server to handle the current frame 250 251 Initialization & Configuration Management 252 253 - Find out supported profiles 254 - Find out entrypoints for a given profile 255 - Find out configuration attributes for a given profile/entrypoint pair 256 - Create a configuration for use by the application 257 258 */ 259 260 typedef void* VADisplay; /* window system dependent */ 261 262 typedef int VAStatus; /** Return status type from functions */ 263 /** Values for the return status */ 264 #define VA_STATUS_SUCCESS 0x00000000 265 #define VA_STATUS_ERROR_OPERATION_FAILED 0x00000001 266 #define VA_STATUS_ERROR_ALLOCATION_FAILED 0x00000002 267 #define VA_STATUS_ERROR_INVALID_DISPLAY 0x00000003 268 #define VA_STATUS_ERROR_INVALID_CONFIG 0x00000004 269 #define VA_STATUS_ERROR_INVALID_CONTEXT 0x00000005 270 #define VA_STATUS_ERROR_INVALID_SURFACE 0x00000006 271 #define VA_STATUS_ERROR_INVALID_BUFFER 0x00000007 272 #define VA_STATUS_ERROR_INVALID_IMAGE 0x00000008 273 #define VA_STATUS_ERROR_INVALID_SUBPICTURE 0x00000009 274 #define VA_STATUS_ERROR_ATTR_NOT_SUPPORTED 0x0000000a 275 #define VA_STATUS_ERROR_MAX_NUM_EXCEEDED 0x0000000b 276 #define VA_STATUS_ERROR_UNSUPPORTED_PROFILE 0x0000000c 277 #define VA_STATUS_ERROR_UNSUPPORTED_ENTRYPOINT 0x0000000d 278 #define VA_STATUS_ERROR_UNSUPPORTED_RT_FORMAT 0x0000000e 279 #define VA_STATUS_ERROR_UNSUPPORTED_BUFFERTYPE 0x0000000f 280 #define VA_STATUS_ERROR_SURFACE_BUSY 0x00000010 281 #define VA_STATUS_ERROR_FLAG_NOT_SUPPORTED 0x00000011 282 #define VA_STATUS_ERROR_INVALID_PARAMETER 0x00000012 283 #define VA_STATUS_ERROR_RESOLUTION_NOT_SUPPORTED 0x00000013 284 #define VA_STATUS_ERROR_UNIMPLEMENTED 0x00000014 285 #define VA_STATUS_ERROR_SURFACE_IN_DISPLAYING 0x00000015 286 #define VA_STATUS_ERROR_INVALID_IMAGE_FORMAT 0x00000016 287 #define VA_STATUS_ERROR_DECODING_ERROR 0x00000017 288 #define VA_STATUS_ERROR_ENCODING_ERROR 0x00000018 289 /** 290 * \brief An invalid/unsupported value was supplied. 291 * 292 * This is a catch-all error code for invalid or unsupported values. 293 * e.g. value exceeding the valid range, invalid type in the context 294 * of generic attribute values. 295 */ 296 #define VA_STATUS_ERROR_INVALID_VALUE 0x00000019 297 /** \brief An unsupported filter was supplied. */ 298 #define VA_STATUS_ERROR_UNSUPPORTED_FILTER 0x00000020 299 /** \brief An invalid filter chain was supplied. */ 300 #define VA_STATUS_ERROR_INVALID_FILTER_CHAIN 0x00000021 301 /** \brief Indicate HW busy (e.g. run multiple encoding simultaneously). */ 302 #define VA_STATUS_ERROR_HW_BUSY 0x00000022 303 /** \brief An unsupported memory type was supplied. */ 304 #define VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE 0x00000024 305 /** \brief Indicate allocated buffer size is not enough for input or output. */ 306 #define VA_STATUS_ERROR_NOT_ENOUGH_BUFFER 0x00000025 307 /** \brief Indicate an operation isn't completed because time-out interval elapsed. */ 308 #define VA_STATUS_ERROR_TIMEDOUT 0x00000026 309 #define VA_STATUS_ERROR_UNKNOWN 0xFFFFFFFF 310 311 /** 312 * 1. De-interlacing flags for vaPutSurface() 313 * 2. Surface sample type for input/output surface flag 314 * - Progressive: VA_FRAME_PICTURE 315 * - Interleaved: VA_TOP_FIELD_FIRST, VA_BOTTOM_FIELD_FIRST 316 * - Field: VA_TOP_FIELD, VA_BOTTOM_FIELD 317 */ 318 #define VA_FRAME_PICTURE 0x00000000 319 #define VA_TOP_FIELD 0x00000001 320 #define VA_BOTTOM_FIELD 0x00000002 321 #define VA_TOP_FIELD_FIRST 0x00000004 322 #define VA_BOTTOM_FIELD_FIRST 0x00000008 323 324 /** 325 * Enabled the positioning/cropping/blending feature: 326 * 1, specify the video playback position in the isurface 327 * 2, specify the cropping info for video playback 328 * 3, encoded video will blend with background color 329 */ 330 #define VA_ENABLE_BLEND 0x00000004 /* video area blend with the constant color */ 331 332 /** 333 * Clears the drawable with background color. 334 * for hardware overlay based implementation this flag 335 * can be used to turn off the overlay 336 */ 337 #define VA_CLEAR_DRAWABLE 0x00000008 338 339 /** Color space conversion flags for vaPutSurface() */ 340 #define VA_SRC_COLOR_MASK 0x000000f0 341 #define VA_SRC_BT601 0x00000010 342 #define VA_SRC_BT709 0x00000020 343 #define VA_SRC_SMPTE_240 0x00000040 344 345 /** Scaling flags for vaPutSurface() */ 346 #define VA_FILTER_SCALING_DEFAULT 0x00000000 347 #define VA_FILTER_SCALING_FAST 0x00000100 348 #define VA_FILTER_SCALING_HQ 0x00000200 349 #define VA_FILTER_SCALING_NL_ANAMORPHIC 0x00000300 350 #define VA_FILTER_SCALING_MASK 0x00000f00 351 352 /** Interpolation method for scaling */ 353 #define VA_FILTER_INTERPOLATION_DEFAULT 0x00000000 354 #define VA_FILTER_INTERPOLATION_NEAREST_NEIGHBOR 0x00001000 355 #define VA_FILTER_INTERPOLATION_BILINEAR 0x00002000 356 #define VA_FILTER_INTERPOLATION_ADVANCED 0x00003000 357 #define VA_FILTER_INTERPOLATION_MASK 0x0000f000 358 359 /** Padding size in 4-bytes */ 360 #define VA_PADDING_LOW 4 361 #define VA_PADDING_MEDIUM 8 362 #define VA_PADDING_HIGH 16 363 #define VA_PADDING_LARGE 32 364 365 /** operation options */ 366 /** synchronization, block call, output should be ready after execution function return*/ 367 #define VA_EXEC_SYNC 0x0 368 /** asynchronization,application should call additonal sync operation to access output */ 369 #define VA_EXEC_ASYNC 0x1 370 371 /** operation mode */ 372 #define VA_EXEC_MODE_DEFAULT 0x0 373 #define VA_EXEC_MODE_POWER_SAVING 0x1 374 #define VA_EXEC_MODE_PERFORMANCE 0x2 375 376 /* Values used to describe device features. */ 377 /** The feature is not supported by the device. 378 * 379 * Any corresponding feature flag must not be set. 380 */ 381 #define VA_FEATURE_NOT_SUPPORTED 0 382 /** The feature is supported by the device. 383 * 384 * The user may decide whether or not to use this feature. 385 * 386 * Note that support for a feature only indicates that the hardware 387 * is able to use it; whether it is actually a positive change to 388 * enable it in a given situation will depend on other factors 389 * including the input provided by the user. 390 */ 391 #define VA_FEATURE_SUPPORTED 1 392 /** The feature is required by the device. 393 * 394 * The device does not support not enabling this feature, so any 395 * corresponding feature flag must be set and any additional 396 * configuration needed by the feature must be supplied. 397 */ 398 #define VA_FEATURE_REQUIRED 2 399 400 /** 401 * Returns a short english description of error_status 402 */ 403 const char *vaErrorStr(VAStatus error_status); 404 405 /** \brief Structure to describe rectangle. */ 406 typedef struct _VARectangle { 407 int16_t x; 408 int16_t y; 409 uint16_t width; 410 uint16_t height; 411 } VARectangle; 412 413 /** \brief Generic motion vector data structure. */ 414 typedef struct _VAMotionVector { 415 /** \brief Past reference 416 * 417 * - \c [0]: horizontal motion vector for past reference 418 * - \c [1]: vertical motion vector for past reference 419 */ 420 int16_t mv0[2]; 421 /** \brief Future reference 422 * 423 * - \c [0]: horizontal motion vector for future reference 424 * - \c [1]: vertical motion vector for future reference 425 */ 426 int16_t mv1[2]; 427 } VAMotionVector; 428 429 /** Type of a message callback, used for both error and info log. */ 430 typedef void (*VAMessageCallback)(void *user_context, const char *message); 431 432 /** 433 * Set the callback for error messages, or NULL for no logging. 434 * Returns the previous one, or NULL if it was disabled. 435 */ 436 VAMessageCallback vaSetErrorCallback(VADisplay dpy, VAMessageCallback callback, void *user_context); 437 438 /** 439 * Set the callback for info messages, or NULL for no logging. 440 * Returns the previous one, or NULL if it was disabled. 441 */ 442 VAMessageCallback vaSetInfoCallback(VADisplay dpy, VAMessageCallback callback, void *user_context); 443 444 /** 445 * Initialization: 446 * A display must be obtained by calling vaGetDisplay() before calling 447 * vaInitialize() and other functions. This connects the API to the 448 * native window system. 449 * For X Windows, native_dpy would be from XOpenDisplay() 450 */ 451 typedef void* VANativeDisplay; /* window system dependent */ 452 453 int vaDisplayIsValid(VADisplay dpy); 454 455 /** 456 * Set the override driver name instead of queried driver driver. 457 */ 458 VAStatus vaSetDriverName(VADisplay dpy, 459 char *driver_name 460 ); 461 462 /** 463 * Initialize the library 464 */ 465 VAStatus vaInitialize( 466 VADisplay dpy, 467 int *major_version, /* out */ 468 int *minor_version /* out */ 469 ); 470 471 /** 472 * After this call, all library internal resources will be cleaned up 473 */ 474 VAStatus vaTerminate( 475 VADisplay dpy 476 ); 477 478 /** 479 * vaQueryVendorString returns a pointer to a zero-terminated string 480 * describing some aspects of the VA implemenation on a specific 481 * hardware accelerator. The format of the returned string is vendor 482 * specific and at the discretion of the implementer. 483 * e.g. for the Intel GMA500 implementation, an example would be: 484 * "Intel GMA500 - 2.0.0.32L.0005" 485 */ 486 const char *vaQueryVendorString( 487 VADisplay dpy 488 ); 489 490 typedef int (*VAPrivFunc)(void); 491 492 /** 493 * Return a function pointer given a function name in the library. 494 * This allows private interfaces into the library 495 */ 496 VAPrivFunc vaGetLibFunc( 497 VADisplay dpy, 498 const char *func 499 ); 500 501 /** Currently defined profiles */ 502 typedef enum { 503 /** \brief Profile ID used for video processing. */ 504 VAProfileNone = -1, 505 VAProfileMPEG2Simple = 0, 506 VAProfileMPEG2Main = 1, 507 VAProfileMPEG4Simple = 2, 508 VAProfileMPEG4AdvancedSimple = 3, 509 VAProfileMPEG4Main = 4, 510 VAProfileH264Baseline va_deprecated_enum = 5, 511 VAProfileH264Main = 6, 512 VAProfileH264High = 7, 513 VAProfileVC1Simple = 8, 514 VAProfileVC1Main = 9, 515 VAProfileVC1Advanced = 10, 516 VAProfileH263Baseline = 11, 517 VAProfileJPEGBaseline = 12, 518 VAProfileH264ConstrainedBaseline = 13, 519 VAProfileVP8Version0_3 = 14, 520 VAProfileH264MultiviewHigh = 15, 521 VAProfileH264StereoHigh = 16, 522 VAProfileHEVCMain = 17, 523 VAProfileHEVCMain10 = 18, 524 VAProfileVP9Profile0 = 19, 525 VAProfileVP9Profile1 = 20, 526 VAProfileVP9Profile2 = 21, 527 VAProfileVP9Profile3 = 22, 528 VAProfileHEVCMain12 = 23, 529 VAProfileHEVCMain422_10 = 24, 530 VAProfileHEVCMain422_12 = 25, 531 VAProfileHEVCMain444 = 26, 532 VAProfileHEVCMain444_10 = 27, 533 VAProfileHEVCMain444_12 = 28, 534 VAProfileHEVCSccMain = 29, 535 VAProfileHEVCSccMain10 = 30, 536 VAProfileHEVCSccMain444 = 31, 537 VAProfileAV1Profile0 = 32, 538 VAProfileAV1Profile1 = 33, 539 VAProfileHEVCSccMain444_10 = 34, 540 /** \brief Profile ID used for protected video playback. */ 541 VAProfileProtected = 35, 542 VAProfileH264High10 = 36, 543 VAProfileVVCMain10 = 37, 544 VAProfileVVCMultilayerMain10 = 38 545 } VAProfile; 546 547 /** 548 * Currently defined entrypoints 549 */ 550 typedef enum { 551 VAEntrypointVLD = 1, 552 VAEntrypointIZZ = 2, 553 VAEntrypointIDCT = 3, 554 VAEntrypointMoComp = 4, 555 VAEntrypointDeblocking = 5, 556 VAEntrypointEncSlice = 6, /* slice level encode */ 557 VAEntrypointEncPicture = 7, /* pictuer encode, JPEG, etc */ 558 /* 559 * For an implementation that supports a low power/high performance variant 560 * for slice level encode, it can choose to expose the 561 * VAEntrypointEncSliceLP entrypoint. Certain encoding tools may not be 562 * available with this entrypoint (e.g. interlace, MBAFF) and the 563 * application can query the encoding configuration attributes to find 564 * out more details if this entrypoint is supported. 565 */ 566 VAEntrypointEncSliceLP = 8, 567 VAEntrypointVideoProc = 10, /**< Video pre/post-processing. */ 568 /** 569 * \brief VAEntrypointFEI 570 * 571 * The purpose of FEI (Flexible Encoding Infrastructure) is to allow applications to 572 * have more controls and trade off quality for speed with their own IPs. 573 * The application can optionally provide input to ENC for extra encode control 574 * and get the output from ENC. Application can chose to modify the ENC 575 * output/PAK input during encoding, but the performance impact is significant. 576 * 577 * On top of the existing buffers for normal encode, there will be 578 * one extra input buffer (VAEncMiscParameterFEIFrameControl) and 579 * three extra output buffers (VAEncFEIMVBufferType, VAEncFEIMBModeBufferType 580 * and VAEncFEIDistortionBufferType) for VAEntrypointFEI entry function. 581 * If separate PAK is set, two extra input buffers 582 * (VAEncFEIMVBufferType, VAEncFEIMBModeBufferType) are needed for PAK input. 583 **/ 584 VAEntrypointFEI = 11, 585 /** 586 * \brief VAEntrypointStats 587 * 588 * A pre-processing function for getting some statistics and motion vectors is added, 589 * and some extra controls for Encode pipeline are provided. The application can 590 * optionally call the statistics function to get motion vectors and statistics like 591 * variances, distortions before calling Encode function via this entry point. 592 * 593 * Checking whether Statistics is supported can be performed with vaQueryConfigEntrypoints(). 594 * If Statistics entry point is supported, then the list of returned entry-points will 595 * include #VAEntrypointStats. Supported pixel format, maximum resolution and statistics 596 * specific attributes can be obtained via normal attribute query. One input buffer 597 * (VAStatsStatisticsParameterBufferType) and one or two output buffers 598 * (VAStatsStatisticsBufferType, VAStatsStatisticsBottomFieldBufferType (for interlace only) 599 * and VAStatsMVBufferType) are needed for this entry point. 600 **/ 601 VAEntrypointStats = 12, 602 /** 603 * \brief VAEntrypointProtectedTEEComm 604 * 605 * A function for communicating with TEE (Trusted Execution Environment). 606 **/ 607 VAEntrypointProtectedTEEComm = 13, 608 /** 609 * \brief VAEntrypointProtectedContent 610 * 611 * A function for protected content to decrypt encrypted content. 612 **/ 613 VAEntrypointProtectedContent = 14, 614 } VAEntrypoint; 615 616 /** Currently defined configuration attribute types */ 617 typedef enum { 618 VAConfigAttribRTFormat = 0, 619 VAConfigAttribSpatialResidual = 1, 620 VAConfigAttribSpatialClipping = 2, 621 VAConfigAttribIntraResidual = 3, 622 VAConfigAttribEncryption = 4, 623 VAConfigAttribRateControl = 5, 624 625 /** @name Attributes for decoding */ 626 /**@{*/ 627 /** 628 * \brief Slice Decoding mode. Read/write. 629 * 630 * This attribute determines what mode the driver supports for slice 631 * decoding, through vaGetConfigAttributes(); and what mode the user 632 * will be providing to the driver, through vaCreateConfig(), if the 633 * driver supports those. If this attribute is not set by the user then 634 * it is assumed that VA_DEC_SLICE_MODE_NORMAL mode is used. 635 * 636 * See \c VA_DEC_SLICE_MODE_xxx for the list of slice decoding modes. 637 */ 638 VAConfigAttribDecSliceMode = 6, 639 /** 640 * \brief JPEG decoding attribute. Read-only. 641 * 642 * This attribute exposes a number of capabilities of the underlying 643 * JPEG implementation. The attribute value is partitioned into fields as defined in the 644 * VAConfigAttribValDecJPEG union. 645 */ 646 VAConfigAttribDecJPEG = 7, 647 /** 648 * \brief Decode processing support. Read/write. 649 * 650 * This attribute determines if the driver supports video processing 651 * with decoding using the decoding context in a single call, through 652 * vaGetConfigAttributes(); and if the user may use this feature, 653 * through vaCreateConfig(), if the driver supports the user scenario. 654 * The user will essentially create a regular decode VAContext. Therefore, 655 * the parameters of vaCreateContext() such as picture_width, picture_height 656 * and render_targets are in relation to the decode output parameters 657 * (not processing output parameters) as normal. 658 * If this attribute is not set by the user then it is assumed that no 659 * extra processing is done after decoding for this decode context. 660 * 661 * Since essentially the application is creating a decoder config and context, 662 * all function calls that take in the config (e.g. vaQuerySurfaceAttributes()) 663 * or context are in relation to the decoder, except those video processing 664 * function specified in the next paragraph. 665 * 666 * Once the decode config and context are created, the user must further 667 * query the supported processing filters using vaQueryVideoProcFilters(), 668 * vaQueryVideoProcFilterCaps(), vaQueryVideoProcPipelineCaps() by specifying 669 * the created decode context. The user must provide processing information 670 * and extra processing output surfaces as "additional_outputs" to the driver 671 * through VAProcPipelineParameterBufferType. The render_target specified 672 * at vaBeginPicture() time refers to the decode output surface. The 673 * target surface for the output of processing needs to be a different 674 * surface since the decode process requires the original reconstructed buffer. 675 * The "surface" member of VAProcPipelineParameterBuffer should be set to the 676 * same as "render_target" set in vaBeginPicture(), but the driver may choose 677 * to ignore this parameter. 678 */ 679 VAConfigAttribDecProcessing = 8, 680 /** @name Attributes for encoding */ 681 /**@{*/ 682 /** 683 * \brief Packed headers mode. Read/write. 684 * 685 * This attribute determines what packed headers the driver supports, 686 * through vaGetConfigAttributes(); and what packed headers the user 687 * will be providing to the driver, through vaCreateConfig(), if the 688 * driver supports those. 689 * 690 * See \c VA_ENC_PACKED_HEADER_xxx for the list of packed headers. 691 */ 692 VAConfigAttribEncPackedHeaders = 10, 693 /** 694 * \brief Interlaced mode. Read/write. 695 * 696 * This attribute determines what kind of interlaced encoding mode 697 * the driver supports. 698 * 699 * See \c VA_ENC_INTERLACED_xxx for the list of interlaced modes. 700 */ 701 VAConfigAttribEncInterlaced = 11, 702 /** 703 * \brief Maximum number of reference frames. Read-only. 704 * 705 * This attribute determines the maximum number of reference 706 * frames supported for encoding. 707 * 708 * Note: for H.264 encoding, the value represents the maximum number 709 * of reference frames for both the reference picture list 0 (bottom 710 * 16 bits) and the reference picture list 1 (top 16 bits). 711 */ 712 VAConfigAttribEncMaxRefFrames = 13, 713 /** 714 * \brief Maximum number of slices per frame. Read-only. 715 * 716 * This attribute determines the maximum number of slices the 717 * driver can support to encode a single frame. 718 */ 719 VAConfigAttribEncMaxSlices = 14, 720 /** 721 * \brief Slice structure. Read-only. 722 * 723 * This attribute determines slice structures supported by the 724 * driver for encoding. This attribute is a hint to the user so 725 * that he can choose a suitable surface size and how to arrange 726 * the encoding process of multiple slices per frame. 727 * 728 * More specifically, for H.264 encoding, this attribute 729 * determines the range of accepted values to 730 * VAEncSliceParameterBufferH264::macroblock_address and 731 * VAEncSliceParameterBufferH264::num_macroblocks. 732 * 733 * See \c VA_ENC_SLICE_STRUCTURE_xxx for the supported slice 734 * structure types. 735 */ 736 VAConfigAttribEncSliceStructure = 15, 737 /** 738 * \brief Macroblock information. Read-only. 739 * 740 * This attribute determines whether the driver supports extra 741 * encoding information per-macroblock. e.g. QP. 742 * 743 * More specifically, for H.264 encoding, if the driver returns a non-zero 744 * value for this attribute, this means the application can create 745 * additional #VAEncMacroblockParameterBufferH264 buffers referenced 746 * through VAEncSliceParameterBufferH264::macroblock_info. 747 */ 748 VAConfigAttribEncMacroblockInfo = 16, 749 /** 750 * \brief Maximum picture width. Read-only. 751 * 752 * This attribute determines the maximum picture width the driver supports 753 * for a given configuration. 754 */ 755 VAConfigAttribMaxPictureWidth = 18, 756 /** 757 * \brief Maximum picture height. Read-only. 758 * 759 * This attribute determines the maximum picture height the driver supports 760 * for a given configuration. 761 */ 762 VAConfigAttribMaxPictureHeight = 19, 763 /** 764 * \brief JPEG encoding attribute. Read-only. 765 * 766 * This attribute exposes a number of capabilities of the underlying 767 * JPEG implementation. The attribute value is partitioned into fields as defined in the 768 * VAConfigAttribValEncJPEG union. 769 */ 770 VAConfigAttribEncJPEG = 20, 771 /** 772 * \brief Encoding quality range attribute. Read-only. 773 * 774 * This attribute conveys whether the driver supports different quality level settings 775 * for encoding. A value less than or equal to 1 means that the encoder only has a single 776 * quality setting, and a value greater than 1 represents the number of quality levels 777 * that can be configured. e.g. a value of 2 means there are two distinct quality levels. 778 */ 779 VAConfigAttribEncQualityRange = 21, 780 /** 781 * \brief Encoding quantization attribute. Read-only. 782 * 783 * This attribute conveys whether the driver supports certain types of quantization methods 784 * for encoding (e.g. trellis). See \c VA_ENC_QUANTIZATION_xxx for the list of quantization methods 785 */ 786 VAConfigAttribEncQuantization = 22, 787 /** 788 * \brief Encoding intra refresh attribute. Read-only. 789 * 790 * This attribute conveys whether the driver supports certain types of intra refresh methods 791 * for encoding (e.g. adaptive intra refresh or rolling intra refresh). 792 * See \c VA_ENC_INTRA_REFRESH_xxx for intra refresh methods 793 */ 794 VAConfigAttribEncIntraRefresh = 23, 795 /** 796 * \brief Encoding skip frame attribute. Read-only. 797 * 798 * This attribute conveys whether the driver supports sending skip frame parameters 799 * (VAEncMiscParameterTypeSkipFrame) to the encoder's rate control, when the user has 800 * externally skipped frames. 801 */ 802 VAConfigAttribEncSkipFrame = 24, 803 /** 804 * \brief Encoding region-of-interest (ROI) attribute. Read-only. 805 * 806 * This attribute conveys whether the driver supports region-of-interest (ROI) encoding, 807 * based on user provided ROI rectangles. The attribute value is partitioned into fields 808 * as defined in the VAConfigAttribValEncROI union. 809 * 810 * If ROI encoding is supported, the ROI information is passed to the driver using 811 * VAEncMiscParameterTypeROI. 812 */ 813 VAConfigAttribEncROI = 25, 814 /** 815 * \brief Encoding extended rate control attribute. Read-only. 816 * 817 * This attribute conveys whether the driver supports any extended rate control features 818 * The attribute value is partitioned into fields as defined in the 819 * VAConfigAttribValEncRateControlExt union. 820 */ 821 VAConfigAttribEncRateControlExt = 26, 822 /** 823 * \brief Processing rate reporting attribute. Read-only. 824 * 825 * This attribute conveys whether the driver supports reporting of 826 * encode/decode processing rate based on certain set of parameters 827 * (i.e. levels, I frame internvals) for a given configuration. 828 * If this is supported, vaQueryProcessingRate() can be used to get 829 * encode or decode processing rate. 830 * See \c VA_PROCESSING_RATE_xxx for encode/decode processing rate 831 */ 832 VAConfigAttribProcessingRate = 27, 833 /** 834 * \brief Encoding dirty rectangle. Read-only. 835 * 836 * This attribute conveys whether the driver supports dirty rectangle. 837 * encoding, based on user provided ROI rectangles which indicate the rectangular areas 838 * where the content has changed as compared to the previous picture. The regions of the 839 * picture that are not covered by dirty rect rectangles are assumed to have not changed 840 * compared to the previous picture. The encoder may do some optimizations based on 841 * this information. The attribute value returned indicates the number of regions that 842 * are supported. e.g. A value of 0 means dirty rect encoding is not supported. If dirty 843 * rect encoding is supported, the ROI information is passed to the driver using 844 * VAEncMiscParameterTypeDirtyRect. 845 */ 846 VAConfigAttribEncDirtyRect = 28, 847 /** 848 * \brief Parallel Rate Control (hierachical B) attribute. Read-only. 849 * 850 * This attribute conveys whether the encoder supports parallel rate control. 851 * It is a integer value 0 - unsupported, > 0 - maximum layer supported. 852 * This is the way when hireachical B frames are encoded, multiple independent B frames 853 * on the same layer may be processed at same time. If supported, app may enable it by 854 * setting enable_parallel_brc in VAEncMiscParameterRateControl,and the number of B frames 855 * per layer per GOP will be passed to driver through VAEncMiscParameterParallelRateControl 856 * structure.Currently three layers are defined. 857 */ 858 VAConfigAttribEncParallelRateControl = 29, 859 /** 860 * \brief Dynamic Scaling Attribute. Read-only. 861 * 862 * This attribute conveys whether encoder is capable to determine dynamic frame 863 * resolutions adaptive to bandwidth utilization and processing power, etc. 864 * It is a boolean value 0 - unsupported, 1 - supported. 865 * If it is supported,for VP9, suggested frame resolution can be retrieved from VACodedBufferVP9Status. 866 */ 867 VAConfigAttribEncDynamicScaling = 30, 868 /** 869 * \brief frame size tolerance support 870 * it indicates the tolerance of frame size 871 */ 872 VAConfigAttribFrameSizeToleranceSupport = 31, 873 /** 874 * \brief Encode function type for FEI. 875 * 876 * This attribute conveys whether the driver supports different function types for encode. 877 * It can be VA_FEI_FUNCTION_ENC, VA_FEI_FUNCTION_PAK, or VA_FEI_FUNCTION_ENC_PAK. Currently 878 * it is for FEI entry point only. 879 * Default is VA_FEI_FUNCTION_ENC_PAK. 880 */ 881 VAConfigAttribFEIFunctionType = 32, 882 /** 883 * \brief Maximum number of FEI MV predictors. Read-only. 884 * 885 * This attribute determines the maximum number of MV predictors the driver 886 * can support to encode a single frame. 