xref: /aosp_15_r20/external/mesa3d/src/amd/vulkan/radv_shader.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based in part on anv driver which is:
6  * Copyright © 2015 Intel Corporation
7  *
8  * SPDX-License-Identifier: MIT
9  */
10 
11 #include "radv_shader.h"
12 #include "meta/radv_meta.h"
13 #include "nir/nir.h"
14 #include "nir/nir_builder.h"
15 #include "nir/nir_xfb_info.h"
16 #include "nir/radv_nir.h"
17 #include "spirv/nir_spirv.h"
18 #include "util/memstream.h"
19 #include "util/mesa-sha1.h"
20 #include "util/streaming-load-memcpy.h"
21 #include "util/u_atomic.h"
22 #include "radv_cs.h"
23 #include "radv_debug.h"
24 #include "radv_entrypoints.h"
25 #include "radv_nir_to_llvm.h"
26 #include "radv_printf.h"
27 #include "radv_sdma.h"
28 #include "radv_shader_args.h"
29 
30 #include "util/u_debug.h"
31 #include "ac_binary.h"
32 #include "ac_nir.h"
33 #if defined(USE_LIBELF)
34 #include "ac_rtld.h"
35 #endif
36 #include "aco_interface.h"
37 #include "sid.h"
38 #include "vk_debug_report.h"
39 #include "vk_format.h"
40 #include "vk_nir.h"
41 #include "vk_semaphore.h"
42 #include "vk_sync.h"
43 
44 #include "aco_shader_info.h"
45 #include "radv_aco_shader_info.h"
46 #if AMD_LLVM_AVAILABLE
47 #include "ac_llvm_util.h"
48 #endif
49 
50 static void
get_nir_options_for_stage(struct radv_physical_device * pdev,gl_shader_stage stage)51 get_nir_options_for_stage(struct radv_physical_device *pdev, gl_shader_stage stage)
52 {
53    const struct radv_instance *instance = radv_physical_device_instance(pdev);
54    nir_shader_compiler_options *options = &pdev->nir_options[stage];
55    bool split_fma =
56       (stage <= MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH) && instance->debug_flags & RADV_DEBUG_SPLIT_FMA;
57 
58    ac_set_nir_options(&pdev->info, pdev->use_llvm, options);
59 
60    options->lower_ffma16 = split_fma || pdev->info.gfx_level < GFX9;
61    options->lower_ffma32 = split_fma || pdev->info.gfx_level < GFX10_3;
62    options->lower_ffma64 = split_fma;
63    options->max_unroll_iterations = 32;
64    options->max_unroll_iterations_aggressive = 128;
65    options->lower_doubles_options = nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_ddiv;
66    options->io_options |= nir_io_mediump_is_32bit;
67    options->varying_estimate_instr_cost = ac_nir_varying_estimate_instr_cost;
68    options->varying_expression_max_cost = ac_nir_varying_expression_max_cost;
69 }
70 
71 void
radv_get_nir_options(struct radv_physical_device * pdev)72 radv_get_nir_options(struct radv_physical_device *pdev)
73 {
74    for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_VULKAN_SHADER_STAGES; stage++)
75       get_nir_options_for_stage(pdev, stage);
76 }
77 
78 static uint8_t
vectorize_vec2_16bit(const nir_instr * instr,const void * _)79 vectorize_vec2_16bit(const nir_instr *instr, const void *_)
80 {
81    if (instr->type != nir_instr_type_alu)
82       return 0;
83 
84    const nir_alu_instr *alu = nir_instr_as_alu(instr);
85    const unsigned bit_size = alu->def.bit_size;
86    if (bit_size == 16)
87       return 2;
88    else
89       return 1;
90 }
91 
92 static bool
is_meta_shader(nir_shader * nir)93 is_meta_shader(nir_shader *nir)
94 {
95    return nir && nir->info.internal;
96 }
97 
98 bool
radv_can_dump_shader(struct radv_device * device,nir_shader * nir,bool meta_shader)99 radv_can_dump_shader(struct radv_device *device, nir_shader *nir, bool meta_shader)
100 {
101    const struct radv_physical_device *pdev = radv_device_physical(device);
102    const struct radv_instance *instance = radv_physical_device_instance(pdev);
103 
104    if (!(instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
105       return false;
106 
107    if ((is_meta_shader(nir) || meta_shader) && !(instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS))
108       return false;
109 
110    return true;
111 }
112 
113 bool
radv_can_dump_shader_stats(struct radv_device * device,nir_shader * nir)114 radv_can_dump_shader_stats(struct radv_device *device, nir_shader *nir)
115 {
116    const struct radv_physical_device *pdev = radv_device_physical(device);
117    const struct radv_instance *instance = radv_physical_device_instance(pdev);
118 
119    /* Only dump non-meta shader stats. */
120    return instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && !is_meta_shader(nir);
121 }
122 
123 void
radv_optimize_nir(struct nir_shader * shader,bool optimize_conservatively)124 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
125 {
126    bool progress;
127 
128    struct set *skip = _mesa_pointer_set_create(NULL);
129    do {
130       progress = false;
131 
132       NIR_LOOP_PASS(progress, skip, shader, nir_split_array_vars, nir_var_function_temp);
133       NIR_LOOP_PASS(progress, skip, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
134 
135       if (!shader->info.var_copies_lowered) {
136          /* Only run this pass if nir_lower_var_copies was not called
137           * yet. That would lower away any copy_deref instructions and we
138           * don't want to introduce any more.
139           */
140          NIR_LOOP_PASS(progress, skip, shader, nir_opt_find_array_copies);
141       }
142 
143       NIR_LOOP_PASS(progress, skip, shader, nir_opt_copy_prop_vars);
144       NIR_LOOP_PASS(progress, skip, shader, nir_opt_dead_write_vars);
145       NIR_LOOP_PASS(_, skip, shader, nir_lower_vars_to_ssa);
146 
147       NIR_LOOP_PASS(_, skip, shader, nir_lower_alu_width, vectorize_vec2_16bit, NULL);
148       NIR_LOOP_PASS(_, skip, shader, nir_lower_phis_to_scalar, true);
149 
150       NIR_LOOP_PASS(progress, skip, shader, nir_copy_prop);
151       NIR_LOOP_PASS(progress, skip, shader, nir_opt_remove_phis);
152       NIR_LOOP_PASS(progress, skip, shader, nir_opt_dce);
153       NIR_LOOP_PASS(progress, skip, shader, nir_opt_dead_cf);
154       bool opt_loop_progress = false;
155       NIR_LOOP_PASS_NOT_IDEMPOTENT(opt_loop_progress, skip, shader, nir_opt_loop);
156       if (opt_loop_progress) {
157          progress = true;
158          NIR_LOOP_PASS(progress, skip, shader, nir_copy_prop);
159          NIR_LOOP_PASS(progress, skip, shader, nir_opt_remove_phis);
160          NIR_LOOP_PASS(progress, skip, shader, nir_opt_dce);
161       }
162       NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_if, nir_opt_if_optimize_phi_true_false);
163       NIR_LOOP_PASS(progress, skip, shader, nir_opt_cse);
164       NIR_LOOP_PASS(progress, skip, shader, nir_opt_peephole_select, 8, true, true);
165       NIR_LOOP_PASS(progress, skip, shader, nir_opt_constant_folding);
166       NIR_LOOP_PASS(progress, skip, shader, nir_opt_intrinsics);
167       NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_algebraic);
168 
169       NIR_LOOP_PASS(progress, skip, shader, nir_opt_undef);
170 
171       if (shader->options->max_unroll_iterations) {
172          NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_loop_unroll);
173       }
174    } while (progress && !optimize_conservatively);
175    _mesa_set_destroy(skip, NULL);
176 
177    NIR_PASS(progress, shader, nir_opt_shrink_vectors, true);
178    NIR_PASS(progress, shader, nir_remove_dead_variables,
179             nir_var_function_temp | nir_var_shader_in | nir_var_shader_out | nir_var_mem_shared, NULL);
180 
181    if (shader->info.stage == MESA_SHADER_FRAGMENT && shader->info.fs.uses_discard) {
182       NIR_PASS(progress, shader, nir_opt_conditional_discard);
183       NIR_PASS(progress, shader, nir_opt_move_discards_to_top);
184    }
185 
186    NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
187 }
188 
189 void
radv_optimize_nir_algebraic(nir_shader * nir,bool opt_offsets,bool opt_mqsad)190 radv_optimize_nir_algebraic(nir_shader *nir, bool opt_offsets, bool opt_mqsad)
191 {
192    bool more_algebraic = true;
193    while (more_algebraic) {
194       more_algebraic = false;
195       NIR_PASS(_, nir, nir_copy_prop);
196       NIR_PASS(_, nir, nir_opt_dce);
197       NIR_PASS(_, nir, nir_opt_constant_folding);
198       NIR_PASS(_, nir, nir_opt_cse);
199       NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
200       NIR_PASS(_, nir, nir_opt_generate_bfi);
201       NIR_PASS(_, nir, nir_opt_dead_cf);
202    }
203 
204    if (opt_offsets) {
205       static const nir_opt_offsets_options offset_options = {
206          .uniform_max = 0,
207          .buffer_max = ~0,
208          .shared_max = ~0,
209       };
210       NIR_PASS(_, nir, nir_opt_offsets, &offset_options);
211    }
212    if (opt_mqsad)
213       NIR_PASS(_, nir, nir_opt_mqsad);
214 
215    /* Do late algebraic optimization to turn add(a,
216     * neg(b)) back into subs, then the mandatory cleanup
217     * after algebraic.  Note that it may produce fnegs,
218     * and if so then we need to keep running to squash
219     * fneg(fneg(a)).
220     */
221    bool more_late_algebraic = true;
222    struct set *skip = _mesa_pointer_set_create(NULL);
223    while (more_late_algebraic) {
224       more_late_algebraic = false;
225       NIR_LOOP_PASS_NOT_IDEMPOTENT(more_late_algebraic, skip, nir, nir_opt_algebraic_late);
226       NIR_LOOP_PASS(_, skip, nir, nir_opt_constant_folding);
227       NIR_LOOP_PASS(_, skip, nir, nir_copy_prop);
228       NIR_LOOP_PASS(_, skip, nir, nir_opt_dce);
229       NIR_LOOP_PASS(_, skip, nir, nir_opt_cse);
230    }
231    _mesa_set_destroy(skip, NULL);
232 }
233 
234 static void
shared_var_info(const struct glsl_type * type,unsigned * size,unsigned * align)235 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
236 {
237    assert(glsl_type_is_vector_or_scalar(type));
238 
239    uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
240    unsigned length = glsl_get_vector_elements(type);
241    *size = comp_size * length, *align = comp_size;
242 }
243 
244 struct radv_shader_debug_data {
245    struct radv_device *device;
246    const struct vk_object_base *object;
247 };
248 
249 static void
radv_spirv_nir_debug(void * private_data,enum nir_spirv_debug_level level,size_t spirv_offset,const char * message)250 radv_spirv_nir_debug(void *private_data, enum nir_spirv_debug_level level, size_t spirv_offset, const char *message)
251 {
252    struct radv_shader_debug_data *debug_data = private_data;
253    const struct radv_physical_device *pdev = radv_device_physical(debug_data->device);
254    struct radv_instance *instance = radv_physical_device_instance(pdev);
255 
256    static const VkDebugReportFlagsEXT vk_flags[] = {
257       [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
258       [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
259       [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
260    };
261    char buffer[256];
262 
263    snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long)spirv_offset, message);
264 
265    vk_debug_report(&instance->vk, vk_flags[level], debug_data->object, 0, 0, "radv", buffer);
266 }
267 
268 static void
radv_compiler_debug(void * private_data,enum aco_compiler_debug_level level,const char * message)269 radv_compiler_debug(void *private_data, enum aco_compiler_debug_level level, const char *message)
270 {
271    struct radv_shader_debug_data *debug_data = private_data;
272    const struct radv_physical_device *pdev = radv_device_physical(debug_data->device);
273    struct radv_instance *instance = radv_physical_device_instance(pdev);
274 
275    static const VkDebugReportFlagsEXT vk_flags[] = {
276       [ACO_COMPILER_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
277    };
278 
279    /* VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information
280     * from the implementation and layers.
281     */
282    vk_debug_report(&instance->vk, vk_flags[level] | VK_DEBUG_REPORT_DEBUG_BIT_EXT, NULL, 0, 0, "radv", message);
283 }
284 
285 /* If the shader doesn't have an index=1 output, then assume that it meant for a location=1 to be used. This works on
286  * some older hardware because the MRT1 target is used for both location=1 and index=1, but GFX11 works differently.
287  */
288 static void
fix_dual_src_mrt1_export(nir_shader * nir)289 fix_dual_src_mrt1_export(nir_shader *nir)
290 {
291    nir_foreach_shader_out_variable (var, nir) {
292       if (var->data.location == FRAG_RESULT_DATA0 && var->data.index == 1)
293          return;
294    }
295 
296    nir_variable *loc1_var = nir_find_variable_with_location(nir, nir_var_shader_out, FRAG_RESULT_DATA1);
297    if (loc1_var) {
298       loc1_var->data.location = FRAG_RESULT_DATA0;
299       loc1_var->data.index = 1;
300    }
301 }
302 
303 nir_shader *
radv_shader_spirv_to_nir(struct radv_device * device,const struct radv_shader_stage * stage,const struct radv_spirv_to_nir_options * options,bool is_internal)304 radv_shader_spirv_to_nir(struct radv_device *device, const struct radv_shader_stage *stage,
305                          const struct radv_spirv_to_nir_options *options, bool is_internal)
306 {
307    const struct radv_physical_device *pdev = radv_device_physical(device);
308    const struct radv_instance *instance = radv_physical_device_instance(pdev);
309    unsigned subgroup_size = 64, ballot_bit_size = 64;
310    const unsigned required_subgroup_size = stage->key.subgroup_required_size * 32;
311    if (required_subgroup_size) {
312       /* Only compute/mesh/task shaders currently support requiring a
313        * specific subgroup size.
314        */
315       assert(stage->stage >= MESA_SHADER_COMPUTE);
316       subgroup_size = required_subgroup_size;
317       ballot_bit_size = required_subgroup_size;
318    }
319 
320    nir_shader *nir;
321 
322    if (stage->internal_nir) {
323       /* Some things such as our meta clear/blit code will give us a NIR
324        * shader directly.  In that case, we just ignore the SPIR-V entirely
325        * and just use the NIR shader.  We don't want to alter meta and RT
326        * shaders IR directly, so clone it first. */
327       nir = nir_shader_clone(NULL, stage->internal_nir);
328       nir_validate_shader(nir, "in internal shader");
329 
330       assert(exec_list_length(&nir->functions) == 1);
331    } else {
332       uint32_t *spirv = (uint32_t *)stage->spirv.data;
333       assert(stage->spirv.size % 4 == 0);
334 
335       bool dump_meta = instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS;
336       if ((instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) && (!is_internal || dump_meta))
337          spirv_print_asm(stderr, (const uint32_t *)stage->spirv.data, stage->spirv.size / 4);
338 
339       uint32_t num_spec_entries = 0;
340       struct nir_spirv_specialization *spec_entries = vk_spec_info_to_nir_spirv(stage->spec_info, &num_spec_entries);
341       struct radv_shader_debug_data spirv_debug_data = {
342          .device = device,
343          .object = stage->spirv.object,
344       };
345       const struct spirv_capabilities spirv_caps =
346          vk_physical_device_get_spirv_capabilities(device->vk.physical);
347       const struct spirv_to_nir_options spirv_options = {
348          .amd_gcn_shader = true,
349          .amd_shader_ballot = true,
350          .amd_shader_explicit_vertex_parameter = true,
351          .amd_trinary_minmax = true,
352          .capabilities = &spirv_caps,
353          .ubo_addr_format = nir_address_format_vec2_index_32bit_offset,
354          .ssbo_addr_format = nir_address_format_vec2_index_32bit_offset,
355          .phys_ssbo_addr_format = nir_address_format_64bit_global,
356          .push_const_addr_format = nir_address_format_logical,
357          .shared_addr_format = nir_address_format_32bit_offset,
358          .constant_addr_format = nir_address_format_64bit_global,
359          .debug =
360             {
361                .func = radv_spirv_nir_debug,
362                .private_data = &spirv_debug_data,
363             },
364          .force_tex_non_uniform = pdev->cache_key.tex_non_uniform,
365          .force_ssbo_non_uniform = pdev->cache_key.ssbo_non_uniform,
366       };
367       nir = spirv_to_nir(spirv, stage->spirv.size / 4, spec_entries, num_spec_entries, stage->stage, stage->entrypoint,
368                          &spirv_options, &pdev->nir_options[stage->stage]);
369       nir->info.internal |= is_internal;
370       assert(nir->info.stage == stage->stage);
371       nir_validate_shader(nir, "after spirv_to_nir");
372 
373       free(spec_entries);
374 
375       radv_device_associate_nir(device, nir);
376 
377       /* TODO: This can be removed once GCM (which is more general) is used. */
378       NIR_PASS(_, nir, nir_opt_reuse_constants);
379 
380       const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
381          .point_coord = true,
382       };
383       NIR_PASS_V(nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
384 
385       /* We have to lower away local constant initializers right before we
386        * inline functions.  That way they get properly initialized at the top
387        * of the function and not at the top of its caller.
388        */
389       NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_function_temp);
390       NIR_PASS(_, nir, nir_lower_returns);
391       bool progress = false;
392       NIR_PASS(progress, nir, nir_inline_functions);
393       if (progress) {
394          NIR_PASS(_, nir, nir_opt_copy_prop_vars);
395          NIR_PASS(_, nir, nir_copy_prop);
396       }
397       NIR_PASS(_, nir, nir_opt_deref);
398 
399       /* Pick off the single entrypoint that we want */
400       nir_remove_non_entrypoints(nir);
401 
402       /* Make sure we lower constant initializers on output variables so that
403        * nir_remove_dead_variables below sees the corresponding stores
404        */
405       NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_shader_out);
406 
407       /* Now that we've deleted all but the main function, we can go ahead and
408        * lower the rest of the constant initializers.
409        */
410       NIR_PASS(_, nir, nir_lower_variable_initializers, ~0);
411 
412       NIR_PASS(_, nir, radv_nir_lower_cooperative_matrix, subgroup_size);
413 
414       /* Split member structs.  We do this before lower_io_to_temporaries so that
415        * it doesn't lower system values to temporaries by accident.
416        */
417       NIR_PASS(_, nir, nir_split_var_copies);
418       NIR_PASS(_, nir, nir_split_per_member_structs);
419 
420       if (nir->info.stage == MESA_SHADER_FRAGMENT)
421          NIR_PASS(_, nir, nir_lower_io_to_vector, nir_var_shader_out);
422       if (nir->info.stage == MESA_SHADER_FRAGMENT)
423          NIR_PASS(_, nir, nir_lower_input_attachments,
424                   &(nir_input_attachment_options){
425                      .use_fragcoord_sysval = true,
426                      .use_layer_id_sysval = false,
427                   });
428 
429       nir_remove_dead_variables_options dead_vars_opts = {
430          .can_remove_var = nir_vk_is_not_xfb_output,
431       };
432       NIR_PASS(_, nir, nir_remove_dead_variables,
433                nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared, &dead_vars_opts);
434 
435       if (nir->info.stage == MESA_SHADER_FRAGMENT && options->fix_dual_src_mrt1_export)
436          fix_dual_src_mrt1_export(nir);
437 
438       /* Variables can make nir_propagate_invariant more conservative
439        * than it needs to be.
440        */
441       NIR_PASS(_, nir, nir_lower_global_vars_to_local);
442 
443       NIR_PASS(_, nir, nir_lower_vars_to_ssa);
444 
445       NIR_PASS(_, nir, nir_propagate_invariant, pdev->cache_key.invariant_geom);
446 
447       NIR_PASS(_, nir, nir_lower_clip_cull_distance_arrays);
448 
449       if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
450           nir->info.stage == MESA_SHADER_GEOMETRY)
451          NIR_PASS_V(nir, nir_shader_gather_xfb_info);
452 
453       nir_lower_doubles_options lower_doubles = nir->options->lower_doubles_options;
454 
455       if (pdev->info.gfx_level == GFX6) {
456          /* GFX6 doesn't support v_floor_f64 and the precision
457           * of v_fract_f64 which is used to implement 64-bit
458           * floor is less than what Vulkan requires.
