xref: /aosp_15_r20/external/coreboot/src/commonlib/include/commonlib/region.h (revision b9411a12aaaa7e1e6a6fb7c5e057f44ee179a49c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 
3 #ifndef _REGION_H_
4 #define _REGION_H_
5 
6 #include <sys/types.h>
7 #include <stddef.h>
8 #include <stdbool.h>
9 #include <commonlib/bsd/helpers.h>
10 #include <commonlib/mem_pool.h>
11 
12 /*
13  * Region support.
14  *
15  * Regions are intended to abstract away the access mechanisms for blocks of
16  * data. This could be SPI, eMMC, or a memory region as the backing store.
17  * They are accessed through a region_device.  Subregions can be made by
18  * chaining together multiple region_devices.
19  */
20 
21 struct region_device;
22 
23 /*
24  * Returns NULL on error otherwise a buffer is returned with the contents of
25  * the requested data at offset of size.
26  */
27 void *rdev_mmap(const struct region_device *rd, size_t offset, size_t size);
28 
29 /* Unmap a previously mapped area. Returns 0 on success, < 0 on error. */
30 int rdev_munmap(const struct region_device *rd, void *mapping);
31 
32 /*
33  * Returns < 0 on error otherwise returns size of data read at provided
34  * offset filling in the buffer passed.
35  */
36 ssize_t rdev_readat(const struct region_device *rd, void *b, size_t offset,
37 			size_t size);
38 
39 /*
40  * Returns < 0 on error otherwise returns size of data wrote at provided
41  * offset from the buffer passed.
42  */
43 ssize_t rdev_writeat(const struct region_device *rd, const void *b,
44 			size_t offset, size_t size);
45 
46 /*
47  * Returns < 0 on error otherwise returns size of data erased.
48  * If eraseat ops is not defined it returns size which indicates
49  * that operation was successful.
50  */
51 ssize_t rdev_eraseat(const struct region_device *rd, size_t offset,
52 			size_t size);
53 
54 /****************************************
55  *  Implementation of a region device   *
56  ****************************************/
57 
58 /*
59  * Create a child region of the parent provided the sub-region is within
60  * the parent's region. Returns < 0 on error otherwise 0 on success. Note
61  * that the child device only calls through the parent's operations.
62  */
63 int rdev_chain(struct region_device *child, const struct region_device *parent,
64 		size_t offset, size_t size);
65 
66 /* A region_device operations. */
67 struct region_device_ops {
68 	void *(*mmap)(const struct region_device *, size_t, size_t);
69 	int (*munmap)(const struct region_device *, void *);
70 	ssize_t (*readat)(const struct region_device *, void *, size_t, size_t);
71 	ssize_t (*writeat)(const struct region_device *, const void *, size_t,
72 		size_t);
73 	ssize_t (*eraseat)(const struct region_device *, size_t, size_t);
74 };
75 
76 struct region {
77 	size_t offset;
78 	size_t size;
79 };
80 
81 struct region_device {
82 	const struct region_device *root;
83 	const struct region_device_ops *ops;
84 	struct region region;
85 };
86 
87 #define REGION_DEV_INIT(ops_, offset_, size_)		\
88 	{						\
89 		.root = NULL,				\
90 		.ops = (ops_),				\
91 		.region = {				\
92 			.offset = (offset_),		\
93 			.size = (size_),		\
94 		},					\
95 	}
96 
97 /* Helper to dynamically initialize region device. */
98 void region_device_init(struct region_device *rdev,
99 			const struct region_device_ops *ops, size_t offset,
100 			size_t size);
101 
102 /* Return 1 if child is subregion of parent, else 0. */
103 int region_is_subregion(const struct region *p, const struct region *c);
104 
region_offset(const struct region * r)105 static inline size_t region_offset(const struct region *r)
106 {
107 	return r->offset;
108 }
109 
region_sz(const struct region * r)110 static inline size_t region_sz(const struct region *r)
111 {
112 	return r->size;
113 }
114 
region_end(const struct region * r)115 static inline size_t region_end(const struct region *r)
116 {
117 	return region_offset(r) + region_sz(r);
118 }
119 
region_overlap(const struct region * r1,const struct region * r2)120 static inline bool region_overlap(const struct region *r1, const struct region *r2)
121 {
122 	return (region_end(r1) > region_offset(r2)) &&
123 	       (region_offset(r1) < region_end(r2));
124 }
125 