0 means no MV predictor is supported. 887 * Currently it is for FEI entry point only. 888 */ 889 VAConfigAttribFEIMVPredictors = 33, 890 /** 891 * \brief Statistics attribute. Read-only. 892 * 893 * This attribute exposes a number of capabilities of the VAEntrypointStats entry 894 * point. The attribute value is partitioned into fields as defined in the 895 * VAConfigAttribValStats union. Currently it is for VAEntrypointStats only. 896 */ 897 VAConfigAttribStats = 34, 898 /** 899 * \brief Tile Support Attribute. Read-only. 900 * 901 * This attribute conveys whether encoder is capable to support tiles. 902 * If not supported, the tile related parameters sent to encoder, such as 903 * tiling structure, should be ignored. 0 - unsupported, 1 - supported. 904 */ 905 VAConfigAttribEncTileSupport = 35, 906 /** 907 * \brief whether accept rouding setting from application. Read-only. 908 * This attribute is for encode quality, if it is report, 909 * application can change the rounding setting by VAEncMiscParameterTypeCustomRoundingControl 910 */ 911 VAConfigAttribCustomRoundingControl = 36, 912 /** 913 * \brief Encoding QP info block size attribute. Read-only. 914 * This attribute conveys the block sizes that underlying driver 915 * support for QP info for buffer #VAEncQpBuffer. 916 */ 917 VAConfigAttribQPBlockSize = 37, 918 /** 919 * \brief encode max frame size attribute. Read-only 920 * attribute value \c VAConfigAttribValMaxFrameSize represent max frame size support 921 */ 922 VAConfigAttribMaxFrameSize = 38, 923 /** \brief inter frame prediction directrion attribute. Read-only. 924 * this attribute conveys the prediction direction (backward or forword) for specific config 925 * the value could be VA_PREDICTION_DIRECTION_XXXX. it can be combined with VAConfigAttribEncMaxRefFrames 926 * to describe reference list , and the prediction direction. if this attrib is not present,both direction 927 * should be supported, no restriction. 928 * for example: normal HEVC encoding , maximum reference frame number in reflist 0 and reflist 1 is deduced 929 * by VAConfigAttribEncMaxRefFrames. so there are typical P frame, B frame, 930 * if VAConfigAttribPredictionDirection is also present. it will stipulate prediction direction in both 931 * reference list. if only one prediction direction present(such as PREVIOUS),all reference frame should be 932 * previous frame (PoC < current). 933 */ 934 VAConfigAttribPredictionDirection = 39, 935 /** \brief combined submission of multiple frames from different streams, it is optimization for different HW 936 * implementation, multiple frames encode/decode can improve HW concurrency 937 */ 938 VAConfigAttribMultipleFrame = 40, 939 /** \brief priority setting for the context. Read-Write 940 * attribute value is \c VAConfigAttribValContextPriority 941 * this setting also could be update by \c VAContextParameterUpdateBuffer 942 */ 943 VAConfigAttribContextPriority = 41, 944 /** \brief AV1 decoding features. Read-only. 945 * 946 * This attribute describes the supported features of an 947 * AV1 decoder configuration. The value returned uses the 948 * VAConfigAttribValDecAV1Features type. 949 */ 950 VAConfigAttribDecAV1Features = 42, 951 /** \brief TEE could be any HW secure device. Read-only */ 952 VAConfigAttribTEEType = 43, 953 /** \brief TEE type client is a specific module supporting specific functions in TEE. Read-only*/ 954 VAConfigAttribTEETypeClient = 44, 955 /** 956 * \brief Cipher algorithm of the protected content session. 957 * 958 * This attribute specifies the cipher algorithm of the protected content session. It 959 * could be \c VA_PC_CIPHER_AES, etc.... 960 */ 961 VAConfigAttribProtectedContentCipherAlgorithm = 45, 962 /** 963 * \brief Cipher block size of the protected content session. 964 * 965 * This attribute specifies the block size of the protected content session. It could be 966 * \c VA_PC_BLOCK_SIZE_128, \c VA_PC_BLOCK_SIZE_192, or \c VA_PC_BLOCK_SIZE_256, etc.... 967 */ 968 VAConfigAttribProtectedContentCipherBlockSize = 46, 969 /** 970 * \brief Cipher mode of the protected content session. 971 * 972 * This attribute specifies the cipher mode of the protected content session. It could 973 * be \c VA_PC_CIPHER_MODE_ECB, \c VA_PC_CIPHER_MODE_CBC, \c VA_PC_CIPHER_MODE_CTR, etc... 974 */ 975 VAConfigAttribProtectedContentCipherMode = 47, 976 /** 977 * \brief Decryption sample type of the protected content session. 978 * 979 * This attribute specifies the decryption sample type of the protected content session. 980 * It could be \c VA_PC_SAMPLE_TYPE_FULLSAMPLE or \c VA_PC_SAMPLE_TYPE_SUBSAMPLE. 981 */ 982 VAConfigAttribProtectedContentCipherSampleType = 48, 983 /** 984 * \brief Special usage attribute of the protected session. 985 * 986 * The attribute specifies the flow for the protected session could be used. For 987 * example, it could be \c VA_PC_USAGE_DEFAULT, \c VA_PC_USAGE_WIDEVINE, etc.... 988 */ 989 VAConfigAttribProtectedContentUsage = 49, 990 991 /** \brief HEVC/H.265 encoding features. Read-only. 992 * 993 * This attribute describes the supported features of an 994 * HEVC/H.265 encoder configuration. The value returned uses the 995 * VAConfigAttribValEncHEVCFeatures type. 996 * 997 * If this attribute is supported by a driver then it must also 998 * support the VAConfigAttribEncHEVCBlockSizes attribute. 999 */ 1000 VAConfigAttribEncHEVCFeatures = 50, 1001 /** \brief HEVC/H.265 encoding block sizes. Read-only. 1002 * 1003 * This attribute describes the supported coding tree and transform 1004 * block sizes of an HEVC/H.265 encoder configuration. The value 1005 * returned uses the VAConfigAttribValEncHEVCBlockSizes type. 1006 * 1007 * If this attribute is supported by a driver then it must also 1008 * support the VAConfigAttribEncHEVCFeatures attribute. 1009 */ 1010 VAConfigAttribEncHEVCBlockSizes = 51, 1011 /** 1012 * \brief AV1 encoding attribute. Read-only. 1013 * 1014 * This attribute exposes a number of capabilities of the underlying 1015 * AV1 implementation. The attribute value is partitioned into fields as defined in the 1016 * VAConfigAttribValEncAV1 union. 1017 */ 1018 VAConfigAttribEncAV1 = 52, 1019 /** 1020 * \brief AV1 encoding attribute extend1. Read-only. 1021 * 1022 * This attribute exposes a number of capabilities of the underlying 1023 * AV1 implementation. The attribute value is partitioned into fields as defined in the 1024 * VAConfigAttribValEncAV1Ext1 union. 1025 */ 1026 VAConfigAttribEncAV1Ext1 = 53, 1027 /** 1028 * \brief AV1 encoding attribute extend2. Read-only. 1029 * 1030 * This attribute exposes a number of capabilities of the underlying 1031 * AV1 implementation. The attribute value is partitioned into fields as defined in the 1032 * VAConfigAttribValEncAV1Ext2 union. 1033 */ 1034 VAConfigAttribEncAV1Ext2 = 54, 1035 /** \brief Settings per block attribute for Encoding. Read-only. 1036 * 1037 * This attribute describes whether to support delta qp per block, 1038 * the supported size of delta qp block and the size of delta QP in bytes. 1039 * The value returned uses the VAConfigAttribValEncPerBlockControl type. 1040 */ 1041 VAConfigAttribEncPerBlockControl = 55, 1042 /** 1043 * \brief Maximum number of tile rows. Read-only. 1044 * 1045 * This attribute determines the maximum number of tile 1046 * rows supported for encoding with tile support. 1047 */ 1048 VAConfigAttribEncMaxTileRows = 56, 1049 /** 1050 * \brief Maximum number of tile cols. Read-only. 1051 * 1052 * This attribute determines the maximum number of tile 1053 * columns supported for encoding with tile support. 1054 */ 1055 VAConfigAttribEncMaxTileCols = 57, 1056 /**@}*/ 1057 VAConfigAttribTypeMax 1058 } VAConfigAttribType; 1059 1060 /** 1061 * Configuration attributes 1062 * If there is more than one value for an attribute, a default 1063 * value will be assigned to the attribute if the client does not 1064 * specify the attribute when creating a configuration 1065 */ 1066 typedef struct _VAConfigAttrib { 1067 VAConfigAttribType type; 1068 uint32_t value; /* OR'd flags (bits) for this attribute */ 1069 } VAConfigAttrib; 1070 1071 /* Attribute values for VAConfigAttribRTFormat. */ 1072 1073 #define VA_RT_FORMAT_YUV420 0x00000001 ///< YUV 4:2:0 8-bit. 1074 #define VA_RT_FORMAT_YUV422 0x00000002 ///< YUV 4:2:2 8-bit. 1075 #define VA_RT_FORMAT_YUV444 0x00000004 ///< YUV 4:4:4 8-bit. 1076 #define VA_RT_FORMAT_YUV411 0x00000008 ///< YUV 4:1:1 8-bit. 1077 #define VA_RT_FORMAT_YUV400 0x00000010 ///< Greyscale 8-bit. 1078 #define VA_RT_FORMAT_YUV420_10 0x00000100 ///< YUV 4:2:0 10-bit. 1079 #define VA_RT_FORMAT_YUV422_10 0x00000200 ///< YUV 4:2:2 10-bit. 1080 #define VA_RT_FORMAT_YUV444_10 0x00000400 ///< YUV 4:4:4 10-bit. 1081 #define VA_RT_FORMAT_YUV420_12 0x00001000 ///< YUV 4:2:0 12-bit. 1082 #define VA_RT_FORMAT_YUV422_12 0x00002000 ///< YUV 4:2:2 12-bit. 1083 #define VA_RT_FORMAT_YUV444_12 0x00004000 ///< YUV 4:4:4 12-bit. 1084 1085 #define VA_RT_FORMAT_RGB16 0x00010000 ///< Packed RGB, 16 bits per pixel. 1086 #define VA_RT_FORMAT_RGB32 0x00020000 ///< Packed RGB, 32 bits per pixel, 8 bits per colour sample. 1087 #define VA_RT_FORMAT_RGBP 0x00100000 ///< Planar RGB, 8 bits per sample. 1088 #define VA_RT_FORMAT_RGB32_10 0x00200000 ///< Packed RGB, 32 bits per pixel, 10 bits per colour sample. 1089 1090 #define VA_RT_FORMAT_PROTECTED 0x80000000 1091 1092 #define VA_RT_FORMAT_RGB32_10BPP VA_RT_FORMAT_RGB32_10 ///< @deprecated use VA_RT_FORMAT_RGB32_10 instead. 1093 #define VA_RT_FORMAT_YUV420_10BPP VA_RT_FORMAT_YUV420_10 ///< @deprecated use VA_RT_FORMAT_YUV420_10 instead. 1094 1095 /** @name Attribute values for VAConfigAttribRateControl */ 1096 /**@{*/ 1097 /** \brief Driver does not support any form of rate control. */ 1098 #define VA_RC_NONE 0x00000001 1099 /** \brief Constant bitrate. */ 1100 #define VA_RC_CBR 0x00000002 1101 /** \brief Variable bitrate. */ 1102 #define VA_RC_VBR 0x00000004 1103 /** \brief Video conference mode. */ 1104 #define VA_RC_VCM 0x00000008 1105 /** \brief Constant QP. */ 1106 #define VA_RC_CQP 0x00000010 1107 /** \brief Variable bitrate with peak rate higher than average bitrate. */ 1108 #define VA_RC_VBR_CONSTRAINED 0x00000020 1109 /** \brief Intelligent Constant Quality. Provided an initial ICQ_quality_factor, 1110 * adjusts QP at a frame and MB level based on motion to improve subjective quality. */ 1111 #define VA_RC_ICQ 0x00000040 1112 /** \brief Macroblock based rate control. Per MB control is decided 1113 * internally in the encoder. It may be combined with other RC modes, except CQP. */ 1114 #define VA_RC_MB 0x00000080 1115 /** \brief Constant Frame Size, it is used for small tolerent */ 1116 #define VA_RC_CFS 0x00000100 1117 /** \brief Parallel BRC, for hierachical B. 1118 * 1119 * For hierachical B, B frames can be refered by other B frames. 1120 * Currently three layers of hierachy are defined: 1121 * B0 - regular B, no reference to other B frames. 1122 * B1 - reference to only I, P and regular B0 frames. 1123 * B2 - reference to any other frames, including B1. 1124 * In Hierachical B structure, B frames on the same layer can be processed 1125 * simultaneously. And BRC would adjust accordingly. This is so called 1126 * Parallel BRC. */ 1127 #define VA_RC_PARALLEL 0x00000200 1128 /** \brief Quality defined VBR 1129 * Use Quality factor to determine the good enough QP for each MB such that 1130 * good enough quality can be obtained without waste of bits 1131 * for this BRC mode, you must set all legacy VBR parameters 1132 * and reuse quality_factor in \c VAEncMiscParameterRateControl 1133 * */ 1134 #define VA_RC_QVBR 0x00000400 1135 /** \brief Average VBR 1136 * Average variable bitrate control algorithm focuses on overall encoding 1137 * quality while meeting the specified target bitrate, within the accuracy 1138 * range, after a convergence period. 1139 * bits_per_second in VAEncMiscParameterRateControl is target bitrate for AVBR. 1140 * Convergence is specified in the unit of frame. 1141 * window_size in VAEncMiscParameterRateControl is equal to convergence for AVBR. 1142 * Accuracy is in the range of [1,100], 1 means one percent, and so on. 1143 * target_percentage in VAEncMiscParameterRateControl is equal to accuracy for AVBR. 1144 * */ 1145 #define VA_RC_AVBR 0x00000800 1146 /** \brief Transport Controlled BRC 1147 * Specific bitrate control for real time streaming. 1148 * TCBRC can instantly react to channel change to remove or significantly reduce the delay. 1149 * Application (transport) provides channel feedback to driver through TargetFrameSize. 1150 * When channel condition is very good (almost no constraint on instant frame size), 1151 * the app should set target frame size as zero. Otherwise, channel capacity divided by fps 1152 * should be used. 1153 * */ 1154 #define VA_RC_TCBRC 0x00001000 1155 1156 /**@}*/ 1157 1158 /** @name Attribute values for VAConfigAttribDecSliceMode */ 1159 /**@{*/ 1160 /** \brief Driver supports normal mode for slice decoding */ 1161 #define VA_DEC_SLICE_MODE_NORMAL 0x00000001 1162 /** \brief Driver supports base mode for slice decoding */ 1163 #define VA_DEC_SLICE_MODE_BASE 0x00000002 1164 1165 /** @name Attribute values for VAConfigAttribDecJPEG */ 1166 /**@{*/ 1167 typedef union _VAConfigAttribValDecJPEG { 1168 struct { 1169 /** \brief Set to (1 << VA_ROTATION_xxx) for supported rotation angles. */ 1170 uint32_t rotation : 4; 1171 /** \brief set to 1 for crop and partial decode support, 0 if not supported */ 1172 uint32_t crop : 1; 1173 /** \brief Reserved for future use. */ 1174 uint32_t reserved : 27; 1175 } bits; 1176 uint32_t value; 1177 } VAConfigAttribValDecJPEG; 1178 /** @name Attribute values for VAConfigAttribDecProcessing */ 1179 /**@{*/ 1180 /** \brief No decoding + processing in a single decoding call. */ 1181 #define VA_DEC_PROCESSING_NONE 0x00000000 1182 /** \brief Decode + processing in a single decoding call. */ 1183 #define VA_DEC_PROCESSING 0x00000001 1184 /**@}*/ 1185 1186 /** @name Attribute values for VAConfigAttribEncPackedHeaders */ 1187 /**@{*/ 1188 /** \brief Driver does not support any packed headers mode. */ 1189 #define VA_ENC_PACKED_HEADER_NONE 0x00000000 1190 /** 1191 * \brief Driver supports packed sequence headers. e.g. SPS for H.264. 1192 * 1193 * Application must provide it to driver once this flag is returned through 1194 * vaGetConfigAttributes() 1195 */ 1196 #define VA_ENC_PACKED_HEADER_SEQUENCE 0x00000001 1197 /** 1198 * \brief Driver supports packed picture headers. e.g. PPS for H.264. 1199 * 1200 * Application must provide it to driver once this falg is returned through 1201 * vaGetConfigAttributes() 1202 */ 1203 #define VA_ENC_PACKED_HEADER_PICTURE 0x00000002 1204 /** 1205 * \brief Driver supports packed slice headers. e.g. slice_header() for H.264. 1206 * 1207 * Application must provide it to driver once this flag is returned through 1208 * vaGetConfigAttributes() 1209 */ 1210 #define VA_ENC_PACKED_HEADER_SLICE 0x00000004 1211 /** 1212 * \brief Driver supports misc packed headers. e.g. SEI for H.264. 1213 * 1214 * @deprecated 1215 * This is a deprecated packed header flag, All applications can use 1216 * \c VA_ENC_PACKED_HEADER_RAW_DATA to pass the corresponding packed 1217 * header data buffer to the driver 1218 */ 1219 #define VA_ENC_PACKED_HEADER_MISC 0x00000008 1220 /** \brief Driver supports raw packed header, see VAEncPackedHeaderRawData */ 1221 #define VA_ENC_PACKED_HEADER_RAW_DATA 0x00000010 1222 /**@}*/ 1223 1224 /** @name Attribute values for VAConfigAttribEncInterlaced */ 1225 /**@{*/ 1226 /** \brief Driver does not support interlaced coding. */ 1227 #define VA_ENC_INTERLACED_NONE 0x00000000 1228 /** \brief Driver supports interlaced frame coding. */ 1229 #define VA_ENC_INTERLACED_FRAME 0x00000001 1230 /** \brief Driver supports interlaced field coding. */ 1231 #define VA_ENC_INTERLACED_FIELD 0x00000002 1232 /** \brief Driver supports macroblock adaptive frame field coding. */ 1233 #define VA_ENC_INTERLACED_MBAFF 0x00000004 1234 /** \brief Driver supports picture adaptive frame field coding. */ 1235 #define VA_ENC_INTERLACED_PAFF 0x00000008 1236 /**@}*/ 1237 1238 /** @name Attribute values for VAConfigAttribEncSliceStructure */ 1239 /**@{*/ 1240 /** \brief Driver supports a power-of-two number of rows per slice. */ 1241 #define VA_ENC_SLICE_STRUCTURE_POWER_OF_TWO_ROWS 0x00000001 1242 /** \brief Driver supports an arbitrary number of macroblocks per slice. */ 1243 #define VA_ENC_SLICE_STRUCTURE_ARBITRARY_MACROBLOCKS 0x00000002 1244 /** \brief Driver support 1 row per slice */ 1245 #define VA_ENC_SLICE_STRUCTURE_EQUAL_ROWS 0x00000004 1246 /** \brief Driver support max encoded slice size per slice */ 1247 #define VA_ENC_SLICE_STRUCTURE_MAX_SLICE_SIZE 0x00000008 1248 /** \brief Driver supports an arbitrary number of rows per slice. */ 1249 #define VA_ENC_SLICE_STRUCTURE_ARBITRARY_ROWS 0x00000010 1250 /** \brief Driver supports any number of rows per slice but they must be the same 1251 * for all slices except for the last one, which must be equal or smaller 1252 * to the previous slices. */ 1253 #define VA_ENC_SLICE_STRUCTURE_EQUAL_MULTI_ROWS 0x00000020 1254 /**@}*/ 1255 1256 /** \brief Attribute value for VAConfigAttribMaxFrameSize */ 1257 typedef union _VAConfigAttribValMaxFrameSize { 1258 struct { 1259 /** \brief support max frame size 1260 * if max_frame_size == 1, VAEncMiscParameterTypeMaxFrameSize/VAEncMiscParameterBufferMaxFrameSize 1261 * could be used to set the frame size, if multiple_pass also equal 1, VAEncMiscParameterTypeMultiPassFrameSize 1262 * VAEncMiscParameterBufferMultiPassFrameSize could be used to set frame size and pass information 1263 */ 1264 uint32_t max_frame_size : 1; 1265 /** \brief multiple_pass support */ 1266 uint32_t multiple_pass : 1; 1267 /** \brief reserved bits for future, must be zero*/ 1268 uint32_t reserved : 30; 1269 } bits; 1270 uint32_t value; 1271 } VAConfigAttribValMaxFrameSize; 1272 1273 /** \brief Attribute value for VAConfigAttribEncJPEG */ 1274 typedef union _VAConfigAttribValEncJPEG { 1275 struct { 1276 /** \brief set to 1 for arithmatic coding. */ 1277 uint32_t arithmatic_coding_mode : 1; 1278 /** \brief set to 1 for progressive dct. */ 1279 uint32_t progressive_dct_mode : 1; 1280 /** \brief set to 1 for non-interleaved. */ 1281 uint32_t non_interleaved_mode : 1; 1282 /** \brief set to 1 for differential. */ 1283 uint32_t differential_mode : 1; 1284 uint32_t max_num_components : 3; 1285 uint32_t max_num_scans : 4; 1286 uint32_t max_num_huffman_tables : 3; 1287 uint32_t max_num_quantization_tables : 3; 1288 } bits; 1289 uint32_t value; 1290 } VAConfigAttribValEncJPEG; 1291 1292 /** @name Attribute values for VAConfigAttribEncQuantization */ 1293 /**@{*/ 1294 /** \brief Driver does not support special types of quantization */ 1295 #define VA_ENC_QUANTIZATION_NONE 0x00000000 1296 /** \brief Driver supports trellis quantization */ 1297 #define VA_ENC_QUANTIZATION_TRELLIS_SUPPORTED 0x00000001 1298 /**@}*/ 1299 1300 /** @name Attribute values for VAConfigAttribPredictionDirection */ 1301 /**@{*/ 1302 /** \brief Driver support forward reference frame (inter frame for vpx, P frame for H26x MPEG) 1303 * can work with the VAConfigAttribEncMaxRefFrames. for example: low delay B frame of HEVC. 1304 * these value can be OR'd together. typical value should be VA_PREDICTION_DIRECTION_PREVIOUS 1305 * or VA_PREDICTION_DIRECTION_PREVIOUS | VA_PREDICTION_DIRECTION_FUTURE, theoretically, there 1306 * are no stream only include future reference frame. 1307 */ 1308 #define VA_PREDICTION_DIRECTION_PREVIOUS 0x00000001 1309 /** \brief Driver support backward prediction frame/slice */ 1310 #define VA_PREDICTION_DIRECTION_FUTURE 0x00000002 1311 /** \brief Dirver require both reference list must be not empty for inter frame */ 1312 #define VA_PREDICTION_DIRECTION_BI_NOT_EMPTY 0x00000004 1313 /**@}*/ 1314 1315 /** @name Attribute values for VAConfigAttribEncIntraRefresh */ 1316 /**@{*/ 1317 /** \brief Driver does not support intra refresh */ 1318 #define VA_ENC_INTRA_REFRESH_NONE 0x00000000 1319 /** \brief Driver supports column based rolling intra refresh */ 1320 #define VA_ENC_INTRA_REFRESH_ROLLING_COLUMN 0x00000001 1321 /** \brief Driver supports row based rolling intra refresh */ 1322 #define VA_ENC_INTRA_REFRESH_ROLLING_ROW 0x00000002 1323 /** \brief Driver supports adaptive intra refresh */ 1324 #define VA_ENC_INTRA_REFRESH_ADAPTIVE 0x00000010 1325 /** \brief Driver supports cyclic intra refresh */ 1326 #define VA_ENC_INTRA_REFRESH_CYCLIC 0x00000020 1327 /** \brief Driver supports intra refresh of P frame*/ 1328 #define VA_ENC_INTRA_REFRESH_P_FRAME 0x00010000 1329 /** \brief Driver supports intra refresh of B frame */ 1330 #define VA_ENC_INTRA_REFRESH_B_FRAME 0x00020000 1331 /** \brief Driver supports intra refresh of multiple reference encoder */ 1332 #define VA_ENC_INTRA_REFRESH_MULTI_REF 0x00040000 1333 1334 /**@}*/ 1335 1336 /** \brief Attribute value for VAConfigAttribEncROI */ 1337 typedef union _VAConfigAttribValEncROI { 1338 struct { 1339 /** \brief The number of ROI regions supported, 0 if ROI is not supported. */ 1340 uint32_t num_roi_regions : 8; 1341 /** 1342 * \brief A flag indicates whether ROI priority is supported 1343 * 1344 * \ref roi_rc_priority_support equal to 1 specifies the underlying driver supports 1345 * ROI priority when VAConfigAttribRateControl != VA_RC_CQP, user can use \c roi_value 1346 * in #VAEncROI to set ROI priority. \ref roi_rc_priority_support equal to 0 specifies 1347 * the underlying driver doesn't support ROI priority. 1348 * 1349 * User should ignore \ref roi_rc_priority_support when VAConfigAttribRateControl == VA_RC_CQP 1350 * because ROI delta QP is always required when VAConfigAttribRateControl == VA_RC_CQP. 1351 */ 1352 uint32_t roi_rc_priority_support : 1; 1353 /** 1354 * \brief A flag indicates whether ROI delta QP is supported 1355 * 1356 * \ref roi_rc_qp_delta_support equal to 1 specifies the underlying driver supports 1357 * ROI delta QP when VAConfigAttribRateControl != VA_RC_CQP, user can use \c roi_value 1358 * in #VAEncROI to set ROI delta QP. \ref roi_rc_qp_delta_support equal to 0 specifies 1359 * the underlying driver doesn't support ROI delta QP. 1360 * 1361 * User should ignore \ref roi_rc_qp_delta_support when VAConfigAttribRateControl == VA_RC_CQP 1362 * because ROI delta QP is always required when VAConfigAttribRateControl == VA_RC_CQP. 1363 */ 1364 uint32_t roi_rc_qp_delta_support : 1; 1365 uint32_t reserved : 22; 1366 } bits; 1367 uint32_t value; 1368 } VAConfigAttribValEncROI; 1369 1370 /** \brief Attribute value for VAConfigAttribEncRateControlExt */ 1371 typedef union _VAConfigAttribValEncRateControlExt { 1372 struct { 1373 /** 1374 * \brief The maximum number of temporal layers minus 1 1375 * 1376 * \ref max_num_temporal_layers_minus1 plus 1 specifies the maximum number of temporal 1377 * layers that supported by the underlying driver. \ref max_num_temporal_layers_minus1 1378 * equal to 0 implies the underlying driver doesn't support encoding with temporal layer. 1379 */ 1380 uint32_t max_num_temporal_layers_minus1 : 8; 1381 1382 /** 1383 * /brief support temporal layer bit-rate control flag 1384 * 1385 * \ref temporal_layer_bitrate_control_flag equal to 1 specifies the underlying driver 1386 * can support bit-rate control per temporal layer when (#VAConfigAttribRateControl == #VA_RC_CBR || 1387 * #VAConfigAttribRateControl == #VA_RC_VBR). 1388 * 1389 * The underlying driver must set \ref temporal_layer_bitrate_control_flag to 0 when 1390 * \c max_num_temporal_layers_minus1 is equal to 0 1391 * 1392 * To use bit-rate control per temporal layer, an application must send the right layer 1393 * structure via #VAEncMiscParameterTemporalLayerStructure at the beginning of a coded sequence 1394 * and then followed by #VAEncMiscParameterRateControl and #VAEncMiscParameterFrameRate structures 1395 * for each layer, using the \c temporal_id field as the layer identifier. Otherwise 1396 * the driver doesn't use bitrate control per temporal layer if an application doesn't send the 1397 * layer structure via #VAEncMiscParameterTemporalLayerStructure to the driver. The driver returns 1398 * VA_STATUS_ERROR_INVALID_PARAMETER if an application sends a wrong layer structure or doesn't send 1399 * #VAEncMiscParameterRateControl and #VAEncMiscParameterFrameRate for each layer. 