1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <charconv>
25 #include <memory>
26 #include <numeric>
27 #include <vector>
28
29 #include "android-base/strings.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/callee_save_type.h"
33 #include "base/globals.h"
34 #include "base/logging.h" // For VLOG.
35 #include "base/pointer_size.h"
36 #include "base/stl_util.h"
37 #include "base/unix_file/fd_file.h"
38 #include "class_linker-inl.h"
39 #include "class_root-inl.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "entrypoints/entrypoint_utils-inl.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/collector/concurrent_copying.h"
49 #include "gc/heap-visit-objects-inl.h"
50 #include "gc/heap.h"
51 #include "gc/space/large_object_space.h"
52 #include "gc/space/region_space.h"
53 #include "gc/space/space-inl.h"
54 #include "gc/verification.h"
55 #include "handle_scope-inl.h"
56 #include "imt_conflict_table.h"
57 #include "indirect_reference_table-inl.h"
58 #include "intern_table-inl.h"
59 #include "jni/java_vm_ext-inl.h"
60 #include "jni/jni_internal.h"
61 #include "linear_alloc.h"
62 #include "lock_word.h"
63 #include "mirror/array-inl.h"
64 #include "mirror/class-inl.h"
65 #include "mirror/class_ext-inl.h"
66 #include "mirror/class_loader.h"
67 #include "mirror/dex_cache-inl.h"
68 #include "mirror/dex_cache.h"
69 #include "mirror/executable.h"
70 #include "mirror/method.h"
71 #include "mirror/object-inl.h"
72 #include "mirror/object-refvisitor-inl.h"
73 #include "mirror/object_array-alloc-inl.h"
74 #include "mirror/object_array-inl.h"
75 #include "mirror/string-inl.h"
76 #include "mirror/var_handle.h"
77 #include "nterp_helpers-inl.h"
78 #include "nterp_helpers.h"
79 #include "oat/elf_file.h"
80 #include "oat/image-inl.h"
81 #include "oat/jni_stub_hash_map-inl.h"
82 #include "oat/oat.h"
83 #include "oat/oat_file.h"
84 #include "oat/oat_file_manager.h"
85 #include "optimizing/intrinsic_objects.h"
86 #include "runtime.h"
87 #include "scoped_thread_state_change-inl.h"
88 #include "subtype_check.h"
89 #include "thread-current-inl.h" // For AssertOnly1Thread.
90 #include "thread_list.h" // For AssertOnly1Thread.
91 #include "well_known_classes-inl.h"
92
93 using ::art::mirror::Class;
94 using ::art::mirror::DexCache;
95 using ::art::mirror::Object;
96 using ::art::mirror::ObjectArray;
97 using ::art::mirror::String;
98
99 namespace art {
100 namespace linker {
101
102 // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
103 // are never resized, but we still need to pass a reasonable value to the constructor.
104 constexpr double kImageClassTableMinLoadFactor = 0.5;
105 // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
106 // to make them full. We never insert additional elements to them, so we do not want to waste
107 // extra memory. And unlike runtime class tables, we do not want this to depend on runtime
108 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
109 constexpr double kImageClassTableMaxLoadFactor = 0.6;
110
111 // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
112 // are never resized, but we still need to pass a reasonable value to the constructor.
113 constexpr double kImageInternTableMinLoadFactor = 0.5;
114 // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
115 // to make them full. We never insert additional elements to them, so we do not want to waste
116 // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
117 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
118 constexpr double kImageInternTableMaxLoadFactor = 0.6;
119
120 // Separate objects into multiple bins to optimize dirty memory use.
121 static constexpr bool kBinObjects = true;
122
123 namespace {
124
125 // Dirty object data from dirty-image-objects.
126 struct DirtyEntry {
127 // Reference field name and type.
128 struct RefInfo {
129 std::string_view name;
130 std::string_view type;
131 };
132
133 std::string_view class_descriptor;
134 // A "path" from class object to the dirty object. If empty -- the class itself is dirty.
135 std::vector<RefInfo> reference_path;
136 uint32_t sort_key = std::numeric_limits<uint32_t>::max();
137 };
138
139 // Parse dirty-image-object line of the format:
140 // <class_descriptor>[.<reference_field_name>:<reference_field_type>]* [<sort_key>]
ParseDirtyEntry(std::string_view entry_str)141 std::optional<DirtyEntry> ParseDirtyEntry(std::string_view entry_str) {
142 DirtyEntry entry;
143 std::vector<std::string_view> tokens;
144 Split(entry_str, ' ', &tokens);
145 if (tokens.empty()) {
146 // entry_str is empty.
147 return std::nullopt;
148 }
149
150 std::string_view path_to_root = tokens[0];
151 // Parse sort_key if present, otherwise it will be uint32::max by default.
152 if (tokens.size() > 1) {
153 std::from_chars_result res =
154 std::from_chars(tokens[1].data(), tokens[1].data() + tokens[1].size(), entry.sort_key);
155 if (res.ec != std::errc()) {
156 LOG(WARNING) << "Failed to parse dirty object sort key: \"" << entry_str << "\"";
157 return std::nullopt;
158 }
159 }
160
161 std::vector<std::string_view> path_components;
162 Split(path_to_root, '.', &path_components);
163 if (path_components.empty()) {
164 return std::nullopt;
165 }
166 entry.class_descriptor = path_components[0];
167 for (size_t i = 1; i < path_components.size(); ++i) {
168 std::string_view name_and_type = path_components[i];
169 std::vector<std::string_view> ref_data;
170 Split(name_and_type, ':', &ref_data);
171 if (ref_data.size() != 2) {
172 LOG(WARNING) << "Failed to parse dirty object reference field: \"" << entry_str << "\"";
173 return std::nullopt;
174 }
175
176 std::string_view field_name = ref_data[0];
177 std::string_view field_type = ref_data[1];
178 entry.reference_path.push_back({field_name, field_type});
179 }
180
181 return entry;
182 }
183
184 // Calls VisitFunc for each non-null (reference)Object/ArtField pair.
185 // Doesn't work with ObjectArray instances, because array elements don't have ArtField.
186 class ReferenceFieldVisitor {
187 public:
188 using VisitFunc = std::function<void(mirror::Object&, ArtField&)>;
189
ReferenceFieldVisitor(VisitFunc visit_func)190 explicit ReferenceFieldVisitor(VisitFunc visit_func) : visit_func_(std::move(visit_func)) {}
191
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const192 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static) const
193 REQUIRES_SHARED(Locks::mutator_lock_) {
194 CHECK(!obj->IsObjectArray());
195 mirror::Object* field_obj =
196 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
197 // Skip fields that contain null.
198 if (field_obj == nullptr) {
199 return;
200 }
201 // Skip self references.
202 if (field_obj == obj.Ptr()) {
203 return;
204 }
205
206 ArtField* field = nullptr;
207 // Don't use Object::FindFieldByOffset, because it can't find instance fields in classes.
208 // field = obj->FindFieldByOffset(offset);
209 if (is_static) {
210 CHECK(obj->IsClass());
211 field = ArtField::FindStaticFieldWithOffset(obj->AsClass(), offset.Uint32Value());
212 } else {
213 field = ArtField::
214 FindInstanceFieldWithOffset</*kExactOffset*/ true, kVerifyNone, kWithoutReadBarrier>(
215 obj->GetClass<kVerifyNone, kWithoutReadBarrier>(), offset.Uint32Value());
216 }
217 DCHECK(field != nullptr);
218 visit_func_(*field_obj, *field);
219 }
220
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const221 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
222 REQUIRES_SHARED(Locks::mutator_lock_) {
223 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
224 }
225
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const226 void VisitRootIfNonNull([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
227 REQUIRES_SHARED(Locks::mutator_lock_) {
228 DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots";
229 }
230
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const231 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
232 REQUIRES_SHARED(Locks::mutator_lock_) {
233 DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots";
234 }
235
236 private:
237 VisitFunc visit_func_;
238 };
239
240 // Finds Class objects for descriptors of dirty entries.
241 // Map keys are string_views, that point to strings from `dirty_image_objects`.
242 // If there is no Class for a descriptor, the result map will have an entry with nullptr value.
FindClassesByDescriptor(const std::vector<std::string> & dirty_image_objects)243 static HashMap<std::string_view, mirror::Object*> FindClassesByDescriptor(
244 const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
245 HashMap<std::string_view, mirror::Object*> descriptor_to_class;
246 // Collect class descriptors that are used in dirty-image-objects.
247 for (const std::string& entry : dirty_image_objects) {
248 auto it = std::find_if(entry.begin(), entry.end(), [](char c) { return c == '.' || c == ' '; });
249 size_t descriptor_len = std::distance(entry.begin(), it);
250
251 std::string_view descriptor = std::string_view(entry).substr(0, descriptor_len);
252 descriptor_to_class.insert(std::make_pair(descriptor, nullptr));
253 }
254
255 // Find Class objects for collected descriptors.
256 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
257 DCHECK(obj != nullptr);
258 if (obj->IsClass()) {
259 std::string temp;
260 const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
261 auto it = descriptor_to_class.find(descriptor);
262 if (it != descriptor_to_class.end()) {
263 it->second = obj;
264 }
265 }
266 };
267 Runtime::Current()->GetHeap()->VisitObjects(visitor);
268
269 return descriptor_to_class;
270 }
271
272 // Get all objects that match dirty_entries by path from class.
273 // Map values are sort_keys from DirtyEntry.