459           */
460          lower_doubles |= nir_lower_dfloor;
461       }
462 
463       NIR_PASS(_, nir, nir_lower_doubles, NULL, lower_doubles);
464 
465       NIR_PASS(_, nir, ac_nir_lower_sin_cos);
466    }
467 
468    if (options && options->lower_view_index_to_device_index)
469       NIR_PASS(_, nir, nir_lower_view_index_to_device_index);
470 
471    NIR_PASS(_, nir, nir_lower_system_values);
472    nir_lower_compute_system_values_options csv_options = {
473       /* Mesh shaders run as NGG which can implement local_invocation_index from
474        * the wave ID in merged_wave_info, but they don't have local_invocation_ids on GFX10.3.
475        */
476       .lower_cs_local_id_to_index = nir->info.stage == MESA_SHADER_MESH && !pdev->mesh_fast_launch_2,
477       .lower_local_invocation_index = nir->info.stage == MESA_SHADER_COMPUTE &&
478                                       ((nir->info.workgroup_size[0] == 1) + (nir->info.workgroup_size[1] == 1) +
479                                        (nir->info.workgroup_size[2] == 1)) == 2,
480    };
481    NIR_PASS(_, nir, nir_lower_compute_system_values, &csv_options);
482 
483    /* Vulkan uses the separate-shader linking model */
484    nir->info.separate_shader = true;
485 
486    nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
487 
488    if (nir->info.ray_queries > 0) {
489       /* Lower shared variables early to prevent the over allocation of shared memory in
490        * radv_nir_lower_ray_queries.  */
491       if (nir->info.stage == MESA_SHADER_COMPUTE) {
492          if (!nir->info.shared_memory_explicit_layout)
493             NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, nir_var_mem_shared, shared_var_info);
494 
495          NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_shared, nir_address_format_32bit_offset);
496       }
497 
498       NIR_PASS(_, nir, nir_opt_ray_queries);
499       NIR_PASS(_, nir, nir_opt_ray_query_ranges);
500       NIR_PASS(_, nir, radv_nir_lower_ray_queries, device);
501    }
502 
503    nir_lower_tex_options tex_options = {
504       .lower_txp = ~0,
505       .lower_txf_offset = true,
506       .lower_tg4_offsets = true,
507       .lower_txs_cube_array = true,
508       .lower_to_fragment_fetch_amd = pdev->use_fmask,
509       .lower_lod_zero_width = true,
510       .lower_invalid_implicit_lod = true,
511       .lower_1d = pdev->info.gfx_level == GFX9,
512    };
513 
514    NIR_PASS(_, nir, nir_lower_tex, &tex_options);
515 
516    static const nir_lower_image_options image_options = {
517       .lower_cube_size = true,
518    };
519 
520    NIR_PASS(_, nir, nir_lower_image, &image_options);
521 
522    NIR_PASS(_, nir, nir_lower_vars_to_ssa);
523 
524    if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
525        nir->info.stage == MESA_SHADER_FRAGMENT) {
526       NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true);
527    } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
528       NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false);
529    }
530 
531    NIR_PASS(_, nir, nir_split_var_copies);
532 
533    NIR_PASS(_, nir, nir_lower_global_vars_to_local);
534    NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
535 
536    bool gfx7minus = pdev->info.gfx_level <= GFX7;
537    bool has_inverse_ballot = true;
538    bool use_llvm = radv_use_llvm_for_stage(pdev, nir->info.stage);
539 #if AMD_LLVM_AVAILABLE
540    has_inverse_ballot = !use_llvm || LLVM_VERSION_MAJOR >= 17;
541 #endif
542 
543    NIR_PASS(_, nir, nir_lower_subgroups,
544             &(struct nir_lower_subgroups_options){
545                .subgroup_size = subgroup_size,
546                .ballot_bit_size = ballot_bit_size,
547                .ballot_components = 1,
548                .lower_to_scalar = 1,
549                .lower_subgroup_masks = 1,
550                .lower_relative_shuffle = 1,
551                .lower_rotate_to_shuffle = use_llvm,
552                .lower_shuffle_to_32bit = 1,
553                .lower_vote_eq = 1,
554                .lower_vote_bool_eq = 1,
555                .lower_quad_broadcast_dynamic = 1,
556                .lower_quad_broadcast_dynamic_to_const = gfx7minus,
557                .lower_shuffle_to_swizzle_amd = 1,
558                .lower_ballot_bit_count_to_mbcnt_amd = 1,
559                .lower_inverse_ballot = !has_inverse_ballot,
560                .lower_boolean_reduce = !use_llvm,
561                .lower_boolean_shuffle = true,
562             });
563 
564    NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
565    NIR_PASS(_, nir, nir_opt_shrink_stores, !instance->drirc.disable_shrink_image_store);
566 
567    if (!stage->key.optimisations_disabled)
568       radv_optimize_nir(nir, false);
569 
570    /* We call nir_lower_var_copies() after the first radv_optimize_nir()
571     * to remove any copies introduced by nir_opt_find_array_copies().
572     */
573    NIR_PASS(_, nir, nir_lower_var_copies);
574 
575    unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) | (nir->options->lower_flrp32 ? 32 : 0) |
576                          (nir->options->lower_flrp64 ? 64 : 0);
577    if (lower_flrp != 0) {
578       bool progress = false;
579       NIR_PASS(progress, nir, nir_lower_flrp, lower_flrp, false /* always precise */);
580       if (progress)
581          NIR_PASS(_, nir, nir_opt_constant_folding);
582    }
583 
584    const nir_opt_access_options opt_access_options = {
585       .is_vulkan = true,
586    };
587    NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
588 
589    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const, nir_address_format_32bit_offset);
590 
591    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo | nir_var_mem_ssbo,
592             nir_address_format_vec2_index_32bit_offset);
593 
594    NIR_PASS(_, nir, radv_nir_lower_intrinsics_early, options && options->lower_view_index_to_zero);
595 
596    /* Lower deref operations for compute shared memory. */
597    if (nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_TASK ||
598        nir->info.stage == MESA_SHADER_MESH) {
599       nir_variable_mode var_modes = nir_var_mem_shared;
600 
601       if (nir->info.stage == MESA_SHADER_TASK || nir->info.stage == MESA_SHADER_MESH)
602          var_modes |= nir_var_mem_task_payload;
603 
604       if (!nir->info.shared_memory_explicit_layout)
605          NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes, shared_var_info);
606       else if (var_modes & ~nir_var_mem_shared)
607          NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes & ~nir_var_mem_shared, shared_var_info);
608       NIR_PASS(_, nir, nir_lower_explicit_io, var_modes, nir_address_format_32bit_offset);
609 
610       if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) {
611          const unsigned chunk_size = 16; /* max single store size */
612          const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
613          NIR_PASS(_, nir, nir_zero_initialize_shared_memory, shared_size, chunk_size);
614       }
615    }
616 
617    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global | nir_var_mem_constant, nir_address_format_64bit_global);
618 
619    /* Lower large variables that are always constant with load_constant
620     * intrinsics, which get turned into PC-relative loads from a data
621     * section next to the shader.
622     */
623    NIR_PASS(_, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);
624 
625    /* Lower primitive shading rate to match HW requirements. */
626    if ((nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
627         nir->info.stage == MESA_SHADER_MESH) &&
628        nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) {
629       /* Lower primitive shading rate to match HW requirements. */
630       NIR_PASS(_, nir, radv_nir_lower_primitive_shading_rate, pdev->info.gfx_level);
631    }
632 
633    /* Indirect lowering must be called after the radv_optimize_nir() loop
634     * has been called at least once. Otherwise indirect lowering can
635     * bloat the instruction count of the loop and cause it to be
636     * considered too large for unrolling.
637     */
638    if (ac_nir_lower_indirect_derefs(nir, pdev->info.gfx_level) && !stage->key.optimisations_disabled &&
639        nir->info.stage != MESA_SHADER_COMPUTE) {
640       /* Optimize the lowered code before the linking optimizations. */
641       radv_optimize_nir(nir, false);
642    }
643 
644    return nir;
645 }
646 
647 bool
radv_consider_culling(const struct radv_physical_device * pdev,struct nir_shader * nir,uint64_t ps_inputs_read,unsigned num_vertices_per_primitive,const struct radv_shader_info * info)648 radv_consider_culling(const struct radv_physical_device *pdev, struct nir_shader *nir, uint64_t ps_inputs_read,
649                       unsigned num_vertices_per_primitive, const struct radv_shader_info *info)
650 {
651    /* Culling doesn't make sense for meta shaders. */
652    if (is_meta_shader(nir))
653       return false;
654 
655    /* We don't support culling with multiple viewports yet. */
656    if (nir->info.outputs_written & (VARYING_BIT_VIEWPORT | VARYING_BIT_VIEWPORT_MASK))
657       return false;
658 
659    /* We don't support culling with vertex shader prologs. */
660    if (info->vs.has_prolog)
661       return false;
662 
663    if (!pdev->use_ngg_culling)
664       return false;
665 
666    /* Shader based culling efficiency can depend on PS throughput.
667     * Estimate an upper limit for PS input param count based on GPU info.
668     */
669    unsigned max_ps_params = 8;
670 
671    if (pdev->info.gfx_level >= GFX10_3 && pdev->info.has_dedicated_vram)
672       max_ps_params = 12; /* GFX10.3 and newer discrete GPUs. */
673 
674    /* TODO: consider other heuristics here, such as PS execution time */
675    if (util_bitcount64(ps_inputs_read & ~VARYING_BIT_POS) > max_ps_params)
676       return false;
677 
678    /* Only triangle culling is supported. */
679    if (num_vertices_per_primitive != 3)
680       return false;
681 
682    /* When the shader writes memory, it is difficult to guarantee correctness.
683     * Future work:
684     * - if only write-only SSBOs are used
685     * - if we can prove that non-position outputs don't rely on memory stores
686     * then may be okay to keep the memory stores in the 1st shader part, and delete them from the 2nd.
687     */
688    if (nir->info.writes_memory)
689       return false;
690 
691    /* When the shader relies on the subgroup invocation ID, we'd break it, because the ID changes after the culling.
692     * Future work: try to save this to LDS and reload, but it can still be broken in subtle ways.
693     */
694    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_INVOCATION))
695       return false;
696 
697    /* When re-using values that depend on subgroup operations, we'd break convergence guarantees.
698     * Since we only re-use uniform values, the only subgroup operations we really care about are
699     * ballot, reductions and vote intrinsics.
700     */
701    if (nir->info.maximally_reconverges && nir->info.uses_wide_subgroup_intrinsics)
702       return false;
703 
704    return true;
705 }
706 
707 void
radv_lower_ngg(struct radv_device * device,struct radv_shader_stage * ngg_stage,const struct radv_graphics_state_key * gfx_state)708 radv_lower_ngg(struct radv_device *device, struct radv_shader_stage *ngg_stage,
709                const struct radv_graphics_state_key *gfx_state)
710 {
711    const struct radv_physical_device *pdev = radv_device_physical(device);
712    const struct radv_shader_info *info = &ngg_stage->info;
713    nir_shader *nir = ngg_stage->nir;
714 
715    assert(nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
716           nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_MESH);
717 
718    unsigned num_vertices_per_prim = 3;
719 
720    /* Get the number of vertices per input primitive */
721    if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
722       if (nir->info.tess.point_mode)
723          num_vertices_per_prim = 1;
724       else if (nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
725          num_vertices_per_prim = 2;
726 
727       /* Manually mark the primitive ID used, so the shader can repack it. */
728       if (info->outinfo.export_prim_id)
729          BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
730 
731    } else if (nir->info.stage == MESA_SHADER_VERTEX) {
732       num_vertices_per_prim = radv_get_num_vertices_per_prim(gfx_state);
733 
734       /* Manually mark the instance ID used, so the shader can repack it. */
735       if (gfx_state->vi.instance_rate_inputs)
736          BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
737 
738    } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
739       num_vertices_per_prim = nir->info.gs.vertices_in;
740    } else if (nir->info.stage == MESA_SHADER_MESH) {
741       if (nir->info.mesh.primitive_type == MESA_PRIM_POINTS)
742          num_vertices_per_prim = 1;
743       else if (nir->info.mesh.primitive_type == MESA_PRIM_LINES)
744          num_vertices_per_prim = 2;
745       else
746          assert(nir->info.mesh.primitive_type == MESA_PRIM_TRIANGLES);
747    } else {
748       unreachable("NGG needs to be VS, TES or GS.");
749    }
750 
751    if (nir->info.stage != MESA_SHADER_MESH)
752       nir->info.shared_size = info->ngg_info.lds_size;
753 
754    ac_nir_lower_ngg_options options = {0};
755    options.family = pdev->info.family;
756    options.gfx_level = pdev->info.gfx_level;
757    options.max_workgroup_size = info->workgroup_size;
758    options.wave_size = info->wave_size;
759    options.clip_cull_dist_mask = info->outinfo.clip_dist_mask | info->outinfo.cull_dist_mask;
760    options.vs_output_param_offset = info->outinfo.vs_output_param_offset;
761    options.has_param_exports = info->outinfo.param_exports || info->outinfo.prim_param_exports;
762    options.can_cull = nir->info.stage != MESA_SHADER_GEOMETRY && info->has_ngg_culling;
763    options.disable_streamout = !pdev->use_ngg_streamout;
764    options.has_gen_prim_query = info->has_prim_query;
765    options.has_xfb_prim_query = info->has_xfb_query;
766    options.has_gs_invocations_query = pdev->info.gfx_level < GFX11;
767    options.has_gs_primitives_query = pdev->info.gfx_level < GFX11;
768    options.force_vrs = info->force_vrs_per_vertex;
769 
770    if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL) {
771       assert(info->is_ngg);
772 
773       if (info->has_ngg_culling)
774          radv_optimize_nir_algebraic(nir, false, false);
775 
776       options.num_vertices_per_primitive = num_vertices_per_prim;
777       options.early_prim_export = info->has_ngg_early_prim_export;
778       options.passthrough = info->is_ngg_passthrough;
779       options.export_primitive_id = info->outinfo.export_prim_id;
780       options.instance_rate_inputs = gfx_state->vi.instance_rate_inputs << VERT_ATTRIB_GENERIC0;
781 
782       NIR_PASS_V(nir, ac_nir_lower_ngg_nogs, &options);
783 
784       /* Increase ESGS ring size so the LLVM binary contains the correct LDS size. */
785       ngg_stage->info.ngg_info.esgs_ring_size = nir->info.shared_size;
786    } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
787       assert(info->is_ngg);
788 
789       options.gs_out_vtx_bytes = info->gs.gsvs_vertex_size;
790 
791       NIR_PASS_V(nir, ac_nir_lower_ngg_gs, &options);
792    } else if (nir->info.stage == MESA_SHADER_MESH) {
793       /* ACO aligns the workgroup size to the wave size. */
794       unsigned hw_workgroup_size = ALIGN(info->workgroup_size, info->wave_size);
795 
796       bool scratch_ring = false;
797       NIR_PASS_V(nir, ac_nir_lower_ngg_ms, options.gfx_level, options.clip_cull_dist_mask,
798                  options.vs_output_param_offset, options.has_param_exports, &scratch_ring, info->wave_size,
799                  hw_workgroup_size, gfx_state->has_multiview_view_index, info->ms.has_query, pdev->mesh_fast_launch_2);
800       ngg_stage->info.ms.needs_ms_scratch_ring = scratch_ring;
801    } else {
802       unreachable("invalid SW stage passed to radv_lower_ngg");
803    }
804 }
805 
806 static unsigned
get_size_class(unsigned size,bool round_up)807 get_size_class(unsigned size, bool round_up)
808 {
809    size = round_up ? util_logbase2_ceil(size) : util_logbase2(size);
810    unsigned size_class = MAX2(size, RADV_SHADER_ALLOC_MIN_SIZE_CLASS) - RADV_SHADER_ALLOC_MIN_SIZE_CLASS;
811    return MIN2(size_class, RADV_SHADER_ALLOC_NUM_FREE_LISTS - 1);
812 }
813 
814 static void
remove_hole(struct radv_shader_free_list * free_list,union radv_shader_arena_block * hole)815 remove_hole(struct radv_shader_free_list *free_list, union radv_shader_arena_block *hole)
816 {
817    unsigned size_class = get_size_class(hole->size, false);
818    list_del(&hole->freelist);
819    if (list_is_empty(&free_list->free_lists[size_class]))
820       free_list->size_mask &= ~(1u << size_class);
821 }
822 
823 static void
add_hole(struct radv_shader_free_list * free_list,union radv_shader_arena_block * hole)824 add_hole(struct radv_shader_free_list *free_list, union radv_shader_arena_block *hole)
825 {
826    unsigned size_class = get_size_class(hole->size, false);
827    list_addtail(&hole->freelist, &free_list->free_lists[size_class]);
828    free_list->size_mask |= 1u << size_class;
829 }
830 
831 static union radv_shader_arena_block *
alloc_block_obj(struct radv_device * device)832 alloc_block_obj(struct radv_device *device)
833 {
834    if (!list_is_empty(&device->shader_block_obj_pool)) {
835       union radv_shader_arena_block *block =
836          list_first_entry(&device->shader_block_obj_pool, union radv_shader_arena_block, pool);
837       list_del(&block->pool);
838       return block;
839    }
840 
841    return malloc(sizeof(union radv_shader_arena_block));
842 }
843 
844 static void
free_block_obj(struct radv_device * device,union radv_shader_arena_block * block)845 free_block_obj(struct radv_device *device, union radv_shader_arena_block *block)
846 {
847    list_del(&block->pool);
848    list_add(&block->pool, &device->shader_block_obj_pool);
849 }
850 
851 VkResult
radv_shader_wait_for_upload(struct radv_device * device,uint64_t seq)852 radv_shader_wait_for_upload(struct radv_device *device, uint64_t seq)
853 {
854    if (!seq)
855       return VK_SUCCESS;
856 
857    const VkSemaphoreWaitInfo wait_info = {
858       .sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
859       .pSemaphores = &device->shader_upload_sem,
860       .semaphoreCount = 1,
861       .pValues = &seq,
862    };
863    return device->vk.dispatch_table.WaitSemaphores(radv_device_to_handle(device), &wait_info, UINT64_MAX);
864 }
865 
866 static struct radv_shader_arena *
radv_create_shader_arena(struct radv_device * device,struct radv_shader_free_list * free_list,unsigned min_size,unsigned arena_size,bool replayable,uint64_t replay_va)867 radv_create_shader_arena(struct radv_device *device, struct radv_shader_free_list *free_list, unsigned min_size,
868                          unsigned arena_size, bool replayable, uint64_t replay_va)
869 {
870    const struct radv_physical_device *pdev = radv_device_physical(device);
871    union radv_shader_arena_block *alloc = NULL;
872    struct radv_shader_arena *arena = calloc(1, sizeof(struct radv_shader_arena));
873    if (!arena)
874       goto fail;
875 
876    if (!arena_size)
877       arena_size = MAX2(
878          RADV_SHADER_ALLOC_MIN_ARENA_SIZE << MIN2(RADV_SHADER_ALLOC_MAX_ARENA_SIZE_SHIFT, device->shader_arena_shift),
879          min_size);
880    arena->size = arena_size;
881 
882    enum radeon_bo_flag flags = RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT;
883    if (device->shader_use_invisible_vram)
884       flags |= RADEON_FLAG_NO_CPU_ACCESS;
885    else
886       flags |= (pdev->info.cpdma_prefetch_writes_memory ? 0 : RADEON_FLAG_READ_ONLY);
887 
888    if (replayable)
889       flags |= RADEON_FLAG_REPLAYABLE;
890 
891    /* vkCmdUpdatePipelineIndirectBufferNV() can be called on any queue supporting transfer
892     * operations and it's not required to call it on the same queue as DGC execute. To make sure the
893     * compute shader BO is part of the DGC execute submission, force all shaders to be local BOs.