1400 * 1401 * The driver will ignore #VAEncMiscParameterTemporalLayerStructure and the \c temporal_id field 1402 * in #VAEncMiscParameterRateControl and #VAEncMiscParameterFrameRate if 1403 * \ref temporal_layer_bitrate_control_flag is equal to 0 or #VAConfigAttribRateControl == #VA_RC_CQP 1404 */ 1405 uint32_t temporal_layer_bitrate_control_flag : 1; 1406 uint32_t reserved : 23; 1407 } bits; 1408 uint32_t value; 1409 } VAConfigAttribValEncRateControlExt; 1410 1411 /** \brief Attribute value for VAConfigAttribMultipleFrame*/ 1412 typedef union _VAConfigAttribValMultipleFrame { 1413 struct { 1414 /** \brief max num of concurrent frames from different stream */ 1415 uint32_t max_num_concurrent_frames : 8; 1416 /** \brief indicate whether all stream must support same quality level 1417 * if mixed_quality_level == 0, same quality level setting for multple streams is required 1418 * if mixed_quality_level == 1, different stream can have different quality level*/ 1419 uint32_t mixed_quality_level : 1; 1420 /** \brief reserved bit for future, must be zero */ 1421 uint32_t reserved : 23; 1422 } bits; 1423 uint32_t value; 1424 } VAConfigAttribValMultipleFrame; 1425 1426 /** brief Attribute value VAConfigAttribValContextPriority */ 1427 typedef union _VAConfigAttribValContextPriority { 1428 struct { 1429 /** \brief the priority , for the Query operation (read) it represents highest priority 1430 * for the set operation (write), value should be [0~highest priority] , 0 is lowest priority*/ 1431 uint32_t priority : 16; 1432 /** \brief reserved bits for future, must be zero*/ 1433 uint32_t reserved : 16; 1434 } bits; 1435 uint32_t value; 1436 } VAConfigAttribValContextPriority; 1437 1438 /** brief Attribute value VAConfigAttribEncPerBlockControl */ 1439 typedef union _VAConfigAttribValEncPerBlockControl { 1440 struct { 1441 /** \brief whether to support dela qp per block */ 1442 uint32_t delta_qp_support : 1; 1443 /** \brief supported size of delta qp block */ 1444 uint32_t log2_delta_qp_block_size : 4; 1445 /** \brief size of delta qp per block in bytes*/ 1446 uint32_t delta_qp_size_in_bytes : 3; 1447 /** \brief reserved bit for future, must be zero */ 1448 uint32_t reserved : 24; 1449 } bits; 1450 uint32_t value; 1451 } VAConfigAttribValEncPerBlockControl; 1452 1453 /** @name Attribute values for VAConfigAttribProtectedContentCipherAlgorithm */ 1454 /** \brief AES cipher */ 1455 #define VA_PC_CIPHER_AES 0x00000001 1456 1457 /** @name Attribute values for VAConfigAttribProtectedContentCipherBlockSize */ 1458 /** \brief 128 bits block size */ 1459 #define VA_PC_BLOCK_SIZE_128 0x00000001 1460 /** \brief 192 bits block size */ 1461 #define VA_PC_BLOCK_SIZE_192 0x00000002 1462 /** \brief 256 bits block size */ 1463 #define VA_PC_BLOCK_SIZE_256 0x00000004 1464 1465 /** @name Attribute values for VAConfigAttribProtectedContentCipherMode */ 1466 /** \brief AES ECB */ 1467 #define VA_PC_CIPHER_MODE_ECB 0x00000001 1468 /** \brief AES CBC */ 1469 #define VA_PC_CIPHER_MODE_CBC 0x00000002 1470 /** \brief AES CTR */ 1471 #define VA_PC_CIPHER_MODE_CTR 0x00000004 1472 1473 /** @name Attribute values for VAConfigAttribProtectedContentCipherSampleType */ 1474 /** \brief Full sample */ 1475 #define VA_PC_SAMPLE_TYPE_FULLSAMPLE 0x00000001 1476 /** \brief Sub sample */ 1477 #define VA_PC_SAMPLE_TYPE_SUBSAMPLE 0x00000002 1478 1479 /** @name Attribute values for VAConfigAttribProtectedContentUsage */ 1480 /** \brief Default usage */ 1481 #define VA_PC_USAGE_DEFAULT 0x00000000 1482 /** \brief Widevine */ 1483 #define VA_PC_USAGE_WIDEVINE 0x00000001 1484 1485 /** @name Attribute values for VAConfigAttribProcessingRate. */ 1486 /**@{*/ 1487 /** \brief Driver does not support processing rate report */ 1488 #define VA_PROCESSING_RATE_NONE 0x00000000 1489 /** \brief Driver supports encode processing rate report */ 1490 #define VA_PROCESSING_RATE_ENCODE 0x00000001 1491 /** \brief Driver supports decode processing rate report */ 1492 #define VA_PROCESSING_RATE_DECODE 0x00000002 1493 /**@}*/ 1494 /** 1495 * if an attribute is not applicable for a given 1496 * profile/entrypoint pair, then set the value to the following 1497 */ 1498 #define VA_ATTRIB_NOT_SUPPORTED 0x80000000 1499 1500 /** Get maximum number of profiles supported by the implementation */ 1501 int vaMaxNumProfiles( 1502 VADisplay dpy 1503 ); 1504 1505 /** Get maximum number of entrypoints supported by the implementation */ 1506 int vaMaxNumEntrypoints( 1507 VADisplay dpy 1508 ); 1509 1510 /** Get maximum number of attributs supported by the implementation */ 1511 int vaMaxNumConfigAttributes( 1512 VADisplay dpy 1513 ); 1514 1515 /** 1516 * Query supported profiles 1517 * The caller must provide a "profile_list" array that can hold at 1518 * least vaMaxNumProfile() entries. The actual number of profiles 1519 * returned in "profile_list" is returned in "num_profile". 1520 */ 1521 VAStatus vaQueryConfigProfiles( 1522 VADisplay dpy, 1523 VAProfile *profile_list, /* out */ 1524 int *num_profiles /* out */ 1525 ); 1526 1527 /** 1528 * Query supported entrypoints for a given profile 1529 * The caller must provide an "entrypoint_list" array that can hold at 1530 * least vaMaxNumEntrypoints() entries. The actual number of entrypoints 1531 * returned in "entrypoint_list" is returned in "num_entrypoints". 1532 */ 1533 VAStatus vaQueryConfigEntrypoints( 1534 VADisplay dpy, 1535 VAProfile profile, 1536 VAEntrypoint *entrypoint_list, /* out */ 1537 int *num_entrypoints /* out */ 1538 ); 1539 1540 /** 1541 * Get attributes for a given profile/entrypoint pair 1542 * The caller must provide an "attrib_list" with all attributes to be 1543 * retrieved. Upon return, the attributes in "attrib_list" have been 1544 * updated with their value. Unknown attributes or attributes that are 1545 * not supported for the given profile/entrypoint pair will have their 1546 * value set to VA_ATTRIB_NOT_SUPPORTED 1547 */ 1548 VAStatus vaGetConfigAttributes( 1549 VADisplay dpy, 1550 VAProfile profile, 1551 VAEntrypoint entrypoint, 1552 VAConfigAttrib *attrib_list, /* in/out */ 1553 int num_attribs 1554 ); 1555 1556 /** Generic ID type, can be re-typed for specific implementation */ 1557 typedef unsigned int VAGenericID; 1558 1559 typedef VAGenericID VAConfigID; 1560 1561 /** 1562 * Create a configuration for the video decode/encode/processing pipeline 1563 * it passes in the attribute list that specifies the attributes it cares 1564 * about, with the rest taking default values. 1565 */ 1566 VAStatus vaCreateConfig( 1567 VADisplay dpy, 1568 VAProfile profile, 1569 VAEntrypoint entrypoint, 1570 VAConfigAttrib *attrib_list, 1571 int num_attribs, 1572 VAConfigID *config_id /* out */ 1573 ); 1574 1575 /** 1576 * Free resources associdated with a given config 1577 */ 1578 VAStatus vaDestroyConfig( 1579 VADisplay dpy, 1580 VAConfigID config_id 1581 ); 1582 1583 /** 1584 * Query all attributes for a given configuration 1585 * The profile of the configuration is returned in "profile" 1586 * The entrypoint of the configuration is returned in "entrypoint" 1587 * The caller must provide an "attrib_list" array that can hold at least 1588 * vaMaxNumConfigAttributes() entries. The actual number of attributes 1589 * returned in "attrib_list" is returned in "num_attribs" 1590 */ 1591 VAStatus vaQueryConfigAttributes( 1592 VADisplay dpy, 1593 VAConfigID config_id, 1594 VAProfile *profile, /* out */ 1595 VAEntrypoint *entrypoint, /* out */ 1596 VAConfigAttrib *attrib_list,/* out */ 1597 int *num_attribs /* out */ 1598 ); 1599 1600 1601 /** 1602 * Contexts and Surfaces 1603 * 1604 * Context represents a "virtual" video decode, encode or video processing 1605 * pipeline. Surfaces are render targets for a given context. The data in the 1606 * surfaces are not accessible to the client except if derived image is supported 1607 * and the internal data format of the surface is implementation specific. 1608 * 1609 * Surfaces are provided as a hint of what surfaces will be used when the context 1610 * is created through vaCreateContext(). A surface may be used by different contexts 1611 * at the same time as soon as application can make sure the operations are synchronized 1612 * between different contexts, e.g. a surface is used as the output of a decode context 1613 * and the input of a video process context. Surfaces can only be destroyed after all 1614 * contexts using these surfaces have been destroyed. 1615 * 1616 * Both contexts and surfaces are identified by unique IDs and its 1617 * implementation specific internals are kept opaque to the clients 1618 */ 1619 1620 typedef VAGenericID VAContextID; 1621 1622 typedef VAGenericID VASurfaceID; 1623 1624 #define VA_INVALID_ID 0xffffffff 1625 #define VA_INVALID_SURFACE VA_INVALID_ID 1626 1627 /** \brief Generic value types. */ 1628 typedef enum { 1629 VAGenericValueTypeInteger = 1, /**< 32-bit signed integer. */ 1630 VAGenericValueTypeFloat, /**< 32-bit floating-point value. */ 1631 VAGenericValueTypePointer, /**< Generic pointer type */ 1632 VAGenericValueTypeFunc /**< Pointer to function */ 1633 } VAGenericValueType; 1634 1635 /** \brief Generic function type. */ 1636 typedef void (*VAGenericFunc)(void); 1637 1638 /** \brief Generic value. */ 1639 typedef struct _VAGenericValue { 1640 /** \brief Value type. See #VAGenericValueType. */ 1641 VAGenericValueType type; 1642 /** \brief Value holder. */ 1643 union { 1644 /** \brief 32-bit signed integer. */ 1645 int32_t i; 1646 /** \brief 32-bit float. */ 1647 float f; 1648 /** \brief Generic pointer. */ 1649 void *p; 1650 /** \brief Pointer to function. */ 1651 VAGenericFunc fn; 1652 } value; 1653 } VAGenericValue; 1654 1655 /** @name Surface attribute flags */ 1656 /**@{*/ 1657 /** \brief Surface attribute is not supported. */ 1658 #define VA_SURFACE_ATTRIB_NOT_SUPPORTED 0x00000000 1659 /** \brief Surface attribute can be got through vaQuerySurfaceAttributes(). */ 1660 #define VA_SURFACE_ATTRIB_GETTABLE 0x00000001 1661 /** \brief Surface attribute can be set through vaCreateSurfaces(). */ 1662 #define VA_SURFACE_ATTRIB_SETTABLE 0x00000002 1663 /**@}*/ 1664 1665 /** \brief Surface attribute types. */ 1666 typedef enum { 1667 VASurfaceAttribNone = 0, 1668 /** 1669 * \brief Pixel format as a FOURCC (int, read/write). 1670 * 1671 * When vaQuerySurfaceAttributes() is called, the driver will return one 1672 * PixelFormat attribute per supported pixel format. 1673 * 1674 * When provided as an input to vaCreateSurfaces(), the driver will 1675 * allocate a surface with the provided pixel format. 1676 */ 1677 VASurfaceAttribPixelFormat, 1678 /** \brief Minimal width in pixels (int, read-only). */ 1679 VASurfaceAttribMinWidth, 1680 /** \brief Maximal width in pixels (int, read-only). */ 1681 VASurfaceAttribMaxWidth, 1682 /** \brief Minimal height in pixels (int, read-only). */ 1683 VASurfaceAttribMinHeight, 1684 /** \brief Maximal height in pixels (int, read-only). */ 1685 VASurfaceAttribMaxHeight, 1686 /** \brief Surface memory type expressed in bit fields (int, read/write). */ 1687 VASurfaceAttribMemoryType, 1688 /** \brief External buffer descriptor (pointer, write). 1689 * 1690 * Refer to the documentation for the memory type being created to 1691 * determine what descriptor structure to pass here. If not otherwise 1692 * stated, the common VASurfaceAttribExternalBuffers should be used. 1693 */ 1694 VASurfaceAttribExternalBufferDescriptor, 1695 /** \brief Surface usage hint, gives the driver a hint of intended usage 1696 * to optimize allocation (e.g. tiling) (int, read/write). */ 1697 VASurfaceAttribUsageHint, 1698 /** \brief List of possible DRM format modifiers (pointer, write). 1699 * 1700 * The value must be a pointer to a VADRMFormatModifierList. This can only 1701 * be used when allocating a new buffer, it's invalid to use this attribute 1702 * when importing an existing buffer. 1703 */ 1704 VASurfaceAttribDRMFormatModifiers, 1705 /** \brief width and height log2 aligment in pixels (int, read-only) 1706 * 1707 * For special HW requirement used in some codecs, if 1708 * VASurfaceAttribAlignmentSize is not implemented in the driver, then 1709 * the surface_width and surface_height should keep the original logic 1710 * without any modification, this is an add-on requirement to 1711 * surface_width and surface_height. 1712 */ 1713 VASurfaceAttribAlignmentSize, 1714 /** \brief Number of surface attributes. */ 1715 VASurfaceAttribCount 1716 } VASurfaceAttribType; 1717 1718 /** \brief Surface attribute. */ 1719 typedef struct _VASurfaceAttrib { 1720 /** \brief Type. */ 1721 VASurfaceAttribType type; 1722 /** \brief Flags. See "Surface attribute flags". */ 1723 uint32_t flags; 1724 /** \brief Value. See "Surface attribute types" for the expected types. */ 1725 VAGenericValue value; 1726 } VASurfaceAttrib; 1727 1728 /** 1729 * @name VASurfaceAttribMemoryType values in bit fields. 1730 * Bits 0:7 are reserved for generic types. Bits 31:28 are reserved for 1731 * Linux DRM. Bits 23:20 are reserved for Android. Bits 19:16 are reserved for Win32. 1732 * DRM, Android and Win32 specific types are defined in respective va_*.h header files. 1733 */ 1734 /**@{*/ 1735 /** \brief VA memory type (default) is supported. */ 1736 #define VA_SURFACE_ATTRIB_MEM_TYPE_VA 0x00000001 1737 /** \brief V4L2 buffer memory type is supported. */ 1738 #define VA_SURFACE_ATTRIB_MEM_TYPE_V4L2 0x00000002 1739 /** \brief User pointer memory type is supported. */ 1740 #define VA_SURFACE_ATTRIB_MEM_TYPE_USER_PTR 0x00000004 1741 /**@}*/ 1742 /** 1743 * \brief VASurfaceAttribAlignmentStruct structure for 1744 * the VASurfaceAttribAlignmentSize attribute. 1745 */ 1746 typedef union _VASurfaceAttribAlignmentStruct { 1747 struct { 1748 /** \brief log2 width aligment */ 1749 uint32_t log2_width_alignment : 4; 1750 /** \brief log2 height aligment */ 1751 uint32_t log2_height_alignment : 4; 1752 uint32_t reserved : 24; 1753 } bits; 1754 uint32_t value; 1755 } VASurfaceAttribAlignmentStruct; 1756 1757 /** 1758 * \brief VASurfaceAttribExternalBuffers structure for 1759 * the VASurfaceAttribExternalBufferDescriptor attribute. 1760 */ 1761 typedef struct _VASurfaceAttribExternalBuffers { 1762 /** \brief pixel format in fourcc. */ 1763 uint32_t pixel_format; 1764 /** \brief width in pixels. */ 1765 uint32_t width; 1766 /** \brief height in pixels. */ 1767 uint32_t height; 1768 /** \brief total size of the buffer in bytes. */ 1769 uint32_t data_size; 1770 /** \brief number of planes for planar layout */ 1771 uint32_t num_planes; 1772 /** \brief pitch for each plane in bytes */ 1773 uint32_t pitches[4]; 1774 /** \brief offset for each plane in bytes */ 1775 uint32_t offsets[4]; 1776 /** \brief buffer handles or user pointers */ 1777 uintptr_t *buffers; 1778 /** \brief number of elements in the "buffers" array */ 1779 uint32_t num_buffers; 1780 /** \brief flags. See "Surface external buffer descriptor flags". */ 1781 uint32_t flags; 1782 /** \brief reserved for passing private data */ 1783 void *private_data; 1784 } VASurfaceAttribExternalBuffers; 1785 1786 /** @name VASurfaceAttribExternalBuffers flags */ 1787 /**@{*/ 1788 /** \brief Enable memory tiling */ 1789 #define VA_SURFACE_EXTBUF_DESC_ENABLE_TILING 0x00000001 1790 /** \brief Memory is cacheable */ 1791 #define VA_SURFACE_EXTBUF_DESC_CACHED 0x00000002 1792 /** \brief Memory is non-cacheable */ 1793 #define VA_SURFACE_EXTBUF_DESC_UNCACHED 0x00000004 1794 /** \brief Memory is write-combined */ 1795 #define VA_SURFACE_EXTBUF_DESC_WC 0x00000008 1796 /** \brief Memory is protected */ 1797 #define VA_SURFACE_EXTBUF_DESC_PROTECTED 0x80000000 1798 1799 /** @name VASurfaceAttribUsageHint attribute usage hint flags */ 1800 /**@{*/ 1801 /** \brief Surface usage not indicated. */ 1802 #define VA_SURFACE_ATTRIB_USAGE_HINT_GENERIC 0x00000000 1803 /** \brief Surface used by video decoder. */ 1804 #define VA_SURFACE_ATTRIB_USAGE_HINT_DECODER 0x00000001 1805 /** \brief Surface used by video encoder. */ 1806 #define VA_SURFACE_ATTRIB_USAGE_HINT_ENCODER 0x00000002 1807 /** \brief Surface read by video post-processing. */ 1808 #define VA_SURFACE_ATTRIB_USAGE_HINT_VPP_READ 0x00000004 1809 /** \brief Surface written by video post-processing. */ 1810 #define VA_SURFACE_ATTRIB_USAGE_HINT_VPP_WRITE 0x00000008 1811 /** \brief Surface used for display. */ 1812 #define VA_SURFACE_ATTRIB_USAGE_HINT_DISPLAY 0x00000010 1813 /** \brief Surface used for export to third-party APIs, e.g. via 1814 * vaExportSurfaceHandle(). */ 1815 #define VA_SURFACE_ATTRIB_USAGE_HINT_EXPORT 0x00000020 1816 1817 /**@}*/ 1818 1819 /** 1820 * \brief Queries surface attributes for the supplied config. 1821 * 1822 * This function queries for all supported attributes for the 1823 * supplied VA \c config. In particular, if the underlying hardware 1824 * supports the creation of VA surfaces in various formats, then 1825 * this function will enumerate all pixel formats that are supported. 1826 * 1827 * The \c attrib_list array is allocated by the user and \c 1828 * num_attribs shall be initialized to the number of allocated 1829 * elements in that array. Upon successful return, the actual number 1830 * of attributes will be overwritten into \c num_attribs. Otherwise, 1831 * \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and \c num_attribs 1832 * is adjusted to the number of elements that would be returned if 1833 * enough space was available. 1834 * 1835 * Note: it is perfectly valid to pass NULL to the \c attrib_list 1836 * argument when vaQuerySurfaceAttributes() is used to determine the 1837 * actual number of elements that need to be allocated. 1838 * 1839 * @param[in] dpy the VA display 1840 * @param[in] config the config identifying a codec or a video 1841 * processing pipeline 1842 * @param[out] attrib_list the output array of #VASurfaceAttrib elements 1843 * @param[in,out] num_attribs the number of elements allocated on 1844 * input, the number of elements actually filled in output 1845 */ 1846 VAStatus 1847 vaQuerySurfaceAttributes( 1848 VADisplay dpy, 1849 VAConfigID config, 1850 VASurfaceAttrib *attrib_list, 1851 unsigned int *num_attribs 1852 ); 1853 1854 /** 1855 * \brief Creates an array of surfaces 1856 * 1857 * Creates an array of surfaces. The optional list of attributes shall 1858 * be constructed based on what the underlying hardware could expose 1859 * through vaQuerySurfaceAttributes(). 1860 * 1861 * @param[in] dpy the VA display 1862 * @param[in] format the desired surface format. See \c VA_RT_FORMAT_* 1863 * @param[in] width the surface width 1864 * @param[in] height the surface height 1865 * @param[out] surfaces the array of newly created surfaces 1866 * @param[in] num_surfaces the number of surfaces to create 1867 * @param[in] attrib_list the list of (optional) attributes, or \c NULL 1868 * @param[in] num_attribs the number of attributes supplied in 1869 * \c attrib_list, or zero 1870 */ 1871 VAStatus 1872 vaCreateSurfaces( 1873 VADisplay dpy, 1874 unsigned int format, 1875 unsigned int width, 1876 unsigned int height, 1877 VASurfaceID *surfaces, 1878 unsigned int num_surfaces, 1879 VASurfaceAttrib *attrib_list, 1880 unsigned int num_attribs 1881 ); 1882 1883 /** 1884 * vaDestroySurfaces - Destroy resources associated with surfaces. 1885 * Surfaces can only be destroyed after all contexts using these surfaces have been 1886 * destroyed. 1887 * dpy: display 1888 * surfaces: array of surfaces to destroy 1889 * num_surfaces: number of surfaces in the array to be destroyed. 1890 */ 1891 VAStatus vaDestroySurfaces( 1892 VADisplay dpy, 1893 VASurfaceID *surfaces, 1894 int num_surfaces 1895 ); 1896 1897 #define VA_PROGRESSIVE 0x1 1898 /** 1899 * vaCreateContext - Create a context 1900 * dpy: display 1901 * config_id: configuration for the context 1902 * picture_width: coded picture width 1903 * picture_height: coded picture height 1904 * flag: any combination of the following: 1905 * VA_PROGRESSIVE (only progressive frame pictures in the sequence when set) 1906 * render_targets: a hint for render targets (surfaces) tied to the context 1907 * num_render_targets: number of render targets in the above array 1908 * context: created context id upon return 1909 */ 1910 VAStatus vaCreateContext( 1911 VADisplay dpy, 1912 VAConfigID config_id, 1913 int picture_width, 1914 int picture_height, 1915 int flag, 1916 VASurfaceID *render_targets, 1917 int num_render_targets, 1918 VAContextID *context /* out */ 1919 ); 1920 1921 /** 1922 * vaDestroyContext - Destroy a context 1923 * dpy: display 1924 * context: context to be destroyed 1925 */ 1926 VAStatus vaDestroyContext( 1927 VADisplay dpy, 1928 VAContextID context 1929 ); 1930 1931 //Multi-frame context 1932 typedef VAGenericID VAMFContextID; 1933 /** 1934 * vaCreateMFContext - Create a multi-frame context 1935 * interface encapsulating common for all streams memory objects and structures 1936 * required for single GPU task submission from several VAContextID's. 1937 * Allocation: This call only creates an instance, doesn't allocate any additional memory. 1938 * Support identification: Application can identify multi-frame feature support by ability 1939 * to create multi-frame context. If driver supports multi-frame - call successful, 1940 * mf_context != NULL and VAStatus = VA_STATUS_SUCCESS, otherwise if multi-frame processing 1941 * not supported driver returns VA_STATUS_ERROR_UNIMPLEMENTED and mf_context = NULL. 1942 * return values: 1943 * VA_STATUS_SUCCESS - operation successful. 1944 * VA_STATUS_ERROR_UNIMPLEMENTED - no support for multi-frame. 1945 * dpy: display adapter. 1946 * mf_context: Multi-Frame context encapsulating all associated context 1947 * for multi-frame submission. 1948 */ 1949 VAStatus vaCreateMFContext( 1950 VADisplay dpy, 1951 VAMFContextID *mf_context /* out */ 1952 ); 1953 1954 /** 1955 * vaMFAddContext - Provide ability to associate each context used for 1956 * Multi-Frame submission and common Multi-Frame context. 1957 * Try to add context to understand if it is supported. 1958 * Allocation: this call allocates and/or reallocates all memory objects 1959 * common for all contexts associated with particular Multi-Frame context. 1960 * All memory required for each context(pixel buffers, internal driver 1961 * buffers required for processing) allocated during standard vaCreateContext call for each context. 1962 * Runtime dependency - if current implementation doesn't allow to run different entry points/profile, 1963 * first context added will set entry point/profile for whole Multi-Frame context, 1964 * all other entry points and profiles can be rejected to be added. 1965 * Return values: 1966 * VA_STATUS_SUCCESS - operation successful, context was added. 1967 * VA_STATUS_ERROR_OPERATION_FAILED - something unexpected happened - application have to close 1968 * current mf_context and associated contexts and start working with new ones. 1969 * VA_STATUS_ERROR_INVALID_CONTEXT - ContextID is invalid, means: 1970 * 1 - mf_context is not valid context or 1971 * 2 - driver can't suport different VAEntrypoint or VAProfile simultaneosly 1972 * and current context contradicts with previously added, application can continue with current mf_context 1973 * and other contexts passed this call, rejected context can continue work in stand-alone 1974 * mode or other mf_context. 1975 * VA_STATUS_ERROR_UNSUPPORTED_ENTRYPOINT - particular context being added was created with with 1976 * unsupported VAEntrypoint. Application can continue with current mf_context 1977 * and other contexts passed this call, rejected context can continue work in stand-alone 1978 * mode. 1979 * VA_STATUS_ERROR_UNSUPPORTED_PROFILE - Current context with Particular VAEntrypoint is supported 1980 * but VAProfile is not supported. Application can continue with current mf_context 1981 * and other contexts passed this call, rejected context can continue work in stand-alone 1982 * mode. 1983 * dpy: display adapter. 1984 * context: context being associated with Multi-Frame context. 1985 * mf_context: - multi-frame context used to associate contexts for multi-frame submission. 1986 */ 1987 VAStatus vaMFAddContext( 1988 VADisplay dpy, 1989 VAMFContextID mf_context, 1990 VAContextID context 1991 ); 1992 1993 /** 1994 * vaMFReleaseContext - Removes context from multi-frame and 1995 * association with multi-frame context. 1996 * After association removed vaEndPicture will submit tasks, but not vaMFSubmit. 1997 * Return values: 1998 * VA_STATUS_SUCCESS - operation successful, context was removed. 1999 * VA_STATUS_ERROR_OPERATION_FAILED - something unexpected happened. 2000 * application need to destroy this VAMFContextID and all assotiated VAContextID 2001 * dpy: display 2002 * mf_context: VAMFContextID where context is added 2003 * context: VAContextID to be added 2004 */ 2005 VAStatus vaMFReleaseContext( 2006 VADisplay dpy, 2007 VAMFContextID mf_context, 2008 VAContextID context 2009 ); 2010 2011 /** 2012 * Buffers 2013 * Buffers are used to pass various types of data from the 2014 * client to the server. The server maintains a data store 2015 * for each buffer created, and the client idenfies a buffer 2016 * through a unique buffer id assigned by the server. 2017 */ 2018 2019 typedef VAGenericID VABufferID; 2020 2021 typedef enum { 2022 VAPictureParameterBufferType = 0, 2023 VAIQMatrixBufferType = 1, 2024 VABitPlaneBufferType = 2, 2025 VASliceGroupMapBufferType = 3, 2026 VASliceParameterBufferType = 4, 2027 VASliceDataBufferType = 5, 2028 VAMacroblockParameterBufferType = 6, 2029 VAResidualDataBufferType = 7, 2030 VADeblockingParameterBufferType = 8, 2031 VAImageBufferType = 9, 2032 VAProtectedSliceDataBufferType = 10, 2033 VAQMatrixBufferType = 11, 2034 VAHuffmanTableBufferType = 12, 2035 VAProbabilityBufferType = 13, 2036 2037 /* Following are encode buffer types */ 2038 VAEncCodedBufferType = 21, 2039 VAEncSequenceParameterBufferType = 22, 2040 VAEncPictureParameterBufferType = 23, 2041 VAEncSliceParameterBufferType = 24, 2042 VAEncPackedHeaderParameterBufferType = 25, 2043 VAEncPackedHeaderDataBufferType = 26, 2044 VAEncMiscParameterBufferType = 27, 2045 VAEncMacroblockParameterBufferType = 28, 2046 VAEncMacroblockMapBufferType = 29, 2047 2048 /** 2049 * \brief Encoding QP buffer 2050 * 2051 * This buffer contains QP per MB for encoding. Currently 2052 * VAEncQPBufferH264 is defined for H.264 encoding, see 2053 * #VAEncQPBufferH264 for details 2054 */ 2055 VAEncQPBufferType = 30, 2056 /* Following are video processing buffer types */ 2057 /** 2058 * \brief Video processing pipeline parameter buffer. 2059 * 2060 * This buffer describes the video processing pipeline. See 2061 * #VAProcPipelineParameterBuffer for details. 2062 */ 2063 VAProcPipelineParameterBufferType = 41, 2064 /** 2065 * \brief Video filter parameter buffer. 2066 * 2067 * This buffer describes the video filter parameters. All buffers 2068 * inherit from #VAProcFilterParameterBufferBase, thus including 2069 * a unique filter buffer type. 2070 * 2071 * The default buffer used by most filters is #VAProcFilterParameterBuffer. 2072 * Filters requiring advanced parameters include, but are not limited to, 2073 * deinterlacing (#VAProcFilterParameterBufferDeinterlacing), 2074 * color balance (#VAProcFilterParameterBufferColorBalance), etc. 2075 */ 2076 VAProcFilterParameterBufferType = 42, 2077 /** 2078 * \brief FEI specific buffer types 2079 */ 2080 VAEncFEIMVBufferType = 43, 2081 VAEncFEIMBCodeBufferType = 44, 2082 VAEncFEIDistortionBufferType = 45, 2083 VAEncFEIMBControlBufferType = 46, 2084 VAEncFEIMVPredictorBufferType = 47, 2085 VAStatsStatisticsParameterBufferType = 48, 2086 /** \brief Statistics output for VAEntrypointStats progressive and top field of interlaced case*/ 2087 VAStatsStatisticsBufferType = 49, 2088 /** \brief Statistics output for VAEntrypointStats bottom field of interlaced case*/ 2089 VAStatsStatisticsBottomFieldBufferType = 50, 2090 VAStatsMVBufferType = 51, 2091 VAStatsMVPredictorBufferType = 52, 2092 /** Force MB's to be non skip for encode.it's per-mb control buffer, The width of the MB map 2093 * Surface is (width of the Picture in MB unit) * 1 byte, multiple of 64 bytes. 