MatchDirtyObjectPaths(const std::vector<std::string> & dirty_image_objects)274 HashMap<mirror::Object*, uint32_t> MatchDirtyObjectPaths(
275 const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
276 auto get_array_element = [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info)
277 REQUIRES_SHARED(Locks::mutator_lock_) -> mirror::Object* {
278 if (!cur_obj->IsObjectArray()) {
279 return nullptr;
280 }
281 int32_t idx = 0;
282 std::from_chars_result idx_parse_res =
283 std::from_chars(ref_info.name.data(), ref_info.name.data() + ref_info.name.size(), idx);
284 if (idx_parse_res.ec != std::errc()) {
285 return nullptr;
286 }
287
288 ObjPtr<ObjectArray<mirror::Object>> array = cur_obj->AsObjectArray<mirror::Object>();
289 if (idx < 0 || idx >= array->GetLength()) {
290 return nullptr;
291 }
292
293 ObjPtr<mirror::Object> next_obj =
294 array->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(idx);
295 if (next_obj == nullptr) {
296 return nullptr;
297 }
298
299 std::string temp;
300 if (next_obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->GetDescriptor(&temp) !=
301 ref_info.type) {
302 return nullptr;
303 }
304 return next_obj.Ptr();
305 };
306 auto get_object_field =
307 [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info)
308 REQUIRES_SHARED(Locks::mutator_lock_) {
309 mirror::Object* next_obj = nullptr;
310 ReferenceFieldVisitor::VisitFunc visit_func =
311 [&](mirror::Object& ref_obj, ArtField& ref_field)
312 REQUIRES_SHARED(Locks::mutator_lock_) {
313 if (ref_field.GetName() == ref_info.name &&
314 ref_field.GetTypeDescriptor() == ref_info.type) {
315 next_obj = &ref_obj;
316 }
317 };
318 ReferenceFieldVisitor visitor(visit_func);
319 cur_obj->VisitReferences</*kVisitNativeRoots=*/false, kVerifyNone, kWithoutReadBarrier>(
320 visitor, visitor);
321
322 return next_obj;
323 };
324
325 HashMap<mirror::Object*, uint32_t> dirty_objects;
326 const HashMap<std::string_view, mirror::Object*> descriptor_to_class =
327 FindClassesByDescriptor(dirty_image_objects);
328 for (const std::string& entry_str : dirty_image_objects) {
329 const std::optional<DirtyEntry> entry = ParseDirtyEntry(entry_str);
330 if (entry == std::nullopt) {
331 continue;
332 }
333
334 auto root_it = descriptor_to_class.find(entry->class_descriptor);
335 if (root_it == descriptor_to_class.end() || root_it->second == nullptr) {
336 LOG(WARNING) << "Class not found: \"" << entry->class_descriptor << "\"";
337 continue;
338 }
339
340 mirror::Object* cur_obj = root_it->second;
341 for (const DirtyEntry::RefInfo& ref_info : entry->reference_path) {
342 if (std::all_of(
343 ref_info.name.begin(), ref_info.name.end(), [](char c) { return std::isdigit(c); })) {
344 cur_obj = get_array_element(cur_obj, ref_info);
345 } else {
346 cur_obj = get_object_field(cur_obj, ref_info);
347 }
348 if (cur_obj == nullptr) {
349 LOG(WARNING) << ART_FORMAT("Failed to find field \"{}:{}\", entry: \"{}\"",
350 ref_info.name,
351 ref_info.type,
352 entry_str);
353 break;
354 }
355 }
356 if (cur_obj == nullptr) {
357 continue;
358 }
359
360 dirty_objects.insert(std::make_pair(cur_obj, entry->sort_key));
361 }
362
363 return dirty_objects;
364 }
365
366 } // namespace
367
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)368 static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
369 Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
370 ClassLinker* class_linker = runtime->GetClassLinker();
371 // The objects used for intrinsics must remain live even if references
372 // to them are removed using reflection. Image roots are not accessible through reflection,
373 // so the array we construct here shall keep them alive.
374 StackHandleScope<1> hs(self);
375 size_t live_objects_size =
376 enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
377 IntrinsicObjects::GetNumberOfIntrinsicObjects();
378 ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
379 mirror::ObjectArray<mirror::Object>::Alloc(
380 self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
381 if (live_objects == nullptr) {
382 return nullptr;
383 }
384 int32_t index = 0u;
385 auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
386 ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
387 DCHECK_EQ(index, enum_cast<int32_t>(entry));
388 live_objects->Set</*kTransacrionActive=*/ false>(index, value);
389 ++index;
390 };
391 set_entry(ImageHeader::kOomeWhenThrowingException,
392 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
393 set_entry(ImageHeader::kOomeWhenThrowingOome,
394 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
395 set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
396 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
397 set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
398 set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
399
400 DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
401 IntrinsicObjects::FillIntrinsicObjects(live_objects, index);
402 return live_objects;
403 }
404
405 template <typename MirrorType>
DecodeGlobalWithoutRB(JavaVMExt * vm,jobject obj)406 ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) {
407 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal);
408 return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj));
409 }
410
411 template <typename MirrorType>
DecodeWeakGlobalWithoutRB(JavaVMExt * vm,Thread * self,jobject obj)412 ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB(
413 JavaVMExt* vm, Thread* self, jobject obj) {
414 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal);
415 DCHECK(vm->MayAccessWeakGlobals(self));
416 return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj));
417 }
418
GetAppClassLoader() const419 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
420 REQUIRES_SHARED(Locks::mutator_lock_) {
421 return compiler_options_.IsAppImage()
422 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
423 : nullptr;
424 }
425
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const426 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
427 // For boot image, we keep all dex caches.
428 if (compiler_options_.IsBootImage()) {
429 return true;
430 }
431 // Dex caches already in the boot image do not belong to the image being written.
432 if (IsInBootImage(dex_cache.Ptr())) {
433 return false;
434 }
435 // Dex caches for the boot class path components that are not part of the boot image
436 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
437 // include them in the app image.
438 if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
439 return false;
440 }
441 return true;
442 }
443
ClearDexFileCookies()444 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
445 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
446 DCHECK(obj != nullptr);
447 Class* klass = obj->GetClass();
448 if (klass == WellKnownClasses::dalvik_system_DexFile) {
449 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
450 // Null out the cookie to enable determinism. b/34090128
451 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
452 }
453 };
454 Runtime::Current()->GetHeap()->VisitObjects(visitor);
455 }
456
PrepareImageAddressSpace(TimingLogger * timings)457 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
458 Thread* const self = Thread::Current();
459
460 gc::Heap* const heap = Runtime::Current()->GetHeap();
461 {
462 ScopedObjectAccess soa(self);
463 {
464 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
465 PruneNonImageClasses(); // Remove junk
466 }
467
468 if (UNLIKELY(!CreateImageRoots())) {
469 self->AssertPendingOOMException();
470 self->ClearException();
471 return false;
472 }
473
474 if (compiler_options_.IsAppImage()) {
475 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
476 // Clear dex file cookies for app images to enable app image determinism. This is required
477 // since the cookie field contains long pointers to DexFiles which are not deterministic.
478 // b/34090128
479 ClearDexFileCookies();
480 }
481 }
482
483 {
484 TimingLogger::ScopedTiming t("CollectGarbage", timings);
485 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
486 }
487
488 if (kIsDebugBuild) {
489 ScopedObjectAccess soa(self);
490 CheckNonImageClassesRemoved();
491 }
492
493 // From this point on, there should be no GC, so we should not use unnecessary read barriers.
494 ScopedDebugDisallowReadBarriers sddrb(self);
495
496 {
497 // All remaining weak interns are referenced. Promote them to strong interns. Whether a
498 // string was strongly or weakly interned, we shall make it strongly interned in the image.
499 TimingLogger::ScopedTiming t("PromoteInterns", timings);
500 ScopedObjectAccess soa(self);
501 PromoteWeakInternsToStrong(self);
502 }
503
504 {
505 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
506 ScopedObjectAccess soa(self);
507 CalculateNewObjectOffsets();
508 }
509
510 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
511 // bin size sums being calculated.
512 TimingLogger::ScopedTiming t("AllocMemory", timings);
513 return AllocMemory();
514 }
515
CopyMetadata()516 void ImageWriter::CopyMetadata() {
517 DCHECK(compiler_options_.IsAppImage());
518 CHECK_EQ(image_infos_.size(), 1u);
519
520 const ImageInfo& image_info = image_infos_.back();
521 dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second;
522
523 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
524 image_info.image_.Begin() +
525 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
526
527 std::copy(image_info.string_reference_offsets_.begin(),
528 image_info.string_reference_offsets_.end(),
529 sfo_section_base);
530 }
531
532 // NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded.
IsStronglyInternedString(ObjPtr<mirror::String> str)533 bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS {
534 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
535 if (hash == 0u && str->ComputeHashCode() != 0) {
536 // A string with uninitialized hash code cannot be interned.
537 return false;
538 }
539 InternTable* intern_table = Runtime::Current()->GetInternTable();
540 for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) {
541 auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash);
542 if (it != table.set_.end()) {
543 return it->Read<kWithoutReadBarrier>() == str;
544 }
545 }
546 return false;
547 }
548
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const549 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
550 return referred_obj != nullptr &&
551 !IsInBootImage(referred_obj.Ptr()) &&
552 referred_obj->IsString() &&
553 IsStronglyInternedString(referred_obj->AsString());
554 }
555
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)556 bool ImageWriter::Write(int image_fd,
557 const std::vector<std::string>& image_filenames,
558 size_t component_count) {
559 // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
560 // image_filenames or oat_filenames.
561 CHECK(!image_filenames.empty());
562 if (image_fd != File::kInvalidFd) {
563 CHECK_EQ(image_filenames.size(), 1u);
564 }
565 DCHECK(!oat_filenames_.empty());
566 CHECK_EQ(image_filenames.size(), oat_filenames_.size());
567
568 Thread* const self = Thread::Current();
569 ScopedDebugDisallowReadBarriers sddrb(self);
570 {
571 ScopedObjectAccess soa(self);
572 for (size_t i = 0; i < oat_filenames_.size(); ++i) {
573 CreateHeader(i, component_count);
574 CopyAndFixupNativeData(i);
575 CopyAndFixupJniStubMethods(i);
576 }
577 }
578
579 {
580 // TODO: heap validation can't handle these fix up passes.
581 ScopedObjectAccess soa(self);
582 Runtime::Current()->GetHeap()->DisableObjectValidation();
583 CopyAndFixupObjects();
584 }
585
586 if (compiler_options_.IsAppImage()) {
587 CopyMetadata();
588 }
589
590 // Primary image header shall be written last for two reasons. First, this ensures
591 // that we shall not end up with a valid primary image and invalid secondary image.
592 // Second, its checksum shall include the checksums of the secondary images (XORed).
593 // This way only the primary image checksum needs to be checked to determine whether
594 // any of the images or oat files are out of date. (Oat file checksums are included
595 // in the image checksum calculation.)
596 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
597 ImageFileGuard primary_image_file;
598 for (size_t i = 0; i < image_filenames.size(); ++i) {
599 const std::string& image_filename = image_filenames[i];
600 ImageInfo& image_info = GetImageInfo(i);
601 ImageFileGuard image_file;
602 if (image_fd != File::kInvalidFd) {
603 // Ignore image_filename, it is supplied only for better diagnostic.
604 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
605 // Empty the file in case it already exists.
606 if (image_file != nullptr) {
607 TEMP_FAILURE_RETRY(image_file->SetLength(0));
608 TEMP_FAILURE_RETRY(image_file->Flush());
609 }
610 } else {
611 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
612 }
613
614 if (image_file == nullptr) {
615 LOG(ERROR) << "Failed to open image file " << image_filename;
616 return false;
617 }
618
619 // Make file world readable if we have created it, i.e. when not passed as file descriptor.
620 if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
621 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
622 return false;
623 }
624
625 // Image data size excludes the bitmap and the header.