894     */
895    if (device->vk.enabled_features.deviceGeneratedComputePipelines)
896       flags |= RADEON_FLAG_PREFER_LOCAL_BO;
897 
898    VkResult result;
899    result = radv_bo_create(device, NULL, arena_size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_VRAM, flags,
900                            RADV_BO_PRIORITY_SHADER, replay_va, true, &arena->bo);
901    if (result != VK_SUCCESS)
902       goto fail;
903 
904    list_inithead(&arena->entries);
905    alloc = alloc_block_obj(device);
906    if (!alloc)
907       goto fail;
908 
909    list_inithead(&alloc->freelist);
910    alloc->arena = arena;
911    alloc->offset = 0;
912    alloc->size = arena_size;
913    list_addtail(&alloc->list, &arena->entries);
914    if (free_list)
915       add_hole(free_list, alloc);
916 
917    if (!(flags & RADEON_FLAG_NO_CPU_ACCESS)) {
918       arena->ptr = (char *)radv_buffer_map(device->ws, arena->bo);
919       if (!arena->ptr)
920          goto fail;
921    }
922 
923    if (replay_va)
924       arena->type = RADV_SHADER_ARENA_REPLAYED;
925    else if (replayable)
926       arena->type = RADV_SHADER_ARENA_REPLAYABLE;
927    else
928       arena->type = RADV_SHADER_ARENA_DEFAULT;
929 
930    return arena;
931 
932 fail:
933    if (alloc)
934       free_block_obj(device, alloc);
935    if (arena && arena->bo)
936       radv_bo_destroy(device, NULL, arena->bo);
937    free(arena);
938    return NULL;
939 }
940 
941 /* Inserts a block at an arbitrary place into a hole, splitting the hole as needed */
942 static union radv_shader_arena_block *
insert_block(struct radv_device * device,union radv_shader_arena_block * hole,uint32_t offset_in_hole,uint32_t size,struct radv_shader_free_list * free_list)943 insert_block(struct radv_device *device, union radv_shader_arena_block *hole, uint32_t offset_in_hole, uint32_t size,
944              struct radv_shader_free_list *free_list)
945 {
946    uint32_t hole_begin = hole->offset;
947    uint32_t hole_end = hole->offset + hole->size;
948 
949    /* The block might not lie exactly at the beginning or end
950     * of the hole. Resize the hole to fit the block exactly,
951     * and insert new holes before (left_hole) or after (right_hole) as needed.
952     * left_hole or right_hole are skipped if the allocation lies exactly at the
953     * beginning or end of the hole to avoid 0-sized holes. */
954    union radv_shader_arena_block *left_hole = NULL;
955    union radv_shader_arena_block *right_hole = NULL;
956 
957    if (offset_in_hole) {
958       left_hole = alloc_block_obj(device);
959       if (!left_hole)
960          return NULL;
961       list_inithead(&left_hole->freelist);
962       left_hole->arena = hole->arena;
963       left_hole->offset = hole->offset;
964       left_hole->size = offset_in_hole;
965 
966       if (free_list)
967          add_hole(free_list, left_hole);
968    }
969 
970    if (hole->size > offset_in_hole + size) {
971       right_hole = alloc_block_obj(device);
972       if (!right_hole) {
973          free(left_hole);
974          return NULL;
975       }
976       list_inithead(&right_hole->freelist);
977       right_hole->arena = hole->arena;
978       right_hole->offset = hole_begin + offset_in_hole + size;
979       right_hole->size = hole_end - right_hole->offset;
980 
981       if (free_list)
982          add_hole(free_list, right_hole);
983    }
984 
985    if (left_hole) {
986       hole->offset += left_hole->size;
987       hole->size -= left_hole->size;
988 
989       list_addtail(&left_hole->list, &hole->list);
990    }
991    if (right_hole) {
992       hole->size -= right_hole->size;
993 
994       list_add(&right_hole->list, &hole->list);
995    }
996 
997    if (free_list)
998       remove_hole(free_list, hole);
999    return hole;
1000 }
1001 
1002 /* Segregated fit allocator, implementing a good-fit allocation policy.
1003  *
1004  * This is an variation of sequential fit allocation with several lists of free blocks ("holes")
1005  * instead of one. Each list of holes only contains holes of a certain range of sizes, so holes that
1006  * are too small can easily be ignored while allocating. Because this also ignores holes that are
1007  * larger than necessary (approximating best-fit allocation), this could be described as a
1008  * "good-fit" allocator.
1009  *
1010  * Typically, shaders are allocated and only free'd when the device is destroyed. For this pattern,
1011  * this should allocate blocks for shaders fast and with no fragmentation, while still allowing
1012  * free'd memory to be re-used.
1013  */
1014 union radv_shader_arena_block *
radv_alloc_shader_memory(struct radv_device * device,uint32_t size,bool replayable,void * ptr)1015 radv_alloc_shader_memory(struct radv_device *device, uint32_t size, bool replayable, void *ptr)
1016 {
1017    const struct radv_physical_device *pdev = radv_device_physical(device);
1018 
1019    size = ac_align_shader_binary_for_prefetch(&pdev->info, size);
1020    size = align(size, RADV_SHADER_ALLOC_ALIGNMENT);
1021 
1022    mtx_lock(&device->shader_arena_mutex);
1023 
1024    struct radv_shader_free_list *free_list = replayable ? &device->capture_replay_free_list : &device->shader_free_list;
1025 
1026    /* Try to use an existing hole. Unless the shader is very large, this should only have to look
1027     * at the first one available.
1028     */
1029    unsigned free_list_mask = BITFIELD_MASK(RADV_SHADER_ALLOC_NUM_FREE_LISTS);
1030    unsigned size_class = ffs(free_list->size_mask & (free_list_mask << get_size_class(size, true)));
1031    if (size_class) {
1032       size_class--;
1033 
1034       list_for_each_entry (union radv_shader_arena_block, hole, &free_list->free_lists[size_class], freelist) {
1035          if (hole->size < size)
1036             continue;
1037 
1038          assert(hole->offset % RADV_SHADER_ALLOC_ALIGNMENT == 0);
1039 
1040          if (size == hole->size) {
1041             remove_hole(free_list, hole);
1042             hole->freelist.next = ptr;
1043             mtx_unlock(&device->shader_arena_mutex);
1044             return hole;
1045          } else {
1046             union radv_shader_arena_block *alloc = alloc_block_obj(device);
1047             if (!alloc) {
1048                mtx_unlock(&device->shader_arena_mutex);
1049                return NULL;
1050             }
1051             list_addtail(&alloc->list, &hole->list);
1052             alloc->freelist.prev = NULL;
1053             alloc->freelist.next = ptr;
1054             alloc->arena = hole->arena;
1055             alloc->offset = hole->offset;
1056             alloc->size = size;
1057 
1058             remove_hole(free_list, hole);
1059             hole->offset += size;
1060             hole->size -= size;
1061             add_hole(free_list, hole);
1062 
1063             mtx_unlock(&device->shader_arena_mutex);
1064             return alloc;
1065          }
1066       }
1067    }
1068 
1069    struct radv_shader_arena *arena = radv_create_shader_arena(device, free_list, size, 0, replayable, 0);
1070    union radv_shader_arena_block *alloc = NULL;
1071    if (!arena)
1072       goto fail;
1073 
1074    alloc =
1075       insert_block(device, list_entry(arena->entries.next, union radv_shader_arena_block, list), 0, size, free_list);
1076    alloc->freelist.prev = NULL;
1077    alloc->freelist.next = ptr;
1078 
1079    ++device->shader_arena_shift;
1080    list_addtail(&arena->list, &device->shader_arenas);
1081 
1082    mtx_unlock(&device->shader_arena_mutex);
1083    return alloc;
1084 
1085 fail:
1086    mtx_unlock(&device->shader_arena_mutex);
1087    free(alloc);
1088    if (arena) {
1089       free(arena->list.next);
1090       radv_bo_destroy(device, NULL, arena->bo);
1091    }
1092    free(arena);
1093    return NULL;
1094 }
1095 
1096 static union radv_shader_arena_block *
get_hole(struct radv_shader_arena * arena,struct list_head * head)1097 get_hole(struct radv_shader_arena *arena, struct list_head *head)
1098 {
1099    if (head == &arena->entries)
1100       return NULL;
1101 
1102    union radv_shader_arena_block *hole = list_entry(head, union radv_shader_arena_block, list);
1103    return hole->freelist.prev ? hole : NULL;
1104 }
1105 
1106 void
radv_free_shader_memory(struct radv_device * device,union radv_shader_arena_block * alloc)1107 radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc)
1108 {
1109    mtx_lock(&device->shader_arena_mutex);
1110 
1111    union radv_shader_arena_block *hole_prev = get_hole(alloc->arena, alloc->list.prev);
1112    union radv_shader_arena_block *hole_next = get_hole(alloc->arena, alloc->list.next);
1113 
1114    union radv_shader_arena_block *hole = alloc;
1115 
1116    struct radv_shader_free_list *free_list;
1117 
1118    switch (alloc->arena->type) {
1119    case RADV_SHADER_ARENA_DEFAULT:
1120       free_list = &device->shader_free_list;
1121       break;
1122    case RADV_SHADER_ARENA_REPLAYABLE:
1123       free_list = &device->capture_replay_free_list;
1124       break;
1125    case RADV_SHADER_ARENA_REPLAYED:
1126       free_list = NULL;
1127       break;
1128    default:
1129       unreachable("invalid shader arena type");
1130    }
1131 
1132    /* merge with previous hole */
1133    if (hole_prev) {
1134       if (free_list)
1135          remove_hole(free_list, hole_prev);
1136 
1137       hole_prev->size += hole->size;
1138       free_block_obj(device, hole);
1139 
1140       hole = hole_prev;
1141    }
1142 
1143    /* merge with next hole */
1144    if (hole_next) {
1145       if (free_list)
1146          remove_hole(free_list, hole_next);
1147 
1148       hole_next->offset -= hole->size;
1149       hole_next->size += hole->size;
1150       free_block_obj(device, hole);
1151 
1152       hole = hole_next;
1153    }
1154 
1155    if (list_is_singular(&hole->list)) {
1156       struct radv_shader_arena *arena = hole->arena;
1157       free_block_obj(device, hole);
1158 
1159       radv_bo_destroy(device, NULL, arena->bo);
1160       list_del(&arena->list);
1161 
1162       if (device->capture_replay_arena_vas) {
1163          struct hash_entry *arena_entry = NULL;
1164          hash_table_foreach (device->capture_replay_arena_vas->table, entry) {
1165             if (entry->data == arena) {
1166                arena_entry = entry;
1167                break;
1168             }
1169          }
1170          _mesa_hash_table_remove(device->capture_replay_arena_vas->table, arena_entry);
1171       }
1172 
1173       free(arena);
1174    } else if (free_list) {
1175       add_hole(free_list, hole);
1176    }
1177 
1178    mtx_unlock(&device->shader_arena_mutex);
1179 }
1180 
1181 union radv_shader_arena_block *
radv_replay_shader_arena_block(struct radv_device * device,const struct radv_serialized_shader_arena_block * src,void * ptr)1182 radv_replay_shader_arena_block(struct radv_device *device, const struct radv_serialized_shader_arena_block *src,
1183                                void *ptr)
1184 {
1185    mtx_lock(&device->shader_arena_mutex);
1186 
1187    union radv_shader_arena_block *ret_block = NULL;
1188 
1189    uint64_t va = src->arena_va;
1190    void *data = _mesa_hash_table_u64_search(device->capture_replay_arena_vas, va);
1191 
1192    if (!data) {
1193       struct radv_shader_arena *arena = radv_create_shader_arena(device, NULL, 0, src->arena_size, true, src->arena_va);
1194       if (!arena)
1195          goto out;
1196 
1197       _mesa_hash_table_u64_insert(device->capture_replay_arena_vas, src->arena_va, arena);
1198       list_addtail(&arena->list, &device->shader_arenas);
1199       data = arena;
1200    }
1201 
1202    uint32_t block_begin = src->offset;
1203    uint32_t block_end = src->offset + src->size;
1204 
1205    struct radv_shader_arena *arena = data;
1206    list_for_each_entry (union radv_shader_arena_block, hole, &arena->entries, list) {
1207       /* Only consider holes, not allocated shaders */
1208       if (!hole->freelist.prev)
1209          continue;
1210 
1211       uint32_t hole_begin = hole->offset;
1212       uint32_t hole_end = hole->offset + hole->size;
1213 
1214       if (hole_end < block_end)
1215          continue;
1216 
1217       /* If another allocated block overlaps the current replay block, allocation is impossible */
1218       if (hole_begin > block_begin)
1219          goto out;
1220 
1221       union radv_shader_arena_block *block = insert_block(device, hole, block_begin - hole_begin, src->size, NULL);
1222       if (!block)
1223          goto out;
1224 
1225       block->freelist.prev = NULL;
1226       block->freelist.next = ptr;
1227 
1228       ret_block = hole;
1229       break;
1230    }
1231 
1232 out:
1233    mtx_unlock(&device->shader_arena_mutex);
1234    return ret_block;
1235 }
1236 
1237 void
radv_init_shader_arenas(struct radv_device * device)1238 radv_init_shader_arenas(struct radv_device *device)
1239 {
1240    mtx_init(&device->shader_arena_mutex, mtx_plain);
1241 
1242    device->shader_free_list.size_mask = 0;
1243    device->capture_replay_free_list.size_mask = 0;
1244 
1245    list_inithead(&device->shader_arenas);
1246    list_inithead(&device->shader_block_obj_pool);
1247    for (unsigned i = 0; i < RADV_SHADER_ALLOC_NUM_FREE_LISTS; i++) {
1248       list_inithead(&device->shader_free_list.free_lists[i]);
1249       list_inithead(&device->capture_replay_free_list.free_lists[i]);
1250    }
1251 }
1252 
1253 void
radv_destroy_shader_arenas(struct radv_device * device)1254 radv_destroy_shader_arenas(struct radv_device *device)
1255 {
1256    list_for_each_entry_safe (union radv_shader_arena_block, block, &device->shader_block_obj_pool, pool)
1257       free(block);
1258 
1259    list_for_each_entry_safe (struct radv_shader_arena, arena, &device->shader_arenas, list) {
1260       radv_bo_destroy(device, NULL, arena->bo);
1261       free(arena);
1262    }
1263    mtx_destroy(&device->shader_arena_mutex);
1264 }
1265 
1266 VkResult
radv_init_shader_upload_queue(struct radv_device * device)1267 radv_init_shader_upload_queue(struct radv_device *device)
1268 {
1269    if (!device->shader_use_invisible_vram)
1270       return VK_SUCCESS;
1271 
1272    VkDevice vk_device = radv_device_to_handle(device);
1273    struct radeon_winsys *ws = device->ws;
1274 
1275    const struct vk_device_dispatch_table *disp = &device->vk.dispatch_table;
1276    VkResult result = VK_SUCCESS;
1277 
1278    result = ws->ctx_create(ws, RADEON_CTX_PRIORITY_MEDIUM, &device->shader_upload_hw_ctx);
1279    if (result != VK_SUCCESS)
1280       return result;
1281    mtx_init(&device->shader_upload_hw_ctx_mutex, mtx_plain);
1282 
1283    mtx_init(&device->shader_dma_submission_list_mutex, mtx_plain);
1284    cnd_init(&device->shader_dma_submission_list_cond);
1285    list_inithead(&device->shader_dma_submissions);
1286 
1287    for (unsigned i = 0; i < RADV_SHADER_UPLOAD_CS_COUNT; i++) {
1288       struct radv_shader_dma_submission *submission = calloc(1, sizeof(struct radv_shader_dma_submission));
1289       submission->cs = ws->cs_create(ws, AMD_IP_SDMA, false);
1290       if (!submission->cs)
1291          return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1292       list_addtail(&submission->list, &device->shader_dma_submissions);
1293    }
1294 
1295    const VkSemaphoreTypeCreateInfo sem_type = {
1296       .sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO,
1297       .semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE,
1298       .initialValue = 0,
1299    };
1300    const VkSemaphoreCreateInfo sem_create = {
1301       .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
1302       .pNext = &sem_type,
1303    };
1304    result = disp->CreateSemaphore(vk_device, &sem_create, NULL, &device->shader_upload_sem);
1305    if (result != VK_SUCCESS)
1306       return result;
1307 
1308    return VK_SUCCESS;
1309 }
1310 
1311 void
radv_destroy_shader_upload_queue(struct radv_device * device)1312 radv_destroy_shader_upload_queue(struct radv_device *device)
1313 {
1314    if (!device->shader_use_invisible_vram)
1315       return;
1316 
1317    struct vk_device_dispatch_table *disp = &device->vk.dispatch_table;
1318    struct radeon_winsys *ws = device->ws;
1319 
1320    /* Upload queue should be idle assuming that pipelines are not leaked */
1321    if (device->shader_upload_sem)
1322       disp->DestroySemaphore(radv_device_to_handle(device), device->shader_upload_sem, NULL);
1323 
1324    list_for_each_entry_safe (struct radv_shader_dma_submission, submission, &device->shader_dma_submissions, list) {
1325       if (submission->cs)
1326          ws->cs_destroy(submission->cs);
1327       if (submission->bo)
1328          radv_bo_destroy(device, NULL, submission->bo);
1329       list_del(&submission->list);
1330       free(submission);
1331    }
1332 
1333    cnd_destroy(&device->shader_dma_submission_list_cond);
1334    mtx_destroy(&device->shader_dma_submission_list_mutex);
1335 
1336    if (device->shader_upload_hw_ctx) {
1337       mtx_destroy(&device->shader_upload_hw_ctx_mutex);
1338       ws->ctx_destroy(device->shader_upload_hw_ctx);
1339    }
1340 }
1341 
1342 static bool
radv_should_use_wgp_mode(const struct radv_device * device,gl_shader_stage stage,const struct radv_shader_info * info)1343 radv_should_use_wgp_mode(const struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info)
1344 {
1345    const struct radv_physical_device *pdev = radv_device_physical(device);
1346    enum amd_gfx_level chip = pdev->info.gfx_level;
1347    switch (stage) {
1348    case MESA_SHADER_COMPUTE:
1349    case MESA_SHADER_TESS_CTRL:
1350       return chip >= GFX10;
1351    case MESA_SHADER_GEOMETRY:
1352       return chip == GFX10 || (chip >= GFX10_3 && !info->is_ngg);
1353    case MESA_SHADER_VERTEX:
1354    case MESA_SHADER_TESS_EVAL:
1355       return chip == GFX10 && info->is_ngg;
1356    default:
1357       return false;
1358    }
1359 }
1360 
1361 #if defined(USE_LIBELF)
1362 static bool
radv_open_rtld_binary(struct radv_device * device,const struct radv_shader_binary * binary,struct ac_rtld_binary * rtld_binary)1363 radv_open_rtld_binary(struct radv_device *device, const struct radv_shader_binary *binary,
1364                       struct ac_rtld_binary *rtld_binary)
1365 {
1366    const struct radv_physical_device *pdev = radv_device_physical(device);
1367    const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
1368    size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
1369    struct ac_rtld_symbol lds_symbols[3];
1370    unsigned num_lds_symbols = 0;
1371 
1372    if (pdev->info.gfx_level >= GFX9 && (binary->info.stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg)) {
1373       struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
1374       sym->name = "esgs_ring";
1375       sym->size = binary->info.ngg_info.esgs_ring_size;
1376       sym->align = 64 * 1024;
1377    }
1378 
1379    if (binary->info.is_ngg && binary->info.stage == MESA_SHADER_GEOMETRY) {
1380       struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
1381       sym->name = "ngg_emit";
1382       sym->size = binary->info.ngg_info.ngg_emit_size * 4;
1383       sym->align = 4;
1384 
1385       sym = &lds_symbols[num_lds_symbols++];
1386       sym->name = "ngg_scratch";
1387       sym->size = 8;
1388       sym->align = 4;
1389    }
1390 
1391    struct ac_rtld_open_info open_info = {
1392       .info = &pdev->info,
1393       .shader_type = binary->info.stage,
1394       .wave_size = binary->info.wave_size,
1395       .num_parts = 1,
1396       .elf_ptrs = &elf_data,
1397       .elf_sizes = &elf_size,
1398       .num_shared_lds_symbols = num_lds_symbols,
1399       .shared_lds_symbols = lds_symbols,
1400    };
1401 
1402    return ac_rtld_open(rtld_binary, open_info);
1403 }
1404 #endif
1405 
1406 static void
radv_precompute_registers_hw_vs(struct radv_device * device,struct radv_shader_binary * binary)1407 radv_precompute_registers_hw_vs(struct radv_device *device, struct radv_shader_binary *binary)
1408 {
1409    const struct radv_physical_device *pdev = radv_device_physical(device);