2094 * The height is (height of the picture in MB unit). The picture is either 2095 * frame or non-interleaved top or bottom field. If the application provides this 2096 *surface, it will override the "skipCheckDisable" setting in VAEncMiscParameterEncQuality. 2097 */ 2098 VAEncMacroblockDisableSkipMapBufferType = 53, 2099 /** 2100 * \brief HEVC FEI CTB level cmd buffer 2101 * it is CTB level information for future usage. 2102 */ 2103 VAEncFEICTBCmdBufferType = 54, 2104 /** 2105 * \brief HEVC FEI CU level data buffer 2106 * it's CTB level information for future usage 2107 */ 2108 VAEncFEICURecordBufferType = 55, 2109 /** decode stream out buffer, intermedia data of decode, it may include MV, MB mode etc. 2110 * it can be used to detect motion and analyze the frame contain */ 2111 VADecodeStreamoutBufferType = 56, 2112 2113 /** \brief HEVC Decoding Subset Parameter buffer type 2114 * 2115 * The subsets parameter buffer is concatenation with one or multiple 2116 * subset entry point offsets. All the offset values are layed out one 2117 * by one according to slice order with first slice segment first, second 2118 * slice segment second, etc... The entry number is indicated by parameter 2119 * \ref num_entry_point_offsets. And the first entry position of the entry 2120 * point offsets for any slice segment is indicated by parameter 2121 * entry_offset_to_subset_array in VAPictureParameterBufferHEVC data structure. 2122 */ 2123 VASubsetsParameterBufferType = 57, 2124 /** \brief adjust context parameters dynamically 2125 * 2126 * this parameter is used to update context parameters, detail parameter is in 2127 * \c VAContextParameterUpdateBuffer 2128 */ 2129 VAContextParameterUpdateBufferType = 58, 2130 /** 2131 * \brief Protected session execution buffer type 2132 * 2133 * It's for TEE execution usage (vaProtectedSessionExecute()). The buffer structure is in 2134 * \c VAProtectedSessionExecuteBuffer 2135 */ 2136 VAProtectedSessionExecuteBufferType = 59, 2137 2138 /** \brief Encryption parameters buffer for protected content session. 2139 * 2140 * Refer to \c VAEncryptionParameters 2141 */ 2142 VAEncryptionParameterBufferType = 60, 2143 2144 /** 2145 * \brief Encoding delta QP per block buffer 2146 * 2147 * This buffer only could be created and accepted 2148 * when \c VAConfigAttribValEncPerBlockControl delta_qp_support == 1. 2149 * This input buffer contains delta QP per block for encoding. 2150 * The supported size of delta QP block and the size of delta QP 2151 * must be quried from \c VAConfigAttribValEncPerBlockControl. 2152 */ 2153 VAEncDeltaQpPerBlockBufferType = 61, 2154 2155 /** 2156 * \brief VVC ALF data buffer 2157 * 2158 * Refer to \c VAAlfDataVVC 2159 */ 2160 VAAlfBufferType = 62, 2161 /** 2162 * \brief VVC LMCS data buffer 2163 * 2164 * Refer to \c VALmcsDataVVC 2165 */ 2166 VALmcsBufferType = 63, 2167 /** 2168 * \brief VVC SubPic data buffer 2169 * 2170 * Refer to \c VASubPicVVC 2171 */ 2172 VASubPicBufferType = 64, 2173 /** 2174 * \brief VVC Tile Dimension data buffer 2175 * 2176 * Data buffer of tile widths and heights, with each element formatted as uint16_t 2177 */ 2178 VATileBufferType = 65, 2179 /** 2180 * \brief VVC Slice Structure data buffer 2181 * 2182 * Refer to \c VASliceStructVVC 2183 */ 2184 VASliceStructBufferType = 66, 2185 2186 VABufferTypeMax 2187 } VABufferType; 2188 2189 /** \brief update the context parameter 2190 * this structure is used to update context parameters, such as priority of the context 2191 * backend driver should keep the parameter unchanged if there no new 2192 * parameter updated. 2193 */ 2194 typedef struct _VAContextParameterUpdateBuffer { 2195 union { 2196 struct { 2197 /** \brief indicate whether context priority changed */ 2198 uint32_t context_priority_update : 1; 2199 /** \brief Reserved bits for future use, must be zero */ 2200 uint32_t reserved : 31; 2201 } bits; 2202 uint32_t value; 2203 } flags; 2204 /** \brief task/context priority */ 2205 VAConfigAttribValContextPriority context_priority; 2206 /** \brief Reserved bytes for future use, must be zero */ 2207 uint32_t reserved[VA_PADDING_MEDIUM]; 2208 } VAContextParameterUpdateBuffer; 2209 2210 /** 2211 * These ENCRYPTION_TYPEs are used for the attribute values for 2212 * \c VAConfigAttribEncryption and for encryption_type in 2213 * VAEncryptionParameters. 2214 * 2215 * When used for \c VAConfigAttribEncryption, it be used via 2216 * vaQueryConfigEntrypoints to check which type are supported for specific 2217 * profile or not. 2218 * 2219 * When used for encryption_type in VAEncryptionParameters, it tells driver 2220 * the parameters in VAEncryptionParameters are used for which encryption type. 2221 */ 2222 #define VA_ENCRYPTION_TYPE_FULLSAMPLE_CTR 0x00000001 /* AES CTR fullsample */ 2223 #define VA_ENCRYPTION_TYPE_FULLSAMPLE_CBC 0x00000002 /* AES CBC fullsample */ 2224 #define VA_ENCRYPTION_TYPE_SUBSAMPLE_CTR 0x00000004 /* AES CTR fullsample */ 2225 #define VA_ENCRYPTION_TYPE_SUBSAMPLE_CBC 0x00000008 /* AES CBC fullsample */ 2226 2227 /** \brief structure for encrypted segment info. */ 2228 typedef struct _VAEncryptionSegmentInfo { 2229 /** \brief The offset relative to the start of the bitstream input in 2230 * bytes of the start of the segment */ 2231 uint32_t segment_start_offset; 2232 /** \brief The length of the segments in bytes */ 2233 uint32_t segment_length; 2234 /** \brief The length in bytes of the remainder of an incomplete block 2235 * from a previous segment*/ 2236 uint32_t partial_aes_block_size; 2237 /** \brief The length in bytes of the initial clear data */ 2238 uint32_t init_byte_length; 2239 /** \brief This will be AES counter for secure decode and secure encode 2240 * when numSegments equals 1, valid size is specified by 2241 * \c key_blob_size */ 2242 uint8_t aes_cbc_iv_or_ctr[64]; 2243 /** \brief Reserved bytes for future use, must be zero */ 2244 uint32_t va_reserved[VA_PADDING_MEDIUM]; 2245 } VAEncryptionSegmentInfo; 2246 2247 /** \brief Encryption parameters buffer for VAEncryptionParameterBufferType */ 2248 typedef struct _VAEncryptionParameters { 2249 /** \brief Encryption type, refer to \c VA_ENCRYPTION_TYPE_FULLSAMPLE_CTR, 2250 * \c VA_ENCRYPTION_TYPE_FULLSAMPLE_CBC, \c VA_ENCRYPTION_TYPE_SUBSAMPLE_CTR, 2251 * or \c VA_ENCRYPTION_TYPE_SUBSAMPLE_CBC */ 2252 uint32_t encryption_type; 2253 /** \brief The number of sengments */ 2254 uint32_t num_segments; 2255 /** \brief Pointer of segments */ 2256 VAEncryptionSegmentInfo *segment_info; 2257 /** \brief The status report index reserved for CENC fullsample workload. 2258 * The related structures and definitions are vendor specific. 2259 */ 2260 uint32_t status_report_index; 2261 /** \brief CENC counter length */ 2262 uint32_t size_of_length; 2263 /** \brief Wrapped decrypt blob (Snd)kb, valid size is specified by 2264 * \c key_blob_size */ 2265 uint8_t wrapped_decrypt_blob[64]; 2266 /** \brief Wrapped Key blob info (Sne)kb, valid size is specified by 2267 * \c key_blob_size */ 2268 uint8_t wrapped_encrypt_blob[64]; 2269 /** \brief key blob size 2270 * It could be \c VA_PC_BLOCK_SIZE_128, \c VA_PC_BLOCK_SIZE_192, or 2271 * \c VA_PC_BLOCK_SIZE_256 2272 */ 2273 uint32_t key_blob_size; 2274 /** \brief Indicates the number of 16-byte BLOCKS that are encrypted in any 2275 * given encrypted region of segments. 2276 * If this value is zero: 2277 * 1. All bytes in encrypted region of segments are encrypted, i.e. the 2278 * CENC or CBC1 scheme is being used 2279 * 2. blocks_stripe_clear must also be zero. 2280 * If this value is non-zero, blocks_stripe_clear must also be non-zero. 2281 */ 2282 uint32_t blocks_stripe_encrypted; 2283 /** \brief Indicates the number of 16-byte BLOCKS that are clear in any given 2284 * encrypted region of segments, as defined by the CENS and CBCS schemes in 2285 * the common encryption spec. 2286 * If this value is zero, all bytes in encrypted region of segments are 2287 * encrypted, i.e. the CENC or CBC1 scheme is being used. 2288 */ 2289 uint32_t blocks_stripe_clear; 2290 /** \brief Reserved bytes for future use, must be zero */ 2291 uint32_t va_reserved[VA_PADDING_MEDIUM]; 2292 } VAEncryptionParameters; 2293 2294 /** 2295 * Processing rate parameter for encode. 2296 */ 2297 typedef struct _VAProcessingRateParameterEnc { 2298 /** \brief Profile level */ 2299 uint8_t level_idc; 2300 uint8_t reserved[3]; 2301 /** \brief quality level. When set to 0, default quality 2302 * level is used. 2303 */ 2304 uint32_t quality_level; 2305 /** \brief Period between I frames. */ 2306 uint32_t intra_period; 2307 /** \brief Period between I/P frames. */ 2308 uint32_t ip_period; 2309 } VAProcessingRateParameterEnc; 2310 2311 /** 2312 * Processing rate parameter for decode. 2313 */ 2314 typedef struct _VAProcessingRateParameterDec { 2315 /** \brief Profile level */ 2316 uint8_t level_idc; 2317 uint8_t reserved0[3]; 2318 uint32_t reserved; 2319 } VAProcessingRateParameterDec; 2320 2321 typedef struct _VAProcessingRateParameter { 2322 union { 2323 VAProcessingRateParameterEnc proc_buf_enc; 2324 VAProcessingRateParameterDec proc_buf_dec; 2325 }; 2326 } VAProcessingRateParameter; 2327 2328 /** 2329 * \brief Queries processing rate for the supplied config. 2330 * 2331 * This function queries the processing rate based on parameters in 2332 * \c proc_buf for the given \c config. Upon successful return, the processing 2333 * rate value will be stored in \c processing_rate. Processing rate is 2334 * specified as the number of macroblocks/CTU per second. 2335 * 2336 * If NULL is passed to the \c proc_buf, the default processing rate for the 2337 * given configuration will be returned. 2338 * 2339 * @param[in] dpy the VA display 2340 * @param[in] config the config identifying a codec or a video 2341 * processing pipeline 2342 * @param[in] proc_buf the buffer that contains the parameters for 2343 either the encode or decode processing rate 2344 * @param[out] processing_rate processing rate in number of macroblocks per 2345 second constrained by parameters specified in proc_buf 2346 * 2347 */ 2348 VAStatus 2349 vaQueryProcessingRate( 2350 VADisplay dpy, 2351 VAConfigID config, 2352 VAProcessingRateParameter *proc_buf, 2353 unsigned int *processing_rate 2354 ); 2355 2356 typedef enum { 2357 VAEncMiscParameterTypeFrameRate = 0, 2358 VAEncMiscParameterTypeRateControl = 1, 2359 VAEncMiscParameterTypeMaxSliceSize = 2, 2360 VAEncMiscParameterTypeAIR = 3, 2361 /** \brief Buffer type used to express a maximum frame size (in bits). */ 2362 VAEncMiscParameterTypeMaxFrameSize = 4, 2363 /** \brief Buffer type used for HRD parameters. */ 2364 VAEncMiscParameterTypeHRD = 5, 2365 VAEncMiscParameterTypeQualityLevel = 6, 2366 /** \brief Buffer type used for Rolling intra refresh */ 2367 VAEncMiscParameterTypeRIR = 7, 2368 /** \brief Buffer type used for quantization parameters, it's per-sequence parameter*/ 2369 VAEncMiscParameterTypeQuantization = 8, 2370 /** \brief Buffer type used for sending skip frame parameters to the encoder's 2371 * rate control, when the user has externally skipped frames. */ 2372 VAEncMiscParameterTypeSkipFrame = 9, 2373 /** \brief Buffer type used for region-of-interest (ROI) parameters. */ 2374 VAEncMiscParameterTypeROI = 10, 2375 /** \brief Buffer type used to express a maximum frame size (in bytes) settings for multiple pass. */ 2376 VAEncMiscParameterTypeMultiPassFrameSize = 11, 2377 /** \brief Buffer type used for temporal layer structure */ 2378 VAEncMiscParameterTypeTemporalLayerStructure = 12, 2379 /** \brief Buffer type used for dirty region-of-interest (ROI) parameters. */ 2380 VAEncMiscParameterTypeDirtyRect = 13, 2381 /** \brief Buffer type used for parallel BRC parameters. */ 2382 VAEncMiscParameterTypeParallelBRC = 14, 2383 /** \brief Set MB partion mode mask and Half-pel/Quant-pel motion search */ 2384 VAEncMiscParameterTypeSubMbPartPel = 15, 2385 /** \brief set encode quality tuning */ 2386 VAEncMiscParameterTypeEncQuality = 16, 2387 /** \brief Buffer type used for encoder rounding offset parameters. */ 2388 VAEncMiscParameterTypeCustomRoundingControl = 17, 2389 /** \brief Buffer type used for FEI input frame level parameters */ 2390 VAEncMiscParameterTypeFEIFrameControl = 18, 2391 /** \brief encode extension buffer, ect. MPEG2 Sequence extenstion data */ 2392 VAEncMiscParameterTypeExtensionData = 19 2393 } VAEncMiscParameterType; 2394 2395 /** \brief Packed header type. */ 2396 typedef enum { 2397 /** \brief Packed sequence header. */ 2398 VAEncPackedHeaderSequence = 1, 2399 /** \brief Packed picture header. */ 2400 VAEncPackedHeaderPicture = 2, 2401 /** \brief Packed slice header. */ 2402 VAEncPackedHeaderSlice = 3, 2403 /** 2404 * \brief Packed raw header. 2405 * 2406 * Packed raw data header can be used by the client to insert a header 2407 * into the bitstream data buffer at the point it is passed, the driver 2408 * will handle the raw packed header based on "has_emulation_bytes" field 2409 * in the packed header parameter structure. 2410 */ 2411 VAEncPackedHeaderRawData = 4, 2412 /** 2413 * \brief Misc packed header. See codec-specific definitions. 2414 * 2415 * @deprecated 2416 * This is a deprecated packed header type. All applications can use 2417 * \c VAEncPackedHeaderRawData to insert a codec-specific packed header 2418 */ 2419 VAEncPackedHeaderMiscMask va_deprecated_enum = 0x80000000, 2420 } VAEncPackedHeaderType; 2421 2422 /** \brief Packed header parameter. */ 2423 typedef struct _VAEncPackedHeaderParameterBuffer { 2424 /** Type of the packed header buffer. See #VAEncPackedHeaderType. */ 2425 uint32_t type; 2426 /** \brief Size of the #VAEncPackedHeaderDataBuffer in bits. */ 2427 uint32_t bit_length; 2428 /** \brief Flag: buffer contains start code emulation prevention bytes? */ 2429 uint8_t has_emulation_bytes; 2430 2431 /** \brief Reserved bytes for future use, must be zero */ 2432 uint32_t va_reserved[VA_PADDING_LOW]; 2433 } VAEncPackedHeaderParameterBuffer; 2434 2435 /** 2436 * For application, e.g. set a new bitrate 2437 * VABufferID buf_id; 2438 * VAEncMiscParameterBuffer *misc_param; 2439 * VAEncMiscParameterRateControl *misc_rate_ctrl; 2440 * 2441 * vaCreateBuffer(dpy, context, VAEncMiscParameterBufferType, 2442 * sizeof(VAEncMiscParameterBuffer) + sizeof(VAEncMiscParameterRateControl), 2443 * 1, NULL, &buf_id); 2444 * 2445 * vaMapBuffer(dpy,buf_id,(void **)&misc_param); 2446 * misc_param->type = VAEncMiscParameterTypeRateControl; 2447 * misc_rate_ctrl= (VAEncMiscParameterRateControl *)misc_param->data; 2448 * misc_rate_ctrl->bits_per_second = 6400000; 2449 * vaUnmapBuffer(dpy, buf_id); 2450 * vaRenderPicture(dpy, context, &buf_id, 1); 2451 */ 2452 typedef struct _VAEncMiscParameterBuffer { 2453 VAEncMiscParameterType type; 2454 uint32_t data[]; 2455 } VAEncMiscParameterBuffer; 2456 2457 /** \brief Temporal layer Structure*/ 2458 typedef struct _VAEncMiscParameterTemporalLayerStructure { 2459 /** \brief The number of temporal layers */ 2460 uint32_t number_of_layers; 2461 /** \brief The length of the array defining frame layer membership. Should be 1-32 */ 2462 uint32_t periodicity; 2463 /** 2464 * \brief The array indicating the layer id for each frame 2465 * 2466 * The layer id for the first frame in a coded sequence is always 0, so layer_id[] specifies the layer 2467 * ids for frames starting from the 2nd frame. 2468 */ 2469 uint32_t layer_id[32]; 2470 2471 /** \brief Reserved bytes for future use, must be zero */ 2472 uint32_t va_reserved[VA_PADDING_LOW]; 2473 } VAEncMiscParameterTemporalLayerStructure; 2474 2475 2476 /** \brief Rate control parameters */ 2477 typedef struct _VAEncMiscParameterRateControl { 2478 /** The maximum bit-rate which the the rate controller should generate. */ 2479 uint32_t bits_per_second; 2480 /** The target bit-rate which the rate controller should generate, as a percentage of the 2481 * maximum bit-rate. 2482 * 2483 * In CBR mode this value is ignored (treated as 100%). 2484 */ 2485 uint32_t target_percentage; 2486 /** Rate control window size in milliseconds. 2487 * 2488 * The rate controller will attempt to guarantee that the target and maximum bit-rates are 2489 * correct over this window. 2490 */ 2491 uint32_t window_size; 2492 /** Initial quantiser value used at the start of the stream. 2493 * 2494 * Ignored if set to zero. 2495 */ 2496 uint32_t initial_qp; 2497 /** Minimum quantiser value to use. 2498 * 2499 * The quantiser will not go below the value - if this limit is hit, the output bitrate may 2500 * be lower than the target. Ignored if set to zero. 2501 */ 2502 uint32_t min_qp; 2503 /** Basic unit size. 2504 * 2505 * Only used by some drivers - see driver documentation for details. Set to zero if unused. 2506 */ 2507 uint32_t basic_unit_size; 2508 union { 2509 struct { 2510 /** Force rate controller reset. 2511 * 2512 * The next frame will be treated as the start of a new stream, with all rate 2513 * controller state reset to its initial values. 2514 */ 2515 uint32_t reset : 1; 2516 /** Disable frame skip in rate control mode. */ 2517 uint32_t disable_frame_skip : 1; 2518 /** Disable bit stuffing in rate control mode. */ 2519 uint32_t disable_bit_stuffing : 1; 2520 /** Macroblock-level rate control. 2521 * 2522 * 0: use default, 1: always enable, 2: always disable, other: reserved. 2523 * 2524 * This feature is only available if VAConfigAttribRateControl has the 2525 * \ref VA_RC_MB bit set. 2526 */ 2527 uint32_t mb_rate_control : 4; 2528 /** The temporal layer that these rate control parameters apply to. */ 2529 uint32_t temporal_id : 8; 2530 /** Ensure that intra frames also conform to the constant frame size. */ 2531 uint32_t cfs_I_frames : 1; 2532 /** Enable parallel rate control for hierarchical B frames. 2533 * 2534 * See \ref VA_RC_PARALLEL. 2535 */ 2536 uint32_t enable_parallel_brc : 1; 2537 uint32_t enable_dynamic_scaling : 1; 2538 /** Frame tolerance mode. 2539 * 2540 * Indicates the tolerance the application has to variations in the frame size. 2541 * For example, wireless display scenarios may require very steady bit rate to 2542 * reduce buffering time. It affects the rate control algorithm used, 2543 * but may or may not have an effect based on the combination of other BRC 2544 * parameters. Only valid when the driver reports support for 2545 * #VAConfigAttribFrameSizeToleranceSupport. 2546 * 2547 * equals 0 -- normal mode; 2548 * equals 1 -- maps to sliding window; 2549 * equals 2 -- maps to low delay mode; 2550 * other -- invalid. 2551 */ 2552 uint32_t frame_tolerance_mode : 2; 2553 /** Reserved for future use, must be zero. */ 2554 uint32_t reserved : 12; 2555 } bits; 2556 uint32_t value; 2557 } rc_flags; 2558 /** Initial quality factor used in ICQ mode. 2559 * 2560 * This value must be between 1 and 51. 2561 * this value will be deprecated in future, to use quality_factor instead of it. 2562 */ 2563 uint32_t ICQ_quality_factor; 2564 /** Maximum quantiser value to use. 2565 * 2566 * The quantiser will not go above this value - if this limit is hit, the output bitrate 2567 * may exceed the target. Ignored if set to zero. 2568 */ 2569 uint32_t max_qp; 2570 /** Quality factor 2571 * 2572 * the range will be different for different codec 2573 */ 2574 uint32_t quality_factor; 2575 /** Target frame size 2576 * 2577 * Desired frame size in bytes. 2578 * This parameter can be used in some RC modes (like Transport Controlled BRC) 2579 * where feedback from the app is required. 2580 * Zero value means no limits. 2581 * 2582 */ 2583 uint32_t target_frame_size; 2584 /** Reserved bytes for future use, must be zero. */ 2585 uint32_t va_reserved[VA_PADDING_LOW]; 2586 } VAEncMiscParameterRateControl; 2587 2588 /** Encode framerate parameters. 2589 * 2590 * Sets the encode framerate used by the rate controller. This should be 2591 * provided in all modes using a bitrate target (variable framerate is not 2592 * supported). 2593 */ 2594 typedef struct _VAEncMiscParameterFrameRate { 2595 /** Encode framerate. 2596 * 2597 * The framerate is specified as a number of frames per second, as a 2598 * fraction. The denominator of the fraction is given in the top half 2599 * (the high two bytes) of the framerate field, and the numerator is 2600 * given in the bottom half (the low two bytes). 2601 * 2602 * That is: 2603 * denominator = framerate >> 16 & 0xffff; 2604 * numerator = framerate & 0xffff; 2605 * fps = numerator / denominator; 2606 * 2607 * For example, if framerate is set to (100 << 16 | 750), this is 2608 * 750 / 100, hence 7.5fps. 2609 * 2610 * If the denominator is zero (the high two bytes are both zero) then 2611 * it takes the value one instead, so the framerate is just the integer 2612 * in the low 2 bytes. 2613 */ 2614 uint32_t framerate; 2615 union { 2616 struct { 2617 /** The temporal layer that these framerate parameters apply to. */ 2618 uint32_t temporal_id : 8; 2619 /** Reserved for future use, must be zero. */ 2620 uint32_t reserved : 24; 2621 } bits; 2622 uint32_t value; 2623 } framerate_flags; 2624 2625 /** \brief Reserved bytes for future use, must be zero */ 2626 uint32_t va_reserved[VA_PADDING_LOW]; 2627 } VAEncMiscParameterFrameRate; 2628 2629 /** 2630 * Allow a maximum slice size to be specified (in bits). 2631 * The encoder will attempt to make sure that individual slices do not exceed this size 2632 * Or to signal applicate if the slice size exceed this size, see "status" of VACodedBufferSegment 2633 */ 2634 typedef struct _VAEncMiscParameterMaxSliceSize { 2635 uint32_t max_slice_size; 2636 2637 /** \brief Reserved bytes for future use, must be zero */ 2638 uint32_t va_reserved[VA_PADDING_LOW]; 2639 } VAEncMiscParameterMaxSliceSize; 2640 2641 typedef struct _VAEncMiscParameterAIR { 2642 uint32_t air_num_mbs; 2643 uint32_t air_threshold; 2644 uint32_t air_auto; /* if set to 1 then hardware auto-tune the AIR threshold */ 2645 2646 /** \brief Reserved bytes for future use, must be zero */ 2647 uint32_t va_reserved[VA_PADDING_LOW]; 2648 } VAEncMiscParameterAIR; 2649 2650 /* 2651 * \brief Rolling intra refresh data structure for encoding. 2652 */ 2653 typedef struct _VAEncMiscParameterRIR { 2654 union { 2655 struct 2656 /** 2657 * \brief Indicate if intra refresh is enabled in column/row. 2658 * 2659 * App should query VAConfigAttribEncIntraRefresh to confirm RIR support 2660 * by the driver before sending this structure. 2661 */ 2662 { 2663 /* \brief enable RIR in column */ 2664 uint32_t enable_rir_column : 1; 2665 /* \brief enable RIR in row */ 2666 uint32_t enable_rir_row : 1; 2667 uint32_t reserved : 30; 2668 } bits; 2669 uint32_t value; 2670 } rir_flags; 2671 /** 2672 * \brief Indicates the column or row location in MB. It is ignored if 2673 * rir_flags is 0. 2674 */ 2675 uint16_t intra_insertion_location; 2676 /** 2677 * \brief Indicates the number of columns or rows in MB. It is ignored if 2678 * rir_flags is 0. 2679 */ 2680 uint16_t intra_insert_size; 2681 /** 2682 * \brief indicates the Qp difference for inserted intra columns or rows. 2683 * App can use this to adjust intra Qp based on bitrate & max frame size. 2684 */ 2685 uint8_t qp_delta_for_inserted_intra; 2686 /** \brief Reserved bytes for future use, must be zero */ 2687 uint32_t va_reserved[VA_PADDING_LOW]; 2688 } VAEncMiscParameterRIR; 2689 2690 /** HRD / VBV buffering parameters for encoding. 2691 * 2692 * This sets the HRD / VBV parameters which will be used by the rate 2693 * controller for encoding. It should be specified in modes using a bitrate 2694 * target when the buffering of the output stream needs to be constrained. 2695 * 2696 * If not provided, the encoder may use arbitrary amounts of buffering. 2697 */ 2698 typedef struct _VAEncMiscParameterHRD { 2699 /** The initial fullness of the HRD coded picture buffer, in bits. 2700 * 2701 * This sets how full the CPB is when encoding begins - that is, how much 2702 * buffering will happen on the decoder side before the first frame. 2703 * The CPB fullness will be reset to this value after any rate control 2704 * reset (a change in parameters or an explicit reset). 2705 * 2706 * For H.264, it should match the value of initial_cpb_removal_delay in 2707 * buffering_period SEI messages. 2708 */ 2709 uint32_t initial_buffer_fullness; 2710 /** The HRD coded picture buffer size, in bits. 2711 * 2712 * For H.264, it should match the value of cpb_size_value_minus1 in the VUI 2713 * parameters. 2714 */ 2715 uint32_t buffer_size; 2716 2717 /** \brief Reserved bytes for future use, must be zero */ 2718 uint32_t va_reserved[VA_PADDING_LOW]; 2719 } VAEncMiscParameterHRD; 2720 2721 /** 2722 * \brief Defines a maximum frame size (in bits). 2723 * 2724 * This misc parameter buffer defines the maximum size of a frame (in 2725 * bits). The encoder will try to make sure that each frame does not 2726 * exceed this size. Otherwise, if the frame size exceeds this size, 2727 * the \c status flag of #VACodedBufferSegment will contain 2728 * #VA_CODED_BUF_STATUS_FRAME_SIZE_OVERFLOW. 2729 */ 2730 typedef struct _VAEncMiscParameterBufferMaxFrameSize { 2731 /** \brief Type. Shall be set to #VAEncMiscParameterTypeMaxFrameSize. */ 2732 /** duplicated with VAEncMiscParameterBuffer, should be deprecated*/ 2733 va_deprecated VAEncMiscParameterType type; 2734 /** \brief Maximum size of a frame (in bits). */ 2735 uint32_t max_frame_size; 2736 2737 /** \brief Reserved bytes for future use, must be zero */ 2738 uint32_t va_reserved[VA_PADDING_LOW]; 2739 } VAEncMiscParameterBufferMaxFrameSize; 2740 2741 /** 2742 * \brief Maximum frame size (in bytes) settings for multiple pass. 2743 * 2744 * This misc parameter buffer defines the maximum size of a frame (in 2745 * bytes) settings for multiple pass. currently only AVC encoder can 2746 * support this settings in multiple pass case. If the frame size exceeds 2747 * this size, the encoder will do more pak passes to adjust the QP value 2748 * to control the frame size. 2749 */ 2750 typedef struct _VAEncMiscParameterBufferMultiPassFrameSize { 2751 /** \brief Type. Shall be set to #VAEncMiscParameterTypeMultiPassMaxFrameSize. */ 2752 /** duplicated with VAEncMiscParameterBuffer, should be deprecated*/ 2753 va_deprecated VAEncMiscParameterType type; 2754 /** \brief Maximum size of a frame (in byte) */ 2755 uint32_t max_frame_size; 2756 /** \brief Reserved bytes for future use, must be zero */ 2757 uint32_t reserved; 2758 /** \brief number of passes, every pass has different QP, currently AVC encoder can support up to 4 passes */ 2759 uint8_t num_passes; 2760 /** \brief delta QP list for every pass */ 2761 uint8_t *delta_qp; 2762 2763 /** \brief Reserved bytes for future use, must be zero */ 2764 unsigned long va_reserved[VA_PADDING_LOW]; 2765 } VAEncMiscParameterBufferMultiPassFrameSize; 2766 2767 /** 2768 * \brief Encoding quality level. 