626 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
627 std::string error_msg;
628 if (!image_header->WriteData(image_file,
629 image_info.image_.Begin(),
630 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
631 image_storage_mode_,
632 compiler_options_.MaxImageBlockSize(),
633 /* update_checksum= */ true,
634 &error_msg)) {
635 LOG(ERROR) << error_msg;
636 return false;
637 }
638
639 // Write header last in case the compiler gets killed in the middle of image writing.
640 // We do not want to have a corrupted image with a valid header.
641 // Delay the writing of the primary image header until after writing secondary images.
642 if (i == 0u) {
643 primary_image_file = std::move(image_file);
644 } else {
645 if (!image_file.WriteHeaderAndClose(image_filename, image_header, &error_msg)) {
646 LOG(ERROR) << error_msg;
647 return false;
648 }
649 // Update the primary image checksum with the secondary image checksum.
650 primary_header->SetImageChecksum(
651 primary_header->GetImageChecksum() ^ image_header->GetImageChecksum());
652 }
653 }
654 DCHECK(primary_image_file != nullptr);
655 std::string error_msg;
656 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header, &error_msg)) {
657 LOG(ERROR) << error_msg;
658 return false;
659 }
660
661 return true;
662 }
663
GetImageOffset(mirror::Object * object,size_t oat_index) const664 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
665 BinSlot bin_slot = GetImageBinSlot(object, oat_index);
666 const ImageInfo& image_info = GetImageInfo(oat_index);
667 size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
668 DCHECK_LT(offset, image_info.image_end_);
669 return offset;
670 }
671
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)672 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
673 DCHECK(object != nullptr);
674 DCHECK(!IsImageBinSlotAssigned(object));
675
676 // Before we stomp over the lock word, save the hash code for later.
677 LockWord lw(object->GetLockWord(false));
678 switch (lw.GetState()) {
679 case LockWord::kFatLocked:
680 FALLTHROUGH_INTENDED;
681 case LockWord::kThinLocked: {
682 std::ostringstream oss;
683 bool thin = (lw.GetState() == LockWord::kThinLocked);
684 oss << (thin ? "Thin" : "Fat")
685 << " locked object " << object << "(" << object->PrettyTypeOf()
686 << ") found during object copy";
687 if (thin) {
688 oss << ". Lock owner:" << lw.ThinLockOwner();
689 }
690 LOG(FATAL) << oss.str();
691 UNREACHABLE();
692 }
693 case LockWord::kUnlocked:
694 // No hash, don't need to save it.
695 break;
696 case LockWord::kHashCode:
697 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
698 saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
699 break;
700 default:
701 LOG(FATAL) << "UNREACHABLE";
702 UNREACHABLE();
703 }
704 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
705 /*as_volatile=*/ false);
706 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
707 DCHECK(IsImageBinSlotAssigned(object));
708 }
709
GetImageBin(mirror::Object * object)710 ImageWriter::Bin ImageWriter::GetImageBin(mirror::Object* object) {
711 DCHECK(object != nullptr);
712
713 // The magic happens here. We segregate objects into different bins based
714 // on how likely they are to get dirty at runtime.
715 //
716 // Likely-to-dirty objects get packed together into the same bin so that
717 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
718 // maximized.
719 //
720 // This means more pages will stay either clean or shared dirty (with zygote) and
721 // the app will use less of its own (private) memory.
722 Bin bin = Bin::kRegular;
723
724 if (kBinObjects) {
725 //
726 // Changing the bin of an object is purely a memory-use tuning.
727 // It has no change on runtime correctness.
728 //
729 // Memory analysis has determined that the following types of objects get dirtied
730 // the most:
731 //
732 // * Class'es which are verified [their clinit runs only at runtime]
733 // - classes in general [because their static fields get overwritten]
734 // - initialized classes with all-final statics are unlikely to be ever dirty,
735 // so bin them separately
736 // * Art Methods that are:
737 // - native [their native entry point is not looked up until runtime]
738 // - have declaring classes that aren't initialized
739 // [their interpreter/quick entry points are trampolines until the class
740 // becomes initialized]
741 //
742 // We also assume the following objects get dirtied either never or extremely rarely:
743 // * Strings (they are immutable)
744 // * Art methods that aren't native and have initialized declared classes
745 //
746 // We assume that "regular" bin objects are highly unlikely to become dirtied,
747 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
748 //
749 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
750 if (klass->IsStringClass<kVerifyNone>()) {
751 // Assign strings to their bin before checking dirty objects, because
752 // string intern processing expects strings to be in Bin::kString.
753 bin = Bin::kString; // Strings are almost always immutable (except for object header).
754 } else if (dirty_objects_.find(object) != dirty_objects_.end()) {
755 bin = Bin::kKnownDirty;
756 } else if (klass->IsClassClass()) {
757 bin = Bin::kClassVerified;
758 ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>();
759 if (as_klass->IsVisiblyInitialized<kVerifyNone>()) {
760 bin = Bin::kClassInitialized;
761
762 // If the class's static fields are all final, put it into a separate bin
763 // since it's very likely it will stay clean.
764 uint32_t num_static_fields = as_klass->NumStaticFields();
765 if (num_static_fields == 0) {
766 bin = Bin::kClassInitializedFinalStatics;
767 } else {
768 // Maybe all the statics are final?
769 bool all_final = true;
770 for (uint32_t i = 0; i < num_static_fields; ++i) {
771 ArtField* field = as_klass->GetStaticField(i);
772 if (!field->IsFinal()) {
773 all_final = false;
774 break;
775 }
776 }
777
778 if (all_final) {
779 bin = Bin::kClassInitializedFinalStatics;
780 }
781 }
782 }
783 } else if (!klass->HasSuperClass()) {
784 // Only `j.l.Object` and primitive classes lack the superclass and
785 // there are no instances of primitive classes.
786 DCHECK(klass->IsObjectClass());
787 // Instance of java lang object, probably a lock object. This means it will be dirty when we
788 // synchronize on it.
789 bin = Bin::kMiscDirty;
790 } else if (klass->IsDexCacheClass<kVerifyNone>()) {
791 // Dex file field becomes dirty when the image is loaded.
792 bin = Bin::kMiscDirty;
793 }
794 // else bin = kBinRegular
795 }
796
797 return bin;
798 }
799
AssignImageBinSlot(mirror::Object * object,size_t oat_index,Bin bin)800 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
801 DCHECK(object != nullptr);
802 size_t object_size = object->SizeOf();
803
804 // Assign the oat index too.
805 if (IsMultiImage()) {
806 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
807 oat_index_map_.insert(std::make_pair(object, oat_index));
808 } else {
809 DCHECK(oat_index_map_.empty());
810 }
811
812 ImageInfo& image_info = GetImageInfo(oat_index);
813
814 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
815 // How many bytes the current bin is at (aligned).
816 size_t current_offset = image_info.GetBinSlotSize(bin);
817 // Move the current bin size up to accommodate the object we just assigned a bin slot.
818 image_info.IncrementBinSlotSize(bin, offset_delta);
819
820 BinSlot new_bin_slot(bin, current_offset);
821 SetImageBinSlot(object, new_bin_slot);
822
823 image_info.IncrementBinSlotCount(bin, 1u);
824
825 // Grow the image closer to the end by the object we just assigned.
826 image_info.image_end_ += offset_delta;
827 }
828
WillMethodBeDirty(ArtMethod * m) const829 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
830 if (m->IsNative()) {
831 return true;
832 }
833 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>();
834 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
835 return declaring_class == nullptr ||
836 declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
837 }
838
IsImageBinSlotAssigned(mirror::Object * object) const839 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
840 DCHECK(object != nullptr);
841
842 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
843 // If it's in some other state, then we haven't yet assigned an image bin slot.
844 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
845 return false;
846 } else if (kIsDebugBuild) {
847 LockWord lock_word = object->GetLockWord(false);
848 size_t offset = lock_word.ForwardingAddress();
849 BinSlot bin_slot(offset);
850 size_t oat_index = GetOatIndex(object);
851 const ImageInfo& image_info = GetImageInfo(oat_index);
852 DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
853 << "bin slot offset should not exceed the size of that bin";
854 }
855 return true;
856 }
857
GetImageBinSlot(mirror::Object * object,size_t oat_index) const858 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
859 DCHECK(object != nullptr);
860 DCHECK(IsImageBinSlotAssigned(object));
861
862 LockWord lock_word = object->GetLockWord(false);
863 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
864 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
865
866 BinSlot bin_slot(static_cast<uint32_t>(offset));
867 DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
868
869 return bin_slot;
870 }
871
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)872 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
873 size_t oat_index,
874 size_t new_offset) {
875 BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
876 DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
877 BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
878 object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
879 /*as_volatile=*/ false);
880 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
881 DCHECK(IsImageBinSlotAssigned(object));
882 }
883
AllocMemory()884 bool ImageWriter::AllocMemory() {
885 for (ImageInfo& image_info : image_infos_) {
886 const size_t length = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment);
887
888 std::string error_msg;
889 image_info.image_ = MemMap::MapAnonymous("image writer image",
890 length,
891 PROT_READ | PROT_WRITE,
892 /*low_4gb=*/ false,
893 &error_msg);
894 if (UNLIKELY(!image_info.image_.IsValid())) {
895 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
896 return false;
897 }
898
899 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
900 // The covered size is rounded up to kCardSize to match the bitmap size expected by Loader::Init
901 // at art::gc::space::ImageSpace.
902 CHECK_LE(image_info.image_end_, length);
903 image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create("image bitmap",
904 image_info.image_.Begin(),
905 RoundUp(image_info.image_end_, gc::accounting::CardTable::kCardSize));
906 if (!image_info.image_bitmap_.IsValid()) {
907 LOG(ERROR) << "Failed to allocate memory for image bitmap";
908 return false;
909 }
910 }
911 return true;
912 }
913
914 // This visitor follows the references of an instance, recursively then prune this class
915 // if a type of any field is pruned.
916 class ImageWriter::PruneObjectReferenceVisitor {
917 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,HashSet<mirror::Object * > * visited,bool * result)918 PruneObjectReferenceVisitor(ImageWriter* image_writer,
919 bool* early_exit,
920 HashSet<mirror::Object*>* visited,
921 bool* result)
922 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
923
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const924 ALWAYS_INLINE void VisitRootIfNonNull(
925 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
926 REQUIRES_SHARED(Locks::mutator_lock_) {}
927
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const928 ALWAYS_INLINE void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root)
929 const REQUIRES_SHARED(Locks::mutator_lock_) {}
930
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const931 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
932 MemberOffset offset,
933 [[maybe_unused]] bool is_static) const
934 REQUIRES_SHARED(Locks::mutator_lock_) {
935 mirror::Object* ref =
936 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
937 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
938 return;
939 }
940
941 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
942 Runtime::Current()->GetClassLinker()->GetClassRoots();
943 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
944 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
945 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
946 // Prune all classes using reflection because the content they held will not be fixup.