1410    struct radv_shader_info *info = &binary->info;
1411 
1412    /* VS is required to export at least one param. */
1413    const uint32_t nparams = MAX2(info->outinfo.param_exports, 1);
1414    info->regs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1415    if (pdev->info.gfx_level >= GFX10) {
1416       info->regs.spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(info->outinfo.param_exports == 0);
1417    }
1418 
1419    info->regs.spi_shader_pos_format =
1420       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1421       S_02870C_POS1_EXPORT_FORMAT(info->outinfo.pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1422                                                                 : V_02870C_SPI_SHADER_NONE) |
1423       S_02870C_POS2_EXPORT_FORMAT(info->outinfo.pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1424                                                                 : V_02870C_SPI_SHADER_NONE) |
1425       S_02870C_POS3_EXPORT_FORMAT(info->outinfo.pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE);
1426 
1427    const bool misc_vec_ena = info->outinfo.writes_pointsize || info->outinfo.writes_layer ||
1428                              info->outinfo.writes_viewport_index || info->outinfo.writes_primitive_shading_rate;
1429    const unsigned clip_dist_mask = info->outinfo.clip_dist_mask;
1430    const unsigned cull_dist_mask = info->outinfo.cull_dist_mask;
1431    const unsigned total_mask = clip_dist_mask | cull_dist_mask;
1432 
1433    info->regs.pa_cl_vs_out_cntl =
1434       S_02881C_USE_VTX_POINT_SIZE(info->outinfo.writes_pointsize) |
1435       S_02881C_USE_VTX_RENDER_TARGET_INDX(info->outinfo.writes_layer) |
1436       S_02881C_USE_VTX_VIEWPORT_INDX(info->outinfo.writes_viewport_index) |
1437       S_02881C_USE_VTX_VRS_RATE(info->outinfo.writes_primitive_shading_rate) |
1438       S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1439       S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1440                                         (pdev->info.gfx_level >= GFX10_3 && info->outinfo.pos_exports > 1)) |
1441       S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
1442       S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask;
1443 
1444    if (pdev->info.gfx_level <= GFX8)
1445       info->regs.vs.vgt_reuse_off = info->outinfo.writes_viewport_index;
1446 
1447    unsigned late_alloc_wave64, cu_mask;
1448    ac_compute_late_alloc(&pdev->info, false, false, binary->config.scratch_bytes_per_wave > 0, &late_alloc_wave64,
1449                          &cu_mask);
1450 
1451    if (pdev->info.gfx_level >= GFX7) {
1452       info->regs.vs.spi_shader_pgm_rsrc3_vs =
1453          ac_apply_cu_en(S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F), C_00B118_CU_EN, 0, &pdev->info);
1454       info->regs.vs.spi_shader_late_alloc_vs = S_00B11C_LIMIT(late_alloc_wave64);
1455 
1456       if (pdev->info.gfx_level >= GFX10) {
1457          const uint32_t oversub_pc_lines = late_alloc_wave64 ? pdev->info.pc_lines / 4 : 0;
1458 
1459          info->regs.ge_pc_alloc =
1460             S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1461 
1462          /* Required programming for tessellation (legacy pipeline only). */
1463          if (binary->info.stage == MESA_SHADER_TESS_EVAL) {
1464             info->regs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1465                                             S_028A44_GS_INST_PRIMS_IN_SUBGRP(126);
1466          }
1467       }
1468    }
1469 }
1470 
1471 static void
radv_precompute_registers_hw_gs(struct radv_device * device,struct radv_shader_binary * binary)1472 radv_precompute_registers_hw_gs(struct radv_device *device, struct radv_shader_binary *binary)
1473 {
1474    const struct radv_physical_device *pdev = radv_device_physical(device);
1475    struct radv_shader_info *info = &binary->info;
1476 
1477    info->regs.gs.vgt_esgs_ring_itemsize = info->gs_ring_info.esgs_itemsize;
1478 
1479    info->regs.gs.vgt_gs_max_prims_per_subgroup =
1480       S_028A94_MAX_PRIMS_PER_SUBGROUP(info->gs_ring_info.gs_inst_prims_in_subgroup);
1481 
1482    info->regs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(info->gs_ring_info.es_verts_per_subgroup) |
1483                                    S_028A44_GS_PRIMS_PER_SUBGRP(info->gs_ring_info.gs_prims_per_subgroup) |
1484                                    S_028A44_GS_INST_PRIMS_IN_SUBGRP(info->gs_ring_info.gs_inst_prims_in_subgroup);
1485 
1486    const uint32_t gs_max_out_vertices = info->gs.vertices_out;
1487    const uint8_t max_stream = info->gs.max_stream;
1488    const uint8_t *num_components = info->gs.num_stream_output_components;
1489 
1490    uint32_t offset = num_components[0] * gs_max_out_vertices;
1491    info->regs.gs.vgt_gsvs_ring_offset[0] = offset;
1492 
1493    if (max_stream >= 1)
1494       offset += num_components[1] * gs_max_out_vertices;
1495    info->regs.gs.vgt_gsvs_ring_offset[1] = offset;
1496 
1497    if (max_stream >= 2)
1498       offset += num_components[2] * gs_max_out_vertices;
1499    info->regs.gs.vgt_gsvs_ring_offset[2] = offset;
1500 
1501    if (max_stream >= 3)
1502       offset += num_components[3] * gs_max_out_vertices;
1503    info->regs.gs.vgt_gsvs_ring_itemsize = offset;
1504 
1505    for (uint32_t i = 0; i < 4; i++)
1506       info->regs.gs.vgt_gs_vert_itemsize[i] = (max_stream >= i) ? num_components[i] : 0;
1507 
1508    const uint32_t gs_num_invocations = info->gs.invocations;
1509    info->regs.gs.vgt_gs_instance_cnt =
1510       S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
1511 
1512    info->regs.spi_shader_pgm_rsrc3_gs =
1513       ac_apply_cu_en(S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdev->info);
1514 
1515    if (pdev->info.gfx_level >= GFX10) {
1516       info->regs.spi_shader_pgm_rsrc4_gs =
1517          ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0), C_00B204_CU_EN_GFX10,
1518                         16, &pdev->info);
1519    }
1520 
1521    info->regs.vgt_gs_max_vert_out = info->gs.vertices_out;
1522 }
1523 
1524 void
radv_precompute_registers_hw_ngg(struct radv_device * device,const struct ac_shader_config * config,struct radv_shader_info * info)1525 radv_precompute_registers_hw_ngg(struct radv_device *device, const struct ac_shader_config *config,
1526                                  struct radv_shader_info *info)
1527 {
1528    const struct radv_physical_device *pdev = radv_device_physical(device);
1529 
1530    const bool no_pc_export = info->outinfo.param_exports == 0 && info->outinfo.prim_param_exports == 0;
1531    const unsigned num_prim_params = info->outinfo.prim_param_exports;
1532 
1533    if (pdev->info.gfx_level >= GFX12) {
1534       unsigned num_params = info->outinfo.param_exports;
1535 
1536       /* Since there is no alloc/dealloc mechanism for the 12-bit ordered IDs, they can wrap
1537        * around if there are more than 2^12 workgroups, causing 2 workgroups to get the same
1538        * ordered ID, which would break the streamout algorithm.
1539        * The recommended solution is to use the alloc/dealloc mechanism of the attribute ring,
1540        * which is enough to limit the range of ordered IDs that can be in flight.
1541        */
1542       if (info->so.num_outputs) {
1543          num_params = MAX2(num_params, 8);
1544       } else {
1545          num_params = MAX2(num_params, 1);
1546       }
1547 
1548       info->regs.spi_vs_out_config = S_00B0C4_VS_EXPORT_COUNT(num_params - 1) |
1549                                      S_00B0C4_PRIM_EXPORT_COUNT(num_prim_params) | S_00B0C4_NO_PC_EXPORT(no_pc_export);
1550 
1551       info->regs.spi_shader_pgm_rsrc4_gs =
1552          S_00B220_SPI_SHADER_LATE_ALLOC_GS(127) | S_00B220_GLG_FORCE_DISABLE(1) | S_00B220_WAVE_LIMIT(0x3ff);
1553    } else {
1554       const unsigned num_params = MAX2(info->outinfo.param_exports, 1);
1555 
1556       info->regs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(num_params - 1) |
1557                                      S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) | S_0286C4_NO_PC_EXPORT(no_pc_export);
1558 
1559       unsigned late_alloc_wave64, cu_mask;
1560       ac_compute_late_alloc(&pdev->info, true, info->has_ngg_culling, config->scratch_bytes_per_wave > 0,
1561                             &late_alloc_wave64, &cu_mask);
1562 
1563       info->regs.spi_shader_pgm_rsrc3_gs =
1564          ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdev->info);
1565 
1566       if (pdev->info.gfx_level >= GFX11) {
1567          info->regs.spi_shader_pgm_rsrc4_gs =
1568             ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
1569                            C_00B204_CU_EN_GFX11, 16, &pdev->info);
1570       } else {
1571          info->regs.spi_shader_pgm_rsrc4_gs =
1572             ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
1573                            C_00B204_CU_EN_GFX10, 16, &pdev->info);
1574       }
1575 
1576       uint32_t oversub_pc_lines = late_alloc_wave64 ? pdev->info.pc_lines / 4 : 0;
1577       if (info->has_ngg_culling) {
1578          unsigned oversub_factor = 2;
1579 
1580          if (info->outinfo.param_exports > 4)
1581             oversub_factor = 4;
1582          else if (info->outinfo.param_exports > 2)
1583             oversub_factor = 3;
1584 
1585          oversub_pc_lines *= oversub_factor;
1586       }
1587 
1588       info->regs.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1589    }
1590 
1591    unsigned idx_format = V_028708_SPI_SHADER_1COMP;
1592    if (info->outinfo.writes_layer_per_primitive || info->outinfo.writes_viewport_index_per_primitive ||
1593        info->outinfo.writes_primitive_shading_rate_per_primitive)
1594       idx_format = V_028708_SPI_SHADER_2COMP;
1595 
1596    info->regs.ngg.spi_shader_idx_format = S_028708_IDX0_EXPORT_FORMAT(idx_format);
1597 
1598    info->regs.spi_shader_pos_format =
1599       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1600       S_02870C_POS1_EXPORT_FORMAT(info->outinfo.pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1601                                                                 : V_02870C_SPI_SHADER_NONE) |
1602       S_02870C_POS2_EXPORT_FORMAT(info->outinfo.pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1603                                                                 : V_02870C_SPI_SHADER_NONE) |
1604       S_02870C_POS3_EXPORT_FORMAT(info->outinfo.pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE);
1605 
1606    const bool misc_vec_ena = info->outinfo.writes_pointsize || info->outinfo.writes_layer ||
1607                              info->outinfo.writes_viewport_index || info->outinfo.writes_primitive_shading_rate;
1608    const unsigned clip_dist_mask = info->outinfo.clip_dist_mask;
1609    const unsigned cull_dist_mask = info->outinfo.cull_dist_mask;
1610    const unsigned total_mask = clip_dist_mask | cull_dist_mask;
1611 
1612    info->regs.pa_cl_vs_out_cntl =
1613       S_02881C_USE_VTX_POINT_SIZE(info->outinfo.writes_pointsize) |
1614       S_02881C_USE_VTX_RENDER_TARGET_INDX(info->outinfo.writes_layer) |
1615       S_02881C_USE_VTX_VIEWPORT_INDX(info->outinfo.writes_viewport_index) |
1616       S_02881C_USE_VTX_VRS_RATE(info->outinfo.writes_primitive_shading_rate) |
1617       S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1618       S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1619                                         (pdev->info.gfx_level >= GFX10_3 && info->outinfo.pos_exports > 1)) |
1620       S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
1621       S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask;
1622 
1623    info->regs.ngg.vgt_primitiveid_en = S_028A84_NGG_DISABLE_PROVOK_REUSE(info->outinfo.export_prim_id);
1624 
1625    const uint32_t gs_num_invocations = info->stage == MESA_SHADER_GEOMETRY ? info->gs.invocations : 1;
1626 
1627    info->regs.ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(info->ngg_info.max_out_verts);
1628 
1629    info->regs.ngg.ge_ngg_subgrp_cntl =
1630       S_028B4C_PRIM_AMP_FACTOR(info->ngg_info.prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1631 
1632    info->regs.vgt_gs_instance_cnt =
1633       S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
1634       S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(info->ngg_info.max_vert_out_per_gs_instance);
1635 
1636    if (pdev->info.gfx_level >= GFX11) {
1637       /* This should be <= 252 for performance on Gfx11. 256 works too but is slower. */
1638       const uint32_t max_prim_grp_size = pdev->info.gfx_level >= GFX12 ? 256 : 252;
1639 
1640       info->regs.ngg.ge_cntl = S_03096C_PRIMS_PER_SUBGRP(info->ngg_info.max_gsprims) |
1641                                S_03096C_VERTS_PER_SUBGRP(info->ngg_info.hw_max_esverts) |
1642                                S_03096C_PRIM_GRP_SIZE_GFX11(max_prim_grp_size) |
1643                                S_03096C_DIS_PG_SIZE_ADJUST_FOR_STRIP(pdev->info.gfx_level >= GFX12);
1644    } else {
1645       info->regs.ngg.ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(info->ngg_info.max_gsprims) |
1646                                S_03096C_VERT_GRP_SIZE(info->ngg_info.hw_max_esverts);
1647 
1648       info->regs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(info->ngg_info.hw_max_esverts) |
1649                                       S_028A44_GS_PRIMS_PER_SUBGRP(info->ngg_info.max_gsprims) |
1650                                       S_028A44_GS_INST_PRIMS_IN_SUBGRP(info->ngg_info.max_gsprims * gs_num_invocations);
1651    }
1652 
1653 
1654    info->regs.vgt_gs_max_vert_out = info->gs.vertices_out;
1655 }
1656 
1657 static void
radv_precompute_registers_hw_ms(struct radv_device * device,struct radv_shader_binary * binary)1658 radv_precompute_registers_hw_ms(struct radv_device *device, struct radv_shader_binary *binary)
1659 {
1660    const struct radv_physical_device *pdev = radv_device_physical(device);
1661    struct radv_shader_info *info = &binary->info;
1662 
1663    radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1664 
1665    info->regs.vgt_gs_max_vert_out = pdev->mesh_fast_launch_2 ? info->ngg_info.max_out_verts : info->workgroup_size;
1666 
1667    info->regs.ms.spi_shader_gs_meshlet_dim = S_00B2B0_MESHLET_NUM_THREAD_X(info->cs.block_size[0] - 1) |
1668                                              S_00B2B0_MESHLET_NUM_THREAD_Y(info->cs.block_size[1] - 1) |
1669                                              S_00B2B0_MESHLET_NUM_THREAD_Z(info->cs.block_size[2] - 1) |
1670                                              S_00B2B0_MESHLET_THREADGROUP_SIZE(info->workgroup_size - 1);
1671 
1672    info->regs.ms.spi_shader_gs_meshlet_exp_alloc =
1673       S_00B2B4_MAX_EXP_VERTS(info->ngg_info.max_out_verts) | S_00B2B4_MAX_EXP_PRIMS(info->ngg_info.prim_amp_factor);
1674 }
1675 
1676 static void
radv_precompute_registers_hw_fs(struct radv_device * device,struct radv_shader_binary * binary)1677 radv_precompute_registers_hw_fs(struct radv_device *device, struct radv_shader_binary *binary)
1678 {
1679    const struct radv_physical_device *pdev = radv_device_physical(device);
1680    struct radv_shader_info *info = &binary->info;
1681 
1682    unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z;
1683    if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
1684       conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z;
1685    else if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
1686       conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z;
1687 
1688    const unsigned z_order =
1689       info->ps.early_fragment_test || !info->ps.writes_memory ? V_02880C_EARLY_Z_THEN_LATE_Z : V_02880C_LATE_Z;
1690 
1691    /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled, but this appears to break Project Cars
1692     * (DXVK). See https://bugs.freedesktop.org/show_bug.cgi?id=109401
1693     */
1694    const bool mask_export_enable = info->ps.writes_sample_mask;
1695    const bool disable_rbplus = pdev->info.has_rbplus && !pdev->info.rbplus_allowed;
1696 
1697    info->regs.ps.db_shader_control =
1698       S_02880C_Z_EXPORT_ENABLE(info->ps.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(info->ps.writes_stencil) |
1699       S_02880C_KILL_ENABLE(info->ps.can_discard) | S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
1700       S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) |
1701       S_02880C_DEPTH_BEFORE_SHADER(info->ps.early_fragment_test) |
1702       S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(info->ps.post_depth_coverage) |
1703       S_02880C_EXEC_ON_HIER_FAIL(info->ps.writes_memory) | S_02880C_EXEC_ON_NOOP(info->ps.writes_memory) |
1704       S_02880C_DUAL_QUAD_DISABLE(disable_rbplus) | S_02880C_PRIMITIVE_ORDERED_PIXEL_SHADER(info->ps.pops);
1705 
1706    if (pdev->info.gfx_level >= GFX12) {
1707       info->regs.ps.spi_ps_in_control = S_028640_PS_W32_EN(info->wave_size == 32);
1708       info->regs.ps.spi_gs_out_config_ps = S_00B0C4_NUM_INTERP(info->ps.num_interp);
1709 
1710       info->regs.ps.pa_sc_hisz_control = S_028BBC_ROUND(2); /* required minimum value */
1711       if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
1712          info->regs.ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_GREATER_THAN_Z);
1713       else if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
1714          info->regs.ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_LESS_THAN_Z);
1715    } else {
1716       /* GFX11 workaround when there are no PS inputs but LDS is used. */
1717       const bool param_gen = pdev->info.gfx_level == GFX11 && !info->ps.num_interp && binary->config.lds_size;
1718 
1719       info->regs.ps.spi_ps_in_control = S_0286D8_NUM_INTERP(info->ps.num_interp) |
1720                                         S_0286D8_NUM_PRIM_INTERP(info->ps.num_prim_interp) |
1721                                         S_0286D8_PS_W32_EN(info->wave_size == 32) | S_0286D8_PARAM_GEN(param_gen);
1722 
1723       if (pdev->info.gfx_level >= GFX9 && pdev->info.gfx_level < GFX11)
1724          info->regs.ps.pa_sc_shader_control = S_028C40_LOAD_COLLISION_WAVEID(info->ps.pops);
1725    }
1726 
1727    info->regs.ps.spi_shader_z_format = ac_get_spi_shader_z_format(
1728       info->ps.writes_z, info->ps.writes_stencil, info->ps.writes_sample_mask, info->ps.writes_mrt0_alpha);
1729 }
1730 
1731 static void
radv_precompute_registers_hw_cs(struct radv_device * device,struct radv_shader_binary * binary)1732 radv_precompute_registers_hw_cs(struct radv_device *device, struct radv_shader_binary *binary)
1733 {
1734    const struct radv_physical_device *pdev = radv_device_physical(device);
1735    struct radv_shader_info *info = &binary->info;
1736 
1737    info->regs.cs.compute_resource_limits = radv_get_compute_resource_limits(pdev, info);
1738    if (pdev->info.gfx_level >= GFX12) {
1739       info->regs.cs.compute_num_thread_x = S_00B81C_NUM_THREAD_FULL_GFX12(info->cs.block_size[0]);
1740       info->regs.cs.compute_num_thread_y = S_00B820_NUM_THREAD_FULL_GFX12(info->cs.block_size[1]);
1741    } else {
1742       info->regs.cs.compute_num_thread_x = S_00B81C_NUM_THREAD_FULL_GFX6(info->cs.block_size[0]);
1743       info->regs.cs.compute_num_thread_y = S_00B820_NUM_THREAD_FULL_GFX6(info->cs.block_size[1]);
1744    }
1745    info->regs.cs.compute_num_thread_z = S_00B824_NUM_THREAD_FULL(info->cs.block_size[2]);
1746 }
1747 
1748 static void
radv_precompute_registers_pgm(const struct radv_device * device,struct radv_shader_info * info)1749 radv_precompute_registers_pgm(const struct radv_device *device, struct radv_shader_info *info)
1750 {
1751    const struct radv_physical_device *pdev = radv_device_physical(device);
1752    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
1753    enum ac_hw_stage hw_stage = radv_select_hw_stage(info, gfx_level);
1754 
1755    /* Special case for merged shaders compiled separately with ESO on GFX9+. */
1756    if (info->merged_shader_compiled_separately) {
1757       if (info->stage == MESA_SHADER_VERTEX && info->next_stage == MESA_SHADER_TESS_CTRL) {