2769 * 2770 * The encoding quality could be set through this structure, if the implementation 2771 * supports multiple quality levels. The quality level set through this structure is 2772 * persistent over the entire coded sequence, or until a new structure is being sent. 2773 * The quality level range can be queried through the VAConfigAttribEncQualityRange 2774 * attribute. A lower value means higher quality, and a value of 1 represents the highest 2775 * quality. The quality level setting is used as a trade-off between quality and speed/power 2776 * consumption, with higher quality corresponds to lower speed and higher power consumption. 2777 */ 2778 typedef struct _VAEncMiscParameterBufferQualityLevel { 2779 /** \brief Encoding quality level setting. When set to 0, default quality 2780 * level is used. 2781 */ 2782 uint32_t quality_level; 2783 2784 /** \brief Reserved bytes for future use, must be zero */ 2785 uint32_t va_reserved[VA_PADDING_LOW]; 2786 } VAEncMiscParameterBufferQualityLevel; 2787 2788 /** 2789 * \brief Quantization settings for encoding. 2790 * 2791 * Some encoders support special types of quantization such as trellis, and this structure 2792 * can be used by the app to control these special types of quantization by the encoder. 2793 */ 2794 typedef struct _VAEncMiscParameterQuantization { 2795 union { 2796 /* if no flags is set then quantization is determined by the driver */ 2797 struct { 2798 /* \brief disable trellis for all frames/fields */ 2799 uint32_t disable_trellis : 1; 2800 /* \brief enable trellis for I frames/fields */ 2801 uint32_t enable_trellis_I : 1; 2802 /* \brief enable trellis for P frames/fields */ 2803 uint32_t enable_trellis_P : 1; 2804 /* \brief enable trellis for B frames/fields */ 2805 uint32_t enable_trellis_B : 1; 2806 uint32_t reserved : 28; 2807 } bits; 2808 uint32_t value; 2809 } quantization_flags; 2810 uint32_t va_reserved; 2811 } VAEncMiscParameterQuantization; 2812 2813 /** 2814 * \brief Encoding skip frame. 2815 * 2816 * The application may choose to skip frames externally to the encoder (e.g. drop completely or 2817 * code as all skip's). For rate control purposes the encoder will need to know the size and number 2818 * of skipped frames. Skip frame(s) indicated through this structure is applicable only to the 2819 * current frame. It is allowed for the application to still send in packed headers for the driver to 2820 * pack, although no frame will be encoded (e.g. for HW to encrypt the frame). 2821 */ 2822 typedef struct _VAEncMiscParameterSkipFrame { 2823 /** \brief Indicates skip frames as below. 2824 * 0: Encode as normal, no skip. 2825 * 1: One or more frames were skipped prior to the current frame, encode the current frame as normal. 2826 * 2: The current frame is to be skipped, do not encode it but pack/encrypt the packed header contents 2827 * (all except VAEncPackedHeaderSlice) which could contain actual frame contents (e.g. pack the frame 2828 * in VAEncPackedHeaderPicture). */ 2829 uint8_t skip_frame_flag; 2830 /** \brief The number of frames skipped prior to the current frame. Valid when skip_frame_flag = 1. */ 2831 uint8_t num_skip_frames; 2832 /** \brief When skip_frame_flag = 1, the size of the skipped frames in bits. When skip_frame_flag = 2, 2833 * the size of the current skipped frame that is to be packed/encrypted in bits. */ 2834 uint32_t size_skip_frames; 2835 2836 /** \brief Reserved bytes for future use, must be zero */ 2837 uint32_t va_reserved[VA_PADDING_LOW]; 2838 } VAEncMiscParameterSkipFrame; 2839 2840 /** 2841 * \brief Encoding region-of-interest (ROI). 2842 * 2843 * The encoding ROI can be set through VAEncMiscParameterBufferROI, if the implementation 2844 * supports ROI input. The ROI set through this structure is applicable only to the 2845 * current frame or field, so must be sent every frame or field to be applied. The number of 2846 * supported ROIs can be queried through the VAConfigAttribEncROI. The encoder will use the 2847 * ROI information to adjust the QP values of the MB's that fall within the ROIs. 2848 */ 2849 typedef struct _VAEncROI { 2850 /** \brief Defines the ROI boundary in pixels, the driver will map it to appropriate 2851 * codec coding units. It is relative to frame coordinates for the frame case and 2852 * to field coordinates for the field case. */ 2853 VARectangle roi_rectangle; 2854 /** 2855 * \brief ROI value 2856 * 2857 * \ref roi_value specifies ROI delta QP or ROI priority. 2858 * -- ROI delta QP is the value that will be added on top of the frame level QP. 2859 * -- ROI priority specifies the priority of a region, it can be positive (more important) 2860 * or negative (less important) values and is compared with non-ROI region (taken as value 0), 2861 * E.g. ROI region with \ref roi_value -3 is less important than the non-ROI region (\ref roi_value 2862 * implied to be 0) which is less important than ROI region with roi_value +2. For overlapping 2863 * regions, the roi_value that is first in the ROI array will have priority. 2864 * 2865 * \ref roi_value always specifes ROI delta QP when VAConfigAttribRateControl == VA_RC_CQP, no matter 2866 * the value of \c roi_value_is_qp_delta in #VAEncMiscParameterBufferROI. 2867 * 2868 * \ref roi_value depends on \c roi_value_is_qp_delta in #VAEncMiscParameterBufferROI when 2869 * VAConfigAttribRateControl != VA_RC_CQP. \ref roi_value specifies ROI_delta QP if \c roi_value_is_qp_delta 2870 * in VAEncMiscParameterBufferROI is 1, otherwise \ref roi_value specifies ROI priority. 2871 */ 2872 int8_t roi_value; 2873 } VAEncROI; 2874 2875 typedef struct _VAEncMiscParameterBufferROI { 2876 /** \brief Number of ROIs being sent.*/ 2877 uint32_t num_roi; 2878 2879 /** \brief Valid when VAConfigAttribRateControl != VA_RC_CQP, then the encoder's 2880 * rate control will determine actual delta QPs. Specifies the max/min allowed delta 2881 * QPs. */ 2882 int8_t max_delta_qp; 2883 int8_t min_delta_qp; 2884 2885 /** \brief Pointer to a VAEncROI array with num_roi elements. It is relative to frame 2886 * coordinates for the frame case and to field coordinates for the field case.*/ 2887 VAEncROI *roi; 2888 union { 2889 struct { 2890 /** 2891 * \brief An indication for roi value. 2892 * 2893 * \ref roi_value_is_qp_delta equal to 1 indicates \c roi_value in #VAEncROI should 2894 * be used as ROI delta QP. \ref roi_value_is_qp_delta equal to 0 indicates \c roi_value 2895 * in #VAEncROI should be used as ROI priority. 2896 * 2897 * \ref roi_value_is_qp_delta is only available when VAConfigAttribRateControl != VA_RC_CQP, 2898 * the setting must comply with \c roi_rc_priority_support and \c roi_rc_qp_delta_support in 2899 * #VAConfigAttribValEncROI. The underlying driver should ignore this field 2900 * when VAConfigAttribRateControl == VA_RC_CQP. 2901 */ 2902 uint32_t roi_value_is_qp_delta : 1; 2903 uint32_t reserved : 31; 2904 } bits; 2905 uint32_t value; 2906 } roi_flags; 2907 2908 /** \brief Reserved bytes for future use, must be zero */ 2909 uint32_t va_reserved[VA_PADDING_LOW]; 2910 } VAEncMiscParameterBufferROI; 2911 /* 2912 * \brief Dirty rectangle data structure for encoding. 2913 * 2914 * The encoding dirty rect can be set through VAEncMiscParameterBufferDirtyRect, if the 2915 * implementation supports dirty rect input. The rect set through this structure is applicable 2916 * only to the current frame or field, so must be sent every frame or field to be applied. 2917 * The number of supported rects can be queried through the VAConfigAttribEncDirtyRect. The 2918 * encoder will use the rect information to know those rectangle areas have changed while the 2919 * areas not covered by dirty rect rectangles are assumed to have not changed compared to the 2920 * previous picture. The encoder may do some internal optimizations. 2921 */ 2922 typedef struct _VAEncMiscParameterBufferDirtyRect { 2923 /** \brief Number of Rectangle being sent.*/ 2924 uint32_t num_roi_rectangle; 2925 2926 /** \brief Pointer to a VARectangle array with num_roi_rectangle elements.*/ 2927 VARectangle *roi_rectangle; 2928 } VAEncMiscParameterBufferDirtyRect; 2929 2930 /** \brief Attribute value for VAConfigAttribEncParallelRateControl */ 2931 typedef struct _VAEncMiscParameterParallelRateControl { 2932 /** brief Number of layers*/ 2933 uint32_t num_layers; 2934 /** brief Number of B frames per layer per GOP. 2935 * 2936 * it should be allocated by application, and the is num_layers. 2937 * num_b_in_gop[0] is the number of regular B which refers to only I or P frames. */ 2938 uint32_t *num_b_in_gop; 2939 } VAEncMiscParameterParallelRateControl; 2940 2941 /** per frame encoder quality controls, once set they will persist for all future frames 2942 *till it is updated again. */ 2943 typedef struct _VAEncMiscParameterEncQuality { 2944 union { 2945 struct { 2946 /** Use raw frames for reference instead of reconstructed frames. 2947 * it only impact motion estimation (ME) stage, and will not impact MC stage 2948 * so the reconstruct picture will can match with decode side */ 2949 uint32_t useRawPicForRef : 1; 2950 /** Disables skip check for ME stage, it will increase the bistream size 2951 * but will improve the qulity */ 2952 uint32_t skipCheckDisable : 1; 2953 /** Indicates app will override default driver FTQ settings using FTQEnable. 2954 * FTQ is forward transform quantization */ 2955 uint32_t FTQOverride : 1; 2956 /** Enables/disables FTQ. */ 2957 uint32_t FTQEnable : 1; 2958 /** Indicates the app will provide the Skip Threshold LUT to use when FTQ is 2959 * enabled (FTQSkipThresholdLUT), else default driver thresholds will be used. */ 2960 uint32_t FTQSkipThresholdLUTInput : 1; 2961 /** Indicates the app will provide the Skip Threshold LUT to use when FTQ is 2962 * disabled (NonFTQSkipThresholdLUT), else default driver thresholds will be used. */ 2963 uint32_t NonFTQSkipThresholdLUTInput : 1; 2964 uint32_t ReservedBit : 1; 2965 /** Control to enable the ME mode decision algorithm to bias to fewer B Direct/Skip types. 2966 * Applies only to B frames, all other frames will ignore this setting. */ 2967 uint32_t directBiasAdjustmentEnable : 1; 2968 /** Enables global motion bias. global motion also is called HME (Heirarchical Motion Estimation ) 2969 * HME is used to handle large motions and avoiding local minima in the video encoding process 2970 * down scaled the input and reference picture, then do ME. the result will be a predictor to next level HME or ME 2971 * current interface divide the HME to 3 level. UltraHME , SuperHME, and HME, result of UltraHME will be input of SurperHME, 2972 * result of superHME will be a input for HME. HME result will be input of ME. it is a switch for HMEMVCostScalingFactor 2973 * can change the HME bias inside RDO stage*/ 2974 uint32_t globalMotionBiasAdjustmentEnable : 1; 2975 /** MV cost scaling ratio for HME ( predictors. It is used when 2976 * globalMotionBiasAdjustmentEnable == 1, else it is ignored. Values are: 2977 * 0: set MV cost to be 0 for HME predictor. 2978 * 1: scale MV cost to be 1/2 of the default value for HME predictor. 2979 * 2: scale MV cost to be 1/4 of the default value for HME predictor. 2980 * 3: scale MV cost to be 1/8 of the default value for HME predictor. */ 2981 uint32_t HMEMVCostScalingFactor : 2; 2982 /**disable HME, if it is disabled. Super*ultraHME should also be disabled */ 2983 uint32_t HMEDisable : 1; 2984 /**disable Super HME, if it is disabled, ultraHME should be disabled */ 2985 uint32_t SuperHMEDisable : 1; 2986 /** disable Ultra HME */ 2987 uint32_t UltraHMEDisable : 1; 2988 /** disable panic mode. Panic mode happened when there are extreme BRC (bit rate control) requirement 2989 * frame size cant achieve the target of BRC. when Panic mode is triggered, Coefficients will 2990 * be set to zero. disable panic mode will improve quality but will impact BRC */ 2991 uint32_t PanicModeDisable : 1; 2992 /** Force RepartitionCheck 2993 * 0: DEFAULT - follow driver default settings. 2994 * 1: FORCE_ENABLE - enable this feature totally for all cases. 2995 * 2: FORCE_DISABLE - disable this feature totally for all cases. */ 2996 uint32_t ForceRepartitionCheck : 2; 2997 2998 }; 2999 uint32_t encControls; 3000 }; 3001 3002 /** Maps QP to skip thresholds when FTQ is enabled. Valid range is 0-255. */ 3003 uint8_t FTQSkipThresholdLUT[52]; 3004 /** Maps QP to skip thresholds when FTQ is disabled. Valid range is 0-65535. */ 3005 uint16_t NonFTQSkipThresholdLUT[52]; 3006 3007 uint32_t reserved[VA_PADDING_HIGH]; // Reserved for future use. 3008 3009 } VAEncMiscParameterEncQuality; 3010 3011 /** 3012 * \brief Custom Encoder Rounding Offset Control. 3013 * Application may use this structure to set customized rounding 3014 * offset parameters for quantization. 3015 * Valid when \c VAConfigAttribCustomRoundingControl equals 1. 3016 */ 3017 typedef struct _VAEncMiscParameterCustomRoundingControl { 3018 union { 3019 struct { 3020 /** \brief Enable customized rounding offset for intra blocks. 3021 * If 0, default value would be taken by driver for intra 3022 * rounding offset. 3023 */ 3024 uint32_t enable_custom_rouding_intra : 1 ; 3025 3026 /** \brief Intra rounding offset 3027 * Ignored if \c enable_custom_rouding_intra equals 0. 3028 */ 3029 uint32_t rounding_offset_intra : 7; 3030 3031 /** \brief Enable customized rounding offset for inter blocks. 3032 * If 0, default value would be taken by driver for inter 3033 * rounding offset. 3034 */ 3035 uint32_t enable_custom_rounding_inter : 1 ; 3036 3037 /** \brief Inter rounding offset 3038 * Ignored if \c enable_custom_rouding_inter equals 0. 3039 */ 3040 uint32_t rounding_offset_inter : 7; 3041 3042 /* Reserved */ 3043 uint32_t reserved : 16; 3044 } bits; 3045 uint32_t value; 3046 } rounding_offset_setting; 3047 } VAEncMiscParameterCustomRoundingControl; 3048 3049 /** 3050 * There will be cases where the bitstream buffer will not have enough room to hold 3051 * the data for the entire slice, and the following flags will be used in the slice 3052 * parameter to signal to the server for the possible cases. 3053 * If a slice parameter buffer and slice data buffer pair is sent to the server with 3054 * the slice data partially in the slice data buffer (BEGIN and MIDDLE cases below), 3055 * then a slice parameter and data buffer needs to be sent again to complete this slice. 3056 */ 3057 #define VA_SLICE_DATA_FLAG_ALL 0x00 /* whole slice is in the buffer */ 3058 #define VA_SLICE_DATA_FLAG_BEGIN 0x01 /* The beginning of the slice is in the buffer but the end if not */ 3059 #define VA_SLICE_DATA_FLAG_MIDDLE 0x02 /* Neither beginning nor end of the slice is in the buffer */ 3060 #define VA_SLICE_DATA_FLAG_END 0x04 /* end of the slice is in the buffer */ 3061 3062 /* Codec-independent Slice Parameter Buffer base */ 3063 typedef struct _VASliceParameterBufferBase { 3064 uint32_t slice_data_size; /* number of bytes in the slice data buffer for this slice */ 3065 uint32_t slice_data_offset; /* the offset to the first byte of slice data */ 3066 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX definitions */ 3067 } VASliceParameterBufferBase; 3068 3069 /********************************** 3070 * JPEG common data structures 3071 **********************************/ 3072 /** 3073 * \brief Huffman table for JPEG decoding. 3074 * 3075 * This structure holds the complete Huffman tables. This is an 3076 * aggregation of all Huffman table (DHT) segments maintained by the 3077 * application. i.e. up to 2 Huffman tables are stored in there for 3078 * baseline profile. 3079 * 3080 * The #load_huffman_table array can be used as a hint to notify the 3081 * VA driver implementation about which table(s) actually changed 3082 * since the last submission of this buffer. 3083 */ 3084 typedef struct _VAHuffmanTableBufferJPEGBaseline { 3085 /** \brief Specifies which #huffman_table is valid. */ 3086 uint8_t load_huffman_table[2]; 3087 /** \brief Huffman tables indexed by table identifier (Th). */ 3088 struct { 3089 /** @name DC table (up to 12 categories) */ 3090 /**@{*/ 3091 /** \brief Number of Huffman codes of length i + 1 (Li). */ 3092 uint8_t num_dc_codes[16]; 3093 /** \brief Value associated with each Huffman code (Vij). */ 3094 uint8_t dc_values[12]; 3095 /**@}*/ 3096 /** @name AC table (2 special codes + up to 16 * 10 codes) */ 3097 /**@{*/ 3098 /** \brief Number of Huffman codes of length i + 1 (Li). */ 3099 uint8_t num_ac_codes[16]; 3100 /** \brief Value associated with each Huffman code (Vij). */ 3101 uint8_t ac_values[162]; 3102 /** \brief Padding to 4-byte boundaries. Must be set to zero. */ 3103 uint8_t pad[2]; 3104 /**@}*/ 3105 } huffman_table[2]; 3106 3107 /** \brief Reserved bytes for future use, must be zero */ 3108 uint32_t va_reserved[VA_PADDING_LOW]; 3109 } VAHuffmanTableBufferJPEGBaseline; 3110 3111 /**************************** 3112 * MPEG-2 data structures 3113 ****************************/ 3114 3115 /* MPEG-2 Picture Parameter Buffer */ 3116 /* 3117 * For each frame or field, and before any slice data, a single 3118 * picture parameter buffer must be send. 3119 */ 3120 typedef struct _VAPictureParameterBufferMPEG2 { 3121 uint16_t horizontal_size; 3122 uint16_t vertical_size; 3123 VASurfaceID forward_reference_picture; 3124 VASurfaceID backward_reference_picture; 3125 /* meanings of the following fields are the same as in the standard */ 3126 int32_t picture_coding_type; 3127 int32_t f_code; /* pack all four fcode into this */ 3128 union { 3129 struct { 3130 uint32_t intra_dc_precision : 2; 3131 uint32_t picture_structure : 2; 3132 uint32_t top_field_first : 1; 3133 uint32_t frame_pred_frame_dct : 1; 3134 uint32_t concealment_motion_vectors : 1; 3135 uint32_t q_scale_type : 1; 3136 uint32_t intra_vlc_format : 1; 3137 uint32_t alternate_scan : 1; 3138 uint32_t repeat_first_field : 1; 3139 uint32_t progressive_frame : 1; 3140 uint32_t is_first_field : 1; /* indicate whether the current field 3141 * is the first field for field picture 3142 */ 3143 } bits; 3144 uint32_t value; 3145 } picture_coding_extension; 3146 3147 /** \brief Reserved bytes for future use, must be zero */ 3148 uint32_t va_reserved[VA_PADDING_LOW]; 3149 } VAPictureParameterBufferMPEG2; 3150 3151 /** MPEG-2 Inverse Quantization Matrix Buffer */ 3152 typedef struct _VAIQMatrixBufferMPEG2 { 3153 /** \brief Same as the MPEG-2 bitstream syntax element. */ 3154 int32_t load_intra_quantiser_matrix; 3155 /** \brief Same as the MPEG-2 bitstream syntax element. */ 3156 int32_t load_non_intra_quantiser_matrix; 3157 /** \brief Same as the MPEG-2 bitstream syntax element. */ 3158 int32_t load_chroma_intra_quantiser_matrix; 3159 /** \brief Same as the MPEG-2 bitstream syntax element. */ 3160 int32_t load_chroma_non_intra_quantiser_matrix; 3161 /** \brief Luminance intra matrix, in zig-zag scan order. */ 3162 uint8_t intra_quantiser_matrix[64]; 3163 /** \brief Luminance non-intra matrix, in zig-zag scan order. */ 3164 uint8_t non_intra_quantiser_matrix[64]; 3165 /** \brief Chroma intra matrix, in zig-zag scan order. */ 3166 uint8_t chroma_intra_quantiser_matrix[64]; 3167 /** \brief Chroma non-intra matrix, in zig-zag scan order. */ 3168 uint8_t chroma_non_intra_quantiser_matrix[64]; 3169 3170 /** \brief Reserved bytes for future use, must be zero */ 3171 uint32_t va_reserved[VA_PADDING_LOW]; 3172 } VAIQMatrixBufferMPEG2; 3173 3174 /** MPEG-2 Slice Parameter Buffer */ 3175 typedef struct _VASliceParameterBufferMPEG2 { 3176 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */ 3177 uint32_t slice_data_offset;/* the offset to the first byte of slice data */ 3178 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */ 3179 uint32_t macroblock_offset;/* the offset to the first bit of MB from the first byte of slice data */ 3180 uint32_t slice_horizontal_position; 3181 uint32_t slice_vertical_position; 3182 int32_t quantiser_scale_code; 3183 int32_t intra_slice_flag; 3184 3185 /** \brief Reserved bytes for future use, must be zero */ 3186 uint32_t va_reserved[VA_PADDING_LOW]; 3187 } VASliceParameterBufferMPEG2; 3188 3189 /** MPEG-2 Macroblock Parameter Buffer */ 3190 typedef struct _VAMacroblockParameterBufferMPEG2 { 3191 uint16_t macroblock_address; 3192 /* 3193 * macroblock_address (in raster scan order) 3194 * top-left: 0 3195 * bottom-right: picture-height-in-mb*picture-width-in-mb - 1 3196 */ 3197 uint8_t macroblock_type; /* see definition below */ 3198 union { 3199 struct { 3200 uint32_t frame_motion_type : 2; 3201 uint32_t field_motion_type : 2; 3202 uint32_t dct_type : 1; 3203 } bits; 3204 uint32_t value; 3205 } macroblock_modes; 3206 uint8_t motion_vertical_field_select; 3207 /* 3208 * motion_vertical_field_select: 3209 * see section 6.3.17.2 in the spec 3210 * only the lower 4 bits are used 3211 * bit 0: first vector forward 3212 * bit 1: first vector backward 3213 * bit 2: second vector forward 3214 * bit 3: second vector backward 3215 */ 3216 int16_t PMV[2][2][2]; /* see Table 7-7 in the spec */ 3217 uint16_t coded_block_pattern; 3218 /* 3219 * The bitplanes for coded_block_pattern are described 3220 * in Figure 6.10-12 in the spec 3221 */ 3222 3223 /* Number of skipped macroblocks after this macroblock */ 3224 uint16_t num_skipped_macroblocks; 3225 3226 /** \brief Reserved bytes for future use, must be zero */ 3227 uint32_t va_reserved[VA_PADDING_LOW]; 3228 } VAMacroblockParameterBufferMPEG2; 3229 3230 /* 3231 * OR'd flags for macroblock_type (section 6.3.17.1 in the spec) 3232 */ 3233 #define VA_MB_TYPE_MOTION_FORWARD 0x02 3234 #define VA_MB_TYPE_MOTION_BACKWARD 0x04 3235 #define VA_MB_TYPE_MOTION_PATTERN 0x08 3236 #define VA_MB_TYPE_MOTION_INTRA 0x10 3237 3238 /** 3239 * MPEG-2 Residual Data Buffer 3240 * For each macroblock, there wil be 64 shorts (16-bit) in the 3241 * residual data buffer 3242 */ 3243 3244 /**************************** 3245 * MPEG-4 Part 2 data structures 3246 ****************************/ 3247 3248 /* MPEG-4 Picture Parameter Buffer */ 3249 /* 3250 * For each frame or field, and before any slice data, a single 3251 * picture parameter buffer must be send. 3252 */ 3253 typedef struct _VAPictureParameterBufferMPEG4 { 3254 uint16_t vop_width; 3255 uint16_t vop_height; 3256 VASurfaceID forward_reference_picture; 3257 VASurfaceID backward_reference_picture; 3258 union { 3259 struct { 3260 uint32_t short_video_header : 1; 3261 uint32_t chroma_format : 2; 3262 uint32_t interlaced : 1; 3263 uint32_t obmc_disable : 1; 3264 uint32_t sprite_enable : 2; 3265 uint32_t sprite_warping_accuracy : 2; 3266 uint32_t quant_type : 1; 3267 uint32_t quarter_sample : 1; 3268 uint32_t data_partitioned : 1; 3269 uint32_t reversible_vlc : 1; 3270 uint32_t resync_marker_disable : 1; 3271 } bits; 3272 uint32_t value; 3273 } vol_fields; 3274 uint8_t no_of_sprite_warping_points; 3275 int16_t sprite_trajectory_du[3]; 3276 int16_t sprite_trajectory_dv[3]; 3277 uint8_t quant_precision; 3278 union { 3279 struct { 3280 uint32_t vop_coding_type : 2; 3281 uint32_t backward_reference_vop_coding_type : 2; 3282 uint32_t vop_rounding_type : 1; 3283 uint32_t intra_dc_vlc_thr : 3; 3284 uint32_t top_field_first : 1; 3285 uint32_t alternate_vertical_scan_flag : 1; 3286 } bits; 3287 uint32_t value; 3288 } vop_fields; 3289 uint8_t vop_fcode_forward; 3290 uint8_t vop_fcode_backward; 3291 uint16_t vop_time_increment_resolution; 3292 /* short header related */ 3293 uint8_t num_gobs_in_vop; 3294 uint8_t num_macroblocks_in_gob; 3295 /* for direct mode prediction */ 3296 int16_t TRB; 3297 int16_t TRD; 3298 3299 /** \brief Reserved bytes for future use, must be zero */ 3300 uint32_t va_reserved[VA_PADDING_LOW]; 3301 } VAPictureParameterBufferMPEG4; 3302 3303 /** MPEG-4 Inverse Quantization Matrix Buffer */ 3304 typedef struct _VAIQMatrixBufferMPEG4 { 3305 /** Same as the MPEG-4:2 bitstream syntax element. */ 3306 int32_t load_intra_quant_mat; 3307 /** Same as the MPEG-4:2 bitstream syntax element. */ 3308 int32_t load_non_intra_quant_mat; 3309 /** The matrix for intra blocks, in zig-zag scan order. */ 3310 uint8_t intra_quant_mat[64]; 3311 /** The matrix for non-intra blocks, in zig-zag scan order. */ 3312 uint8_t non_intra_quant_mat[64]; 3313 3314 /** \brief Reserved bytes for future use, must be zero */ 3315 uint32_t va_reserved[VA_PADDING_LOW]; 3316 } VAIQMatrixBufferMPEG4; 3317 3318 /** MPEG-4 Slice Parameter Buffer */ 3319 typedef struct _VASliceParameterBufferMPEG4 { 3320 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */ 3321 uint32_t slice_data_offset;/* the offset to the first byte of slice data */ 3322 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */ 3323 uint32_t macroblock_offset;/* the offset to the first bit of MB from the first byte of slice data */ 3324 uint32_t macroblock_number; 3325 int32_t quant_scale; 3326 3327 /** \brief Reserved bytes for future use, must be zero */ 3328 uint32_t va_reserved[VA_PADDING_LOW]; 3329 } VASliceParameterBufferMPEG4; 3330 3331 /** 3332 VC-1 data structures 3333 */ 3334 3335 typedef enum /* see 7.1.1.32 */ 3336 { 3337 VAMvMode1Mv = 0, 3338 VAMvMode1MvHalfPel = 1, 3339 VAMvMode1MvHalfPelBilinear = 2, 3340 VAMvModeMixedMv = 3, 3341 VAMvModeIntensityCompensation = 4 3342 } VAMvModeVC1; 3343 3344 /** VC-1 Picture Parameter Buffer */ 3345 /* 3346 * For each picture, and before any slice data, a picture parameter 3347 * buffer must be send. Multiple picture parameter buffers may be 3348 * sent for a single picture. In that case picture parameters will 3349 * apply to all slice data that follow it until a new picture 3350 * parameter