947 *result_ = true;
948 }
949
950 if (ref->IsClass()) {
951 *result_ = *result_ ||
952 image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
953 } else {
954 // Record the object visited in case of circular reference.
955 visited_->insert(ref);
956 *result_ = *result_ ||
957 image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
958 ref->VisitReferences(*this, *this);
959 // Clean up before exit for next call of this function.
960 auto it = visited_->find(ref);
961 DCHECK(it != visited_->end());
962 visited_->erase(it);
963 }
964 }
965
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const966 ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
967 ObjPtr<mirror::Reference> ref) const
968 REQUIRES_SHARED(Locks::mutator_lock_) {
969 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
970 }
971
972 private:
973 ImageWriter* image_writer_;
974 bool* early_exit_;
975 HashSet<mirror::Object*>* visited_;
976 bool* const result_;
977 };
978
979
PruneImageClass(ObjPtr<mirror::Class> klass)980 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
981 bool early_exit = false;
982 HashSet<mirror::Object*> visited;
983 return PruneImageClassInternal(klass, &early_exit, &visited);
984 }
985
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,HashSet<mirror::Object * > * visited)986 bool ImageWriter::PruneImageClassInternal(
987 ObjPtr<mirror::Class> klass,
988 bool* early_exit,
989 HashSet<mirror::Object*>* visited) {
990 DCHECK(early_exit != nullptr);
991 DCHECK(visited != nullptr);
992 DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
993 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
994 return false;
995 }
996 auto found = prune_class_memo_.find(klass.Ptr());
997 if (found != prune_class_memo_.end()) {
998 // Already computed, return the found value.
999 return found->second;
1000 }
1001 // Circular dependencies, return false but do not store the result in the memoization table.
1002 if (visited->find(klass.Ptr()) != visited->end()) {
1003 *early_exit = true;
1004 return false;
1005 }
1006 visited->insert(klass.Ptr());
1007 bool result = klass->IsBootStrapClassLoaded();
1008 std::string temp;
1009 // Prune if not an image class, this handles any broken sets of image classes such as having a
1010 // class in the set but not it's superclass.
1011 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
1012 bool my_early_exit = false; // Only for ourselves, ignore caller.
1013 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
1014 // app image.
1015 if (klass->IsErroneous()) {
1016 result = true;
1017 } else {
1018 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
1019 CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass();
1020 }
1021 if (!result) {
1022 // Check interfaces since these wont be visited through VisitReferences.)
1023 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
1024 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
1025 result = result || PruneImageClassInternal(if_table->GetInterface(i),
1026 &my_early_exit,
1027 visited);
1028 }
1029 }
1030 if (klass->IsObjectArrayClass()) {
1031 result = result || PruneImageClassInternal(klass->GetComponentType(),
1032 &my_early_exit,
1033 visited);
1034 }
1035 // Check static fields and their classes.
1036 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
1037 size_t num_static_fields = klass->NumReferenceStaticFields();
1038 // Presumably GC can happen when we are cross compiling, it should not cause performance
1039 // problems to do pointer size logic.
1040 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
1041 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1042 for (size_t i = 0u; i < num_static_fields; ++i) {
1043 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
1044 if (ref != nullptr) {
1045 if (ref->IsClass()) {
1046 result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
1047 } else {
1048 mirror::Class* type = ref->GetClass();
1049 result = result || PruneImageClassInternal(type, &my_early_exit, visited);
1050 if (!result) {
1051 // For non-class case, also go through all the types mentioned by it's fields'
1052 // references recursively to decide whether to keep this class.
1053 bool tmp = false;
1054 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
1055 ref->VisitReferences(visitor, visitor);
1056 result = result || tmp;
1057 }
1058 }
1059 }
1060 field_offset = MemberOffset(field_offset.Uint32Value() +
1061 sizeof(mirror::HeapReference<mirror::Object>));
1062 }
1063 }
1064 result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
1065 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1066 // are from uses-library if there is no profile. b/30688277
1067 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1068 if (dex_cache != nullptr) {
1069 result = result ||
1070 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1071 }
1072 // Erase the element we stored earlier since we are exiting the function.
1073 auto it = visited->find(klass.Ptr());
1074 DCHECK(it != visited->end());
1075 visited->erase(it);
1076 // Only store result if it is true or none of the calls early exited due to circular
1077 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1078 // a child call and we can remember the result.
1079 if (result == true || !my_early_exit || visited->empty()) {
1080 prune_class_memo_.Overwrite(klass.Ptr(), result);
1081 }
1082 *early_exit |= my_early_exit;
1083 return result;
1084 }
1085
KeepClass(ObjPtr<mirror::Class> klass)1086 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1087 if (klass == nullptr) {
1088 return false;
1089 }
1090 if (IsInBootImage(klass.Ptr())) {
1091 // Already in boot image, return true.
1092 DCHECK(!compiler_options_.IsBootImage());
1093 return true;
1094 }
1095 std::string temp;
1096 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1097 return false;
1098 }
1099 if (compiler_options_.IsAppImage()) {
1100 // For app images, we need to prune classes that
1101 // are defined by the boot class path we're compiling against but not in
1102 // the boot image spaces since these may have already been loaded at
1103 // run time when this image is loaded. Keep classes in the boot image
1104 // spaces we're compiling against since we don't want to re-resolve these.
1105 // FIXME: Update image classes in the `CompilerOptions` after initializing classes
1106 // with `--initialize-app-image-classes=true`. This experimental flag can currently
1107 // cause an inconsistency between `CompilerOptions::IsImageClass()` and what actually
1108 // ends up in the app image as seen in the run-test `660-clinit` where the class
1109 // `ObjectRef` is considered an app image class during compilation but in the end
1110 // it's pruned here. This inconsistency should be fixed if we want to properly
1111 // initialize app image classes. b/38313278
1112 bool keep = !PruneImageClass(klass);
1113 CHECK_IMPLIES(!compiler_options_.InitializeAppImageClasses(), keep)
1114 << klass->PrettyDescriptor();
1115 return keep;
1116 }
1117 return true;
1118 }
1119
1120 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1121 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1122 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1123 : image_writer_(image_writer),
1124 class_loader_(class_loader),
1125 classes_to_prune_(),
1126 defined_class_count_(0u) { }
1127
operator ()(ObjPtr<mirror::Class> klass)1128 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1129 if (!image_writer_->KeepClass(klass.Ptr())) {
1130 classes_to_prune_.insert(klass.Ptr());
1131 if (klass->GetClassLoader() == class_loader_) {
1132 ++defined_class_count_;
1133 }
1134 }
1135 return true;
1136 }
1137
Prune()1138 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1139 ClassTable* class_table =
1140 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1141 WriterMutexLock mu(Thread::Current(), class_table->lock_);
1142 // App class loader class tables contain only one internal set. The boot class path class
1143 // table also contains class sets from boot images we're compiling against but we are not
1144 // pruning these boot image classes, so all classes to remove are in the last set.
1145 DCHECK(!class_table->classes_.empty());
1146 ClassTable::ClassSet& last_class_set = class_table->classes_.back();
1147 for (mirror::Class* klass : classes_to_prune_) {
1148 uint32_t hash = klass->DescriptorHash();
1149 auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash);
1150 DCHECK(it != last_class_set.end());
1151 last_class_set.erase(it);
1152 DCHECK(std::none_of(class_table->classes_.begin(),
1153 class_table->classes_.end(),
1154 [klass, hash](ClassTable::ClassSet& class_set)
1155 REQUIRES_SHARED(Locks::mutator_lock_) {
1156 ClassTable::TableSlot slot(klass, hash);
1157 return class_set.FindWithHash(slot, hash) != class_set.end();
1158 }));
1159 }
1160 return defined_class_count_;
1161 }
1162
1163 private:
1164 ImageWriter* const image_writer_;
1165 const ObjPtr<mirror::ClassLoader> class_loader_;
1166 HashSet<mirror::Class*> classes_to_prune_;
1167 size_t defined_class_count_;
1168 };
1169
1170 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1171 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1172 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1173 : image_writer_(image_writer), removed_class_count_(0) {}
1174
Visit(ObjPtr<mirror::ClassLoader> class_loader)1175 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1176 REQUIRES_SHARED(Locks::mutator_lock_) {
1177 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1178 ClassTable* class_table =
1179 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1180 class_table->Visit(classes_visitor);
1181 removed_class_count_ += classes_visitor.Prune();
1182 }
1183
GetRemovedClassCount() const1184 size_t GetRemovedClassCount() const {
1185 return removed_class_count_;
1186 }
1187
1188 private:
1189 ImageWriter* const image_writer_;
1190 size_t removed_class_count_;
1191 };
1192
VisitClassLoaders(ClassLoaderVisitor * visitor)1193 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1194 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1195 visitor->Visit(nullptr); // Visit boot class loader.
1196 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1197 }
1198
PruneNonImageClasses()1199 void ImageWriter::PruneNonImageClasses() {
1200 Runtime* runtime = Runtime::Current();
1201 ClassLinker* class_linker = runtime->GetClassLinker();
1202 Thread* self = Thread::Current();
1203 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1204
1205 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1206 // sure the other ones don't get unloaded before the OatWriter runs.
1207 class_linker->VisitClassTables(
1208 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1209 table->RemoveStrongRoots(
1210 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1211 ObjPtr<mirror::Object> obj = root.Read();
1212 if (obj->IsDexCache()) {
1213 // Return true if the dex file is not one of the ones in the map.
1214 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1215 dex_file_oat_index_map_.end();
1216 }
1217 // Return false to avoid removing.
1218 return false;
1219 });
1220 });
1221
1222 // Remove the undesired classes from the class roots.
1223 {
1224 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1225 VisitClassLoaders(&class_loader_visitor);
1226 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1227 }
1228
1229 // Completely clear DexCaches.
1230 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1231 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1232 dex_cache->ResetNativeArrays();
1233 }
1234
1235 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1236 class_linker->DropFindArrayClassCache();
1237
1238 // Clear to save RAM.