region_device_region(const struct region_device * rdev)126 static inline const struct region *region_device_region(
127 					const struct region_device *rdev)
128 {
129 	return &rdev->region;
130 }
131 
region_device_sz(const struct region_device * rdev)132 static inline size_t region_device_sz(const struct region_device *rdev)
133 {
134 	return region_sz(region_device_region(rdev));
135 }
136 
region_device_offset(const struct region_device * rdev)137 static inline size_t region_device_offset(const struct region_device *rdev)
138 {
139 	return region_offset(region_device_region(rdev));
140 }
141 
region_device_end(const struct region_device * rdev)142 static inline size_t region_device_end(const struct region_device *rdev)
143 {
144 	return region_end(region_device_region(rdev));
145 }
146 
147 /* Memory map entire region device. Same semantics as rdev_mmap() above. */
rdev_mmap_full(const struct region_device * rd)148 static inline void *rdev_mmap_full(const struct region_device *rd)
149 {
150 	return rdev_mmap(rd, 0, region_device_sz(rd));
151 }
152 
rdev_chain_full(struct region_device * child,const struct region_device * parent)153 static inline int rdev_chain_full(struct region_device *child,
154 				const struct region_device *parent)
155 {
156 	/* Chain full size of parent. */
157 	return rdev_chain(child, parent, 0, region_device_sz(parent));
158 }
159 
160 /*
161  * Returns < 0 on error otherwise returns size of data read at provided
162  * offset filling in the buffer passed.
163  *
164  * You must ensure the buffer is large enough to hold the full region_device.
165  */
rdev_read_full(const struct region_device * rd,void * b)166 static inline ssize_t rdev_read_full(const struct region_device *rd, void *b)
167 {
168 	return rdev_readat(rd, b, 0, region_device_sz(rd));
169 }
170 
171 /*
172  * Compute relative offset of the child (c) w.r.t. the parent (p). Returns < 0
173  * when child is not within the parent's region.
174  */
175 ssize_t rdev_relative_offset(const struct region_device *p,
176 				const struct region_device *c);
177 
178 /* Helper functions to create an rdev that represents memory. */
179 int rdev_chain_mem(struct region_device *child, const void *base, size_t size);
180 int rdev_chain_mem_rw(struct region_device *child, void *base, size_t size);
181 
182 struct mem_region_device {
183 	char *base;
184 	struct region_device rdev;
185 };
186 
187 /* Initialize at runtime a mem_region_device. Should only be used for mappings
188    that need to fit right up to the edge of the physical address space. Most use
189    cases will want to use rdev_chain_mem() instead. */
190 void mem_region_device_ro_init(struct mem_region_device *mdev, void *base,
191 				size_t size);
192 
193 void mem_region_device_rw_init(struct mem_region_device *mdev, void *base,
194 				size_t size);
195 
196 extern const struct region_device_ops mem_rdev_ro_ops;
197 
198 extern const struct region_device_ops mem_rdev_rw_ops;
199 
200 /* Statically initialize mem_region_device. Should normally only be used for
201    const globals. Most use cases will want to use rdev_chain_mem() instead. */
202 #define MEM_REGION_DEV_INIT(base_, size_, ops_)				\
203 	{								\
204 		.base = (void *)(base_),				\
205 		.rdev = REGION_DEV_INIT((ops_), 0, (size_)),		\
206 	}
207 
208 #define MEM_REGION_DEV_RO_INIT(base_, size_)				\
209 		MEM_REGION_DEV_INIT(base_, size_, &mem_rdev_ro_ops)	\
210 
211 #define MEM_REGION_DEV_RW_INIT(base_, size_)				\
212 		MEM_REGION_DEV_INIT(base_, size_, &mem_rdev_rw_ops)	\
213 
214 struct mmap_helper_region_device {
215 	struct mem_pool *pool;
216 	struct region_device rdev;
217 };
218 
219 #define MMAP_HELPER_DEV_INIT(ops_, offset_, size_, mpool_)		\
220 	{								\
221 		.rdev = REGION_DEV_INIT((ops_), (offset_), (size_)),	\
222 		.pool = (mpool_),					\
223 	}
224 
225 void *mmap_helper_rdev_mmap(const struct region_device *, size_t, size_t);
226 int mmap_helper_rdev_munmap(const struct region_device *, void *);
227 
228 /*
229  * A translated region device provides the ability to publish a region device in one address
230  * space and use an access mechanism within another address space. The sub region is the window
231  * within the 1st address space and the request is modified prior to accessing the second
232  * address space provided by access_dev.