buffer is sent. 3351 * 3352 * Notes: 3353 * pic_quantizer_type should be set to the applicable quantizer 3354 * type as defined by QUANTIZER (J.1.19) and either 3355 * PQUANTIZER (7.1.1.8) or PQINDEX (7.1.1.6) 3356 */ 3357 typedef struct _VAPictureParameterBufferVC1 { 3358 VASurfaceID forward_reference_picture; 3359 VASurfaceID backward_reference_picture; 3360 /* if out-of-loop post-processing is done on the render 3361 target, then we need to keep the in-loop decoded 3362 picture as a reference picture */ 3363 VASurfaceID inloop_decoded_picture; 3364 3365 /* sequence layer for AP or meta data for SP and MP */ 3366 union { 3367 struct { 3368 uint32_t pulldown : 1; /* SEQUENCE_LAYER::PULLDOWN */ 3369 uint32_t interlace : 1; /* SEQUENCE_LAYER::INTERLACE */ 3370 uint32_t tfcntrflag : 1; /* SEQUENCE_LAYER::TFCNTRFLAG */ 3371 uint32_t finterpflag : 1; /* SEQUENCE_LAYER::FINTERPFLAG */ 3372 uint32_t psf : 1; /* SEQUENCE_LAYER::PSF */ 3373 uint32_t multires : 1; /* METADATA::MULTIRES */ 3374 uint32_t overlap : 1; /* METADATA::OVERLAP */ 3375 uint32_t syncmarker : 1; /* METADATA::SYNCMARKER */ 3376 uint32_t rangered : 1; /* METADATA::RANGERED */ 3377 uint32_t max_b_frames : 3; /* METADATA::MAXBFRAMES */ 3378 uint32_t profile : 2; /* SEQUENCE_LAYER::PROFILE or The MSB of METADATA::PROFILE */ 3379 } bits; 3380 uint32_t value; 3381 } sequence_fields; 3382 3383 uint16_t coded_width; /* ENTRY_POINT_LAYER::CODED_WIDTH */ 3384 uint16_t coded_height; /* ENTRY_POINT_LAYER::CODED_HEIGHT */ 3385 union { 3386 struct { 3387 uint32_t broken_link : 1; /* ENTRY_POINT_LAYER::BROKEN_LINK */ 3388 uint32_t closed_entry : 1; /* ENTRY_POINT_LAYER::CLOSED_ENTRY */ 3389 uint32_t panscan_flag : 1; /* ENTRY_POINT_LAYER::PANSCAN_FLAG */ 3390 uint32_t loopfilter : 1; /* ENTRY_POINT_LAYER::LOOPFILTER */ 3391 } bits; 3392 uint32_t value; 3393 } entrypoint_fields; 3394 uint8_t conditional_overlap_flag; /* ENTRY_POINT_LAYER::CONDOVER */ 3395 uint8_t fast_uvmc_flag; /* ENTRY_POINT_LAYER::FASTUVMC */ 3396 union { 3397 struct { 3398 uint32_t luma_flag : 1; /* ENTRY_POINT_LAYER::RANGE_MAPY_FLAG */ 3399 uint32_t luma : 3; /* ENTRY_POINT_LAYER::RANGE_MAPY */ 3400 uint32_t chroma_flag : 1; /* ENTRY_POINT_LAYER::RANGE_MAPUV_FLAG */ 3401 uint32_t chroma : 3; /* ENTRY_POINT_LAYER::RANGE_MAPUV */ 3402 } bits; 3403 uint32_t value; 3404 } range_mapping_fields; 3405 3406 uint8_t b_picture_fraction; /* Index for PICTURE_LAYER::BFRACTION value in Table 40 (7.1.1.14) */ 3407 uint8_t cbp_table; /* PICTURE_LAYER::CBPTAB/ICBPTAB */ 3408 uint8_t mb_mode_table; /* PICTURE_LAYER::MBMODETAB */ 3409 uint8_t range_reduction_frame;/* PICTURE_LAYER::RANGEREDFRM */ 3410 uint8_t rounding_control; /* PICTURE_LAYER::RNDCTRL */ 3411 uint8_t post_processing; /* PICTURE_LAYER::POSTPROC */ 3412 uint8_t picture_resolution_index; /* PICTURE_LAYER::RESPIC */ 3413 uint8_t luma_scale; /* PICTURE_LAYER::LUMSCALE */ 3414 uint8_t luma_shift; /* PICTURE_LAYER::LUMSHIFT */ 3415 3416 union { 3417 struct { 3418 uint32_t picture_type : 3; /* PICTURE_LAYER::PTYPE */ 3419 uint32_t frame_coding_mode : 3; /* PICTURE_LAYER::FCM */ 3420 uint32_t top_field_first : 1; /* PICTURE_LAYER::TFF */ 3421 uint32_t is_first_field : 1; /* set to 1 if it is the first field */ 3422 uint32_t intensity_compensation : 1; /* PICTURE_LAYER::INTCOMP */ 3423 } bits; 3424 uint32_t value; 3425 } picture_fields; 3426 union { 3427 struct { 3428 uint32_t mv_type_mb : 1; /* PICTURE::MVTYPEMB */ 3429 uint32_t direct_mb : 1; /* PICTURE::DIRECTMB */ 3430 uint32_t skip_mb : 1; /* PICTURE::SKIPMB */ 3431 uint32_t field_tx : 1; /* PICTURE::FIELDTX */ 3432 uint32_t forward_mb : 1; /* PICTURE::FORWARDMB */ 3433 uint32_t ac_pred : 1; /* PICTURE::ACPRED */ 3434 uint32_t overflags : 1; /* PICTURE::OVERFLAGS */ 3435 } flags; 3436 uint32_t value; 3437 } raw_coding; 3438 union { 3439 struct { 3440 uint32_t bp_mv_type_mb : 1; /* PICTURE::MVTYPEMB */ 3441 uint32_t bp_direct_mb : 1; /* PICTURE::DIRECTMB */ 3442 uint32_t bp_skip_mb : 1; /* PICTURE::SKIPMB */ 3443 uint32_t bp_field_tx : 1; /* PICTURE::FIELDTX */ 3444 uint32_t bp_forward_mb : 1; /* PICTURE::FORWARDMB */ 3445 uint32_t bp_ac_pred : 1; /* PICTURE::ACPRED */ 3446 uint32_t bp_overflags : 1; /* PICTURE::OVERFLAGS */ 3447 } flags; 3448 uint32_t value; 3449 } bitplane_present; /* signal what bitplane is being passed via the bitplane buffer */ 3450 union { 3451 struct { 3452 uint32_t reference_distance_flag : 1;/* PICTURE_LAYER::REFDIST_FLAG */ 3453 uint32_t reference_distance : 5;/* PICTURE_LAYER::REFDIST */ 3454 uint32_t num_reference_pictures: 1;/* PICTURE_LAYER::NUMREF */ 3455 uint32_t reference_field_pic_indicator : 1;/* PICTURE_LAYER::REFFIELD */ 3456 } bits; 3457 uint32_t value; 3458 } reference_fields; 3459 union { 3460 struct { 3461 uint32_t mv_mode : 3; /* PICTURE_LAYER::MVMODE */ 3462 uint32_t mv_mode2 : 3; /* PICTURE_LAYER::MVMODE2 */ 3463 uint32_t mv_table : 3; /* PICTURE_LAYER::MVTAB/IMVTAB */ 3464 uint32_t two_mv_block_pattern_table: 2; /* PICTURE_LAYER::2MVBPTAB */ 3465 uint32_t four_mv_switch : 1; /* PICTURE_LAYER::4MVSWITCH */ 3466 uint32_t four_mv_block_pattern_table : 2; /* PICTURE_LAYER::4MVBPTAB */ 3467 uint32_t extended_mv_flag : 1; /* ENTRY_POINT_LAYER::EXTENDED_MV */ 3468 uint32_t extended_mv_range : 2; /* PICTURE_LAYER::MVRANGE */ 3469 uint32_t extended_dmv_flag : 1; /* ENTRY_POINT_LAYER::EXTENDED_DMV */ 3470 uint32_t extended_dmv_range : 2; /* PICTURE_LAYER::DMVRANGE */ 3471 } bits; 3472 uint32_t value; 3473 } mv_fields; 3474 union { 3475 struct { 3476 uint32_t dquant : 2; /* ENTRY_POINT_LAYER::DQUANT */ 3477 uint32_t quantizer : 2; /* ENTRY_POINT_LAYER::QUANTIZER */ 3478 uint32_t half_qp : 1; /* PICTURE_LAYER::HALFQP */ 3479 uint32_t pic_quantizer_scale : 5;/* PICTURE_LAYER::PQUANT */ 3480 uint32_t pic_quantizer_type : 1;/* PICTURE_LAYER::PQUANTIZER */ 3481 uint32_t dq_frame : 1; /* VOPDQUANT::DQUANTFRM */ 3482 uint32_t dq_profile : 2; /* VOPDQUANT::DQPROFILE */ 3483 uint32_t dq_sb_edge : 2; /* VOPDQUANT::DQSBEDGE */ 3484 uint32_t dq_db_edge : 2; /* VOPDQUANT::DQDBEDGE */ 3485 uint32_t dq_binary_level : 1; /* VOPDQUANT::DQBILEVEL */ 3486 uint32_t alt_pic_quantizer : 5;/* VOPDQUANT::ALTPQUANT */ 3487 } bits; 3488 uint32_t value; 3489 } pic_quantizer_fields; 3490 union { 3491 struct { 3492 uint32_t variable_sized_transform_flag : 1;/* ENTRY_POINT_LAYER::VSTRANSFORM */ 3493 uint32_t mb_level_transform_type_flag : 1;/* PICTURE_LAYER::TTMBF */ 3494 uint32_t frame_level_transform_type : 2;/* PICTURE_LAYER::TTFRM */ 3495 uint32_t transform_ac_codingset_idx1 : 2;/* PICTURE_LAYER::TRANSACFRM */ 3496 uint32_t transform_ac_codingset_idx2 : 2;/* PICTURE_LAYER::TRANSACFRM2 */ 3497 uint32_t intra_transform_dc_table : 1;/* PICTURE_LAYER::TRANSDCTAB */ 3498 } bits; 3499 uint32_t value; 3500 } transform_fields; 3501 3502 uint8_t luma_scale2; /* PICTURE_LAYER::LUMSCALE2 */ 3503 uint8_t luma_shift2; /* PICTURE_LAYER::LUMSHIFT2 */ 3504 uint8_t intensity_compensation_field; /* Index for PICTURE_LAYER::INTCOMPFIELD value in Table 109 (9.1.1.48) */ 3505 3506 /** \brief Reserved bytes for future use, must be zero */ 3507 uint32_t va_reserved[VA_PADDING_MEDIUM - 1]; 3508 } VAPictureParameterBufferVC1; 3509 3510 /** VC-1 Bitplane Buffer 3511 There will be at most three bitplanes coded in any picture header. To send 3512 the bitplane data more efficiently, each byte is divided in two nibbles, with 3513 each nibble carrying three bitplanes for one macroblock. The following table 3514 shows the bitplane data arrangement within each nibble based on the picture 3515 type. 3516 3517 Picture Type Bit3 Bit2 Bit1 Bit0 3518 I or BI OVERFLAGS ACPRED FIELDTX 3519 P MYTYPEMB SKIPMB DIRECTMB 3520 B FORWARDMB SKIPMB DIRECTMB 3521 3522 Within each byte, the lower nibble is for the first MB and the upper nibble is 3523 for the second MB. E.g. the lower nibble of the first byte in the bitplane 3524 buffer is for Macroblock #1 and the upper nibble of the first byte is for 3525 Macroblock #2 in the first row. 3526 */ 3527 3528 /* VC-1 Slice Parameter Buffer */ 3529 typedef struct _VASliceParameterBufferVC1 { 3530 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */ 3531 uint32_t slice_data_offset;/* the offset to the first byte of slice data */ 3532 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */ 3533 uint32_t macroblock_offset;/* the offset to the first bit of MB from the first byte of slice data */ 3534 uint32_t slice_vertical_position; 3535 3536 /** \brief Reserved bytes for future use, must be zero */ 3537 uint32_t va_reserved[VA_PADDING_LOW]; 3538 } VASliceParameterBufferVC1; 3539 3540 /* VC-1 Slice Data Buffer */ 3541 /* 3542 This is simplely a buffer containing raw bit-stream bytes 3543 */ 3544 3545 /**************************** 3546 * H.264/AVC data structures 3547 ****************************/ 3548 3549 typedef struct _VAPictureH264 { 3550 VASurfaceID picture_id; 3551 uint32_t frame_idx; 3552 uint32_t flags; 3553 int32_t TopFieldOrderCnt; 3554 int32_t BottomFieldOrderCnt; 3555 3556 /** \brief Reserved bytes for future use, must be zero */ 3557 uint32_t va_reserved[VA_PADDING_LOW]; 3558 } VAPictureH264; 3559 /* flags in VAPictureH264 could be OR of the following */ 3560 #define VA_PICTURE_H264_INVALID 0x00000001 3561 #define VA_PICTURE_H264_TOP_FIELD 0x00000002 3562 #define VA_PICTURE_H264_BOTTOM_FIELD 0x00000004 3563 #define VA_PICTURE_H264_SHORT_TERM_REFERENCE 0x00000008 3564 #define VA_PICTURE_H264_LONG_TERM_REFERENCE 0x00000010 3565 3566 /** H.264 Picture Parameter Buffer */ 3567 /* 3568 * For each picture, and before any slice data, a single 3569 * picture parameter buffer must be send. 3570 */ 3571 typedef struct _VAPictureParameterBufferH264 { 3572 VAPictureH264 CurrPic; 3573 VAPictureH264 ReferenceFrames[16]; /* in DPB */ 3574 uint16_t picture_width_in_mbs_minus1; 3575 uint16_t picture_height_in_mbs_minus1; 3576 uint8_t bit_depth_luma_minus8; 3577 uint8_t bit_depth_chroma_minus8; 3578 uint8_t num_ref_frames; 3579 union { 3580 struct { 3581 uint32_t chroma_format_idc : 2; 3582 uint32_t residual_colour_transform_flag : 1; /* Renamed to separate_colour_plane_flag in newer standard versions. */ 3583 uint32_t gaps_in_frame_num_value_allowed_flag : 1; 3584 uint32_t frame_mbs_only_flag : 1; 3585 uint32_t mb_adaptive_frame_field_flag : 1; 3586 uint32_t direct_8x8_inference_flag : 1; 3587 uint32_t MinLumaBiPredSize8x8 : 1; /* see A.3.3.2 */ 3588 uint32_t log2_max_frame_num_minus4 : 4; 3589 uint32_t pic_order_cnt_type : 2; 3590 uint32_t log2_max_pic_order_cnt_lsb_minus4 : 4; 3591 uint32_t delta_pic_order_always_zero_flag : 1; 3592 } bits; 3593 uint32_t value; 3594 } seq_fields; 3595 // FMO is not supported. 3596 va_deprecated uint8_t num_slice_groups_minus1; 3597 va_deprecated uint8_t slice_group_map_type; 3598 va_deprecated uint16_t slice_group_change_rate_minus1; 3599 int8_t pic_init_qp_minus26; 3600 int8_t pic_init_qs_minus26; 3601 int8_t chroma_qp_index_offset; 3602 int8_t second_chroma_qp_index_offset; 3603 union { 3604 struct { 3605 uint32_t entropy_coding_mode_flag : 1; 3606 uint32_t weighted_pred_flag : 1; 3607 uint32_t weighted_bipred_idc : 2; 3608 uint32_t transform_8x8_mode_flag : 1; 3609 uint32_t field_pic_flag : 1; 3610 uint32_t constrained_intra_pred_flag : 1; 3611 uint32_t pic_order_present_flag : 1; /* Renamed to bottom_field_pic_order_in_frame_present_flag in newer standard versions. */ 3612 uint32_t deblocking_filter_control_present_flag : 1; 3613 uint32_t redundant_pic_cnt_present_flag : 1; 3614 uint32_t reference_pic_flag : 1; /* nal_ref_idc != 0 */ 3615 } bits; 3616 uint32_t value; 3617 } pic_fields; 3618 uint16_t frame_num; 3619 3620 /** \brief Reserved bytes for future use, must be zero */ 3621 uint32_t va_reserved[VA_PADDING_MEDIUM]; 3622 } VAPictureParameterBufferH264; 3623 3624 /** H.264 Inverse Quantization Matrix Buffer */ 3625 typedef struct _VAIQMatrixBufferH264 { 3626 /** \brief 4x4 scaling list, in raster scan order. */ 3627 uint8_t ScalingList4x4[6][16]; 3628 /** \brief 8x8 scaling list, in raster scan order. */ 3629 uint8_t ScalingList8x8[2][64]; 3630 3631 /** \brief Reserved bytes for future use, must be zero */ 3632 uint32_t va_reserved[VA_PADDING_LOW]; 3633 } VAIQMatrixBufferH264; 3634 3635 /** H.264 Slice Parameter Buffer */ 3636 typedef struct _VASliceParameterBufferH264 { 3637 uint32_t slice_data_size;/* number of bytes in the slice data buffer for this slice */ 3638 /** \brief Byte offset to the NAL Header Unit for this slice. */ 3639 uint32_t slice_data_offset; 3640 uint32_t slice_data_flag; /* see VA_SLICE_DATA_FLAG_XXX defintions */ 3641 /** 3642 * \brief Bit offset from NAL Header Unit to the begining of slice_data(). 3643 * 3644 * This bit offset is relative to and includes the NAL unit byte 3645 * and represents the number of bits parsed in the slice_header() 3646 * after the removal of any emulation prevention bytes in 3647 * there. However, the slice data buffer passed to the hardware is 3648 * the original bitstream, thus including any emulation prevention 3649 * bytes. 3650 */ 3651 uint16_t slice_data_bit_offset; 3652 uint16_t first_mb_in_slice; 3653 uint8_t slice_type; 3654 uint8_t direct_spatial_mv_pred_flag; 3655 /** 3656 * H264/AVC syntax element 3657 * 3658 * if num_ref_idx_active_override_flag equals 0, host decoder should 3659 * set its value to num_ref_idx_l0_default_active_minus1. 3660 */ 3661 uint8_t num_ref_idx_l0_active_minus1; 3662 /** 3663 * H264/AVC syntax element 3664 * 3665 * if num_ref_idx_active_override_flag equals 0, host decoder should 3666 * set its value to num_ref_idx_l1_default_active_minus1. 3667 */ 3668 uint8_t num_ref_idx_l1_active_minus1; 3669 uint8_t cabac_init_idc; 3670 int8_t slice_qp_delta; 3671 uint8_t disable_deblocking_filter_idc; 3672 int8_t slice_alpha_c0_offset_div2; 3673 int8_t slice_beta_offset_div2; 3674 VAPictureH264 RefPicList0[32]; /* See 8.2.4.2 */ 3675 VAPictureH264 RefPicList1[32]; /* See 8.2.4.2 */ 3676 uint8_t luma_log2_weight_denom; 3677 uint8_t chroma_log2_weight_denom; 3678 uint8_t luma_weight_l0_flag; 3679 int16_t luma_weight_l0[32]; 3680 int16_t luma_offset_l0[32]; 3681 uint8_t chroma_weight_l0_flag; 3682 int16_t chroma_weight_l0[32][2]; 3683 int16_t chroma_offset_l0[32][2]; 3684 uint8_t luma_weight_l1_flag; 3685 int16_t luma_weight_l1[32]; 3686 int16_t luma_offset_l1[32]; 3687 uint8_t chroma_weight_l1_flag; 3688 int16_t chroma_weight_l1[32][2]; 3689 int16_t chroma_offset_l1[32][2]; 3690 3691 /** \brief Reserved bytes for future use, must be zero */ 3692 uint32_t va_reserved[VA_PADDING_LOW]; 3693 } VASliceParameterBufferH264; 3694 3695 /**************************** 3696 * Common encode data structures 3697 ****************************/ 3698 typedef enum { 3699 VAEncPictureTypeIntra = 0, 3700 VAEncPictureTypePredictive = 1, 3701 VAEncPictureTypeBidirectional = 2, 3702 } VAEncPictureType; 3703 3704 /** 3705 * \brief Encode Slice Parameter Buffer. 3706 * 3707 * @deprecated 3708 * This is a deprecated encode slice parameter buffer, All applications 3709 * \c can use VAEncSliceParameterBufferXXX (XXX = MPEG2, HEVC, H264, JPEG) 3710 */ 3711 typedef struct _VAEncSliceParameterBuffer { 3712 uint32_t start_row_number; /* starting MB row number for this slice */ 3713 uint32_t slice_height; /* slice height measured in MB */ 3714 union { 3715 struct { 3716 uint32_t is_intra : 1; 3717 uint32_t disable_deblocking_filter_idc : 2; 3718 uint32_t uses_long_term_ref : 1; 3719 uint32_t is_long_term_ref : 1; 3720 } bits; 3721 uint32_t value; 3722 } slice_flags; 3723 3724 /** \brief Reserved bytes for future use, must be zero */ 3725 uint32_t va_reserved[VA_PADDING_LOW]; 3726 } VAEncSliceParameterBuffer; 3727 3728 3729 /**************************** 3730 * H.263 specific encode data structures 3731 ****************************/ 3732 3733 typedef struct _VAEncSequenceParameterBufferH263 { 3734 uint32_t intra_period; 3735 uint32_t bits_per_second; 3736 uint32_t frame_rate; 3737 uint32_t initial_qp; 3738 uint32_t min_qp; 3739 3740 /** \brief Reserved bytes for future use, must be zero */ 3741 uint32_t va_reserved[VA_PADDING_LOW]; 3742 } VAEncSequenceParameterBufferH263; 3743 3744 typedef struct _VAEncPictureParameterBufferH263 { 3745 VASurfaceID reference_picture; 3746 VASurfaceID reconstructed_picture; 3747 VABufferID coded_buf; 3748 uint16_t picture_width; 3749 uint16_t picture_height; 3750 VAEncPictureType picture_type; 3751 3752 /** \brief Reserved bytes for future use, must be zero */ 3753 uint32_t va_reserved[VA_PADDING_LOW]; 3754 } VAEncPictureParameterBufferH263; 3755 3756 /**************************** 3757 * MPEG-4 specific encode data structures 3758 ****************************/ 3759 3760 typedef struct _VAEncSequenceParameterBufferMPEG4 { 3761 uint8_t profile_and_level_indication; 3762 uint32_t intra_period; 3763 uint32_t video_object_layer_width; 3764 uint32_t video_object_layer_height; 3765 uint32_t vop_time_increment_resolution; 3766 uint32_t fixed_vop_rate; 3767 uint32_t fixed_vop_time_increment; 3768 uint32_t bits_per_second; 3769 uint32_t frame_rate; 3770 uint32_t initial_qp; 3771 uint32_t min_qp; 3772 3773 /** \brief Reserved bytes for future use, must be zero */ 3774 uint32_t va_reserved[VA_PADDING_LOW]; 3775 } VAEncSequenceParameterBufferMPEG4; 3776 3777 typedef struct _VAEncPictureParameterBufferMPEG4 { 3778 VASurfaceID reference_picture; 3779 VASurfaceID reconstructed_picture; 3780 VABufferID coded_buf; 3781 uint16_t picture_width; 3782 uint16_t picture_height; 3783 uint32_t modulo_time_base; /* number of 1s */ 3784 uint32_t vop_time_increment; 3785 VAEncPictureType picture_type; 3786 3787 /** \brief Reserved bytes for future use, must be zero */ 3788 uint32_t va_reserved[VA_PADDING_LOW]; 3789 } VAEncPictureParameterBufferMPEG4; 3790 3791 3792 3793 /** Buffer functions */ 3794 3795 /** 3796 * Creates a buffer for "num_elements" elements of "size" bytes and 3797 * initalize with "data". 3798 * if "data" is null, then the contents of the buffer data store 3799 * are undefined. 3800 * Basically there are two ways to get buffer data to the server side. One is 3801 * to call vaCreateBuffer() with a non-null "data", which results the data being 3802 * copied to the data store on the server side. A different method that 3803 * eliminates this copy is to pass null as "data" when calling vaCreateBuffer(), 3804 * and then use vaMapBuffer() to map the data store from the server side to the 3805 * client address space for access. 3806 * The user must call vaDestroyBuffer() to destroy a buffer. 3807 * Note: image buffers are created by the library, not the client. Please see 3808 * vaCreateImage on how image buffers are managed. 3809 */ 3810 VAStatus vaCreateBuffer( 3811 VADisplay dpy, 3812 VAContextID context, 3813 VABufferType type, /* in */ 3814 unsigned int size, /* in */ 3815 unsigned int num_elements, /* in */ 3816 void *data, /* in */ 3817 VABufferID *buf_id /* out */ 3818 ); 3819 3820 /** 3821 * Create a buffer for given width & height get unit_size, pitch, buf_id for 2D buffer 3822 * for permb qp buffer, it will return unit_size for one MB or LCU and the pitch for alignments 3823 * can call vaMapBuffer with this Buffer ID to get virtual address. 3824 * e.g. AVC 1080P encode, 1920x1088, the size in MB is 120x68,but inside driver, 3825 * maybe it should align with 256, and one byte present one Qp.so, call the function. 3826 * then get unit_size = 1, pitch = 256. call vaMapBuffer to get the virtual address (pBuf). 3827 * then read write the memory like 2D. the size is 256x68, application can only use 120x68 3828 * pBuf + 256 is the start of next line. 3829 * different driver implementation maybe return different unit_size and pitch 3830 */ 3831 VAStatus vaCreateBuffer2( 3832 VADisplay dpy, 3833 VAContextID context, 3834 VABufferType type, 3835 unsigned int width, 3836 unsigned int height, 3837 unsigned int *unit_size, 3838 unsigned int *pitch, 3839 VABufferID *buf_id 3840 ); 3841 3842 /** 3843 * Convey to the server how many valid elements are in the buffer. 3844 * e.g. if multiple slice parameters are being held in a single buffer, 3845 * this will communicate to the server the number of slice parameters 3846 * that are valid in the buffer. 3847 */ 3848 VAStatus vaBufferSetNumElements( 3849 VADisplay dpy, 3850 VABufferID buf_id, /* in */ 3851 unsigned int num_elements /* in */ 3852 ); 3853 3854 3855 /** 3856 * device independent data structure for codedbuffer 3857 */ 3858 3859 /* 3860 * FICTURE_AVE_QP(bit7-0): The average Qp value used during this frame 3861 * LARGE_SLICE(bit8):At least one slice in the current frame was large 3862 * enough for the encoder to attempt to limit its size. 3863 * SLICE_OVERFLOW(bit9): At least one slice in the current frame has 3864 * exceeded the maximum slice size specified. 3865 * BITRATE_OVERFLOW(bit10): The peak bitrate was exceeded for this frame. 3866 * BITRATE_HIGH(bit11): The frame size got within the safety margin of the maximum size (VCM only) 3867 * AIR_MB_OVER_THRESHOLD: the number of MBs adapted to Intra MB 3868 */ 3869 #define VA_CODED_BUF_STATUS_PICTURE_AVE_QP_MASK 0xff 3870 #define VA_CODED_BUF_STATUS_LARGE_SLICE_MASK 0x100 3871 #define VA_CODED_BUF_STATUS_SLICE_OVERFLOW_MASK 0x200 3872 #define VA_CODED_BUF_STATUS_BITRATE_OVERFLOW 0x400 3873 #define VA_CODED_BUF_STATUS_BITRATE_HIGH 0x800 3874 /** 3875 * \brief The frame has exceeded the maximum requested size. 3876 * 3877 * This flag indicates that the encoded frame size exceeds the value 3878 * specified through a misc parameter buffer of type 3879 * #VAEncMiscParameterTypeMaxFrameSize. 3880 */ 3881 #define VA_CODED_BUF_STATUS_FRAME_SIZE_OVERFLOW 0x1000 3882 /** 3883 * \brief the bitstream is bad or corrupt. 3884 */ 3885 #define VA_CODED_BUF_STATUS_BAD_BITSTREAM 0x8000 3886 #define VA_CODED_BUF_STATUS_AIR_MB_OVER_THRESHOLD 0xff0000 3887 3888 /** 3889 * \brief The coded buffer segment status contains frame encoding passes number 3890 * 3891 * This is the mask to get the number of encoding passes from the coded 3892 * buffer segment status. 3893 * NUMBER_PASS(bit24~bit27): the number for encoding passes executed for the coded frame. 3894 * 3895 */ 3896 #define VA_CODED_BUF_STATUS_NUMBER_PASSES_MASK 0xf000000 3897 3898 /** 3899 * \brief The coded buffer segment contains a single NAL unit. 3900 * 3901 * This flag indicates that the coded buffer segment contains a 3902 * single NAL unit. This flag might be useful to the user for 3903 * processing the coded buffer. 3904 */ 3905 #define VA_CODED_BUF_STATUS_SINGLE_NALU 0x10000000 3906 3907 /** 3908 * \brief Coded buffer segment. 3909 * 3910 * #VACodedBufferSegment is an element of a linked list describing 3911 * some information on the coded buffer. The coded buffer segment 3912 * could contain either a single NAL unit, or more than one NAL unit. 3913 * It is recommended (but not required) to return a single NAL unit 3914 * in a coded buffer segment, and the implementation should set the 3915 * VA_CODED_BUF_STATUS_SINGLE_NALU status flag if that is the case. 3916 */ 3917 typedef struct _VACodedBufferSegment { 3918 /** 3919 * \brief Size of the data buffer in this segment (in bytes). 3920 */ 3921 uint32_t size; 3922 /** \brief Bit offset into the data buffer where the video data starts. */ 3923 uint32_t bit_offset; 3924 /** \brief Status set by the driver. See \c VA_CODED_BUF_STATUS_*. */ 3925 uint32_t status; 3926 /** \brief Reserved for future use. */ 3927 uint32_t reserved; 3928 /** \brief Pointer to the start of the data buffer. */ 3929 void *buf; 3930 /** 3931 * \brief Pointer to the next #VACodedBufferSegment element, 3932 * or \c NULL if there is none. 3933 */ 3934 void *next; 3935 3936 /** \brief Reserved bytes for future use, must be zero */ 3937 uint32_t va_reserved[VA_PADDING_LOW]; 3938 } VACodedBufferSegment; 3939 3940 /** 3941 * Map data store of the buffer into the client's address space 3942 * vaCreateBuffer() needs to be called with "data" set to NULL before 3943 * calling vaMapBuffer() 3944 * 3945 * if buffer type is VAEncCodedBufferType, pbuf points to link-list of 3946 * VACodedBufferSegment, and the list is terminated if "next" is NULL 3947 */ 3948 VAStatus vaMapBuffer( 3949 VADisplay dpy, 3950 VABufferID buf_id, /* in */ 3951 void **pbuf /* out */ 3952 ); 3953 3954 /** 3955 * Map data store of the buffer into the client's address space 3956 * this interface could be used to convey the operation hint 3957 * backend driver could use these hint to optimize the implementations 3958 */ 3959 3960 /** \brief VA_MAPBUFFER_FLAG_DEFAULT is used when there are no flag specified 3961 * same as VA_MAPBUFFER_FLAG_READ | VA_MAPBUFFER_FLAG_WRITE. 3962 */ 3963 #define VA_MAPBUFFER_FLAG_DEFAULT 0 3964 /** \brief application will read the surface after map */ 3965 #define VA_MAPBUFFER_FLAG_READ 1 3966 /** \brief application will write the surface after map */ 3967 #define VA_MAPBUFFER_FLAG_WRITE 2 3968 3969 VAStatus vaMapBuffer2( 3970 VADisplay dpy, 3971 VABufferID buf_id, /* in */ 3972 void **pbuf, /* out */ 3973 uint32_t flags /* in */ 3974 ); 3975 3976 /** 3977 * After client making changes to a mapped data store, it needs to 3978 * "Unmap" it to let the server know that the data is ready to be 3979 * consumed by the server 3980 */ 3981 VAStatus vaUnmapBuffer( 3982 VADisplay dpy, 3983 VABufferID buf_id /* in */ 3984 ); 3985 3986 /** 3987 * After this call, the buffer is deleted and this buffer_id is no longer valid 3988 * 3989 * A buffer can be re-used and sent to the server by another Begin/Render/End 3990 * sequence if vaDestroyBuffer() is not called with this buffer. 3991 * 3992 * Note re-using a shared buffer (e.g. a slice data buffer) between the host and the 3993 * hardware accelerator can result in performance dropping. 3994 */ 3995 VAStatus vaDestroyBuffer( 3996 VADisplay dpy, 3997 VABufferID buffer_id 3998 ); 3999 4000 /** \brief VA buffer information */ 4001 typedef struct { 4002 /** \brief Buffer handle */ 4003 uintptr_t handle; 4004 /** \brief Buffer type (See \ref VABufferType). */ 4005 uint32_t type; 4006 /** 4007 * \brief Buffer memory type (See \ref VASurfaceAttribMemoryType). 