1758          hw_stage = AC_HW_HULL_SHADER;
1759       } else if ((info->stage == MESA_SHADER_VERTEX || info->stage == MESA_SHADER_TESS_EVAL) &&
1760                  info->next_stage == MESA_SHADER_GEOMETRY) {
1761          hw_stage = info->is_ngg ? AC_HW_NEXT_GEN_GEOMETRY_SHADER : AC_HW_LEGACY_GEOMETRY_SHADER;
1762       }
1763    }
1764 
1765    switch (hw_stage) {
1766    case AC_HW_NEXT_GEN_GEOMETRY_SHADER:
1767       assert(gfx_level >= GFX10);
1768       if (gfx_level >= GFX12) {
1769          info->regs.pgm_lo = R_00B224_SPI_SHADER_PGM_LO_ES;
1770       } else {
1771          info->regs.pgm_lo = R_00B320_SPI_SHADER_PGM_LO_ES;
1772       }
1773 
1774       info->regs.pgm_rsrc1 = R_00B228_SPI_SHADER_PGM_RSRC1_GS;
1775       info->regs.pgm_rsrc2 = R_00B22C_SPI_SHADER_PGM_RSRC2_GS;
1776       break;
1777    case AC_HW_LEGACY_GEOMETRY_SHADER:
1778       assert(gfx_level < GFX11);
1779       if (gfx_level >= GFX10) {
1780          info->regs.pgm_lo = R_00B320_SPI_SHADER_PGM_LO_ES;
1781       } else if (gfx_level >= GFX9) {
1782          info->regs.pgm_lo = R_00B210_SPI_SHADER_PGM_LO_ES;
1783       } else {
1784          info->regs.pgm_lo = R_00B220_SPI_SHADER_PGM_LO_GS;
1785       }
1786 
1787       info->regs.pgm_rsrc1 = R_00B228_SPI_SHADER_PGM_RSRC1_GS;
1788       info->regs.pgm_rsrc2 = R_00B22C_SPI_SHADER_PGM_RSRC2_GS;
1789       break;
1790    case AC_HW_EXPORT_SHADER:
1791       assert(gfx_level < GFX9);
1792       info->regs.pgm_lo = R_00B320_SPI_SHADER_PGM_LO_ES;
1793       info->regs.pgm_rsrc1 = R_00B328_SPI_SHADER_PGM_RSRC1_ES;
1794       info->regs.pgm_rsrc2 = R_00B32C_SPI_SHADER_PGM_RSRC2_ES;
1795       break;
1796    case AC_HW_LOCAL_SHADER:
1797       assert(gfx_level < GFX9);
1798       info->regs.pgm_lo = R_00B520_SPI_SHADER_PGM_LO_LS;
1799       info->regs.pgm_rsrc1 = R_00B528_SPI_SHADER_PGM_RSRC1_LS;
1800       info->regs.pgm_rsrc2 = R_00B52C_SPI_SHADER_PGM_RSRC2_LS;
1801       break;
1802    case AC_HW_HULL_SHADER:
1803       if (gfx_level >= GFX12) {
1804          info->regs.pgm_lo = R_00B424_SPI_SHADER_PGM_LO_LS;
1805       } else if (gfx_level >= GFX10) {
1806          info->regs.pgm_lo = R_00B520_SPI_SHADER_PGM_LO_LS;
1807       } else if (gfx_level >= GFX9) {
1808          info->regs.pgm_lo = R_00B410_SPI_SHADER_PGM_LO_LS;
1809       } else {
1810          info->regs.pgm_lo = R_00B420_SPI_SHADER_PGM_LO_HS;
1811       }
1812 
1813       info->regs.pgm_rsrc1 = R_00B428_SPI_SHADER_PGM_RSRC1_HS;
1814       info->regs.pgm_rsrc2 = R_00B42C_SPI_SHADER_PGM_RSRC2_HS;
1815       break;
1816    case AC_HW_VERTEX_SHADER:
1817       assert(gfx_level < GFX11);
1818       info->regs.pgm_lo = R_00B120_SPI_SHADER_PGM_LO_VS;
1819       info->regs.pgm_rsrc1 = R_00B128_SPI_SHADER_PGM_RSRC1_VS;
1820       info->regs.pgm_rsrc2 = R_00B12C_SPI_SHADER_PGM_RSRC2_VS;
1821       break;
1822    case AC_HW_PIXEL_SHADER:
1823       info->regs.pgm_lo = R_00B020_SPI_SHADER_PGM_LO_PS;
1824       info->regs.pgm_rsrc1 = R_00B028_SPI_SHADER_PGM_RSRC1_PS;
1825       info->regs.pgm_rsrc2 = R_00B02C_SPI_SHADER_PGM_RSRC2_PS;
1826       break;
1827    case AC_HW_COMPUTE_SHADER:
1828       info->regs.pgm_lo = R_00B830_COMPUTE_PGM_LO;
1829       info->regs.pgm_rsrc1 = R_00B848_COMPUTE_PGM_RSRC1;
1830       info->regs.pgm_rsrc2 = R_00B84C_COMPUTE_PGM_RSRC2;
1831       info->regs.pgm_rsrc3 = R_00B8A0_COMPUTE_PGM_RSRC3;
1832       break;
1833    default:
1834       unreachable("invalid hw stage");
1835       break;
1836    }
1837 }
1838 
1839 static void
radv_precompute_registers(struct radv_device * device,struct radv_shader_binary * binary)1840 radv_precompute_registers(struct radv_device *device, struct radv_shader_binary *binary)
1841 {
1842    struct radv_shader_info *info = &binary->info;
1843 
1844    radv_precompute_registers_pgm(device, info);
1845 
1846    switch (info->stage) {
1847    case MESA_SHADER_VERTEX:
1848       if (!info->vs.as_ls && !info->vs.as_es) {
1849          if (info->is_ngg) {
1850             radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1851          } else {
1852             radv_precompute_registers_hw_vs(device, binary);
1853          }
1854       }
1855       break;
1856    case MESA_SHADER_TESS_EVAL:
1857       if (!info->tes.as_es) {
1858          if (info->is_ngg) {
1859             radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1860          } else {
1861             radv_precompute_registers_hw_vs(device, binary);
1862          }
1863       }
1864       break;
1865    case MESA_SHADER_GEOMETRY:
1866       if (info->is_ngg) {
1867          radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1868       } else {
1869          radv_precompute_registers_hw_gs(device, binary);
1870       }
1871       break;
1872    case MESA_SHADER_MESH:
1873       radv_precompute_registers_hw_ms(device, binary);
1874       break;
1875    case MESA_SHADER_FRAGMENT:
1876       radv_precompute_registers_hw_fs(device, binary);
1877       break;
1878    case MESA_SHADER_COMPUTE:
1879    case MESA_SHADER_TASK:
1880       radv_precompute_registers_hw_cs(device, binary);
1881       break;
1882    default:
1883       break;
1884    }
1885 }
1886 
1887 static bool
radv_mem_ordered(const struct radv_physical_device * pdev)1888 radv_mem_ordered(const struct radv_physical_device *pdev)
1889 {
1890    return pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12;
1891 }
1892 
1893 static bool
radv_postprocess_binary_config(struct radv_device * device,struct radv_shader_binary * binary,const struct radv_shader_args * args)1894 radv_postprocess_binary_config(struct radv_device *device, struct radv_shader_binary *binary,
1895                                const struct radv_shader_args *args)
1896 {
1897    const struct radv_physical_device *pdev = radv_device_physical(device);
1898    struct ac_shader_config *config = &binary->config;
1899 
1900    if (binary->type == RADV_BINARY_TYPE_RTLD) {
1901 #if !defined(USE_LIBELF)
1902       return false;
1903 #else
1904       struct ac_rtld_binary rtld_binary = {0};
1905 
1906       if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
1907          return false;
1908       }
1909 
1910       if (!ac_rtld_read_config(&pdev->info, &rtld_binary, config)) {
1911          ac_rtld_close(&rtld_binary);
1912          return false;
1913       }
1914 
1915       if (rtld_binary.lds_size > 0) {
1916          unsigned encode_granularity = pdev->info.lds_encode_granularity;
1917          config->lds_size = DIV_ROUND_UP(rtld_binary.lds_size, encode_granularity);
1918       }
1919       if (!config->lds_size && binary->info.stage == MESA_SHADER_TESS_CTRL) {
1920          /* This is used for reporting LDS statistics */
1921          config->lds_size = binary->info.tcs.num_lds_blocks;
1922       }
1923 
1924       assert(!binary->info.has_ngg_culling || config->lds_size);
1925       ac_rtld_close(&rtld_binary);
1926 #endif
1927    }
1928 
1929    const struct radv_shader_info *info = &binary->info;
1930    gl_shader_stage stage = binary->info.stage;
1931    bool scratch_enabled = config->scratch_bytes_per_wave > 0;
1932    bool trap_enabled = !!device->trap_handler_shader;
1933    unsigned vgpr_comp_cnt = 0;
1934    unsigned num_input_vgprs = args->ac.num_vgprs_used;
1935 
1936    if (stage == MESA_SHADER_FRAGMENT) {
1937       num_input_vgprs = ac_get_fs_input_vgpr_cnt(config, NULL);
1938    }
1939 
1940    unsigned num_vgprs = MAX2(config->num_vgprs, num_input_vgprs);
1941    /* +2 for the ring offsets, +3 for scratch wave offset and VCC */
1942    unsigned num_sgprs = MAX2(config->num_sgprs, args->ac.num_sgprs_used + 2 + 3);
1943    unsigned num_shared_vgprs = config->num_shared_vgprs;
1944    /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
1945    assert((pdev->info.gfx_level >= GFX10 && num_shared_vgprs % 8 == 0) ||
1946           (pdev->info.gfx_level < GFX10 && num_shared_vgprs == 0));
1947    unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;
1948    unsigned excp_en = 0;
1949 
1950    config->num_vgprs = num_vgprs;
1951    config->num_sgprs = num_sgprs;
1952    config->num_shared_vgprs = num_shared_vgprs;
1953 
1954    config->rsrc2 = S_00B12C_USER_SGPR(args->num_user_sgprs) | S_00B12C_SCRATCH_EN(scratch_enabled) |
1955                    S_00B12C_TRAP_PRESENT(trap_enabled);
1956 
1957    if (trap_enabled) {
1958       /* Configure the shader exceptions like memory violation, etc.
1959        * TODO: Enable (and validate) more exceptions.
1960        */
1961       excp_en = 1 << 8; /* mem_viol */
1962    }
1963 
1964    if (!pdev->use_ngg_streamout) {
1965       config->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
1966                        S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
1967                        S_00B12C_SO_EN(!!info->so.num_outputs);
1968    }
1969 
1970    config->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) |
1971                    S_00B848_DX10_CLAMP(pdev->info.gfx_level < GFX12) | S_00B848_FLOAT_MODE(config->float_mode);
1972 
1973    if (pdev->info.gfx_level >= GFX10) {
1974       config->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(args->num_user_sgprs >> 5);
1975    } else {
1976       config->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
1977       config->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(args->num_user_sgprs >> 5);
1978    }
1979 
1980    gl_shader_stage es_stage = MESA_SHADER_NONE;
1981    if (pdev->info.gfx_level >= GFX9) {
1982       es_stage = stage == MESA_SHADER_GEOMETRY ? info->gs.es_type : stage;
1983    }
1984 
1985    if (info->merged_shader_compiled_separately) {
1986       /* Update the stage for merged shaders compiled separately with ESO on GFX9+. */
1987       if (stage == MESA_SHADER_VERTEX && info->vs.as_ls) {
1988          stage = MESA_SHADER_TESS_CTRL;
1989       } else if (stage == MESA_SHADER_VERTEX && info->vs.as_es) {
1990          es_stage = MESA_SHADER_VERTEX;
1991          stage = MESA_SHADER_GEOMETRY;
1992       } else if (stage == MESA_SHADER_TESS_EVAL && info->tes.as_es) {
1993          es_stage = MESA_SHADER_TESS_EVAL;
1994          stage = MESA_SHADER_GEOMETRY;
1995       }
1996    }
1997 
1998    bool wgp_mode = radv_should_use_wgp_mode(device, stage, info);
1999 
2000    switch (stage) {
2001    case MESA_SHADER_TESS_EVAL:
2002       if (info->is_ngg) {
2003          config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2004          config->rsrc2 |= S_00B22C_OC_LDS_EN(1) | S_00B22C_EXCP_EN(excp_en);
2005       } else if (info->tes.as_es) {
2006          assert(pdev->info.gfx_level <= GFX8);
2007          vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
2008 
2009          config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
2010       } else {
2011          bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id;
2012          vgpr_comp_cnt = enable_prim_id ? 3 : 2;
2013 
2014          config->rsrc1 |= S_00B128_MEM_ORDERED(radv_mem_ordered(pdev));
2015          config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
2016       }
2017       config->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
2018       break;
2019    case MESA_SHADER_TESS_CTRL:
2020       if (pdev->info.gfx_level >= GFX9) {
2021          /* We need at least 2 components for LS.
2022           * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
2023           * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
2024           */
2025          if (pdev->info.gfx_level >= GFX10) {
2026             if (info->vs.needs_instance_id) {
2027                vgpr_comp_cnt = pdev->info.gfx_level >= GFX12 ? 1 : 3;
2028             } else if (pdev->info.gfx_level <= GFX10_3) {
2029                vgpr_comp_cnt = 1;
2030             }
2031             config->rsrc2 |= S_00B42C_EXCP_EN_GFX6(excp_en);
2032          } else {
2033             vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
2034             config->rsrc2 |= S_00B42C_EXCP_EN_GFX9(excp_en);
2035          }
2036       } else {
2037          config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
2038       }
2039       config->rsrc1 |= S_00B428_MEM_ORDERED(radv_mem_ordered(pdev)) | S_00B428_WGP_MODE(wgp_mode);
2040       config->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
2041       break;
2042    case MESA_SHADER_VERTEX:
2043       if (info->is_ngg) {
2044          config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2045       } else if (info->vs.as_ls) {
2046          assert(pdev->info.gfx_level <= GFX8);
2047          /* We need at least 2 components for LS.
2048           * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
2049           * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
2050           *
2051           * On GFX12, InstanceID is in VGPR1.
2052           */
2053          vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
2054       } else if (info->vs.as_es) {
2055          assert(pdev->info.gfx_level <= GFX8);
2056          /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
2057          vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
2058       } else {
2059          /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
2060           * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
2061           * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
2062           */
2063          if (info->vs.needs_instance_id && pdev->info.gfx_level >= GFX10) {
2064             vgpr_comp_cnt = 3;
2065          } else if (info->outinfo.export_prim_id) {
2066             vgpr_comp_cnt = 2;
2067          } else if (info->vs.needs_instance_id) {
2068             vgpr_comp_cnt = 1;
2069          } else {
2070             vgpr_comp_cnt = 0;
2071          }
2072 
2073          config->rsrc1 |= S_00B128_MEM_ORDERED(radv_mem_ordered(pdev));
2074       }
2075       config->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
2076       break;
2077    case MESA_SHADER_MESH:
2078       config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2079       config->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
2080       break;
2081    case MESA_SHADER_FRAGMENT:
2082       config->rsrc1 |=
2083          S_00B028_MEM_ORDERED(radv_mem_ordered(pdev)) | S_00B028_LOAD_PROVOKING_VTX(info->ps.load_provoking_vtx);
2084       config->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B02C_EXCP_EN(excp_en) |
2085                        S_00B02C_LOAD_COLLISION_WAVEID(info->ps.pops && pdev->info.gfx_level < GFX11);
2086       break;
2087    case MESA_SHADER_GEOMETRY:
2088       config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2089       config->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B22C_EXCP_EN(excp_en);
2090       break;
2091    case MESA_SHADER_RAYGEN:
2092    case MESA_SHADER_CLOSEST_HIT:
2093    case MESA_SHADER_MISS:
2094    case MESA_SHADER_CALLABLE:
2095    case MESA_SHADER_INTERSECTION:
2096    case MESA_SHADER_ANY_HIT:
2097    case MESA_SHADER_COMPUTE:
2098    case MESA_SHADER_TASK:
2099       config->rsrc1 |= S_00B848_MEM_ORDERED(radv_mem_ordered(pdev)) | S_00B848_WGP_MODE(wgp_mode);
2100       config->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
2101                        S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
2102                        S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2]   ? 2
2103                                                : info->cs.uses_thread_id[1] ? 1
2104                                                                             : 0) |
2105                        S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | S_00B84C_LDS_SIZE(config->lds_size) |
2106                        S_00B84C_EXCP_EN(excp_en);
2107       config->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
2108 
2109       break;
2110    default:
2111       unreachable("unsupported shader type");
2112       break;
2113    }
2114 
2115    if (pdev->info.gfx_level >= GFX10 && info->is_ngg &&
2116        (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY ||
2117         stage == MESA_SHADER_MESH)) {
2118       unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
2119 
2120       /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID)
2121        *
2122        * On GFX12, InstanceID is in VGPR1.
2123        */
2124       if (es_stage == MESA_SHADER_VERTEX) {
2125          if (info->vs.needs_instance_id) {
2126             es_vgpr_comp_cnt = pdev->info.gfx_level >= GFX12 ? 1 : 3;
2127          } else {
2128             es_vgpr_comp_cnt = 0;
2129          }
2130       } else if (es_stage == MESA_SHADER_TESS_EVAL) {
2131          bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id;
2132          es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
2133       } else if (es_stage == MESA_SHADER_MESH) {
2134          es_vgpr_comp_cnt = 0;
2135       } else {
2136          unreachable("Unexpected ES shader stage");
2137       }
2138 
2139       if (pdev->info.gfx_level >= GFX12) {
2140          if (info->gs.vertices_in >= 4) {
2141             gs_vgpr_comp_cnt = 2; /* VGPR2 contains offsets 3-5 */
2142          } else if (info->uses_prim_id || (es_stage == MESA_SHADER_VERTEX && info->outinfo.export_prim_id)) {
2143             gs_vgpr_comp_cnt = 1; /* VGPR1 contains PrimitiveID. */
2144          } else {
2145             gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0-2, GS invocation ID. */
2146          }
2147       } else {
2148          /* GS vertex offsets in NGG:
2149           * - in passthrough mode, they are all packed into VGPR0
2150           * - in the default mode: VGPR0: offsets 0, 1; VGPR1: offsets 2, 3
2151           *
2152           * The vertex offset 2 is always needed when NGG isn't in passthrough mode
2153           * and uses triangle input primitives, including with NGG culling.
2154           */
2155          bool need_gs_vtx_offset2 = !info->is_ngg_passthrough || info->gs.vertices_in >= 3;
2156 
2157          /* TES only needs vertex offset 2 for triangles or quads. */
2158          if (stage == MESA_SHADER_TESS_EVAL)
2159             need_gs_vtx_offset2 &= info->tes._primitive_mode == TESS_PRIMITIVE_TRIANGLES ||
2160                                    info->tes._primitive_mode == TESS_PRIMITIVE_QUADS;
2161 
2162          if (info->uses_invocation_id) {
2163             gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
2164          } else if (info->uses_prim_id || (es_stage == MESA_SHADER_VERTEX && info->outinfo.export_prim_id)) {
2165             gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
2166          } else if (need_gs_vtx_offset2) {
2167             gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
2168          } else {
2169             gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 (or passthrough prim) */
2170          }
2171       }
2172 
2173       /* Disable the WGP mode on gfx10.3 because it can hang. (it
2174        * happened on VanGogh) Let's disable it on all chips that
2175        * disable exactly 1 CU per SA for GS.
2176        */
2177       config->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
2178       config->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_LDS_SIZE(config->lds_size) |
2179                        S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
2180    } else if (pdev->info.gfx_level >= GFX9 && stage == MESA_SHADER_GEOMETRY) {
2181       unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
2182 
2183       if (es_stage == MESA_SHADER_VERTEX) {
2184          /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
2185          if (info->vs.needs_instance_id) {
2186             es_vgpr_comp_cnt = pdev->info.gfx_level >= GFX10 ? 3 : 1;
2187          } else {
2188             es_vgpr_comp_cnt = 0;
2189          }
2190       } else if (es_stage == MESA_SHADER_TESS_EVAL) {
2191          es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
2192       } else {
2193          unreachable("invalid shader ES type");
2194       }
2195 
2196       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
2197        * VGPR[0:4] are always loaded.