1239 prune_class_memo_.clear();
1240 }
1241
FindDexCaches(Thread * self)1242 dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1243 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches;
1244 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1245 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1246 dex_caches.reserve(class_linker->GetDexCachesData().size());
1247 for (const auto& entry : class_linker->GetDexCachesData()) {
1248 const ClassLinker::DexCacheData& data = entry.second;
1249 if (self->IsJWeakCleared(data.weak_root)) {
1250 continue;
1251 }
1252 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1253 }
1254 return dex_caches;
1255 }
1256
CheckNonImageClassesRemoved()1257 void ImageWriter::CheckNonImageClassesRemoved() {
1258 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1259 if (obj->IsClass() && !IsInBootImage(obj)) {
1260 ObjPtr<Class> klass = obj->AsClass();
1261 if (!KeepClass(klass)) {
1262 DumpImageClasses();
1263 CHECK(KeepClass(klass))
1264 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1265 }
1266 }
1267 };
1268 gc::Heap* heap = Runtime::Current()->GetHeap();
1269 heap->VisitObjects(visitor);
1270 }
1271
PromoteWeakInternsToStrong(Thread * self)1272 void ImageWriter::PromoteWeakInternsToStrong(Thread* self) {
1273 InternTable* intern_table = Runtime::Current()->GetInternTable();
1274 MutexLock mu(self, *Locks::intern_table_lock_);
1275 DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u);
1276 for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) {
1277 ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>();
1278 DCHECK(!IsStronglyInternedString(s));
1279 uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode());
1280 intern_table->InsertStrong(s, hash);
1281 }
1282 intern_table->weak_interns_.tables_.front().set_.clear();
1283 }
1284
DumpImageClasses()1285 void ImageWriter::DumpImageClasses() {
1286 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1287 LOG(INFO) << " " << image_class;
1288 }
1289 }
1290
CreateImageRoots()1291 bool ImageWriter::CreateImageRoots() {
1292 Runtime* runtime = Runtime::Current();
1293 ClassLinker* class_linker = runtime->GetClassLinker();
1294 Thread* self = Thread::Current();
1295 VariableSizedHandleScope handles(self);
1296
1297 // Prepare boot image live objects if we're compiling a boot image or boot image extension.
1298 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects;
1299 if (compiler_options_.IsBootImage()) {
1300 boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime));
1301 if (boot_image_live_objects == nullptr) {
1302 return false;
1303 }
1304 } else if (compiler_options_.IsBootImageExtension()) {
1305 gc::Heap* heap = runtime->GetHeap();
1306 DCHECK(!heap->GetBootImageSpaces().empty());
1307 const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
1308 boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast(
1309 primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects)));
1310 DCHECK(boot_image_live_objects != nullptr);
1311 }
1312
1313 // Collect dex caches and the sizes of dex cache arrays.
1314 struct DexCacheRecord {
1315 uint64_t registration_index;
1316 Handle<mirror::DexCache> dex_cache;
1317 size_t oat_index;
1318 };
1319 size_t num_oat_files = oat_filenames_.size();
1320 dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u);
1321 dchecked_vector<DexCacheRecord> dex_cache_records;
1322 dex_cache_records.reserve(dex_file_oat_index_map_.size());
1323 {
1324 ReaderMutexLock mu(self, *Locks::dex_lock_);
1325 // Count number of dex caches not in the boot image.
1326 for (const auto& entry : class_linker->GetDexCachesData()) {
1327 const ClassLinker::DexCacheData& data = entry.second;
1328 ObjPtr<mirror::DexCache> dex_cache =
1329 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1330 if (dex_cache == nullptr) {
1331 continue;
1332 }
1333 const DexFile* dex_file = dex_cache->GetDexFile();
1334 auto it = dex_file_oat_index_map_.find(dex_file);
1335 if (it != dex_file_oat_index_map_.end()) {
1336 size_t oat_index = it->second;
1337 DCHECK(IsImageDexCache(dex_cache));
1338 ++dex_cache_counts[oat_index];
1339 Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache);
1340 dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index});
1341 }
1342 }
1343 }
1344
1345 // Allocate dex cache arrays.
1346 dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays;
1347 dex_cache_arrays.reserve(num_oat_files);
1348 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1349 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1350 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]);
1351 if (dex_caches == nullptr) {
1352 return false;
1353 }
1354 dex_cache_counts[oat_index] = 0u; // Reset count for filling in dex caches below.
1355 dex_cache_arrays.push_back(handles.NewHandle(dex_caches));
1356 }
1357
1358 // Sort dex caches by registration index to make output deterministic.
1359 std::sort(dex_cache_records.begin(),
1360 dex_cache_records.end(),
1361 [](const DexCacheRecord& lhs, const DexCacheRecord&rhs) {
1362 return lhs.registration_index < rhs.registration_index;
1363 });
1364
1365 // Fill dex cache arrays.
1366 for (const DexCacheRecord& record : dex_cache_records) {
1367 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get();
1368 dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>(
1369 dex_cache_counts[record.oat_index], record.dex_cache.Get());
1370 ++dex_cache_counts[record.oat_index];
1371 }
1372
1373 // Create image roots with empty dex cache arrays.
1374 image_roots_.reserve(num_oat_files);
1375 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1376 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1377 // Build an Object[] of the roots needed to restore the runtime.
1378 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1379 ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc(
1380 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size);
1381 if (image_roots == nullptr) {
1382 return false;
1383 }
1384 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get();
1385 CHECK_EQ(dex_cache_counts[oat_index],
1386 dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>()))
1387 << "The number of non-image dex caches changed.";
1388 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1389 ImageHeader::kDexCaches, dex_caches);
1390 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1391 ImageHeader::kClassRoots, class_linker->GetClassRoots());
1392 if (!compiler_options_.IsAppImage()) {
1393 DCHECK(boot_image_live_objects != nullptr);
1394 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1395 ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1396 } else {
1397 DCHECK(boot_image_live_objects.GetReference() == nullptr);
1398 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1399 ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1400 }
1401 for (int32_t i = 0; i != image_roots_size; ++i) {
1402 CHECK(image_roots->Get(i) != nullptr);
1403 }
1404 image_roots_.push_back(vm->AddGlobalRef(self, image_roots));
1405 }
1406
1407 return true;
1408 }
1409
RecordNativeRelocations(ObjPtr<mirror::Class> klass,size_t oat_index)1410 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
1411 // Visit and assign offsets for fields and field arrays.
1412 DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
1413 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1414 if (compiler_options_.IsAppImage()) {
1415 // Extra consistency check: no boot loader classes should be left!
1416 CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass();
1417 }
1418 LengthPrefixedArray<ArtField>* fields[] = {
1419 klass->GetSFieldsPtr(), klass->GetIFieldsPtr(),
1420 };
1421 ImageInfo& image_info = GetImageInfo(oat_index);
1422 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1423 // Total array length including header.
1424 if (cur_fields != nullptr) {
1425 // Forward the entire array at once.
1426 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1427 DCHECK(!IsInBootImage(cur_fields));
1428 bool inserted =
1429 native_object_relocations_.insert(std::make_pair(
1430 cur_fields,
1431 NativeObjectRelocation{
1432 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1433 })).second;
1434 CHECK(inserted) << "Field array " << cur_fields << " already forwarded";
1435 const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size());
1436 offset += size;
1437 image_info.IncrementBinSlotSize(Bin::kArtField, size);
1438 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1439 }
1440 }
1441 // Visit and assign offsets for methods.
1442 size_t num_methods = klass->NumMethods();
1443 if (num_methods != 0) {
1444 bool any_dirty = false;
1445 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1446 if (WillMethodBeDirty(&m)) {
1447 any_dirty = true;
1448 break;
1449 }
1450 }
1451 NativeObjectRelocationType type = any_dirty
1452 ? NativeObjectRelocationType::kArtMethodDirty
1453 : NativeObjectRelocationType::kArtMethodClean;
1454 Bin bin_type = BinTypeForNativeRelocationType(type);
1455 // Forward the entire array at once, but header first.
1456 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1457 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1458 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1459 method_size,
1460 method_alignment);
1461 LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
1462 size_t offset = image_info.GetBinSlotSize(bin_type);
1463 DCHECK(!IsInBootImage(array));
1464 bool inserted =
1465 native_object_relocations_.insert(std::make_pair(
1466 array,
1467 NativeObjectRelocation{
1468 oat_index,
1469 offset,
1470 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1471 : NativeObjectRelocationType::kArtMethodArrayClean
1472 })).second;
1473 CHECK(inserted) << "Method array " << array << " already forwarded";
1474 image_info.IncrementBinSlotSize(bin_type, header_size);
1475 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1476 AssignMethodOffset(&m, type, oat_index);
1477 }
1478 // Only write JNI stub methods in boot images, but not in boot image extensions and app images.
1479 // And the write only happens in non-debuggable since we never use AOT code for debuggable.
1480 if (compiler_options_.IsBootImage() &&
1481 compiler_options_.IsJniCompilationEnabled() &&
1482 !compiler_options_.GetDebuggable()) {
1483 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1484 if (m.IsNative() && !m.IsIntrinsic()) {
1485 AssignJniStubMethodOffset(&m, oat_index);
1486 }
1487 }
1488 }
1489 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1490 }
1491 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1492 // live.
1493 if (klass->ShouldHaveImt()) {
1494 ImTable* imt = klass->GetImt(target_ptr_size_);
1495 if (TryAssignImTableOffset(imt, oat_index)) {
1496 // Since imt's can be shared only do this the first time to not double count imt method
1497 // fixups.
1498 for (size_t i = 0; i < ImTable::kSize; ++i) {
1499 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1500 DCHECK(imt_method != nullptr);
1501 if (imt_method->IsRuntimeMethod() &&
1502 !IsInBootImage(imt_method) &&
1503 !NativeRelocationAssigned(imt_method)) {
1504 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1505 }
1506 }
1507 }
1508 }
1509 }
1510
NativeRelocationAssigned(void * ptr) const1511 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1512 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1513 }
1514
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1515 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1516 // No offset, or already assigned.
1517 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1518 return false;
1519 }
1520 // If the method is a conflict method we also want to assign the conflict table offset.
1521 ImageInfo& image_info = GetImageInfo(oat_index);
1522 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1523 native_object_relocations_.insert(std::make_pair(
1524 imt,
1525 NativeObjectRelocation{
1526 oat_index,
1527 image_info.GetBinSlotSize(Bin::kImTable),
1528 NativeObjectRelocationType::kIMTable
1529 }));
1530 image_info.IncrementBinSlotSize(Bin::kImTable, size);
1531 return true;
1532 }
1533
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1534 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1535 // No offset, or already assigned.
1536 if (table == nullptr || NativeRelocationAssigned(table)) {
1537 return;
1538 }
1539 CHECK(!IsInBootImage(table));
1540 // If the method is a conflict method we also want to assign the conflict table offset.