4008 * 4009 * On input to vaAcquireBufferHandle(), this field can serve as a hint 4010 * to specify the set of memory types the caller is interested in. 4011 * On successful return from vaAcquireBufferHandle(), the field is 4012 * updated with the best matching memory type. 4013 */ 4014 uint32_t mem_type; 4015 /** \brief Size of the underlying buffer. */ 4016 size_t mem_size; 4017 4018 /** \brief Reserved bytes for future use, must be zero */ 4019 uint32_t va_reserved[VA_PADDING_LOW]; 4020 } VABufferInfo; 4021 4022 /** 4023 * \brief Acquires buffer handle for external API usage 4024 * 4025 * Locks the VA buffer object \ref buf_id for external API usage like 4026 * EGL or OpenCL (OCL). This function is a synchronization point. This 4027 * means that any pending operation is guaranteed to be completed 4028 * prior to returning from the function. 4029 * 4030 * If the referenced VA buffer object is the backing store of a VA 4031 * surface, then this function acts as if vaSyncSurface() on the 4032 * parent surface was called first. 4033 * 4034 * The \ref VABufferInfo argument shall be zero'ed on input. On 4035 * successful output, the data structure is filled in with all the 4036 * necessary buffer level implementation details like handle, type, 4037 * memory type and memory size. 4038 * 4039 * Note: the external API implementation, or the application, can 4040 * express the memory types it is interested in by filling in the \ref 4041 * mem_type field accordingly. On successful output, the memory type 4042 * that fits best the request and that was used is updated in the \ref 4043 * VABufferInfo data structure. If none of the supplied memory types 4044 * is supported, then a \ref VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE 4045 * error is returned. 4046 * 4047 * The \ref VABufferInfo data is valid until vaReleaseBufferHandle() 4048 * is called. Besides, no additional operation is allowed on any of 4049 * the buffer parent object until vaReleaseBufferHandle() is called. 4050 * e.g. decoding into a VA surface backed with the supplied VA buffer 4051 * object \ref buf_id would fail with a \ref VA_STATUS_ERROR_SURFACE_BUSY 4052 * error. 4053 * 4054 * Possible errors: 4055 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation 4056 * does not support this interface 4057 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied 4058 * - \ref VA_STATUS_ERROR_INVALID_BUFFER: an invalid buffer was supplied 4059 * - \ref VA_STATUS_ERROR_UNSUPPORTED_BUFFERTYPE: the implementation 4060 * does not support exporting buffers of the specified type 4061 * - \ref VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE: none of the requested 4062 * memory types in \ref VABufferInfo.mem_type was supported 4063 * 4064 * @param[in] dpy the VA display 4065 * @param[in] buf_id the VA buffer 4066 * @param[in,out] buf_info the associated VA buffer information 4067 * @return VA_STATUS_SUCCESS if successful 4068 */ 4069 VAStatus 4070 vaAcquireBufferHandle(VADisplay dpy, VABufferID buf_id, VABufferInfo *buf_info); 4071 4072 /** 4073 * \brief Releases buffer after usage from external API 4074 * 4075 * Unlocks the VA buffer object \ref buf_id from external API usage like 4076 * EGL or OpenCL (OCL). This function is a synchronization point. This 4077 * means that any pending operation is guaranteed to be completed 4078 * prior to returning from the function. 4079 * 4080 * The \ref VABufferInfo argument shall point to the original data 4081 * structure that was obtained from vaAcquireBufferHandle(), unaltered. 4082 * This is necessary so that the VA driver implementation could 4083 * deallocate any resources that were needed. 4084 * 4085 * In any case, returning from this function invalidates any contents 4086 * in \ref VABufferInfo. i.e. the underlyng buffer handle is no longer 4087 * valid. Therefore, VA driver implementations are free to reset this 4088 * data structure to safe defaults. 4089 * 4090 * Possible errors: 4091 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation 4092 * does not support this interface 4093 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied 4094 * - \ref VA_STATUS_ERROR_INVALID_BUFFER: an invalid buffer was supplied 4095 * - \ref VA_STATUS_ERROR_UNSUPPORTED_BUFFERTYPE: the implementation 4096 * does not support exporting buffers of the specified type 4097 * 4098 * @param[in] dpy the VA display 4099 * @param[in] buf_id the VA buffer 4100 * @return VA_STATUS_SUCCESS if successful 4101 */ 4102 VAStatus 4103 vaReleaseBufferHandle(VADisplay dpy, VABufferID buf_id); 4104 4105 /** @name vaExportSurfaceHandle() flags 4106 * 4107 * @{ 4108 */ 4109 /** Export surface to be read by external API. */ 4110 #define VA_EXPORT_SURFACE_READ_ONLY 0x0001 4111 /** Export surface to be written by external API. */ 4112 #define VA_EXPORT_SURFACE_WRITE_ONLY 0x0002 4113 /** Export surface to be both read and written by external API. */ 4114 #define VA_EXPORT_SURFACE_READ_WRITE 0x0003 4115 /** Export surface with separate layers. 4116 * 4117 * For example, NV12 surfaces should be exported as two separate 4118 * planes for luma and chroma. 4119 */ 4120 #define VA_EXPORT_SURFACE_SEPARATE_LAYERS 0x0004 4121 /** Export surface with composed layers. 4122 * 4123 * For example, NV12 surfaces should be exported as a single NV12 4124 * composed object. 4125 */ 4126 #define VA_EXPORT_SURFACE_COMPOSED_LAYERS 0x0008 4127 4128 /** @} */ 4129 4130 /** 4131 * \brief Export a handle to a surface for use with an external API 4132 * 4133 * The exported handles are owned by the caller, and the caller is 4134 * responsible for freeing them when no longer needed (e.g. by closing 4135 * DRM PRIME file descriptors). 4136 * 4137 * This does not perform any synchronisation. If the contents of the 4138 * surface will be read, vaSyncSurface() must be called before doing so. 4139 * If the contents of the surface are written, then all operations must 4140 * be completed externally before using the surface again by via VA-API 4141 * functions. 4142 * 4143 * @param[in] dpy VA display. 4144 * @param[in] surface_id Surface to export. 4145 * @param[in] mem_type Memory type to export to. 4146 * @param[in] flags Combination of flags to apply 4147 * (VA_EXPORT_SURFACE_*). 4148 * @param[out] descriptor Pointer to the descriptor structure to fill 4149 * with the handle details. The type of this structure depends on 4150 * the value of mem_type. 4151 * 4152 * @return Status code: 4153 * - VA_STATUS_SUCCESS: Success. 4154 * - VA_STATUS_ERROR_INVALID_DISPLAY: The display is not valid. 4155 * - VA_STATUS_ERROR_UNIMPLEMENTED: The driver does not implement 4156 * this interface. 4157 * - VA_STATUS_ERROR_INVALID_SURFACE: The surface is not valid, or 4158 * the surface is not exportable in the specified way. 4159 * - VA_STATUS_ERROR_UNSUPPORTED_MEMORY_TYPE: The driver does not 4160 * support exporting surfaces to the specified memory type. 4161 */ 4162 VAStatus vaExportSurfaceHandle(VADisplay dpy, 4163 VASurfaceID surface_id, 4164 uint32_t mem_type, uint32_t flags, 4165 void *descriptor); 4166 4167 /** 4168 * Render (Video Decode/Encode/Processing) Pictures 4169 * 4170 * A picture represents either a frame or a field. 4171 * 4172 * The Begin/Render/End sequence sends the video decode/encode/processing buffers 4173 * to the server 4174 */ 4175 4176 /** 4177 * Get ready for a video pipeline 4178 * - decode a picture to a target surface 4179 * - encode a picture from a target surface 4180 * - process a picture to a target surface 4181 */ 4182 VAStatus vaBeginPicture( 4183 VADisplay dpy, 4184 VAContextID context, 4185 VASurfaceID render_target 4186 ); 4187 4188 /** 4189 * Send video decode, encode or processing buffers to the server. 4190 */ 4191 VAStatus vaRenderPicture( 4192 VADisplay dpy, 4193 VAContextID context, 4194 VABufferID *buffers, 4195 int num_buffers 4196 ); 4197 4198 /** 4199 * Make the end of rendering for a picture. 4200 * The server should start processing all pending operations for this 4201 * surface. This call is non-blocking. The client can start another 4202 * Begin/Render/End sequence on a different render target. 4203 * if VAContextID used in this function previously successfully passed 4204 * vaMFAddContext call, real processing will be started during vaMFSubmit 4205 */ 4206 VAStatus vaEndPicture( 4207 VADisplay dpy, 4208 VAContextID context 4209 ); 4210 4211 /** 4212 * Make the end of rendering for a pictures in contexts passed with submission. 4213 * The server should start processing all pending operations for contexts. 4214 * All contexts passed should be associated through vaMFAddContext 4215 * and call sequence Begin/Render/End performed. 4216 * This call is non-blocking. The client can start another 4217 * Begin/Render/End/vaMFSubmit sequence on a different render targets. 4218 * Return values: 4219 * VA_STATUS_SUCCESS - operation successful, context was removed. 4220 * VA_STATUS_ERROR_INVALID_CONTEXT - mf_context or one of contexts are invalid 4221 * due to mf_context not created or one of contexts not assotiated with mf_context 4222 * through vaAddContext. 4223 * VA_STATUS_ERROR_INVALID_PARAMETER - one of context has not submitted it's frame 4224 * through vaBeginPicture vaRenderPicture vaEndPicture call sequence. 4225 * dpy: display 4226 * mf_context: Multi-Frame context 4227 * contexts: list of contexts submitting their tasks for multi-frame operation. 4228 * num_contexts: number of passed contexts. 4229 */ 4230 VAStatus vaMFSubmit( 4231 VADisplay dpy, 4232 VAMFContextID mf_context, 4233 VAContextID * contexts, 4234 int num_contexts 4235 ); 4236 4237 /* 4238 4239 Synchronization 4240 4241 */ 4242 4243 /** 4244 * This function blocks until all pending operations on the render target 4245 * have been completed. Upon return it is safe to use the render target for a 4246 * different picture. 4247 */ 4248 VAStatus vaSyncSurface( 4249 VADisplay dpy, 4250 VASurfaceID render_target 4251 ); 4252 4253 /** \brief Indicates an infinite timeout. */ 4254 #define VA_TIMEOUT_INFINITE 0xFFFFFFFFFFFFFFFF 4255 4256 /** 4257 * \brief Synchronizes pending operations associated with the supplied surface. 4258 * 4259 * This function blocks during specified timeout (in nanoseconds) until 4260 * all pending operations on the render target have been completed. 4261 * If timeout is zero, the function returns immediately. 4262 * 4263 * Possible errors: 4264 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation 4265 * does not support this interface 4266 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied 4267 * - \ref VA_STATUS_ERROR_INVALID_SURFACE: an invalid surface was supplied 4268 * - \ref VA_STATUS_ERROR_TIMEDOUT: synchronization is still in progress, 4269 * client should call the function again to complete synchronization 4270 * 4271 * @param[in] dpy the VA display 4272 * @param[in] surface the surface for which synchronization is performed 4273 * @param[in] timeout_ns the timeout in nanoseconds 4274 * 4275 */ 4276 VAStatus vaSyncSurface2( 4277 VADisplay dpy, 4278 VASurfaceID surface, 4279 uint64_t timeout_ns 4280 ); 4281 4282 typedef enum { 4283 VASurfaceRendering = 1, /* Rendering in progress */ 4284 VASurfaceDisplaying = 2, /* Displaying in progress (not safe to render into it) */ 4285 /* this status is useful if surface is used as the source */ 4286 /* of an overlay */ 4287 VASurfaceReady = 4, /* not being rendered or displayed */ 4288 VASurfaceSkipped = 8 /* Indicate a skipped frame during encode */ 4289 } VASurfaceStatus; 4290 4291 /** 4292 * Find out any pending ops on the render target 4293 */ 4294 VAStatus vaQuerySurfaceStatus( 4295 VADisplay dpy, 4296 VASurfaceID render_target, 4297 VASurfaceStatus *status /* out */ 4298 ); 4299 4300 typedef enum { 4301 VADecodeSliceMissing = 0, 4302 VADecodeMBError = 1, 4303 VADecodeReset = 2, 4304 } VADecodeErrorType; 4305 4306 /** 4307 * Client calls vaQuerySurfaceError with VA_STATUS_ERROR_DECODING_ERROR, server side returns 4308 * an array of structure VASurfaceDecodeMBErrors, and the array is terminated by setting status=-1 4309 */ 4310 typedef struct _VASurfaceDecodeMBErrors { 4311 int32_t status; /* 1 if hardware has returned detailed info below, -1 means this record is invalid */ 4312 uint32_t start_mb; /* start mb address with errors */ 4313 uint32_t end_mb; /* end mb address with errors */ 4314 VADecodeErrorType decode_error_type; 4315 uint32_t num_mb; /* number of mbs with errors */ 4316 /** \brief Reserved bytes for future use, must be zero */ 4317 uint32_t va_reserved[VA_PADDING_LOW - 1]; 4318 } VASurfaceDecodeMBErrors; 4319 4320 /** 4321 * After the application gets VA_STATUS_ERROR_DECODING_ERROR after calling vaSyncSurface(), 4322 * it can call vaQuerySurfaceError to find out further details on the particular error. 4323 * VA_STATUS_ERROR_DECODING_ERROR should be passed in as "error_status". 4324 * 4325 * After the applications get VA_STATUS_HW_BUSY or VA_STATUS_SUCCESSFULL from vaSyncSurface(), 4326 * it still can call vaQuerySurfaceError to find out further details to know if has real hw reset 4327 * happened on this surface since umd and kmd could recover the context from reset with success in sometimes. 4328 * VA_STATUS_HW_BUSY or VA_STATUS_SUCCESSFULL also could be passed in as "error_status". 4329 * 4330 * Upon the return, error_info will point to an array of _VASurfaceDecodeMBErrors structure, 4331 * which is allocated and filled by libVA with detailed information on the VADecodeErrorType. 4332 * The array is terminated if "status==-1" is detected. 4333 */ 4334 VAStatus vaQuerySurfaceError( 4335 VADisplay dpy, 4336 VASurfaceID surface, 4337 VAStatus error_status, 4338 void **error_info 4339 ); 4340 4341 /** 4342 * \brief Synchronizes pending operations associated with the supplied buffer. 4343 * 4344 * This function blocks during specified timeout (in nanoseconds) until 4345 * all pending operations on the supplied buffer have been completed. 4346 * If timeout is zero, the function returns immediately. 4347 * 4348 * Possible errors: 4349 * - \ref VA_STATUS_ERROR_UNIMPLEMENTED: the VA driver implementation 4350 * does not support this interface 4351 * - \ref VA_STATUS_ERROR_INVALID_DISPLAY: an invalid display was supplied 4352 * - \ref VA_STATUS_ERROR_INVALID_BUFFER: an invalid buffer was supplied 4353 * - \ref VA_STATUS_ERROR_TIMEDOUT: synchronization is still in progress, 4354 * client should call the function again to complete synchronization 4355 * 4356 * @param[in] dpy the VA display 4357 * @param[in] buf_id the buffer for which synchronization is performed 4358 * @param[in] timeout_ns the timeout in nanoseconds 4359 * 4360 */ 4361 VAStatus vaSyncBuffer( 4362 VADisplay dpy, 4363 VABufferID buf_id, 4364 uint64_t timeout_ns 4365 ); 4366 4367 /** 4368 * Notes about synchronization interfaces: 4369 * vaSyncSurface: 4370 * 1. Allows to synchronize output surface (i.e. from decoding or VP) 4371 * 2. Allows to synchronize all bitstreams being encoded from the given input surface (1->N pipelines). 4372 * 4373 * vaSyncSurface2: 4374 * 1. The same as vaSyncSurface but allows to specify a timeout 4375 * 4376 * vaSyncBuffer: 4377 * 1. Allows to synchronize output buffer (e.g. bitstream from encoding). 4378 * Comparing to vaSyncSurface this function synchronizes given bitstream only. 4379 */ 4380 4381 /** 4382 * Images and Subpictures 4383 * VAImage is used to either get the surface data to client memory, or 4384 * to copy image data in client memory to a surface. 4385 * Both images, subpictures and surfaces follow the same 2D coordinate system where origin 4386 * is at the upper left corner with positive X to the right and positive Y down 4387 */ 4388 #define VA_FOURCC(ch0, ch1, ch2, ch3) \ 4389 ((unsigned long)(unsigned char) (ch0) | ((unsigned long)(unsigned char) (ch1) << 8) | \ 4390 ((unsigned long)(unsigned char) (ch2) << 16) | ((unsigned long)(unsigned char) (ch3) << 24 )) 4391 4392 /* Pre-defined fourcc codes. */ 4393 4394 /** NV12: two-plane 8-bit YUV 4:2:0. 4395 * The first plane contains Y, the second plane contains U and V in pairs of bytes. 4396 */ 4397 #define VA_FOURCC_NV12 0x3231564E 4398 /** NV21: two-plane 8-bit YUV 4:2:0. 4399 * Same as NV12, but with U and V swapped. 4400 */ 4401 #define VA_FOURCC_NV21 0x3132564E 4402 4403 /** AI44: packed 4-bit YA. 4404 * 4405 * The bottom half of each byte contains luma, the top half contains alpha. 4406 */ 4407 #define VA_FOURCC_AI44 0x34344149 4408 4409 /** RGBA: packed 8-bit RGBA. 4410 * 4411 * Four bytes per pixel: red, green, blue, alpha. 4412 */ 4413 #define VA_FOURCC_RGBA 0x41424752 4414 /** RGBX: packed 8-bit RGB. 4415 * 4416 * Four bytes per pixel: red, green, blue, unspecified. 4417 */ 4418 #define VA_FOURCC_RGBX 0x58424752 4419 /** BGRA: packed 8-bit RGBA. 4420 * 4421 * Four bytes per pixel: blue, green, red, alpha. 4422 */ 4423 #define VA_FOURCC_BGRA 0x41524742 4424 /** BGRX: packed 8-bit RGB. 4425 * 4426 * Four bytes per pixel: blue, green, red, unspecified. 4427 */ 4428 #define VA_FOURCC_BGRX 0x58524742 4429 /** ARGB: packed 8-bit RGBA. 4430 * 4431 * Four bytes per pixel: alpha, red, green, blue. 4432 */ 4433 #define VA_FOURCC_ARGB 0x42475241 4434 /** XRGB: packed 8-bit RGB. 4435 * 4436 * Four bytes per pixel: unspecified, red, green, blue. 4437 */ 4438 #define VA_FOURCC_XRGB 0x42475258 4439 /** ABGR: packed 8-bit RGBA. 4440 * 4441 * Four bytes per pixel: alpha, blue, green, red. 4442 */ 4443 #define VA_FOURCC_ABGR 0x52474241 4444 /** XBGR: packed 8-bit RGB. 4445 * 4446 * Four bytes per pixel: unspecified, blue, green, red. 4447 */ 4448 #define VA_FOURCC_XBGR 0x52474258 4449 4450 /** UYUV: packed 8-bit YUV 4:2:2. 4451 * 4452 * Four bytes per pair of pixels: U, Y, U, V. 4453 */ 4454 #define VA_FOURCC_UYVY 0x59565955 4455 /** YUY2: packed 8-bit YUV 4:2:2. 4456 * 4457 * Four bytes per pair of pixels: Y, U, Y, V. 4458 */ 4459 #define VA_FOURCC_YUY2 0x32595559 4460 /** AYUV: packed 8-bit YUVA 4:4:4. 4461 * 4462 * Four bytes per pixel: A, Y, U, V. 4463 */ 4464 #define VA_FOURCC_AYUV 0x56555941 4465 /** NV11: two-plane 8-bit YUV 4:1:1. 4466 * 4467 * The first plane contains Y, the second plane contains U and V in pairs of bytes. 4468 */ 4469 #define VA_FOURCC_NV11 0x3131564e 4470 /** YV12: three-plane 8-bit YUV 4:2:0. 4471 * 4472 * The three planes contain Y, V and U respectively. 4473 */ 4474 #define VA_FOURCC_YV12 0x32315659 4475 /** P208: two-plane 8-bit YUV 4:2:2. 4476 * 4477 * The first plane contains Y, the second plane contains U and V in pairs of bytes. 4478 */ 4479 #define VA_FOURCC_P208 0x38303250 4480 /** I420: three-plane 8-bit YUV 4:2:0. 4481 * 4482 * The three planes contain Y, U and V respectively. 4483 */ 4484 #define VA_FOURCC_I420 0x30323449 4485 /** YV24: three-plane 8-bit YUV 4:4:4. 4486 * 4487 * The three planes contain Y, V and U respectively. 4488 */ 4489 #define VA_FOURCC_YV24 0x34325659 4490 /** YV32: four-plane 8-bit YUVA 4:4:4 4491 * 4492 * The four planes contain Y, V, U and A respectively. 4493 */ 4494 #define VA_FOURCC_YV32 0x32335659 4495 /** Y800: 8-bit greyscale. 4496 */ 4497 #define VA_FOURCC_Y800 0x30303859 4498 /** IMC3: three-plane 8-bit YUV 4:2:0. 4499 * 4500 * Equivalent to YV12, but with the additional constraint that the pitch of all three planes 4501 * must be the same. 4502 */ 4503 #define VA_FOURCC_IMC3 0x33434D49 4504 /** 411P: three-plane 8-bit YUV 4:1:1. 4505 * 4506 * The three planes contain Y, U and V respectively. 4507 */ 4508 #define VA_FOURCC_411P 0x50313134 4509 /** 411R: three-plane 8-bit YUV. 4510 * 4511 * The subsampling is the transpose of 4:1:1 - full chroma appears on every fourth line. 4512 * The three planes contain Y, U and V respectively. 4513 */ 4514 #define VA_FOURCC_411R 0x52313134 4515 /** 422H: three-plane 8-bit YUV 4:2:2. 4516 * 4517 * The three planes contain Y, U and V respectively. 4518 */ 4519 #define VA_FOURCC_422H 0x48323234 4520 /** 422V: three-plane 8-bit YUV 4:4:0. 4521 * 4522 * The three planes contain Y, U and V respectively. 4523 */ 4524 #define VA_FOURCC_422V 0x56323234 4525 /** 444P: three-plane 8-bit YUV 4:4:4. 4526 * 4527 * The three planes contain Y, U and V respectively. 4528 */ 4529 #define VA_FOURCC_444P 0x50343434 4530 4531 /** RGBP: three-plane 8-bit RGB. 4532 * 4533 * The three planes contain red, green and blue respectively. 4534 */ 4535 #define VA_FOURCC_RGBP 0x50424752 4536 /** BGRP: three-plane 8-bit RGB. 4537 * 4538 * The three planes contain blue, green and red respectively. 4539 */ 4540 #define VA_FOURCC_BGRP 0x50524742 4541 /** RG16: packed 5/6-bit RGB. 4542 * 4543 * Each pixel is a two-byte little-endian value. 4544 * Red, green and blue are found in bits 15:11, 10:5, 4:0 respectively. 4545 */ 4546 #define VA_FOURCC_RGB565 0x36314752 4547 /** BG16: packed 5/6-bit RGB. 4548 * 4549 * Each pixel is a two-byte little-endian value. 4550 * Blue, green and red are found in bits 15:11, 10:5, 4:0 respectively. 4551 */ 4552 #define VA_FOURCC_BGR565 0x36314742 4553 4554 /** Y210: packed 10-bit YUV 4:2:2. 4555 * 4556 * Eight bytes represent a pair of pixels. Each sample is a two-byte little-endian value, 4557 * with the bottom six bits ignored. The samples are in the order Y, U, Y, V. 4558 */ 4559 #define VA_FOURCC_Y210 0x30313259 4560 /** Y212: packed 12-bit YUV 4:2:2. 4561 * 4562 * Eight bytes represent a pair of pixels. Each sample is a two-byte little-endian value. 4563 * The samples are in the order Y, U, Y, V. 4564 */ 4565 #define VA_FOURCC_Y212 0x32313259 4566 /** Y216: packed 16-bit YUV 4:2:2. 4567 * 4568 * Eight bytes represent a pair of pixels. Each sample is a two-byte little-endian value. 4569 * The samples are in the order Y, U, Y, V. 4570 */ 4571 #define VA_FOURCC_Y216 0x36313259 4572 /** Y410: packed 10-bit YUVA 4:4:4. 4573 * 4574 * Each pixel is a four-byte little-endian value. 4575 * A, V, Y, U are found in bits 31:30, 29:20, 19:10, 9:0 respectively. 4576 */ 4577 #define VA_FOURCC_Y410 0x30313459 4578 /** Y412 packed 12-bit YUVA 4:4:4. 4579 * 4580 * Each pixel is a set of four samples, each of which is a two-byte little-endian value. 4581 * The samples are in the order A, V, Y, U. 4582 */ 4583 #define VA_FOURCC_Y412 0x32313459 4584 /** Y416: packed 16-bit YUVA 4:4:4. 4585 * 4586 * Each pixel is a set of four samples, each of which is a two-byte little-endian value. 4587 * The samples are in the order A, V, Y, U. 4588 */ 4589 #define VA_FOURCC_Y416 0x36313459 4590 4591 /** YV16: three-plane 8-bit YUV 4:2:2. 4592 * 4593 * The three planes contain Y, V and U respectively. 4594 */ 4595 #define VA_FOURCC_YV16 0x36315659 4596 /** P010: two-plane 10-bit YUV 4:2:0. 4597 * 4598 * Each sample is a two-byte little-endian value with the bottom six bits ignored. 4599 * The first plane contains Y, the second plane contains U and V in pairs of samples. 4600 */ 4601 #define VA_FOURCC_P010 0x30313050 4602 /** P012: two-plane 12-bit YUV 4:2:0. 4603 * 4604 * Each sample is a two-byte little-endian value with the bottom four bits ignored. 4605 * The first plane contains Y, the second plane contains U and V in pairs of samples. 4606 */ 4607 #define VA_FOURCC_P012 0x32313050 4608 /** P016: two-plane 16-bit YUV 4:2:0. 4609 * 4610 * Each sample is a two-byte little-endian value. The first plane contains Y, the second 4611 * plane contains U and V in pairs of samples. 4612 */ 4613 #define VA_FOURCC_P016 0x36313050 4614 4615 /** I010: three-plane 10-bit YUV 4:2:0. 4616 * 4617 * Each sample is a two-byte little-endian value with the top six bits ignored. 4618 * The three planes contain Y, V and U respectively. 4619 */ 4620 #define VA_FOURCC_I010 0x30313049 4621 4622 /** IYUV: three-plane 8-bit YUV 4:2:0. 4623 * 4624 * @deprecated Use I420 instead. 4625 */ 4626 #define VA_FOURCC_IYUV 0x56555949 4627 /** 4628 * 10-bit Pixel RGB formats. 4629 */ 4630 #define VA_FOURCC_A2R10G10B10 0x30335241 /* VA_FOURCC('A','R','3','0') */ 4631 /** 4632 * 10-bit Pixel BGR formats. 4633 */ 4634 #define VA_FOURCC_A2B10G10R10 0x30334241 /* VA_FOURCC('A','B','3','0') */ 4635 /** 4636 * 10-bit Pixel RGB formats without alpha. 4637 */ 4638 #define VA_FOURCC_X2R10G10B10 0x30335258 /* VA_FOURCC('X','R','3','0') */ 4639 /** 4640 * 10-bit Pixel BGR formats without alpha. 4641 */ 4642 #define VA_FOURCC_X2B10G10R10 0x30334258 /* VA_FOURCC('X','B','3','0') */ 4643 4644 /** Y8: 8-bit greyscale. 4645 * 4646 * Only a single sample, 8 bit Y plane for monochrome images 4647 */ 4648 #define VA_FOURCC_Y8 0x20203859 4649 /** Y16: 16-bit greyscale. 4650 * 4651 * Only a single sample, 16 bit Y plane for monochrome images 4652 */ 4653 #define VA_FOURCC_Y16 0x20363159 4654 /** VYUV: packed 8-bit YUV 4:2:2. 4655 * 4656 * Four bytes per pair of pixels: V, Y, U, V. 4657 */ 4658 #define VA_FOURCC_VYUY 0x59555956 4659 /** YVYU: packed 8-bit YUV 4:2:2. 4660 * 4661 * Four bytes per pair of pixels: Y, V, Y, U. 4662 */ 4663 #define VA_FOURCC_YVYU 0x55595659 4664 /** AGRB64: three-plane 16-bit ARGB 16:16:16:16 4665 * 4666 * The four planes contain: alpha, red, green, blue respectively. 4667 */ 4668 #define VA_FOURCC_ARGB64 0x34475241 4669 /** ABGR64: three-plane 16-bit ABGR 16:16:16:16 4670 * 4671 * The four planes contain: alpha, blue, green, red respectively. 4672 */ 4673 #define VA_FOURCC_ABGR64 0x34474241 4674 /** XYUV: packed 8-bit YUVX 4:4:4. 4675 * 4676 * Four bytes per pixel: X, Y, U, V. 4677 */ 4678 #define VA_FOURCC_XYUV 0x56555958 4679 /** Q416: three-plane 16-bit YUV 4:4:4. 4680 * 4681 * The three planes contain Y, U and V respectively. 4682 */ 4683 #define VA_FOURCC_Q416 0x36313451 4684 4685 /* byte order */ 4686 #define VA_LSB_FIRST 1 4687 #define VA_MSB_FIRST 2 4688 4689 typedef struct _VAImageFormat { 4690 uint32_t fourcc; 4691 uint32_t byte_order; /* VA_LSB_FIRST, VA_MSB_FIRST */ 4692 uint32_t bits_per_pixel; 4693 /* for RGB formats */ 4694 uint32_t depth; /* significant bits per pixel */ 4695 uint32_t red_mask; 4696 uint32_t green_mask; 4697 uint32_t blue_mask; 4698 uint32_t alpha_mask; 4699 4700 /** \brief Reserved bytes for future use, must be zero */ 4701 uint32_t va_reserved[VA_PADDING_LOW]; 4702 } VAImageFormat; 4703 4704 typedef VAGenericID VAImageID; 4705 4706 typedef struct _VAImage { 4707 VAImageID image_id; /* uniquely identify this image */ 4708 VAImageFormat format; 4709 VABufferID buf; /* image data buffer */ 4710 /* 4711 * Image data will be stored in a buffer of type VAImageBufferType to facilitate 4712 * data store on the server side for optimal performance. The buffer will be 4713 * created by the CreateImage function, and proper storage allocated based on the image 4714 * size and format. This buffer is managed by the library implementation, and 4715 * accessed by the client through the buffer Map/Unmap functions. 