233  *
234  * Each xlate_region_device can support multiple translation windows described using
235  * xlate_window structure. The windows need not be contiguous in either address space. However,
236  * this poses restrictions on the operations being performed i.e. callers cannot perform
237  * operations across multiple windows of a translated region device. It is possible to support
238  * readat/writeat/eraseat by translating them into multiple calls one to access device in each
239  * window. However, mmap support is tricky because the caller expects that the memory mapped
240  * region is contiguous in both address spaces. Thus, to keep the semantics consistent for all
241  * region ops, xlate_region_device does not support any operations across the window
242  * boundary.
243  *
244  * Note: The platform is expected to ensure that the fmap description does not place any
245  * section (that will be operated using the translated region device) across multiple windows.
246  */
247 struct xlate_window {
248 	const struct region_device *access_dev;
249 	struct region sub_region;
250 };
251 
252 struct xlate_region_device {
253 	size_t window_count;
254 	const struct xlate_window *window_arr;
255 	struct region_device rdev;
256 };
257 
258 extern const struct region_device_ops xlate_rdev_ro_ops;
259 
260 extern const struct region_device_ops xlate_rdev_rw_ops;
261 
262 #define XLATE_REGION_DEV_INIT(window_arr_, parent_sz_, ops_)		\
263 	{								\
264 		.window_count = ARRAY_SIZE(window_arr_),		\
265 		.window_arr = window_arr_,				\
266 		.rdev = REGION_DEV_INIT((ops_), 0,  (parent_sz_)),	\
267 	}
268 
269 #define XLATE_REGION_DEV_RO_INIT(window_arr_, parent_sz_)		\
270 		XLATE_REGION_DEV_INIT(window_arr_, parent_sz_, &xlate_rdev_ro_ops)
271 
272 #define XLATE_REGION_DEV_RW_INIT(window_count_, window_arr_, parent_sz_) \
273 		XLATE_REGION_DEV_INIT(window_arr_, parent_sz_, &xlate_rdev_rw_ops)
274 
275 /* Helper to dynamically initialize xlate region device. */
276 void xlate_region_device_ro_init(struct xlate_region_device *xdev,
277 			      size_t window_count, const struct xlate_window *window_arr,
278 			      size_t parent_size);
279 
280 void xlate_region_device_rw_init(struct xlate_region_device *xdev,
281 			      size_t window_count, const struct xlate_window *window_arr,
282 			      size_t parent_size);
283 
284 void xlate_window_init(struct xlate_window *window, const struct region_device *access_dev,
285 			      size_t sub_region_offset, size_t sub_region_size);
286 
287 /* This type can be used for incoherent access where the read and write
288  * operations are backed by separate drivers. An example is x86 systems
289  * with memory mapped media for reading but use a spi flash driver for
290  * writing. One needs to ensure using this object is appropriate in context. */
291 struct incoherent_rdev {
292 	struct region_device rdev;
293 	const struct region_device *read;
294 	const struct region_device *write;
295 };
296 
297 /* Initialize an incoherent_rdev based on the region as well as the read and
298  * write rdevs. The read and write rdevs should match in size to the passed
299  * in region. If not the initialization will fail returning NULL. Otherwise
300  * the function will return a pointer to the containing region_device to
301  * be used for region operations. Therefore, the lifetime of the returned
302  * pointer matches the lifetime of the incoherent_rdev object. Likewise,
303  * the lifetime of the read and write rdev need to match the lifetime of
304  * the incoherent_rdev object. */
305 const struct region_device *incoherent_rdev_init(struct incoherent_rdev *irdev,
306 				const struct region *r,
307 				const struct region_device *read,
308 				const struct region_device *write);
309 
310 #endif /* _REGION_H_ */
311