2198        */
2199       if (info->uses_invocation_id) {
2200          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
2201       } else if (info->uses_prim_id) {
2202          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
2203       } else if (info->gs.vertices_in >= 3) {
2204          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
2205       } else {
2206          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
2207       }
2208 
2209       config->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
2210       config->rsrc2 |=
2211          S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
2212    } else if (pdev->info.gfx_level >= GFX9 && stage == MESA_SHADER_TESS_CTRL) {
2213       config->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
2214    } else {
2215       config->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
2216    }
2217 
2218    /* Precompute register values for faster emission. */
2219    radv_precompute_registers(device, binary);
2220 
2221    return true;
2222 }
2223 
2224 void
radv_shader_combine_cfg_vs_tcs(const struct radv_shader * vs,const struct radv_shader * tcs,uint32_t * rsrc1_out,uint32_t * rsrc2_out)2225 radv_shader_combine_cfg_vs_tcs(const struct radv_shader *vs, const struct radv_shader *tcs, uint32_t *rsrc1_out,
2226                                uint32_t *rsrc2_out)
2227 {
2228    if (rsrc1_out) {
2229       uint32_t rsrc1 = vs->config.rsrc1;
2230 
2231       if (G_00B848_VGPRS(tcs->config.rsrc1) > G_00B848_VGPRS(rsrc1))
2232          rsrc1 = (rsrc1 & C_00B848_VGPRS) | (tcs->config.rsrc1 & ~C_00B848_VGPRS);
2233       if (G_00B228_SGPRS(tcs->config.rsrc1) > G_00B228_SGPRS(rsrc1))
2234          rsrc1 = (rsrc1 & C_00B228_SGPRS) | (tcs->config.rsrc1 & ~C_00B228_SGPRS);
2235       if (G_00B428_LS_VGPR_COMP_CNT(tcs->config.rsrc1) > G_00B428_LS_VGPR_COMP_CNT(rsrc1))
2236          rsrc1 = (rsrc1 & C_00B428_LS_VGPR_COMP_CNT) | (tcs->config.rsrc1 & ~C_00B428_LS_VGPR_COMP_CNT);
2237 
2238       *rsrc1_out = rsrc1;
2239    }
2240 
2241    if (rsrc2_out) {
2242       uint32_t rsrc2 = vs->config.rsrc2;
2243 
2244       rsrc2 |= tcs->config.rsrc2 & ~C_00B12C_SCRATCH_EN;
2245 
2246       *rsrc2_out = rsrc2;
2247    }
2248 }
2249 
2250 void
radv_shader_combine_cfg_vs_gs(const struct radv_shader * vs,const struct radv_shader * gs,uint32_t * rsrc1_out,uint32_t * rsrc2_out)2251 radv_shader_combine_cfg_vs_gs(const struct radv_shader *vs, const struct radv_shader *gs, uint32_t *rsrc1_out,
2252                               uint32_t *rsrc2_out)
2253 {
2254    assert(G_00B12C_USER_SGPR(vs->config.rsrc2) == G_00B12C_USER_SGPR(gs->config.rsrc2));
2255 
2256    if (rsrc1_out) {
2257       uint32_t rsrc1 = vs->config.rsrc1;
2258 
2259       if (G_00B848_VGPRS(gs->config.rsrc1) > G_00B848_VGPRS(rsrc1))
2260          rsrc1 = (rsrc1 & C_00B848_VGPRS) | (gs->config.rsrc1 & ~C_00B848_VGPRS);
2261       if (G_00B228_SGPRS(gs->config.rsrc1) > G_00B228_SGPRS(rsrc1))
2262          rsrc1 = (rsrc1 & C_00B228_SGPRS) | (gs->config.rsrc1 & ~C_00B228_SGPRS);
2263       if (G_00B228_GS_VGPR_COMP_CNT(gs->config.rsrc1) > G_00B228_GS_VGPR_COMP_CNT(rsrc1))
2264          rsrc1 = (rsrc1 & C_00B228_GS_VGPR_COMP_CNT) | (gs->config.rsrc1 & ~C_00B228_GS_VGPR_COMP_CNT);
2265 
2266       *rsrc1_out = rsrc1;
2267    }
2268 
2269    if (rsrc2_out) {
2270       uint32_t rsrc2 = vs->config.rsrc2;
2271 
2272       if (G_00B22C_ES_VGPR_COMP_CNT(gs->config.rsrc2) > G_00B22C_ES_VGPR_COMP_CNT(rsrc2))
2273          rsrc2 = (rsrc2 & C_00B22C_ES_VGPR_COMP_CNT) | (gs->config.rsrc2 & ~C_00B22C_ES_VGPR_COMP_CNT);
2274 
2275       rsrc2 |= gs->config.rsrc2 & ~(C_00B12C_SCRATCH_EN & C_00B12C_SO_EN & C_00B12C_SO_BASE0_EN & C_00B12C_SO_BASE1_EN &
2276                                     C_00B12C_SO_BASE2_EN & C_00B12C_SO_BASE3_EN);
2277 
2278       *rsrc2_out = rsrc2;
2279    }
2280 }
2281 
2282 void
radv_shader_combine_cfg_tes_gs(const struct radv_shader * tes,const struct radv_shader * gs,uint32_t * rsrc1_out,uint32_t * rsrc2_out)2283 radv_shader_combine_cfg_tes_gs(const struct radv_shader *tes, const struct radv_shader *gs, uint32_t *rsrc1_out,
2284                                uint32_t *rsrc2_out)
2285 {
2286    radv_shader_combine_cfg_vs_gs(tes, gs, rsrc1_out, rsrc2_out);
2287 
2288    if (rsrc2_out) {
2289       *rsrc2_out |= S_00B22C_OC_LDS_EN(1);
2290    }
2291 }
2292 
2293 static bool
radv_shader_binary_upload(struct radv_device * device,const struct radv_shader_binary * binary,struct radv_shader * shader,void * dest_ptr)2294 radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary,
2295                           struct radv_shader *shader, void *dest_ptr)
2296 {
2297    shader->code = calloc(shader->code_size, 1);
2298    if (!shader->code) {
2299       radv_shader_unref(device, shader);
2300       return false;
2301    }
2302 
2303    if (binary->type == RADV_BINARY_TYPE_RTLD) {
2304 #if !defined(USE_LIBELF)
2305       return false;
2306 #else
2307       struct ac_rtld_binary rtld_binary = {0};
2308 
2309       if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
2310          free(shader);
2311          return false;
2312       }
2313 
2314       struct ac_rtld_upload_info info = {
2315          .binary = &rtld_binary,
2316          .rx_va = radv_shader_get_va(shader),
2317          .rx_ptr = dest_ptr,
2318       };
2319 
2320       if (!ac_rtld_upload(&info)) {
2321          radv_shader_unref(device, shader);
2322          ac_rtld_close(&rtld_binary);
2323          return false;
2324       }
2325 
2326       ac_rtld_close(&rtld_binary);
2327 
2328       if (shader->code) {
2329          /* Instead of running RTLD twice, just copy the relocated binary back from VRAM.
2330           * Use streaming memcpy to reduce penalty of copying from uncachable memory.
2331           */
2332          util_streaming_load_memcpy(shader->code, dest_ptr, shader->code_size);
2333       }
2334 #endif
2335    } else {
2336       struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2337       memcpy(dest_ptr, bin->data + bin->stats_size, bin->code_size);
2338 
2339       if (shader->code) {
2340          memcpy(shader->code, bin->data + bin->stats_size, bin->code_size);
2341       }
2342    }
2343 
2344    return true;
2345 }
2346 
2347 static VkResult
radv_shader_dma_resize_upload_buf(struct radv_device * device,struct radv_shader_dma_submission * submission,uint64_t size)2348 radv_shader_dma_resize_upload_buf(struct radv_device *device, struct radv_shader_dma_submission *submission,
2349                                   uint64_t size)
2350 {
2351    if (submission->bo)
2352       radv_bo_destroy(device, NULL, submission->bo);
2353 
2354    VkResult result = radv_bo_create(
2355       device, NULL, size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_GTT,
2356       RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
2357       RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &submission->bo);
2358    if (result != VK_SUCCESS)
2359       return result;
2360 
2361    submission->ptr = radv_buffer_map(device->ws, submission->bo);
2362    submission->bo_size = size;
2363 
2364    return VK_SUCCESS;
2365 }
2366 
2367 struct radv_shader_dma_submission *
radv_shader_dma_pop_submission(struct radv_device * device)2368 radv_shader_dma_pop_submission(struct radv_device *device)
2369 {
2370    struct radv_shader_dma_submission *submission;
2371 
2372    mtx_lock(&device->shader_dma_submission_list_mutex);
2373 
2374    while (list_is_empty(&device->shader_dma_submissions))
2375       cnd_wait(&device->shader_dma_submission_list_cond, &device->shader_dma_submission_list_mutex);
2376 
2377    submission = list_first_entry(&device->shader_dma_submissions, struct radv_shader_dma_submission, list);
2378    list_del(&submission->list);
2379 
2380    mtx_unlock(&device->shader_dma_submission_list_mutex);
2381 
2382    return submission;
2383 }
2384 
2385 void
radv_shader_dma_push_submission(struct radv_device * device,struct radv_shader_dma_submission * submission,uint64_t seq)2386 radv_shader_dma_push_submission(struct radv_device *device, struct radv_shader_dma_submission *submission, uint64_t seq)
2387 {
2388    submission->seq = seq;
2389 
2390    mtx_lock(&device->shader_dma_submission_list_mutex);
2391 
2392    list_addtail(&submission->list, &device->shader_dma_submissions);
2393    cnd_signal(&device->shader_dma_submission_list_cond);
2394 
2395    mtx_unlock(&device->shader_dma_submission_list_mutex);
2396 }
2397 
2398 struct radv_shader_dma_submission *
radv_shader_dma_get_submission(struct radv_device * device,struct radeon_winsys_bo * bo,uint64_t va,uint64_t size)2399 radv_shader_dma_get_submission(struct radv_device *device, struct radeon_winsys_bo *bo, uint64_t va, uint64_t size)
2400 {
2401    struct radv_shader_dma_submission *submission = radv_shader_dma_pop_submission(device);
2402    struct radeon_cmdbuf *cs = submission->cs;
2403    struct radeon_winsys *ws = device->ws;
2404    VkResult result;
2405 
2406    /* Wait for potentially in-flight submission to settle */
2407    result = radv_shader_wait_for_upload(device, submission->seq);
2408    if (result != VK_SUCCESS)
2409       goto fail;
2410 
2411    ws->cs_reset(cs);
2412 
2413    if (submission->bo_size < size) {
2414       result = radv_shader_dma_resize_upload_buf(device, submission, size);
2415       if (result != VK_SUCCESS)
2416          goto fail;
2417    }
2418 
2419    radv_sdma_copy_buffer(device, cs, radv_buffer_get_va(submission->bo), va, size);
2420    radv_cs_add_buffer(ws, cs, submission->bo);
2421    radv_cs_add_buffer(ws, cs, bo);
2422 
2423    result = ws->cs_finalize(cs);
2424    if (result != VK_SUCCESS)
2425       goto fail;
2426 
2427    return submission;
2428 
2429 fail:
2430    radv_shader_dma_push_submission(device, submission, 0);
2431 
2432    return NULL;
2433 }
2434 
2435 /*
2436  * If upload_seq_out is NULL, this function blocks until the DMA is complete. Otherwise, the
2437  * semaphore value to wait on device->shader_upload_sem is stored in *upload_seq_out.
2438  */
2439 bool
radv_shader_dma_submit(struct radv_device * device,struct radv_shader_dma_submission * submission,uint64_t * upload_seq_out)2440 radv_shader_dma_submit(struct radv_device *device, struct radv_shader_dma_submission *submission,
2441                        uint64_t *upload_seq_out)
2442 {
2443    struct radeon_cmdbuf *cs = submission->cs;
2444    struct radeon_winsys *ws = device->ws;
2445    VkResult result;
2446 
2447    mtx_lock(&device->shader_upload_hw_ctx_mutex);
2448 
2449    uint64_t upload_seq = device->shader_upload_seq + 1;
2450 
2451    struct vk_semaphore *semaphore = vk_semaphore_from_handle(device->shader_upload_sem);
2452    struct vk_sync *sync = vk_semaphore_get_active_sync(semaphore);
2453    const struct vk_sync_signal signal_info = {
2454       .sync = sync,
2455       .signal_value = upload_seq,
2456       .stage_mask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
2457    };
2458 
2459    struct radv_winsys_submit_info submit = {
2460       .ip_type = AMD_IP_SDMA,
2461       .queue_index = 0,
2462       .cs_array = &cs,
2463       .cs_count = 1,
2464    };
2465 
2466    result = ws->cs_submit(device->shader_upload_hw_ctx, &submit, 0, NULL, 1, &signal_info);
2467    if (result != VK_SUCCESS) {
2468       mtx_unlock(&device->shader_upload_hw_ctx_mutex);
2469       radv_shader_dma_push_submission(device, submission, 0);
2470       return false;
2471    }
2472    device->shader_upload_seq = upload_seq;
2473    mtx_unlock(&device->shader_upload_hw_ctx_mutex);
2474 
2475    radv_shader_dma_push_submission(device, submission, upload_seq);
2476 
2477    if (upload_seq_out) {
2478       *upload_seq_out = upload_seq;
2479    } else {
2480       result = radv_shader_wait_for_upload(device, upload_seq);
2481       if (result != VK_SUCCESS)
2482          return false;
2483    }
2484 
2485    return true;
2486 }
2487 
2488 static bool
radv_shader_upload(struct radv_device * device,struct radv_shader * shader,const struct radv_shader_binary * binary)2489 radv_shader_upload(struct radv_device *device, struct radv_shader *shader, const struct radv_shader_binary *binary)
2490 {
2491    if (device->shader_use_invisible_vram) {
2492       struct radv_shader_dma_submission *submission =
2493          radv_shader_dma_get_submission(device, shader->bo, shader->va, shader->code_size);
2494       if (!submission)
2495          return false;
2496 
2497       if (!radv_shader_binary_upload(device, binary, shader, submission->ptr)) {
2498          radv_shader_dma_push_submission(device, submission, 0);
2499          return false;
2500       }
2501 
2502       if (!radv_shader_dma_submit(device, submission, &shader->upload_seq))
2503          return false;
2504    } else {
2505       void *dest_ptr = shader->alloc->arena->ptr + shader->alloc->offset;
2506 
2507       if (!radv_shader_binary_upload(device, binary, shader, dest_ptr))
2508          return false;
2509    }
2510    return true;
2511 }
2512 
2513 unsigned
radv_get_max_waves(const struct radv_device * device,const struct ac_shader_config * conf,const struct radv_shader_info * info)2514 radv_get_max_waves(const struct radv_device *device, const struct ac_shader_config *conf,
2515                    const struct radv_shader_info *info)
2516 {
2517    const struct radv_physical_device *pdev = radv_device_physical(device);
2518    const struct radeon_info *gpu_info = &pdev->info;
2519    const enum amd_gfx_level gfx_level = gpu_info->gfx_level;
2520    const uint8_t wave_size = info->wave_size;
2521    gl_shader_stage stage = info->stage;
2522    unsigned max_simd_waves = gpu_info->max_waves_per_simd;
2523    unsigned lds_per_wave = 0;
2524 
2525    if (stage == MESA_SHADER_FRAGMENT) {
2526       lds_per_wave = conf->lds_size * gpu_info->lds_encode_granularity + info->ps.num_interp * 48;
2527       lds_per_wave = align(lds_per_wave, gpu_info->lds_alloc_granularity);
2528    } else if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_TASK) {
2529       unsigned max_workgroup_size = info->workgroup_size;
2530       lds_per_wave = align(conf->lds_size * gpu_info->lds_encode_granularity, gpu_info->lds_alloc_granularity);
2531       lds_per_wave /= DIV_ROUND_UP(max_workgroup_size, wave_size);
2532    }
2533 
2534    if (conf->num_sgprs && gfx_level < GFX10) {
2535       unsigned sgprs = align(conf->num_sgprs, gfx_level >= GFX8 ? 16 : 8);
2536       max_simd_waves = MIN2(max_simd_waves, gpu_info->num_physical_sgprs_per_simd / sgprs);
2537    }
2538 
2539    if (conf->num_vgprs) {
2540       unsigned physical_vgprs = gpu_info->num_physical_wave64_vgprs_per_simd * (64 / wave_size);
2541       unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
2542       if (gfx_level >= GFX10_3) {
2543          unsigned real_vgpr_gran = gpu_info->num_physical_wave64_vgprs_per_simd / 64;
2544          vgprs = util_align_npot(vgprs, real_vgpr_gran * (wave_size == 32 ? 2 : 1));
2545       }
2546       max_simd_waves = MIN2(max_simd_waves, physical_vgprs / vgprs);
2547    }
2548 
2549    unsigned simd_per_workgroup = gpu_info->num_simd_per_compute_unit;
2550    if (gfx_level >= GFX10)
2551       simd_per_workgroup *= 2; /* like lds_size_per_workgroup, assume WGP on GFX10+ */
2552 
2553    unsigned max_lds_per_simd = gpu_info->lds_size_per_workgroup / simd_per_workgroup;
2554    if (lds_per_wave)
2555       max_simd_waves = MIN2(max_simd_waves, DIV_ROUND_UP(max_lds_per_simd, lds_per_wave));
2556 
2557    return gfx_level >= GFX10 ? max_simd_waves * (wave_size / 32) : max_simd_waves;
2558 }
2559 
2560 unsigned
radv_get_max_scratch_waves(const struct radv_device * device,struct radv_shader * shader)2561 radv_get_max_scratch_waves(const struct radv_device *device, struct radv_shader *shader)
2562 {
2563    const struct radv_physical_device *pdev = radv_device_physical(device);
2564    const unsigned num_cu = pdev->info.num_cu;
2565 
2566    return MIN2(device->scratch_waves, 4 * num_cu * shader->max_waves);
2567 }
2568 
2569 VkResult
radv_shader_create_uncached(struct radv_device * device,const struct radv_shader_binary * binary,bool replayable,struct radv_serialized_shader_arena_block * replay_block,struct radv_shader ** out_shader)2570 radv_shader_create_uncached(struct radv_device *device, const struct radv_shader_binary *binary, bool replayable,
2571                             struct radv_serialized_shader_arena_block *replay_block, struct radv_shader **out_shader)
2572 {
2573    VkResult result = VK_SUCCESS;
2574    struct radv_shader *shader = calloc(1, sizeof(struct radv_shader));
2575    if (!shader) {
2576       result = VK_ERROR_OUT_OF_HOST_MEMORY;
2577       goto out;
2578    }
2579    simple_mtx_init(&shader->replay_mtx, mtx_plain);
2580 
2581    _mesa_blake3_compute(binary, binary->total_size, shader->hash);
2582 
2583    vk_pipeline_cache_object_init(&device->vk, &shader->base, &radv_shader_ops, shader->hash, sizeof(shader->hash));
2584 
2585    shader->info = binary->info;
2586    shader->config = binary->config;
2587    shader->max_waves = radv_get_max_waves(device, &shader->config, &shader->info);
2588 
2589    if (binary->type == RADV_BINARY_TYPE_RTLD) {
2590 #if !defined(USE_LIBELF)
2591       goto out;
2592 #else
2593       struct ac_rtld_binary rtld_binary = {0};
2594 
2595       if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
2596          result = VK_ERROR_OUT_OF_HOST_MEMORY;
2597          goto out;
2598       }
2599 
2600       shader->code_size = rtld_binary.rx_size;
2601       shader->exec_size = rtld_binary.exec_size;
2602       ac_rtld_close(&rtld_binary);
2603 #endif
2604    } else {
2605       struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2606 
2607       shader->code_size = bin->code_size;
2608       shader->exec_size = bin->exec_size;
2609 
2610       if (bin->stats_size) {
2611          shader->statistics = calloc(bin->stats_size, 1);
2612          memcpy(shader->statistics, bin->data, bin->stats_size);
2613       }
2614    }
2615 
2616    if (replay_block) {
2617       shader->alloc = radv_replay_shader_arena_block(device, replay_block, shader);
2618       if (!shader->alloc) {
2619          result = VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS;
2620          goto out;
2621       }
2622 
2623       shader->has_replay_alloc = true;
2624    } else {
2625       shader->alloc = radv_alloc_shader_memory(device, shader->code_size, replayable, shader);
2626       if (!shader->alloc) {
2627          result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
2628          goto out;
2629       }
2630    }
2631 
2632    shader->bo = shader->alloc->arena->bo;
2633    shader->va = radv_buffer_get_va(shader->bo) + shader->alloc->offset;
2634 
2635    if (!radv_shader_upload(device, shader, binary)) {
2636       result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
2637       goto out;
2638    }
2639 
2640    *out_shader = shader;
2641 
2642 out:
2643    if (result != VK_SUCCESS) {
2644       free(shader);
2645       *out_shader = NULL;
2646    }
2647 
2648    return result;
2649 }
2650 
2651 bool
radv_shader_reupload(struct radv_device * device,struct radv_shader * shader)2652 radv_shader_reupload(struct radv_device *device, struct radv_shader *shader)
2653 {
2654    if (device->shader_use_invisible_vram) {
2655       struct radv_shader_dma_submission *submission =
2656          radv_shader_dma_get_submission(device, shader->bo, shader->va, shader->code_size);
2657       if (!submission)
2658          return false;
2659 
2660       memcpy(submission->ptr, shader->code, shader->code_size);
2661 
2662       if (!radv_shader_dma_submit(device, submission, &shader->upload_seq))
2663          return false;
2664    } else {
2665       void *dest_ptr = shader->alloc->arena->ptr + shader->alloc->offset;
2666       memcpy(dest_ptr, shader->code, shader->code_size);
2667    }
2668    return true;
2669 }
2670 
2671 static bool
radv_shader_part_binary_upload(struct radv_device * device,const struct radv_shader_part_binary * bin,struct radv_shader_part * shader_part)2672 radv_shader_part_binary_upload(struct radv_device *device, const struct radv_shader_part_binary *bin,
2673                                struct radv_shader_part *shader_part)
2674 {
2675    struct radv_shader_dma_submission *submission = NULL;
2676    void *dest_ptr;
2677 
2678    if (device->shader_use_invisible_vram) {
2679       uint64_t va = radv_buffer_get_va(shader_part->alloc->arena->bo) + shader_part->alloc->offset;
2680       submission = radv_shader_dma_get_submission(device, shader_part->alloc->arena->bo, va, bin->code_size);
2681       if (!submission)
2682          return false;
2683 
2684       dest_ptr = submission->ptr;
2685    } else {
2686       dest_ptr = shader_part->alloc->arena->ptr + shader_part->alloc->offset;
2687    }
2688 
2689    memcpy(dest_ptr, bin->data, bin->code_size);
2690 
2691    if (device->shader_use_invisible_vram) {
2692       if (!radv_shader_dma_submit(device, submission, &shader_part->upload_seq))
2693          return false;
2694    }
2695 
2696    return true;
2697 }
2698 
2699 struct radv_shader_part *
radv_shader_part_create(struct radv_device * device,struct radv_shader_part_binary * binary,unsigned wave_size)2700 radv_shader_part_create(struct radv_device *device, struct radv_shader_part_binary *binary, unsigned wave_size)
2701 {
2702    struct radv_shader_part *shader_part;
2703 
2704    shader_part = calloc(1, sizeof(struct radv_shader_part));
2705    if (!shader_part)
2706       return NULL;
2707 
2708    shader_part->ref_count = 1;
2709    shader_part->code_size = binary->code_size;
2710    shader_part->rsrc1 =
2711       S_00B848_VGPRS((binary->num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) | S_00B228_SGPRS((binary->num_sgprs - 1) / 8);
2712    shader_part->disasm_string = binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL;
2713 
2714    shader_part->spi_shader_col_format = binary->info.spi_shader_col_format;
2715    shader_part->cb_shader_mask = binary->info.cb_shader_mask;
2716    shader_part->spi_shader_z_format = binary->info.spi_shader_z_format;
2717 
2718    /* Allocate memory and upload. */
2719    shader_part->alloc = radv_alloc_shader_memory(device, shader_part->code_size, false, NULL);
2720    if (!shader_part->alloc)
2721       goto fail;
2722 
2723    shader_part->bo = shader_part->alloc->arena->bo;
2724    shader_part->va = radv_buffer_get_va(shader_part->bo) + shader_part->alloc->offset;
2725 
2726    if (!radv_shader_part_binary_upload(device, binary, shader_part))
2727       goto fail;
2728 
2729    return shader_part;
2730 
2731 fail:
2732    radv_shader_part_destroy(device, shader_part);
2733    return NULL;
2734 }
2735 
2736 bool
radv_shader_part_cache_init(struct radv_shader_part_cache * cache,struct radv_shader_part_cache_ops * ops)2737 radv_shader_part_cache_init(struct radv_shader_part_cache *cache, struct radv_shader_part_cache_ops *ops)
2738 {
2739    cache->ops = ops;
2740    if (!_mesa_set_init(&cache->entries, NULL, cache->ops->hash, cache->ops->equals))
2741       return false;
2742    simple_mtx_init(&cache->lock, mtx_plain);
2743    return true;
2744 }
2745 
2746 void
radv_shader_part_cache_finish(struct radv_device * device,struct radv_shader_part_cache * cache)2747 radv_shader_part_cache_finish(struct radv_device *device, struct radv_shader_part_cache *cache)
2748 {
2749    set_foreach (&cache->entries, entry)
2750       radv_shader_part_unref(device, radv_shader_part_from_cache_entry(entry->key));
2751    simple_mtx_destroy(&cache->lock);
2752    ralloc_free(cache->entries.table);
2753 }
2754 
2755 /*
2756  * A cache with atomics-free fast path for prolog / epilog lookups.