4716 */ 4717 uint16_t width; 4718 uint16_t height; 4719 uint32_t data_size; 4720 uint32_t num_planes; /* can not be greater than 3 */ 4721 /* 4722 * An array indicating the scanline pitch in bytes for each plane. 4723 * Each plane may have a different pitch. Maximum 3 planes for planar formats 4724 */ 4725 uint32_t pitches[3]; 4726 /* 4727 * An array indicating the byte offset from the beginning of the image data 4728 * to the start of each plane. 4729 */ 4730 uint32_t offsets[3]; 4731 4732 /* The following fields are only needed for paletted formats */ 4733 int32_t num_palette_entries; /* set to zero for non-palette images */ 4734 /* 4735 * Each component is one byte and entry_bytes indicates the number of components in 4736 * each entry (eg. 3 for YUV palette entries). set to zero for non-palette images 4737 */ 4738 int32_t entry_bytes; 4739 /* 4740 * An array of ascii characters describing the order of the components within the bytes. 4741 * Only entry_bytes characters of the string are used. 4742 */ 4743 int8_t component_order[4]; 4744 4745 /** \brief Reserved bytes for future use, must be zero */ 4746 uint32_t va_reserved[VA_PADDING_LOW]; 4747 } VAImage; 4748 4749 /** Get maximum number of image formats supported by the implementation */ 4750 int vaMaxNumImageFormats( 4751 VADisplay dpy 4752 ); 4753 4754 /** 4755 * Query supported image formats 4756 * The caller must provide a "format_list" array that can hold at 4757 * least vaMaxNumImageFormats() entries. The actual number of formats 4758 * returned in "format_list" is returned in "num_formats". 4759 */ 4760 VAStatus vaQueryImageFormats( 4761 VADisplay dpy, 4762 VAImageFormat *format_list, /* out */ 4763 int *num_formats /* out */ 4764 ); 4765 4766 /** 4767 * Create a VAImage structure 4768 * The width and height fields returned in the VAImage structure may get 4769 * enlarged for some YUV formats. Upon return from this function, 4770 * image->buf has been created and proper storage allocated by the library. 4771 * The client can access the image through the Map/Unmap calls. 4772 */ 4773 VAStatus vaCreateImage( 4774 VADisplay dpy, 4775 VAImageFormat *format, 4776 int width, 4777 int height, 4778 VAImage *image /* out */ 4779 ); 4780 4781 /** 4782 * Should call DestroyImage before destroying the surface it is bound to 4783 */ 4784 VAStatus vaDestroyImage( 4785 VADisplay dpy, 4786 VAImageID image 4787 ); 4788 4789 VAStatus vaSetImagePalette( 4790 VADisplay dpy, 4791 VAImageID image, 4792 /* 4793 * pointer to an array holding the palette data. The size of the array is 4794 * num_palette_entries * entry_bytes in size. The order of the components 4795 * in the palette is described by the component_order in VAImage struct 4796 */ 4797 unsigned char *palette 4798 ); 4799 4800 /** 4801 * Retrive surface data into a VAImage 4802 * Image must be in a format supported by the implementation 4803 */ 4804 VAStatus vaGetImage( 4805 VADisplay dpy, 4806 VASurfaceID surface, 4807 int x, /* coordinates of the upper left source pixel */ 4808 int y, 4809 unsigned int width, /* width and height of the region */ 4810 unsigned int height, 4811 VAImageID image 4812 ); 4813 4814 /** 4815 * Copy data from a VAImage to a surface 4816 * Image must be in a format supported by the implementation 4817 * Returns a VA_STATUS_ERROR_SURFACE_BUSY if the surface 4818 * shouldn't be rendered into when this is called 4819 */ 4820 VAStatus vaPutImage( 4821 VADisplay dpy, 4822 VASurfaceID surface, 4823 VAImageID image, 4824 int src_x, 4825 int src_y, 4826 unsigned int src_width, 4827 unsigned int src_height, 4828 int dest_x, 4829 int dest_y, 4830 unsigned int dest_width, 4831 unsigned int dest_height 4832 ); 4833 4834 /** 4835 * Derive an VAImage from an existing surface. 4836 * This interface will derive a VAImage and corresponding image buffer from 4837 * an existing VA Surface. The image buffer can then be mapped/unmapped for 4838 * direct CPU access. This operation is only possible on implementations with 4839 * direct rendering capabilities and internal surface formats that can be 4840 * represented with a VAImage. When the operation is not possible this interface 4841 * will return VA_STATUS_ERROR_OPERATION_FAILED. Clients should then fall back 4842 * to using vaCreateImage + vaPutImage to accomplish the same task in an 4843 * indirect manner. 4844 * 4845 * Implementations should only return success when the resulting image buffer 4846 * would be useable with vaMap/Unmap. 4847 * 4848 * When directly accessing a surface special care must be taken to insure 4849 * proper synchronization with the graphics hardware. Clients should call 4850 * vaQuerySurfaceStatus to insure that a surface is not the target of concurrent 4851 * rendering or currently being displayed by an overlay. 4852 * 4853 * Additionally nothing about the contents of a surface should be assumed 4854 * following a vaPutSurface. Implementations are free to modify the surface for 4855 * scaling or subpicture blending within a call to vaPutImage. 4856 * 4857 * Calls to vaPutImage or vaGetImage using the same surface from which the image 4858 * has been derived will return VA_STATUS_ERROR_SURFACE_BUSY. vaPutImage or 4859 * vaGetImage with other surfaces is supported. 4860 * 4861 * An image created with vaDeriveImage should be freed with vaDestroyImage. The 4862 * image and image buffer structures will be destroyed; however, the underlying 4863 * surface will remain unchanged until freed with vaDestroySurfaces. 4864 */ 4865 VAStatus vaDeriveImage( 4866 VADisplay dpy, 4867 VASurfaceID surface, 4868 VAImage *image /* out */ 4869 ); 4870 4871 /** 4872 * Subpictures 4873 * Subpicture is a special type of image that can be blended 4874 * with a surface during vaPutSurface(). Subpicture can be used to render 4875 * DVD sub-titles or closed captioning text etc. 4876 */ 4877 4878 typedef VAGenericID VASubpictureID; 4879 4880 /** Get maximum number of subpicture formats supported by the implementation */ 4881 int vaMaxNumSubpictureFormats( 4882 VADisplay dpy 4883 ); 4884 4885 /** flags for subpictures */ 4886 #define VA_SUBPICTURE_CHROMA_KEYING 0x0001 4887 #define VA_SUBPICTURE_GLOBAL_ALPHA 0x0002 4888 #define VA_SUBPICTURE_DESTINATION_IS_SCREEN_COORD 0x0004 4889 /** 4890 * Query supported subpicture formats 4891 * The caller must provide a "format_list" array that can hold at 4892 * least vaMaxNumSubpictureFormats() entries. The flags arrary holds the flag 4893 * for each format to indicate additional capabilities for that format. The actual 4894 * number of formats returned in "format_list" is returned in "num_formats". 4895 * flags: returned value to indicate addtional capabilities 4896 * VA_SUBPICTURE_CHROMA_KEYING - supports chroma-keying 4897 * VA_SUBPICTURE_GLOBAL_ALPHA - supports global alpha 4898 * VA_SUBPICTURE_DESTINATION_IS_SCREEN_COORD - supports unscaled screen relative subpictures for On Screen Display 4899 */ 4900 4901 VAStatus vaQuerySubpictureFormats( 4902 VADisplay dpy, 4903 VAImageFormat *format_list, /* out */ 4904 unsigned int *flags, /* out */ 4905 unsigned int *num_formats /* out */ 4906 ); 4907 4908 /** 4909 * Subpictures are created with an image associated. 4910 */ 4911 VAStatus vaCreateSubpicture( 4912 VADisplay dpy, 4913 VAImageID image, 4914 VASubpictureID *subpicture /* out */ 4915 ); 4916 4917 /** 4918 * Destroy the subpicture before destroying the image it is assocated to 4919 */ 4920 VAStatus vaDestroySubpicture( 4921 VADisplay dpy, 4922 VASubpictureID subpicture 4923 ); 4924 4925 /** 4926 * Bind an image to the subpicture. This image will now be associated with 4927 * the subpicture instead of the one at creation. 4928 */ 4929 VAStatus vaSetSubpictureImage( 4930 VADisplay dpy, 4931 VASubpictureID subpicture, 4932 VAImageID image 4933 ); 4934 4935 /** 4936 * If chromakey is enabled, then the area where the source value falls within 4937 * the chromakey [min, max] range is transparent 4938 * The chromakey component format is the following: 4939 * For RGB: [0:7] Red [8:15] Blue [16:23] Green 4940 * For YUV: [0:7] V [8:15] U [16:23] Y 4941 * The chromakey mask can be used to mask out certain components for chromakey 4942 * comparision 4943 */ 4944 VAStatus vaSetSubpictureChromakey( 4945 VADisplay dpy, 4946 VASubpictureID subpicture, 4947 unsigned int chromakey_min, 4948 unsigned int chromakey_max, 4949 unsigned int chromakey_mask 4950 ); 4951 4952 /** 4953 * Global alpha value is between 0 and 1. A value of 1 means fully opaque and 4954 * a value of 0 means fully transparent. If per-pixel alpha is also specified then 4955 * the overall alpha is per-pixel alpha multiplied by the global alpha 4956 */ 4957 VAStatus vaSetSubpictureGlobalAlpha( 4958 VADisplay dpy, 4959 VASubpictureID subpicture, 4960 float global_alpha 4961 ); 4962 4963 /** 4964 * vaAssociateSubpicture associates the subpicture with target_surfaces. 4965 * It defines the region mapping between the subpicture and the target 4966 * surfaces through source and destination rectangles (with the same width and height). 4967 * Both will be displayed at the next call to vaPutSurface. Additional 4968 * associations before the call to vaPutSurface simply overrides the association. 4969 */ 4970 VAStatus vaAssociateSubpicture( 4971 VADisplay dpy, 4972 VASubpictureID subpicture, 4973 VASurfaceID *target_surfaces, 4974 int num_surfaces, 4975 int16_t src_x, /* upper left offset in subpicture */ 4976 int16_t src_y, 4977 uint16_t src_width, 4978 uint16_t src_height, 4979 int16_t dest_x, /* upper left offset in surface */ 4980 int16_t dest_y, 4981 uint16_t dest_width, 4982 uint16_t dest_height, 4983 /* 4984 * whether to enable chroma-keying, global-alpha, or screen relative mode 4985 * see VA_SUBPICTURE_XXX values 4986 */ 4987 uint32_t flags 4988 ); 4989 4990 /** 4991 * vaDeassociateSubpicture removes the association of the subpicture with target_surfaces. 4992 */ 4993 VAStatus vaDeassociateSubpicture( 4994 VADisplay dpy, 4995 VASubpictureID subpicture, 4996 VASurfaceID *target_surfaces, 4997 int num_surfaces 4998 ); 4999 5000 /** 5001 * Display attributes 5002 * Display attributes are used to control things such as contrast, hue, saturation, 5003 * brightness etc. in the rendering process. The application can query what 5004 * attributes are supported by the driver, and then set the appropriate attributes 5005 * before calling vaPutSurface() 5006 * 5007 * Display attributes can also be used to query/set platform or display adaptor (vaDisplay) 5008 * related information. These attributes do not depend on vaConfig, and could not be used 5009 * for vaPutSurface. Application can use vaQueryDisplayAttributes/vaGetDisplayAttributes 5010 * at anytime after vaInitialize, but (for settable attributes) vaSetDisplayAttributes should be 5011 * called after vaInitialize and before any other function call. 5012 * 5013 * To distinguish these two types of display attributes, display adaptor related attributes 5014 * should be marked as "HW attribute" in the description. 5015 */ 5016 5017 /* PowerVR IEP Lite attributes */ 5018 typedef enum { 5019 VADISPLAYATTRIB_BLE_OFF = 0x00, 5020 VADISPLAYATTRIB_BLE_LOW, 5021 VADISPLAYATTRIB_BLE_MEDIUM, 5022 VADISPLAYATTRIB_BLE_HIGH, 5023 VADISPLAYATTRIB_BLE_NONE, 5024 } VADisplayAttribBLEMode; 5025 5026 /** attribute value for VADisplayAttribRotation */ 5027 #define VA_ROTATION_NONE 0x00000000 5028 #define VA_ROTATION_90 0x00000001 5029 #define VA_ROTATION_180 0x00000002 5030 #define VA_ROTATION_270 0x00000003 5031 /**@}*/ 5032 5033 /** 5034 * @name Mirroring directions 5035 * 5036 * Those values could be used for VADisplayAttribMirror attribute or 5037 * VAProcPipelineParameterBuffer::mirror_state. 5038 5039 */ 5040 /**@{*/ 5041 /** \brief No Mirroring. */ 5042 #define VA_MIRROR_NONE 0x00000000 5043 /** \brief Horizontal Mirroring. */ 5044 #define VA_MIRROR_HORIZONTAL 0x00000001 5045 /** \brief Vertical Mirroring. */ 5046 #define VA_MIRROR_VERTICAL 0x00000002 5047 /**@}*/ 5048 5049 /** attribute value for VADisplayAttribOutOfLoopDeblock */ 5050 #define VA_OOL_DEBLOCKING_FALSE 0x00000000 5051 #define VA_OOL_DEBLOCKING_TRUE 0x00000001 5052 5053 /** Render mode */ 5054 #define VA_RENDER_MODE_UNDEFINED 0 5055 #define VA_RENDER_MODE_LOCAL_OVERLAY 1 5056 #define VA_RENDER_MODE_LOCAL_GPU 2 5057 #define VA_RENDER_MODE_EXTERNAL_OVERLAY 4 5058 #define VA_RENDER_MODE_EXTERNAL_GPU 8 5059 5060 /** Render device */ 5061 #define VA_RENDER_DEVICE_UNDEFINED 0 5062 #define VA_RENDER_DEVICE_LOCAL 1 5063 #define VA_RENDER_DEVICE_EXTERNAL 2 5064 5065 /**\brief sub device info 5066 * Sub-device is the concept basing on the "device" behind "vaDisplay". 5067 * If a device could be divided to several sub devices, the task of 5068 * decode/encode/vpp could be assigned on one sub-device. So, application 5069 * could choose the sub device before any other operations. After that, 5070 * all of the task execution/resource allocation will be dispatched to 5071 * the sub device. If application does not choose the sub device, driver 5072 * will assign one as default. 5073 * 5074 * If the value == VA_ATTRIB_NOT_SUPPORTED, it mean that the attribute 5075 * is unsupport or UNKNOWN. 5076 */ 5077 5078 typedef union _VADisplayAttribValSubDevice { 5079 struct { 5080 /** \brief current sub device index, read - write */ 5081 uint32_t current_sub_device : 4; 5082 /** \brief sub devices count, read - only */ 5083 uint32_t sub_device_count : 4; 5084 /** \brief reserved bits for future, must be zero*/ 5085 uint32_t reserved : 8; 5086 /** \brief bit mask to indicate which sub_device is available, read only 5087 * \code 5088 * VADisplayAttribValSubDevice reg; 5089 * VADisplayAttribute reg_attr; 5090 * reg_attr.type = VADisplayAttribSubDevice; 5091 * vaGetDisplayAttributes(dpy, ®_attr, 1); 5092 * reg.value = reg_attr.value; 5093 * 5094 * for(int i = 0; i < reg.bits.sub_device_count; i ++ ){ 5095 * if((1<<i) & reg.bits.sub_device_mask){ 5096 * printf("sub device %d can be selected", i); 5097 * } 5098 *} 5099 * \endcode 5100 */ 5101 uint32_t sub_device_mask : 16; 5102 } bits; 5103 uint32_t value; 5104 } VADisplayAttribValSubDevice; 5105 5106 /** Currently defined display attribute types */ 5107 typedef enum { 5108 VADisplayAttribBrightness = 0, 5109 VADisplayAttribContrast = 1, 5110 VADisplayAttribHue = 2, 5111 VADisplayAttribSaturation = 3, 5112 /* client can specifiy a background color for the target window 5113 * the new feature of video conference, 5114 * the uncovered area of the surface is filled by this color 5115 * also it will blend with the decoded video color 5116 */ 5117 VADisplayAttribBackgroundColor = 4, 5118 /* 5119 * this is a gettable only attribute. For some implementations that use the 5120 * hardware overlay, after PutSurface is called, the surface can not be 5121 * re-used until after the subsequent PutSurface call. If this is the case 5122 * then the value for this attribute will be set to 1 so that the client 5123 * will not attempt to re-use the surface right after returning from a call 5124 * to PutSurface. 5125 * 5126 * Don't use it, use flag VASurfaceDisplaying of vaQuerySurfaceStatus since 5127 * driver may use overlay or GPU alternatively 5128 */ 5129 VADisplayAttribDirectSurface = 5, 5130 VADisplayAttribRotation = 6, 5131 VADisplayAttribOutofLoopDeblock = 7, 5132 5133 /* PowerVR IEP Lite specific attributes */ 5134 VADisplayAttribBLEBlackMode = 8, 5135 VADisplayAttribBLEWhiteMode = 9, 5136 VADisplayAttribBlueStretch = 10, 5137 VADisplayAttribSkinColorCorrection = 11, 5138 /* 5139 * For type VADisplayAttribCSCMatrix, "value" field is a pointer to the color 5140 * conversion matrix. Each element in the matrix is float-point 5141 */ 5142 VADisplayAttribCSCMatrix = 12, 5143 /* specify the constant color used to blend with video surface 5144 * Cd = Cv*Cc*Ac + Cb *(1 - Ac) C means the constant RGB 5145 * d: the final color to overwrite into the frame buffer 5146 * v: decoded video after color conversion, 5147 * c: video color specified by VADisplayAttribBlendColor 5148 * b: background color of the drawable 5149 */ 5150 VADisplayAttribBlendColor = 13, 5151 /* 5152 * Indicate driver to skip painting color key or not. 5153 * only applicable if the render is overlay 5154 */ 5155 VADisplayAttribOverlayAutoPaintColorKey = 14, 5156 /* 5157 * customized overlay color key, the format is RGB888 5158 * [23:16] = Red, [15:08] = Green, [07:00] = Blue. 5159 */ 5160 VADisplayAttribOverlayColorKey = 15, 5161 /* 5162 * The hint for the implementation of vaPutSurface 5163 * normally, the driver could use an overlay or GPU to render the surface on the screen 5164 * this flag provides APP the flexibity to switch the render dynamically 5165 */ 5166 VADisplayAttribRenderMode = 16, 5167 /* 5168 * specify if vaPutSurface needs to render into specified monitors 5169 * one example is that one external monitor (e.g. HDMI) is enabled, 5170 * but the window manager is not aware of it, and there is no associated drawable 5171 */ 5172 VADisplayAttribRenderDevice = 17, 5173 /* 5174 * specify vaPutSurface render area if there is no drawable on the monitor 5175 */ 5176 VADisplayAttribRenderRect = 18, 5177 /* 5178 * HW attribute, read/write, specify the sub device configure 5179 */ 5180 VADisplayAttribSubDevice = 19, 5181 /* 5182 * HW attribute. read only. specify whether vaCopy support on current HW 5183 * The value of each bit should equal to 1 << VA_EXEC_MODE_XXX to represent 5184 * modes of vaCopy 5185 */ 5186 VADisplayAttribCopy = 20, 5187 /* 5188 * HW attribute. read only. retrieve the device information from backend driver 5189 * the value should be combined with vendor ID << 16 | device ID 5190 */ 5191 VADisplayPCIID = 21, 5192 } VADisplayAttribType; 5193 5194 /* flags for VADisplayAttribute */ 5195 #define VA_DISPLAY_ATTRIB_NOT_SUPPORTED 0x0000 5196 #define VA_DISPLAY_ATTRIB_GETTABLE 0x0001 5197 #define VA_DISPLAY_ATTRIB_SETTABLE 0x0002 5198 5199 typedef struct _VADisplayAttribute { 5200 VADisplayAttribType type; 5201 int32_t min_value; 5202 int32_t max_value; 5203 int32_t value; /* used by the set/get attribute functions */ 5204 /* flags can be VA_DISPLAY_ATTRIB_GETTABLE or VA_DISPLAY_ATTRIB_SETTABLE or OR'd together */ 5205 uint32_t flags; 5206 5207 /** \brief Reserved bytes for future use, must be zero */ 5208 uint32_t va_reserved[VA_PADDING_LOW]; 5209 } VADisplayAttribute; 5210 5211 /** Get maximum number of display attributs supported by the implementation */ 5212 int vaMaxNumDisplayAttributes( 5213 VADisplay dpy 5214 ); 5215 5216 /** 5217 * Query display attributes 5218 * The caller must provide a "attr_list" array that can hold at 5219 * least vaMaxNumDisplayAttributes() entries. The actual number of attributes 5220 * returned in "attr_list" is returned in "num_attributes". 5221 */ 5222 VAStatus vaQueryDisplayAttributes( 5223 VADisplay dpy, 5224 VADisplayAttribute *attr_list, /* out */ 5225 int *num_attributes /* out */ 5226 ); 5227 5228 /** 5229 * Get display attributes 5230 * This function returns the current attribute values in "attr_list". 5231 * Only attributes returned with VA_DISPLAY_ATTRIB_GETTABLE set in the "flags" field 5232 * from vaQueryDisplayAttributes() can have their values retrieved. 5233 */ 5234 VAStatus vaGetDisplayAttributes( 5235 VADisplay dpy, 5236 VADisplayAttribute *attr_list, /* in/out */ 5237 int num_attributes 5238 ); 5239 5240 /** 5241 * Set display attributes 5242 * Only attributes returned with VA_DISPLAY_ATTRIB_SETTABLE set in the "flags" field 5243 * from vaQueryDisplayAttributes() can be set. If the attribute is not settable or 5244 * the value is out of range, the function returns VA_STATUS_ERROR_ATTR_NOT_SUPPORTED 5245 */ 5246 VAStatus vaSetDisplayAttributes( 5247 VADisplay dpy, 5248 VADisplayAttribute *attr_list, 5249 int num_attributes 5250 ); 5251 5252 /**************************** 5253 * HEVC data structures 5254 ****************************/ 5255 /** 5256 * \brief Description of picture properties of those in DPB surfaces. 5257 * 5258 * If only progressive scan is supported, each surface contains one whole 5259 * frame picture. 5260 * Otherwise, each surface contains two fields of whole picture. 5261 * In this case, two entries of ReferenceFrames[] may share same picture_id 5262 * value. 5263 */ 5264 typedef struct _VAPictureHEVC { 5265 /** \brief reconstructed picture buffer surface index 5266 * invalid when taking value VA_INVALID_SURFACE. 5267 */ 5268 VASurfaceID picture_id; 5269 /** \brief picture order count. 5270 * in HEVC, POCs for top and bottom fields of same picture should 5271 * take different values. 5272 */ 5273 int32_t pic_order_cnt; 5274 /* described below */ 5275 uint32_t flags; 5276 5277 /** \brief Reserved bytes for future use, must be zero */ 5278 uint32_t va_reserved[VA_PADDING_LOW]; 5279 } VAPictureHEVC; 5280 5281 /* flags in VAPictureHEVC could be OR of the following */ 5282 #define VA_PICTURE_HEVC_INVALID 0x00000001 5283 /** \brief indication of interlace scan picture. 5284 * should take same value for all the pictures in sequence. 5285 */ 5286 #define VA_PICTURE_HEVC_FIELD_PIC 0x00000002 5287 /** \brief polarity of the field picture. 5288 * top field takes even lines of buffer surface. 5289 * bottom field takes odd lines of buffer surface. 5290 */ 5291 #define VA_PICTURE_HEVC_BOTTOM_FIELD 0x00000004 5292 /** \brief Long term reference picture */ 5293 #define VA_PICTURE_HEVC_LONG_TERM_REFERENCE 0x00000008 5294 /** 5295 * VA_PICTURE_HEVC_RPS_ST_CURR_BEFORE, VA_PICTURE_HEVC_RPS_ST_CURR_AFTER 5296 * and VA_PICTURE_HEVC_RPS_LT_CURR of any picture in ReferenceFrames[] should 5297 * be exclusive. No more than one of them can be set for any picture. 5298 * Sum of NumPocStCurrBefore, NumPocStCurrAfter and NumPocLtCurr 5299 * equals NumPocTotalCurr, which should be equal to or smaller than 8. 5300 * Application should provide valid values for both short format and long format. 5301 * The pictures in DPB with any of these three flags turned on are referred by 5302 * the current picture. 5303 */ 5304 /** \brief RefPicSetStCurrBefore of HEVC spec variable 5305 * Number of ReferenceFrames[] entries with this bit set equals 5306 * NumPocStCurrBefore. 5307 */ 5308 #define VA_PICTURE_HEVC_RPS_ST_CURR_BEFORE 0x00000010 5309 /** \brief RefPicSetStCurrAfter of HEVC spec variable 5310 * Number of ReferenceFrames[] entries with this bit set equals 5311 * NumPocStCurrAfter. 5312 */ 5313 #define VA_PICTURE_HEVC_RPS_ST_CURR_AFTER 0x00000020 5314 /** \brief RefPicSetLtCurr of HEVC spec variable 5315 * Number of ReferenceFrames[] entries with this bit set equals 5316 * NumPocLtCurr. 5317 */ 5318 #define VA_PICTURE_HEVC_RPS_LT_CURR 0x00000040 5319 5320 /**************************** 5321 * VVC data structures 5322 ****************************/ 5323 /** 5324 * \brief Description of picture properties of those in DPB surfaces. 5325 * 5326 * Only progressive scan is supported, each surface contains one whole 5327 * frame picture. 5328 */ 5329 5330 typedef struct _VAPictureVVC { 5331 /** \brief reconstructed picture buffer surface index 5332 * invalid when taking value VA_INVALID_SURFACE. 5333 */ 5334 VASurfaceID picture_id; 5335 5336 /** \brief picture order count. */ 5337 int32_t pic_order_cnt; 5338 5339 /* described below */ 5340 uint32_t flags; 5341 5342 /** \brief Reserved bytes for future use, must be zero */ 5343 uint32_t va_reserved[VA_PADDING_LOW]; 5344 } VAPictureVVC; 5345 5346 /* flags in VAPictureVVC could be OR of the following */ 5347 #define VA_PICTURE_VVC_INVALID 0x00000001 5348 /** \brief Long term reference picture */ 5349 #define VA_PICTURE_VVC_LONG_TERM_REFERENCE 0x00000002 5350 /** \brief Unavailable reference picture 5351 * This flag indicates the situation that the process of 5352 * "generating unavailable reference pictures" (spec section 8.3.4) 5353 * is required. 5354 */ 5355 #define VA_PICTURE_VVC_UNAVAILABLE_REFERENCE 0x00000004 5356 5357 typedef enum { 5358 VACopyObjectSurface = 0, 5359 VACopyObjectBuffer = 1, 5360 } VACopyObjectType; 5361 5362 typedef struct _VACopyObject { 5363 VACopyObjectType obj_type; // type of object. 5364 union { 5365 VASurfaceID surface_id; 5366 VABufferID buffer_id; 5367 } object; 5368 5369 uint32_t va_reserved[VA_PADDING_MEDIUM]; 5370 } VACopyObject; 5371 5372 typedef union _VACopyOption { 5373 struct { 5374 /** \brief va copy synchronization, the value should be /c VA_EXEC_SYNC or /c VA_EXEC_ASYNC */ 5375 uint32_t va_copy_sync : 2; 5376 /** \brief va copy mode, the value should be VA_EXEC_MODE_XXX */ 5377 uint32_t va_copy_mode : 4; 5378 uint32_t reserved : 26; 5379 } bits; 5380 uint32_t value; 5381 } VACopyOption; 5382 5383 /** \brief Copies an object. 5384 * 5385 * Copies specified object (surface or buffer). If non-blocking copy 5386 * is requested (VA_COPY_NONBLOCK), then need vaSyncBuffer or vaSyncSurface/vaSyncSurface2 5387 * to sync the destination object. 5388 * 5389 * @param[in] dpy the VA display 5390 * @param[in] dst Destination object to copy to 5391 * @param[in] src Source object to copy from 5392 * @param[in] option VA copy option 5393 * @return VA_STATUS_SUCCESS if successful 5394 */ 5395 VAStatus vaCopy(VADisplay dpy, VACopyObject * dst, VACopyObject * src, VACopyOption option); 5396 5397 #include <va/va_dec_hevc.h> 5398 #include <va/va_dec_jpeg.h> 5399 #include <va/va_dec_vp8.h> 5400 #include <va/va_dec_vp9.h> 5401 #include <va/va_dec_av1.h> 5402 #include <va/va_dec_vvc.h> 5403 #include <va/va_enc_hevc.h> 5404 #include <va/va_fei_hevc.h> 5405 #include <va/va_enc_h264.h> 5406 #include <va/va_enc_jpeg.h> 5407 #include <va/va_enc_mpeg2.h> 5408 #include <va/va_enc_vp8.h> 5409 #include <va/va_enc_vp9.h> 5410 #include <va/va_enc_av1.h> 5411 #include <va/va_fei.h> 5412 #include <va/va_fei_h264.h> 5413 #include <va/va_vpp.h> 5414 #include <va/va_prot.h> 5415 5416 /**@}*/ 5417 5418 #ifdef __cplusplus 5419 } 5420 #endif 5421 5422 #endif /* _VA_H_ */ 5423