1541 ImageInfo& image_info = GetImageInfo(oat_index);
1542 const size_t size = table->ComputeSize(target_ptr_size_);
1543 native_object_relocations_.insert(std::make_pair(
1544 table,
1545 NativeObjectRelocation{
1546 oat_index,
1547 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1548 NativeObjectRelocationType::kIMTConflictTable
1549 }));
1550 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1551 }
1552
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1553 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1554 NativeObjectRelocationType type,
1555 size_t oat_index) {
1556 DCHECK(!IsInBootImage(method));
1557 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1558 << ArtMethod::PrettyMethod(method);
1559 if (method->IsRuntimeMethod()) {
1560 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1561 }
1562 ImageInfo& image_info = GetImageInfo(oat_index);
1563 Bin bin_type = BinTypeForNativeRelocationType(type);
1564 size_t offset = image_info.GetBinSlotSize(bin_type);
1565 native_object_relocations_.insert(
1566 std::make_pair(method, NativeObjectRelocation{oat_index, offset, type}));
1567 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1568 }
1569
AssignJniStubMethodOffset(ArtMethod * method,size_t oat_index)1570 void ImageWriter::AssignJniStubMethodOffset(ArtMethod* method, size_t oat_index) {
1571 CHECK(method->IsNative());
1572 auto it = jni_stub_map_.find(JniStubKey(method));
1573 if (it == jni_stub_map_.end()) {
1574 ImageInfo& image_info = GetImageInfo(oat_index);
1575 constexpr Bin bin_type = Bin::kJniStubMethod;
1576 size_t offset = image_info.GetBinSlotSize(bin_type);
1577 jni_stub_map_.Put(std::make_pair(
1578 JniStubKey(method),
1579 std::make_pair(method, JniStubMethodRelocation{oat_index, offset})));
1580 image_info.IncrementBinSlotSize(bin_type, static_cast<size_t>(target_ptr_size_));
1581 }
1582 }
1583
1584 class ImageWriter::LayoutHelper {
1585 public:
LayoutHelper(ImageWriter * image_writer)1586 explicit LayoutHelper(ImageWriter* image_writer)
1587 : image_writer_(image_writer) {
1588 bin_objects_.resize(image_writer_->image_infos_.size());
1589 for (auto& inner : bin_objects_) {
1590 inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1591 }
1592 }
1593
1594 void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1595 void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1596 void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
1597 // Recreate dirty object offsets (kKnownDirty bin) with objects sorted by sort_key.
1598 void SortDirtyObjects(const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index)
1599 REQUIRES_SHARED(Locks::mutator_lock_);
1600
1601 void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1602
1603 void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1604
1605 /*
1606 * Collects the string reference info necessary for loading app images.
1607 *
1608 * Because AppImages may contain interned strings that must be deduplicated
1609 * with previously interned strings when loading the app image, we need to
1610 * visit references to these strings and update them to point to the correct
1611 * string. To speed up the visiting of references at load time we include
1612 * a list of offsets to string references in the AppImage.
1613 */
1614 void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
1615
1616 private:
1617 class CollectClassesVisitor;
1618 class CollectStringReferenceVisitor;
1619 class VisitReferencesVisitor;
1620
1621 void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1622 void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1623
1624 using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1625
1626 void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1627 REQUIRES_SHARED(Locks::mutator_lock_);
1628 bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1629 REQUIRES_SHARED(Locks::mutator_lock_);
1630 ImageWriter::Bin AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index)
1631 REQUIRES_SHARED(Locks::mutator_lock_);
1632 void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin)
1633 REQUIRES_SHARED(Locks::mutator_lock_);
1634
1635 ImageWriter* const image_writer_;
1636
1637 // Work list of <object, oat_index> for objects. Everything in the queue must already be
1638 // assigned a bin slot.
1639 WorkQueue work_queue_;
1640
1641 // Objects for individual bins. Indexed by `oat_index` and `bin`.
1642 // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1643 dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1644
1645 // Interns that do not have a corresponding StringId in any of the input dex files.
1646 // These shall be assigned to individual images based on the `oat_index` that we
1647 // see as we visit them during the work queue processing.
1648 dchecked_vector<mirror::String*> non_dex_file_interns_;
1649 };
1650
1651 class ImageWriter::LayoutHelper::CollectClassesVisitor {
1652 public:
CollectClassesVisitor(ImageWriter * image_writer)1653 explicit CollectClassesVisitor(ImageWriter* image_writer)
1654 : image_writer_(image_writer),
1655 dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1656
operator ()(ObjPtr<mirror::Class> klass)1657 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1658 if (!image_writer_->IsInBootImage(klass.Ptr())) {
1659 ObjPtr<mirror::Class> component_type = klass;
1660 size_t dimension = 0u;
1661 while (component_type->IsArrayClass<kVerifyNone>()) {
1662 ++dimension;
1663 component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
1664 }
1665 DCHECK(!component_type->IsProxyClass());
1666 size_t dex_file_index;
1667 uint32_t class_def_index = 0u;
1668 if (UNLIKELY(component_type->IsPrimitive())) {
1669 DCHECK(image_writer_->compiler_options_.IsBootImage());
1670 dex_file_index = 0u;
1671 class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1672 } else {
1673 auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1674 DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1675 dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
1676 class_def_index = component_type->GetDexClassDefIndex();
1677 }
1678 klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1679 }
1680 return true;
1681 }
1682
ProcessCollectedClasses(Thread * self)1683 WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
1684 std::sort(klasses_.begin(), klasses_.end());
1685
1686 ImageWriter* image_writer = image_writer_;
1687 WorkQueue work_queue;
1688 size_t last_dex_file_index = static_cast<size_t>(-1);
1689 size_t last_oat_index = static_cast<size_t>(-1);
1690 for (const ClassEntry& entry : klasses_) {
1691 if (last_dex_file_index != entry.dex_file_index) {
1692 if (UNLIKELY(entry.dex_file_index == 0u)) {
1693 last_oat_index = GetDefaultOatIndex(); // Primitive type.
1694 } else {
1695 uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
1696 last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1697 }
1698 last_dex_file_index = entry.dex_file_index;
1699 }
1700 // Count the number of classes for class tables.
1701 image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
1702 work_queue.emplace_back(entry.klass, last_oat_index);
1703 }
1704 klasses_.clear();
1705
1706 // Prepare image class tables.
1707 dchecked_vector<mirror::Class*> boot_image_classes;
1708 if (image_writer->compiler_options_.IsAppImage()) {
1709 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1710 ImageInfo& image_info = image_writer->image_infos_[0];
1711 // Log the non-boot image class count for app image for debugging purposes.
1712 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
1713 // Collect boot image classes referenced by app class loader's class table.
1714 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1715 auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>(
1716 vm, image_writer->app_class_loader_);
1717 ClassTable* app_class_table = app_class_loader->GetClassTable();
1718 if (app_class_table != nullptr) {
1719 ReaderMutexLock lock(self, app_class_table->lock_);
1720 DCHECK_EQ(app_class_table->classes_.size(), 1u);
1721 const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
1722 DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
1723 boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
1724 for (const ClassTable::TableSlot& slot : app_class_set) {
1725 mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
1726 if (image_writer->IsInBootImage(klass)) {
1727 boot_image_classes.push_back(klass);
1728 }
1729 }
1730 DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
1731 // Increase the app class table size to include referenced boot image classes.
1732 image_info.class_table_size_ = app_class_set.size();
1733 }
1734 }
1735 for (ImageInfo& image_info : image_writer->image_infos_) {
1736 if (image_info.class_table_size_ != 0u) {
1737 // Make sure the class table shall be full by allocating a buffer of the right size.
1738 size_t buffer_size = static_cast<size_t>(
1739 ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
1740 image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
1741 DCHECK(image_info.class_table_buffer_ != nullptr);
1742 image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
1743 kImageClassTableMaxLoadFactor,
1744 image_info.class_table_buffer_.get(),
1745 buffer_size);
1746 }
1747 }
1748 for (const auto& pair : work_queue) {
1749 ObjPtr<mirror::Class> klass = pair.first->AsClass();
1750 size_t oat_index = pair.second;
1751 DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
1752 ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
1753 uint32_t hash = klass->DescriptorHash();
1754 bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1755 DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
1756 << " (" << klass.Ptr() << ") already inserted";
1757 }
1758 if (image_writer->compiler_options_.IsAppImage()) {
1759 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1760 ImageInfo& image_info = image_writer->image_infos_[0];
1761 if (image_info.class_table_size_ != 0u) {
1762 // Insert boot image class references to the app class table.
1763 // The order of insertion into the app class loader's ClassTable is non-deterministic,
1764 // so sort the boot image classes by the boot image address to get deterministic table.
1765 std::sort(boot_image_classes.begin(), boot_image_classes.end());
1766 DCHECK(image_info.class_table_.has_value());
1767 ClassTable::ClassSet& table = *image_info.class_table_;
1768 for (mirror::Class* klass : boot_image_classes) {
1769 uint32_t hash = klass->DescriptorHash();
1770 bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1771 DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
1772 << " (" << klass << ") already inserted";
1773 }
1774 DCHECK_EQ(table.size(), image_info.class_table_size_);
1775 }
1776 }
1777 for (ImageInfo& image_info : image_writer->image_infos_) {
1778 DCHECK_EQ(image_info.class_table_bytes_, 0u);
1779 if (image_info.class_table_size_ != 0u) {
1780 DCHECK(image_info.class_table_.has_value());
1781 DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
1782 image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
1783 DCHECK_NE(image_info.class_table_bytes_, 0u);
1784 } else {
1785 DCHECK(!image_info.class_table_.has_value());
1786 }
1787 }
1788
1789 return work_queue;
1790 }
1791
1792 private:
1793 struct ClassEntry {
1794 ObjPtr<mirror::Class> klass;
1795 // We shall sort classes by dex file, class def index and array dimension.
1796 size_t dex_file_index;
1797 uint32_t class_def_index;
1798 size_t dimension;
1799
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1800 bool operator<(const ClassEntry& other) const {
1801 return std::tie(dex_file_index, class_def_index, dimension) <
1802 std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1803 }
1804 };
1805
1806 ImageWriter* const image_writer_;
1807 const ArrayRef<const DexFile* const> dex_files_;
1808 std::deque<ClassEntry> klasses_;
1809 };
1810
1811 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1812 public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,dchecked_vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1813 explicit CollectStringReferenceVisitor(
1814 const ImageWriter* image_writer,
1815 size_t oat_index,
1816 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1817 ObjPtr<mirror::Object> current_obj)
1818 : image_writer_(image_writer),
1819 oat_index_(oat_index),
1820 string_reference_offsets_(string_reference_offsets),
1821 current_obj_(current_obj) {}
1822
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1823 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1824 REQUIRES_SHARED(Locks::mutator_lock_) {
1825 if (!root->IsNull()) {
1826 VisitRoot(root);
1827 }
1828 }
1829
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1830 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1831 REQUIRES_SHARED(Locks::mutator_lock_) {
1832 // Only dex caches have native String roots. These are collected separately.