2757  *
2758  * VS prologs and PS/TCS epilogs are used to support dynamic states. In
2759  * particular dynamic blend state is heavily used by Zink. These are called
2760  * every frame as a part of command buffer building, so these functions are
2761  * on the hot path.
2762  *
2763  * Originally this was implemented with a rwlock, but this lead to high
2764  * overhead. To avoid locking altogether in the hot path, the cache is done
2765  * at two levels: one at device level, and another at each CS. Access to the
2766  * CS cache is externally synchronized and do not require a lock.
2767  */
2768 struct radv_shader_part *
radv_shader_part_cache_get(struct radv_device * device,struct radv_shader_part_cache * cache,struct set * local_entries,const void * key)2769 radv_shader_part_cache_get(struct radv_device *device, struct radv_shader_part_cache *cache, struct set *local_entries,
2770                            const void *key)
2771 {
2772    struct set_entry *local, *global;
2773    bool local_found, global_found;
2774    uint32_t hash = cache->ops->hash(key);
2775 
2776    local = _mesa_set_search_or_add_pre_hashed(local_entries, hash, key, &local_found);
2777    if (local_found)
2778       return radv_shader_part_from_cache_entry(local->key);
2779 
2780    simple_mtx_lock(&cache->lock);
2781    global = _mesa_set_search_or_add_pre_hashed(&cache->entries, hash, key, &global_found);
2782    if (global_found) {
2783       simple_mtx_unlock(&cache->lock);
2784       local->key = global->key;
2785       return radv_shader_part_from_cache_entry(global->key);
2786    }
2787 
2788    struct radv_shader_part *shader_part = cache->ops->create(device, key);
2789    if (!shader_part) {
2790       _mesa_set_remove(&cache->entries, global);
2791       simple_mtx_unlock(&cache->lock);
2792       _mesa_set_remove(local_entries, local);
2793       return NULL;
2794    }
2795 
2796    /* Make the set entry a pointer to the key, so that the hash and equals
2797     * functions from radv_shader_part_cache_ops can be directly used.
2798     */
2799    global->key = &shader_part->key;
2800    simple_mtx_unlock(&cache->lock);
2801    local->key = &shader_part->key;
2802    return shader_part;
2803 }
2804 
2805 static char *
radv_dump_nir_shaders(struct nir_shader * const * shaders,int shader_count)2806 radv_dump_nir_shaders(struct nir_shader *const *shaders, int shader_count)
2807 {
2808    char *data = NULL;
2809    char *ret = NULL;
2810    size_t size = 0;
2811    struct u_memstream mem;
2812    if (u_memstream_open(&mem, &data, &size)) {
2813       FILE *const memf = u_memstream_get(&mem);
2814       for (int i = 0; i < shader_count; ++i)
2815          nir_print_shader(shaders[i], memf);
2816       u_memstream_close(&mem);
2817    }
2818 
2819    ret = malloc(size + 1);
2820    if (ret) {
2821       memcpy(ret, data, size);
2822       ret[size] = 0;
2823    }
2824    free(data);
2825    return ret;
2826 }
2827 
2828 static void
radv_aco_build_shader_binary(void ** bin,const struct ac_shader_config * config,const char * llvm_ir_str,unsigned llvm_ir_size,const char * disasm_str,unsigned disasm_size,uint32_t * statistics,uint32_t stats_size,uint32_t exec_size,const uint32_t * code,uint32_t code_dw,const struct aco_symbol * symbols,unsigned num_symbols)2829 radv_aco_build_shader_binary(void **bin, const struct ac_shader_config *config, const char *llvm_ir_str,
2830                              unsigned llvm_ir_size, const char *disasm_str, unsigned disasm_size, uint32_t *statistics,
2831                              uint32_t stats_size, uint32_t exec_size, const uint32_t *code, uint32_t code_dw,
2832                              const struct aco_symbol *symbols, unsigned num_symbols)
2833 {
2834    struct radv_shader_binary **binary = (struct radv_shader_binary **)bin;
2835    size_t size = llvm_ir_size;
2836 
2837    size += disasm_size;
2838    size += stats_size;
2839 
2840    size += code_dw * sizeof(uint32_t) + sizeof(struct radv_shader_binary_legacy);
2841 
2842    /* We need to calloc to prevent uninitialized data because this will be used
2843     * directly for the disk cache. Uninitialized data can appear because of
2844     * padding in the struct or because legacy_binary->data can be at an offset
2845     * from the start less than sizeof(radv_shader_binary_legacy). */
2846    struct radv_shader_binary_legacy *legacy_binary = (struct radv_shader_binary_legacy *)calloc(size, 1);
2847    legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY;
2848    legacy_binary->base.total_size = size;
2849    legacy_binary->base.config = *config;
2850 
2851    if (stats_size)
2852       memcpy(legacy_binary->data, statistics, stats_size);
2853    legacy_binary->stats_size = stats_size;
2854 
2855    memcpy(legacy_binary->data + legacy_binary->stats_size, code, code_dw * sizeof(uint32_t));
2856    legacy_binary->exec_size = exec_size;
2857    legacy_binary->code_size = code_dw * sizeof(uint32_t);
2858 
2859    legacy_binary->disasm_size = 0;
2860    legacy_binary->ir_size = llvm_ir_size;
2861 
2862    if (llvm_ir_size) {
2863       memcpy((char *)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size, llvm_ir_str,
2864              llvm_ir_size);
2865    }
2866 
2867    legacy_binary->disasm_size = disasm_size;
2868    if (disasm_size) {
2869       memcpy((char *)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size + llvm_ir_size,
2870              disasm_str, disasm_size);
2871    }
2872    *binary = (struct radv_shader_binary *)legacy_binary;
2873 }
2874 
2875 static void
radv_fill_nir_compiler_options(struct radv_nir_compiler_options * options,struct radv_device * device,const struct radv_graphics_state_key * gfx_state,bool should_use_wgp,bool can_dump_shader,bool is_meta_shader,bool keep_shader_info,bool keep_statistic_info)2876 radv_fill_nir_compiler_options(struct radv_nir_compiler_options *options, struct radv_device *device,
2877                                const struct radv_graphics_state_key *gfx_state, bool should_use_wgp,
2878                                bool can_dump_shader, bool is_meta_shader, bool keep_shader_info,
2879                                bool keep_statistic_info)
2880 {
2881    const struct radv_physical_device *pdev = radv_device_physical(device);
2882    const struct radv_instance *instance = radv_physical_device_instance(pdev);
2883 
2884    /* robust_buffer_access_llvm here used by LLVM only, pipeline robustness is not exposed there. */
2885    options->robust_buffer_access_llvm =
2886       (device->vk.enabled_features.robustBufferAccess2 || device->vk.enabled_features.robustBufferAccess);
2887    options->wgp_mode = should_use_wgp;
2888    options->info = &pdev->info;
2889    options->dump_shader = can_dump_shader;
2890    options->dump_preoptir = options->dump_shader && instance->debug_flags & RADV_DEBUG_PREOPTIR;
2891    options->record_ir = keep_shader_info;
2892    options->record_stats = keep_statistic_info;
2893    options->check_ir = instance->debug_flags & RADV_DEBUG_CHECKIR;
2894    options->enable_mrt_output_nan_fixup = gfx_state ? gfx_state->ps.epilog.enable_mrt_output_nan_fixup : false;
2895 }
2896 
2897 void
radv_set_stage_key_robustness(const struct vk_pipeline_robustness_state * rs,gl_shader_stage stage,struct radv_shader_stage_key * key)2898 radv_set_stage_key_robustness(const struct vk_pipeline_robustness_state *rs, gl_shader_stage stage,
2899                               struct radv_shader_stage_key *key)
2900 {
2901    if (rs->storage_buffers == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT)
2902       key->storage_robustness2 = 1;
2903    if (rs->uniform_buffers == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT)
2904       key->uniform_robustness2 = 1;
2905    if (stage == MESA_SHADER_VERTEX &&
2906        (rs->vertex_inputs == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT ||
2907         rs->vertex_inputs == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT))
2908       key->vertex_robustness1 = 1u;
2909 }
2910 
2911 static void
radv_capture_shader_executable_info(struct radv_device * device,struct radv_shader * shader,struct nir_shader * const * shaders,int shader_count,const struct radv_shader_binary * binary)2912 radv_capture_shader_executable_info(struct radv_device *device, struct radv_shader *shader,
2913                                     struct nir_shader *const *shaders, int shader_count,
2914                                     const struct radv_shader_binary *binary)
2915 {
2916    shader->nir_string = radv_dump_nir_shaders(shaders, shader_count);
2917 
2918    if (binary->type == RADV_BINARY_TYPE_RTLD) {
2919 #if !defined(USE_LIBELF)
2920       return;
2921 #else
2922       struct radv_shader_binary_rtld *bin = (struct radv_shader_binary_rtld *)binary;
2923       struct ac_rtld_binary rtld_binary = {0};
2924 
2925       if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
2926          return;
2927       }
2928 
2929       const char *disasm_data;
2930       size_t disasm_size;
2931       if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) {
2932          return;
2933       }
2934 
2935       shader->ir_string = bin->llvm_ir_size ? strdup((const char *)(bin->data + bin->elf_size)) : NULL;
2936       shader->disasm_string = malloc(disasm_size + 1);
2937       memcpy(shader->disasm_string, disasm_data, disasm_size);
2938       shader->disasm_string[disasm_size] = 0;
2939 
2940       ac_rtld_close(&rtld_binary);
2941 #endif
2942    } else {
2943       struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2944 
2945       shader->ir_string = bin->ir_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size)) : NULL;
2946       shader->disasm_string =
2947          bin->disasm_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size + bin->ir_size)) : NULL;
2948    }
2949 }
2950 
2951 static struct radv_shader_binary *
shader_compile(struct radv_device * device,struct nir_shader * const * shaders,int shader_count,gl_shader_stage stage,const struct radv_shader_info * info,const struct radv_shader_args * args,const struct radv_shader_stage_key * stage_key,struct radv_nir_compiler_options * options)2952 shader_compile(struct radv_device *device, struct nir_shader *const *shaders, int shader_count, gl_shader_stage stage,
2953                const struct radv_shader_info *info, const struct radv_shader_args *args,
2954                const struct radv_shader_stage_key *stage_key, struct radv_nir_compiler_options *options)
2955 {
2956    struct radv_shader_debug_data debug_data = {
2957       .device = device,
2958       .object = NULL,
2959    };
2960    options->debug.func = radv_compiler_debug;
2961    options->debug.private_data = &debug_data;
2962 
2963    struct radv_shader_binary *binary = NULL;
2964 
2965 #if AMD_LLVM_AVAILABLE
2966    const struct radv_physical_device *pdev = radv_device_physical(device);
2967 
2968    if (radv_use_llvm_for_stage(pdev, stage) || options->dump_shader || options->record_ir)
2969       ac_init_llvm_once();
2970 
2971    if (radv_use_llvm_for_stage(pdev, stage)) {
2972       llvm_compile_shader(options, info, shader_count, shaders, &binary, args);
2973 #else
2974    if (false) {
2975 #endif
2976    } else {
2977       struct aco_shader_info ac_info;
2978       struct aco_compiler_options ac_opts;
2979       radv_aco_convert_opts(&ac_opts, options, args, stage_key);
2980       radv_aco_convert_shader_info(&ac_info, info, args, &device->cache_key, options->info->gfx_level);
2981       aco_compile_shader(&ac_opts, &ac_info, shader_count, shaders, &args->ac, &radv_aco_build_shader_binary,
2982                          (void **)&binary);
2983    }
2984 
2985    binary->info = *info;
2986 
2987    if (!radv_postprocess_binary_config(device, binary, args)) {
2988       free(binary);
2989       return NULL;
2990    }
2991 
2992    return binary;
2993 }
2994 
2995 struct radv_shader_binary *
2996 radv_shader_nir_to_asm(struct radv_device *device, struct radv_shader_stage *pl_stage,
2997                        struct nir_shader *const *shaders, int shader_count,
2998                        const struct radv_graphics_state_key *gfx_state, bool keep_shader_info, bool keep_statistic_info)
2999 {
3000    gl_shader_stage stage = shaders[shader_count - 1]->info.stage;
3001    struct radv_shader_info *info = &pl_stage->info;
3002 
3003    struct radv_nir_compiler_options options = {0};
3004    radv_fill_nir_compiler_options(&options, device, gfx_state, radv_should_use_wgp_mode(device, stage, info),
3005                                   radv_can_dump_shader(device, shaders[0], false), is_meta_shader(shaders[0]),
3006                                   keep_shader_info, keep_statistic_info);
3007 
3008    struct radv_shader_binary *binary =
3009       shader_compile(device, shaders, shader_count, stage, info, &pl_stage->args, &pl_stage->key, &options);
3010 
3011    return binary;
3012 }
3013 
3014 void
3015 radv_shader_generate_debug_info(struct radv_device *device, bool dump_shader, bool keep_shader_info,
3016                                 struct radv_shader_binary *binary, struct radv_shader *shader,
3017                                 struct nir_shader *const *shaders, int shader_count, struct radv_shader_info *info)
3018 {
3019    if (dump_shader || keep_shader_info)
3020       radv_capture_shader_executable_info(device, shader, shaders, shader_count, binary);
3021 
3022    if (dump_shader) {
3023       fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage));
3024       for (int i = 1; i < shader_count; ++i)
3025          fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage));
3026 
3027       fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string);
3028    }
3029 }
3030 
3031 struct radv_shader *
3032 radv_create_trap_handler_shader(struct radv_device *device)
3033 {
3034    gl_shader_stage stage = MESA_SHADER_COMPUTE;
3035    struct radv_shader_stage_key stage_key = {0};
3036    struct radv_shader_info info = {0};
3037    struct radv_nir_compiler_options options = {0};
3038    radv_fill_nir_compiler_options(&options, device, NULL, radv_should_use_wgp_mode(device, stage, &info), false, false,
3039                                   false, false);
3040 
3041    nir_builder b = radv_meta_init_shader(device, stage, "meta_trap_handler");
3042 
3043    info.wave_size = 64;
3044    info.type = RADV_SHADER_TYPE_TRAP_HANDLER;
3045 
3046    struct radv_shader_args args;
3047    radv_declare_shader_args(device, NULL, &info, stage, MESA_SHADER_NONE, &args);
3048 
3049    struct radv_shader_binary *binary = shader_compile(device, &b.shader, 1, stage, &info, &args, &stage_key, &options);
3050    struct radv_shader *shader;
3051    radv_shader_create_uncached(device, binary, false, NULL, &shader);
3052 
3053    ralloc_free(b.shader);
3054    free(binary);
3055 
3056    return shader;
3057 }
3058 
3059 static void
3060 radv_aco_build_shader_part(void **bin, uint32_t num_sgprs, uint32_t num_vgprs, const uint32_t *code, uint32_t code_size,
3061                            const char *disasm_str, uint32_t disasm_size)
3062 {
3063    struct radv_shader_part_binary **binary = (struct radv_shader_part_binary **)bin;
3064    size_t size = code_size * sizeof(uint32_t) + sizeof(struct radv_shader_part_binary);
3065 
3066    size += disasm_size;
3067    struct radv_shader_part_binary *part_binary = (struct radv_shader_part_binary *)calloc(size, 1);
3068 
3069    part_binary->num_sgprs = num_sgprs;
3070    part_binary->num_vgprs = num_vgprs;
3071    part_binary->total_size = size;
3072    part_binary->code_size = code_size * sizeof(uint32_t);
3073    memcpy(part_binary->data, code, part_binary->code_size);
3074    if (disasm_size) {
3075       memcpy((char *)part_binary->data + part_binary->code_size, disasm_str, disasm_size);
3076       part_binary->disasm_size = disasm_size;
3077    }
3078 
3079    *binary = part_binary;
3080 }
3081 
3082 struct radv_shader *
3083 radv_create_rt_prolog(struct radv_device *device)
3084 {
3085    const struct radv_physical_device *pdev = radv_device_physical(device);
3086    const struct radv_instance *instance = radv_physical_device_instance(pdev);
3087    struct radv_shader *prolog;
3088    struct radv_shader_args in_args = {0};
3089    struct radv_shader_args out_args = {0};
3090    struct radv_nir_compiler_options options = {0};
3091    radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS, false,
3092                                   radv_device_fault_detection_enabled(device), false);
3093    struct radv_shader_info info = {0};
3094    info.stage = MESA_SHADER_COMPUTE;
3095    info.loads_push_constants = true;
3096    info.desc_set_used_mask = -1; /* just to force indirection */
3097    info.wave_size = pdev->rt_wave_size;
3098    info.workgroup_size = info.wave_size;
3099    info.user_data_0 = R_00B900_COMPUTE_USER_DATA_0;
3100    info.type = RADV_SHADER_TYPE_RT_PROLOG;
3101    info.cs.block_size[0] = 8;
3102    info.cs.block_size[1] = pdev->rt_wave_size == 64 ? 8 : 4;
3103    info.cs.block_size[2] = 1;
3104    info.cs.uses_thread_id[0] = true;
3105    info.cs.uses_thread_id[1] = true;
3106    for (unsigned i = 0; i < 3; i++)
3107       info.cs.uses_block_id[i] = true;
3108 
3109    radv_declare_shader_args(device, NULL, &info, MESA_SHADER_COMPUTE, MESA_SHADER_NONE, &in_args);
3110    radv_declare_rt_shader_args(options.info->gfx_level, &out_args);
3111    info.user_sgprs_locs = in_args.user_sgprs_locs;
3112 
3113 #if AMD_LLVM_AVAILABLE
3114    if (options.dump_shader || options.record_ir)
3115       ac_init_llvm_once();
3116 #endif
3117 
3118    struct radv_shader_binary *binary = NULL;
3119    struct radv_shader_stage_key stage_key = {0};
3120    struct aco_shader_info ac_info;
3121    struct aco_compiler_options ac_opts;
3122    radv_aco_convert_shader_info(&ac_info, &info, &in_args, &device->cache_key, options.info->gfx_level);
3123    radv_aco_convert_opts(&ac_opts, &options, &in_args, &stage_key);
3124    aco_compile_rt_prolog(&ac_opts, &ac_info, &in_args.ac, &out_args.ac, &radv_aco_build_shader_binary,
3125                          (void **)&binary);
3126    binary->info = info;
3127 
3128    radv_postprocess_binary_config(device, binary, &in_args);
3129    radv_shader_create_uncached(device, binary, false, NULL, &prolog);
3130    if (!prolog)
3131       goto done;
3132 
3133    if (device->keep_shader_info || options.dump_shader) {
3134       radv_capture_shader_executable_info(device, prolog, NULL, 0, binary);
3135    }
3136 
3137    if (options.dump_shader) {
3138       fprintf(stderr, "Raytracing prolog");
3139       fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
3140    }
3141 
3142 done:
3143    free(binary);
3144    return prolog;
3145 }
3146 
3147 struct radv_shader_part *
3148 radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key)
3149 {
3150    const struct radv_physical_device *pdev = radv_device_physical(device);
3151    const struct radv_instance *instance = radv_physical_device_instance(pdev);
3152    struct radv_shader_part *prolog;
3153    struct radv_shader_args args = {0};
3154    struct radv_nir_compiler_options options = {0};
3155    radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS, false,
3156                                   radv_device_fault_detection_enabled(device), false);
3157 
3158    struct radv_shader_info info = {0};
3159    info.stage = MESA_SHADER_VERTEX;
3160    info.wave_size = key->wave32 ? 32 : 64;
3161    info.vs.needs_instance_id = true;
3162    info.vs.needs_base_instance = true;
3163    info.vs.needs_draw_id = true;
3164    info.vs.use_per_attribute_vb_descs = true;
3165    info.vs.vb_desc_usage_mask = BITFIELD_MASK(key->num_attributes);
3166    info.vs.has_prolog = true;
3167    info.vs.as_ls = key->as_ls;
3168    info.is_ngg = key->is_ngg;
3169 
3170    struct radv_graphics_state_key gfx_state = {0};
3171 
3172    radv_declare_shader_args(device, &gfx_state, &info, key->next_stage,
3173                             key->next_stage != MESA_SHADER_VERTEX ? MESA_SHADER_VERTEX : MESA_SHADER_NONE, &args);
3174 
3175    info.user_sgprs_locs = args.user_sgprs_locs;
3176    info.inline_push_constant_mask = args.ac.inline_push_const_mask;
3177 
3178 #if AMD_LLVM_AVAILABLE
3179    if (options.dump_shader || options.record_ir)
3180       ac_init_llvm_once();
3181 #endif
3182 
3183    struct radv_shader_part_binary *binary = NULL;
3184    struct radv_shader_stage_key stage_key = {0};
3185    struct aco_shader_info ac_info;
3186    struct aco_vs_prolog_info ac_prolog_info;
3187    struct aco_compiler_options ac_opts;
3188    radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
3189    radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
3190    radv_aco_convert_vs_prolog_key(&ac_prolog_info, key, &args);
3191    aco_compile_vs_prolog(&ac_opts, &ac_info, &ac_prolog_info, &args.ac, &radv_aco_build_shader_part, (void **)&binary);
3192 
3193    prolog = radv_shader_part_create(device, binary, info.wave_size);
3194    if (!prolog)
3195       goto fail;
3196 
3197    prolog->key.vs = *key;
3198    prolog->nontrivial_divisors = key->nontrivial_divisors;
3199 
3200    if (options.dump_shader) {
3201       fprintf(stderr, "Vertex prolog");
3202       fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
3203    }
3204 
3205    free(binary);
3206 
3207    return prolog;
3208 
3209 fail:
3210    free(binary);
3211    return NULL;
3212 }
3213 
3214 struct radv_shader_part *
3215 radv_create_ps_epilog(struct radv_device *device, const struct radv_ps_epilog_key *key,
3216                       struct radv_shader_part_binary **binary_out)
3217 {
3218    const struct radv_physical_device *pdev = radv_device_physical(device);
3219    const struct radv_instance *instance = radv_physical_device_instance(pdev);
3220    struct radv_shader_part *epilog;
3221    struct radv_shader_args args = {0};
3222    struct radv_nir_compiler_options options = {0};
3223    radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS, false,
3224                                   radv_device_fault_detection_enabled(device), false);
3225 
3226    struct radv_shader_info info = {0};
3227    info.stage = MESA_SHADER_FRAGMENT;
3228    info.wave_size = pdev->ps_wave_size;
3229    info.workgroup_size = 64;
3230 
3231    radv_declare_ps_epilog_args(device, key, &args);
3232 
3233 #if AMD_LLVM_AVAILABLE
3234    if (options.dump_shader || options.record_ir)
3235       ac_init_llvm_once();
3236 #endif
3237 
3238    struct radv_shader_part_binary *binary = NULL;
3239    struct radv_shader_stage_key stage_key = {0};
3240    struct aco_shader_info ac_info;
3241    struct aco_ps_epilog_info ac_epilog_info = {0};
3242    struct aco_compiler_options ac_opts;
3243    radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
3244    radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
3245    radv_aco_convert_ps_epilog_key(&ac_epilog_info, key, &args);
3246    aco_compile_ps_epilog(&ac_opts, &ac_info, &ac_epilog_info, &args.ac, &radv_aco_build_shader_part, (void **)&binary);
3247 
3248    binary->info.spi_shader_col_format = key->spi_shader_col_format;
3249    binary->info.cb_shader_mask = ac_get_cb_shader_mask(key->spi_shader_col_format);
3250    binary->info.spi_shader_z_format = key->spi_shader_z_format;
3251 
3252    epilog = radv_shader_part_create(device, binary, info.wave_size);
3253    if (!epilog)
3254       goto fail;
3255 
3256    epilog->key.ps = *key;
3257 
3258    if (options.dump_shader) {
3259       fprintf(stderr, "Fragment epilog");
3260       fprintf(stderr, "\ndisasm:\n%s\n", epilog->disasm_string);
3261    }
3262 
3263    if (binary_out) {
3264       *binary_out = binary;
3265    } else {
3266       free(binary);
3267    }
3268 
3269    return epilog;
3270 
3271 fail:
3272    free(binary);
3273    return NULL;
3274 }
3275 
3276 void
3277 radv_shader_part_destroy(struct radv_device *device, struct radv_shader_part *shader_part)
3278 {
3279    assert(shader_part->ref_count == 0);
3280 
3281    if (device->shader_use_invisible_vram) {
3282       /* Wait for any pending upload to complete, or we'll be writing into freed shader memory. */
3283       radv_shader_wait_for_upload(device, shader_part->upload_seq);
3284    }
3285 
3286    if (shader_part->alloc)
3287       radv_free_shader_memory(device, shader_part->alloc);
3288    free(shader_part->disasm_string);
3289    free(shader_part);
3290 }
3291 
3292 uint64_t
3293 radv_shader_get_va(const struct radv_shader *shader)
3294 {
3295    return shader->va;
3296 }
3297 
3298 struct radv_shader *
3299 radv_find_shader(struct radv_device *device, uint64_t pc)
3300 {
3301    mtx_lock(&device->shader_arena_mutex);
3302    list_for_each_entry (struct radv_shader_arena, arena, &device->shader_arenas, list) {
3303 #ifdef __GNUC__
3304 #pragma GCC diagnostic push
3305 #pragma GCC diagnostic ignored "-Wshadow"
3306 #endif
3307       list_for_each_entry (union radv_shader_arena_block, block, &arena->entries, list) {
3308 #ifdef __GNUC__
3309 #pragma GCC diagnostic pop
3310 #endif
3311          uint64_t start = radv_buffer_get_va(block->arena->bo) + block->offset;
3312          start &= ((1ull << 48) - 1);
3313          if (!block->freelist.prev && pc >= start && pc < start + block->size) {
3314             mtx_unlock(&device->shader_arena_mutex);
3315             return (struct radv_shader *)block->freelist.next;
3316          }
3317       }
3318    }
3319 
3320    mtx_unlock(&device->shader_arena_mutex);
3321    return NULL;
3322 }
3323 
3324 const char *
3325 radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage)
3326 {
3327    switch (stage) {
3328    case MESA_SHADER_VERTEX:
3329       if (info->vs.as_ls)
3330          return "Vertex Shader as LS";
3331       else if (info->vs.as_es)
3332          return "Vertex Shader as ES";
3333       else if (info->is_ngg)
3334          return "Vertex Shader as ESGS";
3335       else
3336          return "Vertex Shader as VS";
3337    case MESA_SHADER_TESS_CTRL:
3338       return "Tessellation Control Shader";
3339    case MESA_SHADER_TESS_EVAL:
3340       if (info->tes.as_es)
3341          return "Tessellation Evaluation Shader as ES";
3342       else if (info->is_ngg)
3343          return "Tessellation Evaluation Shader as ESGS";
3344       else
3345          return "Tessellation Evaluation Shader as VS";
3346    case MESA_SHADER_GEOMETRY:
3347       return "Geometry Shader";
3348    case MESA_SHADER_FRAGMENT:
3349       return "Pixel Shader";
3350    case MESA_SHADER_COMPUTE:
3351       return "Compute Shader";
3352    case MESA_SHADER_MESH:
3353       return "Mesh Shader as NGG";
3354    case MESA_SHADER_TASK:
3355       return "Task Shader as CS";
3356    case MESA_SHADER_RAYGEN:
3357       return "Ray Generation Shader as CS Function";
3358    case MESA_SHADER_CLOSEST_HIT:
3359       return "Closest Hit Shader as CS Function";
3360    case MESA_SHADER_INTERSECTION:
3361       return "Intersection Shader as CS Function";
3362    case MESA_SHADER_ANY_HIT:
3363       return "Any Hit Shader as CS Function";
3364    case MESA_SHADER_MISS:
3365       return "Miss Shader as CS Function";
3366    case MESA_SHADER_CALLABLE:
3367       return "Callable Shader as CS Function";
3368    default:
3369       return "Unknown shader";
3370    };
3371 }
3372 
3373 unsigned
3374 radv_compute_spi_ps_input(const struct radv_physical_device *pdev, const struct radv_graphics_state_key *gfx_state,
3375                           const struct radv_shader_info *info)
3376 {
3377    unsigned spi_ps_input;
3378 
3379    spi_ps_input = S_0286CC_PERSP_CENTER_ENA(info->ps.reads_persp_center) |
3380                   S_0286CC_PERSP_CENTROID_ENA(info->ps.reads_persp_centroid) |
3381                   S_0286CC_PERSP_SAMPLE_ENA(info->ps.reads_persp_sample) |
3382                   S_0286CC_LINEAR_CENTER_ENA(info->ps.reads_linear_center) |
3383                   S_0286CC_LINEAR_CENTROID_ENA(info->ps.reads_linear_centroid) |
3384                   S_0286CC_LINEAR_SAMPLE_ENA(info->ps.reads_linear_sample) |
3385                   S_0286CC_PERSP_PULL_MODEL_ENA(info->ps.reads_barycentric_model) |
3386                   S_0286CC_FRONT_FACE_ENA(info->ps.reads_front_face);
3387 
3388    if (info->ps.reads_frag_coord_mask || info->ps.reads_sample_pos_mask) {
3389       uint8_t mask = info->ps.reads_frag_coord_mask | info->ps.reads_sample_pos_mask;
3390 
3391       for (unsigned i = 0; i < 4; i++) {
3392          if (mask & (1 << i))
3393             spi_ps_input |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
3394       }
3395 
3396       if (gfx_state->adjust_frag_coord_z && info->ps.reads_frag_coord_mask & (1 << 2)) {
3397          spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
3398       }
3399    }
3400 
3401    if (info->ps.reads_sample_id || info->ps.reads_frag_shading_rate || info->ps.reads_sample_mask_in) {
3402       spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
3403    }
3404 
3405    if (info->ps.reads_sample_mask_in || info->ps.reads_fully_covered) {
3406       spi_ps_input |= S_0286CC_SAMPLE_COVERAGE_ENA(1) |
3407                       S_02865C_COVERAGE_TO_SHADER_SELECT(pdev->info.gfx_level >= GFX12 && info->ps.reads_fully_covered);
3408    }
3409 
3410    if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_input)) {
3411       /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
3412       spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
3413    }
3414 
3415    if (!(spi_ps_input & 0x7F)) {
3416       /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
3417       spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
3418    }
3419 
3420    return spi_ps_input;
3421 }
3422 
3423 const struct radv_userdata_info *
3424 radv_get_user_sgpr_info(const struct radv_shader *shader, int idx)
3425 {
3426    return &shader->info.user_sgprs_locs.shader_data[idx];
3427 }
3428 
3429 uint32_t
3430 radv_get_user_sgpr_loc(const struct radv_shader *shader, int idx)
3431 {
3432    const struct radv_userdata_info *loc = radv_get_user_sgpr_info(shader, idx);
3433 
3434    if (loc->sgpr_idx == -1)
3435       return 0;
3436 
3437    return shader->info.user_data_0 + loc->sgpr_idx * 4;
3438 }
3439 
3440 uint32_t
3441 radv_get_user_sgpr(const struct radv_shader *shader, int idx)
3442 {
3443    const uint32_t offset = radv_get_user_sgpr_loc(shader, idx);
3444 
3445    return offset ? ((offset - SI_SH_REG_OFFSET) >> 2) : 0;
3446 }
3447 
3448 static uint32_t
3449 radv_get_tess_patch_size(uint32_t tcs_num_input_vertices, uint32_t tcs_num_output_vertices, uint32_t tcs_num_inputs,
3450                          uint32_t tcs_num_lds_outputs, uint32_t tcs_num_lds_patch_outputs)
3451 {
3452    const uint32_t input_vertex_size = get_tcs_input_vertex_stride(tcs_num_inputs);
3453    const uint32_t input_patch_size = tcs_num_input_vertices * input_vertex_size;
3454    const uint32_t lds_output_vertex_size = tcs_num_lds_outputs * 16;
3455    const uint32_t lds_pervertex_output_patch_size = tcs_num_output_vertices * lds_output_vertex_size;
3456    const uint32_t lds_output_patch_size = lds_pervertex_output_patch_size + tcs_num_lds_patch_outputs * 16;
3457 
3458    return input_patch_size + lds_output_patch_size;
3459 }
3460 
3461 uint32_t
3462 radv_get_tcs_num_patches(const struct radv_physical_device *pdev, unsigned tcs_num_input_vertices,
3463                          unsigned tcs_num_output_vertices, unsigned tcs_num_inputs, unsigned tcs_num_lds_outputs,
3464                          unsigned tcs_num_lds_patch_outputs, unsigned tcs_num_vram_outputs,
3465                          unsigned tcs_num_vram_patch_outputs)
3466 {
3467    const uint32_t lds_per_patch = radv_get_tess_patch_size(
3468       tcs_num_input_vertices, tcs_num_output_vertices, tcs_num_inputs, tcs_num_lds_outputs, tcs_num_lds_patch_outputs);
3469    const uint32_t vram_per_patch = radv_get_tess_patch_size(tcs_num_input_vertices, tcs_num_output_vertices, 0,
3470                                                             tcs_num_vram_outputs, tcs_num_vram_patch_outputs);
3471 
3472    return ac_compute_num_tess_patches(&pdev->info, tcs_num_input_vertices, tcs_num_output_vertices, vram_per_patch,
3473                                       lds_per_patch, pdev->ge_wave_size, false);
3474 }
3475 
3476 uint32_t
3477 radv_get_tess_lds_size(const struct radv_physical_device *pdev, uint32_t tcs_num_input_vertices,
3478                        uint32_t tcs_num_output_vertices, uint32_t tcs_num_inputs, uint32_t tcs_num_patches,
3479                        uint32_t tcs_num_lds_outputs, uint32_t tcs_num_lds_patch_outputs)
3480 {
3481    const uint32_t lds_per_patch = radv_get_tess_patch_size(
3482       tcs_num_input_vertices, tcs_num_output_vertices, tcs_num_inputs, tcs_num_lds_outputs, tcs_num_lds_patch_outputs);
3483 
3484    return ac_compute_tess_lds_size(&pdev->info, lds_per_patch, tcs_num_patches);
3485 }
3486 
3487 VkResult
3488 radv_dump_shader_stats(struct radv_device *device, struct radv_pipeline *pipeline, struct radv_shader *shader,
3489                        gl_shader_stage stage, FILE *output)
3490 {
3491    VkPipelineExecutablePropertiesKHR *props = NULL;
3492    uint32_t prop_count = 0;
3493    VkResult result;
3494 
3495    VkPipelineInfoKHR pipeline_info = {0};
3496    pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR;
3497    pipeline_info.pipeline = radv_pipeline_to_handle(pipeline);
3498 
3499    result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info, &prop_count, NULL);
3500    if (result != VK_SUCCESS)
3501       return result;
3502 
3503    props = calloc(prop_count, sizeof(*props));
3504    if (!props)
3505       return VK_ERROR_OUT_OF_HOST_MEMORY;
3506 
3507    result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info, &prop_count, props);
3508    if (result != VK_SUCCESS)
3509       goto fail;
3510 
3511    for (unsigned exec_idx = 0; exec_idx < prop_count; exec_idx++) {
3512       if (!(props[exec_idx].stages & mesa_to_vk_shader_stage(stage)))
3513          continue;
3514 
3515       VkPipelineExecutableStatisticKHR *stats = NULL;
3516       uint32_t stat_count = 0;
3517 
3518       VkPipelineExecutableInfoKHR exec_info = {0};
3519       exec_info.pipeline = radv_pipeline_to_handle(pipeline);
3520       exec_info.executableIndex = exec_idx;
3521 
3522       result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info, &stat_count, NULL);
3523       if (result != VK_SUCCESS)
3524          goto fail;
3525 
3526       stats = calloc(stat_count, sizeof(*stats));
3527       if (!stats) {
3528          result = VK_ERROR_OUT_OF_HOST_MEMORY;
3529          goto fail;
3530       }
3531 
3532       result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info, &stat_count, stats);
3533       if (result != VK_SUCCESS) {
3534          free(stats);
3535          goto fail;
3536       }
3537 
3538       fprintf(output, "\n%s:\n", radv_get_shader_name(&shader->info, stage));
3539       fprintf(output, "*** SHADER STATS ***\n");
3540 
3541       for (unsigned i = 0; i < stat_count; i++) {
3542          fprintf(output, "%s: ", stats[i].name);
3543          switch (stats[i].format) {
3544          case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR:
3545             fprintf(output, "%s", stats[i].value.b32 == VK_TRUE ? "true" : "false");
3546             break;
3547          case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR:
3548             fprintf(output, "%" PRIi64, stats[i].value.i64);
3549             break;
3550          case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR:
3551             fprintf(output, "%" PRIu64, stats[i].value.u64);
3552             break;
3553          case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR:
3554             fprintf(output, "%f", stats[i].value.f64);
3555             break;
3556          default:
3557             unreachable("Invalid pipeline statistic format");
3558          }
3559          fprintf(output, "\n");
3560       }
3561 
3562       fprintf(output, "********************\n\n\n");
3563 
3564       free(stats);
3565    }
3566 
3567 fail:
3568    free(props);
3569    return result;
3570 }
3571