1833 DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) ||
1834 !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1835 << mirror::Object::PrettyTypeOf(current_obj_);
1836 }
1837
1838 // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static) const1839 void operator()(ObjPtr<mirror::Object> obj,
1840 MemberOffset member_offset,
1841 [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
1842 ObjPtr<mirror::Object> referred_obj =
1843 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1844
1845 if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1846 size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1847 string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1848 }
1849 }
1850
1851 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1852 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1853 REQUIRES_SHARED(Locks::mutator_lock_) {
1854 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1855 }
1856
1857 private:
1858 const ImageWriter* const image_writer_;
1859 const size_t oat_index_;
1860 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1861 const ObjPtr<mirror::Object> current_obj_;
1862 };
1863
1864 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1865 public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1866 VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1867 : helper_(helper), oat_index_(oat_index) {}
1868
1869 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1870 void VisitRootIfNonNull(
1871 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1872 LOG(FATAL) << "UNREACHABLE";
1873 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1874 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1875 LOG(FATAL) << "UNREACHABLE";
1876 }
1877
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1878 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1879 MemberOffset offset,
1880 [[maybe_unused]] bool is_static) const
1881 REQUIRES_SHARED(Locks::mutator_lock_) {
1882 mirror::Object* ref =
1883 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1884 VisitReference(ref);
1885 }
1886
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1887 ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
1888 ObjPtr<mirror::Reference> ref) const
1889 REQUIRES_SHARED(Locks::mutator_lock_) {
1890 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1891 }
1892
1893 private:
VisitReference(mirror::Object * ref) const1894 void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1895 if (helper_->TryAssignBinSlot(ref, oat_index_)) {
1896 // Remember how many objects we're adding at the front of the queue as we want
1897 // to reverse that range to process these references in the order of addition.
1898 helper_->work_queue_.emplace_front(ref, oat_index_);
1899 }
1900 if (ClassLinker::kAppImageMayContainStrings &&
1901 helper_->image_writer_->compiler_options_.IsAppImage() &&
1902 helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
1903 helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
1904 }
1905 }
1906
1907 LayoutHelper* const helper_;
1908 const size_t oat_index_;
1909 };
1910
1911 // Visit method pointer arrays in `klass` that were not inherited from its superclass.
1912 template <typename Visitor>
VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass,Visitor && visitor)1913 static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
1914 REQUIRES_SHARED(Locks::mutator_lock_) {
1915 ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1916 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1917 if (vtable != nullptr &&
1918 (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
1919 visitor(vtable);
1920 }
1921 int32_t iftable_count = klass->GetIfTableCount();
1922 int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
1923 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1924 ObjPtr<mirror::IfTable> super_iftable =
1925 (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
1926 for (int32_t i = 0; i < iftable_count; ++i) {
1927 ObjPtr<mirror::PointerArray> methods =
1928 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1929 ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
1930 ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
1931 : nullptr;
1932 if (methods != super_methods) {
1933 DCHECK(methods != nullptr);
1934 if (i < super_iftable_count) {
1935 DCHECK(super_methods != nullptr);
1936 DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
1937 }
1938 visitor(methods);
1939 }
1940 }
1941 }
1942
ProcessDexFileObjects(Thread * self)1943 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
1944 Runtime* runtime = Runtime::Current();
1945 ClassLinker* class_linker = runtime->GetClassLinker();
1946 const CompilerOptions& compiler_options = image_writer_->compiler_options_;
1947 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1948
1949 // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
1950 // Note: If we decide to implement a profile-guided layout, this is the place to do so.
1951
1952 // Get initial work queue with the image classes and assign their bin slots.
1953 CollectClassesVisitor visitor(image_writer_);
1954 {
1955 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1956 if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1957 // No need to filter based on class loader, boot class table contains only
1958 // classes defined by the boot class loader.
1959 ClassTable* class_table = class_linker->boot_class_table_.get();
1960 class_table->Visit<kWithoutReadBarrier>(visitor);
1961 } else {
1962 // No need to visit boot class table as there are no classes there for the app image.
1963 for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) {
1964 auto class_loader =
1965 DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root);
1966 if (class_loader != nullptr) {
1967 ClassTable* class_table = class_loader->GetClassTable();
1968 if (class_table != nullptr) {
1969 // Visit only classes defined in this class loader (avoid visiting multiple times).
1970 auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass)
1971 REQUIRES_SHARED(Locks::mutator_lock_) {
1972 if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) {
1973 visitor(klass);
1974 }
1975 return true;
1976 };
1977 class_table->Visit<kWithoutReadBarrier>(filtering_visitor);
1978 }
1979 }
1980 }
1981 }
1982 }
1983 DCHECK(work_queue_.empty());
1984 work_queue_ = visitor.ProcessCollectedClasses(self);
1985 for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
1986 DCHECK(entry.first != nullptr);
1987 ObjPtr<mirror::Class> klass = entry.first->AsClass();
1988 size_t oat_index = entry.second;
1989 image_writer_->RecordNativeRelocations(klass, oat_index);
1990 AssignImageBinSlot(klass.Ptr(), oat_index);
1991
1992 auto method_pointer_array_visitor =
1993 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
1994 constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1995 AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
1996 // No need to add to the work queue. The class reference, if not in the boot image
1997 // (that is, when compiling the primary boot image), is already in the work queue.
1998 };
1999 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
2000 }
2001
2002 // Assign bin slots to dex caches.
2003 {
2004 ReaderMutexLock mu(self, *Locks::dex_lock_);
2005 for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) {
2006 auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
2007 DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2008 const size_t oat_index = it->second;
2009 // Assign bin slot to this file's dex cache and add it to the end of the work queue.
2010 auto dcd_it = class_linker->GetDexCachesData().find(dex_file);
2011 DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation();
2012 auto dex_cache =
2013 DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root);
2014 DCHECK(dex_cache != nullptr);
2015 bool assigned = TryAssignBinSlot(dex_cache, oat_index);
2016 DCHECK(assigned);
2017 work_queue_.emplace_back(dex_cache, oat_index);
2018 }
2019 }
2020
2021 // Assign interns to images depending on the first dex file they appear in.
2022 // Record those that do not have a StringId in any dex file.
2023 ProcessInterns(self);
2024
2025 // Since classes and dex caches have been assigned to their bins, when we process a class
2026 // we do not follow through the class references or dex caches, so we correctly process
2027 // only objects actually belonging to that class before taking a new class from the queue.
2028 // If multiple class statics reference the same object (directly or indirectly), the object
2029 // is treated as belonging to the first encountered referencing class.
2030 ProcessWorkQueue();
2031 }
2032
ProcessRoots(Thread * self)2033 void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) {
2034 // Assign bin slots to the image roots and boot image live objects, add them to the work queue
2035 // and process the work queue. These objects reference other objects needed for the image, for
2036 // example the array of dex cache references, or the pre-allocated exceptions for the boot image.
2037 DCHECK(work_queue_.empty());
2038
2039 constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
2040 size_t num_oat_files = image_writer_->oat_filenames_.size();
2041 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2042 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
2043 // Put image roots and dex caches into `clean_bin`.
2044 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2045 vm, image_writer_->image_roots_[oat_index]);
2046 AssignImageBinSlot(image_roots, oat_index, clean_bin);
2047 work_queue_.emplace_back(image_roots, oat_index);
2048 // Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin.
2049 ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast(
2050 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches));
2051 AssignImageBinSlot(dex_caches, oat_index, clean_bin);
2052 work_queue_.emplace_back(dex_caches, oat_index);
2053 }
2054 // Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin.
2055 if (image_writer_->compiler_options_.IsBootImage()) {
2056 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
2057 image_writer_->boot_image_live_objects_;
2058 AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin);
2059 work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex());
2060 }
2061
2062 ProcessWorkQueue();
2063 }
2064
ProcessInterns(Thread * self)2065 void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
2066 // String bins are empty at this point.
2067 DCHECK(std::all_of(bin_objects_.begin(),
2068 bin_objects_.end(),
2069 [](const auto& bins) {
2070 return bins[enum_cast<size_t>(Bin::kString)].empty();
2071 }));
2072
2073 // There is only one non-boot image intern table and it's the last one.
2074 InternTable* const intern_table = Runtime::Current()->GetInternTable();
2075 MutexLock mu(self, *Locks::intern_table_lock_);
2076 DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
2077 intern_table->strong_interns_.tables_.end(),
2078 [](const InternTable::Table::InternalTable& table) {
2079 return !table.IsBootImage();
2080 }),
2081 1);
2082 DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
2083 const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
2084
2085 // Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
2086 ImageWriter* image_writer = image_writer_;
2087 for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
2088 auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
2089 DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2090 const size_t oat_index = it->second;
2091 // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
2092 for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
2093 uint32_t utf16_length;
2094 const char* utf8_data = dex_file->GetStringDataAndUtf16Length(dex::StringIndex(i),
2095 &utf16_length);
2096 uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data);
2097 auto intern_it =
2098 intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash);
2099 if (intern_it != intern_set.end()) {
2100 mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
2101 DCHECK(string != nullptr);
2102 DCHECK(!image_writer->IsInBootImage(string));
2103 if (!image_writer->IsImageBinSlotAssigned(string)) {
2104 Bin bin = AssignImageBinSlot(string, oat_index);
2105 DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular);
2106 } else {
2107 // We have already seen this string in a previous dex file.
2108 DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
2109 }
2110 }
2111 }
2112 }
2113
2114 // String bins have been filled with dex file interns. Record their numbers in image infos.
2115 DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
2116 size_t total_dex_file_interns = 0u;
2117 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2118 size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
2119 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
2120 DCHECK_EQ(image_info.intern_table_size_, 0u);
2121 image_info.intern_table_size_ = num_dex_file_interns;
2122 total_dex_file_interns += num_dex_file_interns;
2123 }
2124
2125 // Collect interns that do not have a corresponding StringId in any of the input dex files.
2126 non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
2127 for (const GcRoot<mirror::String>& root : intern_set) {
2128 mirror::String* string = root.Read<kWithoutReadBarrier>();
2129 if (!image_writer->IsImageBinSlotAssigned(string)) {
2130 non_dex_file_interns_.push_back(string);
2131 }
2132 }
2133 DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
2134 }
2135
FinalizeInternTables()2136 void ImageWriter::LayoutHelper::FinalizeInternTables() {
2137 // Remove interns that do not have a bin slot assigned. These correspond
2138 // to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
2139 ImageWriter* image_writer = image_writer_;
2140 auto retained_end = std::remove_if(
2141 non_dex_file_interns_.begin(),
2142 non_dex_file_interns_.end(),
2143 [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
2144 return !image_writer->IsImageBinSlotAssigned(string);
2145 });
2146 non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
2147
2148 // Sort `non_dex_file_interns_` based on oat index and bin offset.
2149 ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
2150 std::sort(non_dex_file_interns.begin(),
2151 non_dex_file_interns.end(),
2152 [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
2153 size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
2154 size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
2155 if (lhs_oat_index != rhs_oat_index) {
2156 return lhs_oat_index < rhs_oat_index;
2157 }
2158 BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
2159 BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
2160 return lhs_bin_slot < rhs_bin_slot;
2161 });
2162
2163 // Allocate and fill intern tables.
2164 size_t ndfi_index = 0u;
2165 DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
2166 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2167 // Find the end of `non_dex_file_interns` for this oat file.
2168 size_t ndfi_end = ndfi_index;
2169 while (ndfi_end != non_dex_file_interns.size() &&
2170 image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
2171 ++ndfi_end;
2172 }
2173
2174 // Calculate final intern table size.
2175 ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
2176 DCHECK_EQ(image_info.intern_table_bytes_, 0u);
2177 size_t num_dex_file_interns = image_info.intern_table_size_;
2178 size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
2179 image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
2180 if (image_info.intern_table_size_ != 0u) {
2181 // Make sure the intern table shall be full by allocating a buffer of the right size.
2182 size_t buffer_size = static_cast<size_t>(
2183 ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
2184 image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
2185 DCHECK(image_info.intern_table_buffer_ != nullptr);
2186 image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
2187 kImageInternTableMaxLoadFactor,
2188 image_info.intern_table_buffer_.get(),
2189 buffer_size);
2190
2191 // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
2192 InternTable::UnorderedSet& table = *image_info.intern_table_;
2193 const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
2194 DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
2195 ArrayRef<mirror::Object* const> dex_file_interns(
2196 oat_file_strings.data(), num_dex_file_interns);
2197 for (mirror::Object* string : dex_file_interns) {
2198 bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
2199 DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
2200 }
2201 ArrayRef<mirror::String*> current_non_dex_file_interns =
2202 non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
2203 for (mirror::String* string : current_non_dex_file_interns) {
2204 bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
2205 DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
2206 }
2207
2208 // Record the intern table size in bytes.
2209 image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
2210 }
2211
2212 ndfi_index = ndfi_end;
2213 }
2214 }
2215
ProcessWorkQueue()2216 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
2217 while (!work_queue_.empty()) {
2218 std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
2219 work_queue_.pop_front();
2220 VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
2221 }
2222 }
2223
SortDirtyObjects(const HashMap<mirror::Object *,uint32_t> & dirty_objects,size_t oat_index)2224 void ImageWriter::LayoutHelper::SortDirtyObjects(
2225 const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) {
2226 constexpr Bin bin = Bin::kKnownDirty;
2227 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
2228
2229 dchecked_vector<mirror::Object*>& known_dirty = bin_objects_[oat_index][enum_cast<size_t>(bin)];
2230 if (known_dirty.empty()) {
2231 return;
2232 }
2233
2234 // Collect objects and their combined sort_keys.
2235 // Combined key contains sort_key and original offset to ensure deterministic sorting.
2236 using CombinedKey = std::pair<uint32_t, uint32_t>;
2237 using ObjSortPair = std::pair<mirror::Object*, CombinedKey>;
2238 dchecked_vector<ObjSortPair> objects;
2239 objects.reserve(known_dirty.size());
2240 for (mirror::Object* obj : known_dirty) {
2241 const BinSlot bin_slot = image_writer_->GetImageBinSlot(obj, oat_index);
2242 const uint32_t original_offset = bin_slot.GetOffset();
2243 const auto it = dirty_objects.find(obj);
2244 const uint32_t sort_key = (it != dirty_objects.end()) ? it->second : 0;
2245 objects.emplace_back(obj, std::make_pair(sort_key, original_offset));
2246 }
2247 // Sort by combined sort_key.
2248 std::sort(std::begin(objects), std::end(objects), [&](ObjSortPair& lhs, ObjSortPair& rhs) {
2249 return lhs.second < rhs.second;
2250 });
2251
2252 // Fill known_dirty objects in sorted order, update bin offsets.
2253 known_dirty.clear();
2254 size_t offset = 0;
2255 for (const ObjSortPair& entry : objects) {
2256 mirror::Object* obj = entry.first;
2257
2258 known_dirty.push_back(obj);
2259 image_writer_->UpdateImageBinSlotOffset(obj, oat_index, offset);
2260
2261 const size_t aligned_object_size = RoundUp(obj->SizeOf<kVerifyNone>(), kObjectAlignment);
2262 offset += aligned_object_size;
2263 }
2264 DCHECK_EQ(offset, image_info.GetBinSlotSize(bin));
2265 }
2266
VerifyImageBinSlotsAssigned()2267 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2268 dchecked_vector<mirror::Object*> carveout;
2269 JavaVMExt* vm = nullptr;
2270 if (image_writer_->compiler_options_.IsAppImage()) {
2271 // Exclude boot class path dex caches that are not part of the boot image.
2272 // Also exclude their locations if they have not been visited through another path.
2273 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2274 Thread* self = Thread::Current();
2275 vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2276 ReaderMutexLock mu(self, *Locks::dex_lock_);
2277 for (const auto& entry : class_linker->GetDexCachesData()) {
2278 const ClassLinker::DexCacheData& data = entry.second;
2279 auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root);
2280 if (dex_cache == nullptr ||
2281 image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2282 ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2283 dex_cache->GetDexFile())) {
2284 continue;
2285 }
2286 CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2287 carveout.push_back(dex_cache.Ptr());
2288 ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>();
2289 if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2290 carveout.push_back(location.Ptr());
2291 }
2292 }
2293 }
2294
2295 dchecked_vector<mirror::Object*> missed_objects;
2296 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2297 REQUIRES_SHARED(Locks::mutator_lock_) {
2298 if (!image_writer_->IsInBootImage(obj)) {
2299 if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2300 // Ignore the `carveout` objects.
2301 if (ContainsElement(carveout, obj)) {
2302 return;
2303 }
2304 // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2305 // the app class loader.
2306 ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
2307 if (klass->IsFinalizerReferenceClass<kVerifyNone>()) {
2308 ObjPtr<mirror::Class> reference_class =
2309 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
2310 DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;"));
2311 ArtField* ref_field = reference_class->FindDeclaredInstanceField(
2312 "referent", "Ljava/lang/Object;");
2313 CHECK(ref_field != nullptr);
2314 ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj);
2315 CHECK(ref != nullptr);
2316 CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2317 ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2318 CHECK(ref_klass == WellKnownClasses::dalvik_system_DexFile.Get<kWithoutReadBarrier>());
2319 // Note: The app class loader is used only for checking against the runtime
2320 // class loader, the dex file cookie is cleared and therefore we do not need
2321 // to run the finalizer even if we implement app image objects collection.
2322 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
2323 CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr);
2324 return;
2325 }
2326 if (klass->IsStringClass()) {
2327 // Ignore interned strings. These may come from reflection interning method names.
2328 // TODO: Make dex file strings weak interns and GC them before writing the image.
2329 if (IsStronglyInternedString(obj->AsString())) {
2330 return;
2331 }
2332 }
2333 missed_objects.push_back(obj);
2334 }
2335 }
2336 };
2337 Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2338 if (!missed_objects.empty()) {
2339 const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2340 size_t num_missed_objects = missed_objects.size();
2341 size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
2342 ArrayRef<mirror::Object*> missed_objects_head =
2343 ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2344 for (mirror::Object* obj : missed_objects_head) {
2345 LOG(ERROR) << "Image object without assigned bin slot: "
2346 << mirror::Object::PrettyTypeOf(obj) << " " << obj
2347 << " " << v->FirstPathFromRootSet(obj);
2348 }
2349 LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2350 }
2351 }
2352
FinalizeBinSlotOffsets()2353 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2354 // Calculate bin slot offsets and adjust for region padding if needed.
2355 const size_t region_size = image_writer_->region_size_;
2356 const size_t num_image_infos = image_writer_->image_infos_.size();
2357 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2358 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2359 size_t bin_offset = image_writer_->image_objects_offset_begin_;
2360
2361 for (size_t i = 0; i != kNumberOfBins; ++i) {
2362 Bin bin = enum_cast<Bin>(i);
2363 switch (bin) {
2364 case Bin::kArtMethodClean:
2365 case Bin::kArtMethodDirty: {
2366 bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2367 break;
2368 }
2369 case Bin::kImTable:
2370 case Bin::kIMTConflictTable: {
2371 bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2372 break;
2373 }
2374 default: {
2375 // Normal alignment.
2376 }
2377 }
2378 image_info.bin_slot_offsets_[i] = bin_offset;
2379
2380 // If the bin is for mirror objects, we may need to add region padding and update offsets.
2381 if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2382 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2383 size_t remaining_space =
2384 RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2385 // Exercise the loop below in debug builds to get coverage.
2386 if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2387 // The bin crosses a region boundary. Add padding if needed.
2388 size_t object_offset = 0u;
2389 size_t padding = 0u;
2390 for (mirror::Object* object : bin_objects_[oat_index][i]) {
2391 BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2392 DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2393 DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2394 size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2395
2396 auto add_padding = [&](bool tail_region) {
2397 DCHECK_NE(remaining_space, 0u);
2398 DCHECK_LT(remaining_space, region_size);
2399 DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2400 // TODO When copying to heap regions, leave the tail region padding zero-filled.
2401 if (!tail_region || true) {
2402 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2403 }
2404 image_info.bin_slot_sizes_[i] += remaining_space;
2405 padding += remaining_space;
2406 object_offset += remaining_space;
2407 remaining_space = region_size;
2408 };
2409 if (object_size > remaining_space) {
2410 // Padding needed if we're not at region boundary (with a multi-region object).
2411 if (remaining_space != region_size) {
2412 // TODO: Instead of adding padding, we should consider reordering the bins
2413 // or objects to reduce wasted space.
2414 add_padding(/*tail_region=*/ false);
2415 }
2416 DCHECK_EQ(remaining_space, region_size);
2417 // For huge objects, adjust the remaining space to hold the object and some more.
2418 if (object_size > region_size) {
2419 remaining_space = RoundUp(object_size + 1u, region_size);
2420 }
2421 } else if (remaining_space == object_size) {
2422 // Move to the next region, no padding needed.
2423 remaining_space += region_size;
2424 }
2425 DCHECK_GT(remaining_space, object_size);
2426 remaining_space -= object_size;
2427 image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2428 object_offset += object_size;
2429 // Add padding to the tail region of huge objects if not region-aligned.
2430 if (object_size > region_size && remaining_space != region_size) {
2431 DCHECK(!IsAlignedParam(object_size, region_size));
2432 add_padding(/*tail_region=*/ true);
2433 }
2434 }
2435 image_writer_->region_alignment_wasted_ += padding;
2436 image_info.image_end_ += padding;
2437 }
2438 }
2439 bin_offset += image_info.bin_slot_sizes_[i];
2440 }
2441 // NOTE: There may be additional padding between the bin slots and the intern table.
2442 DCHECK_EQ(
2443 image_info.image_end_,
2444 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2445 }
2446
2447 VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2448 }
2449
CollectStringReferenceInfo()2450 void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
2451 size_t total_string_refs = 0u;
2452
2453 const size_t num_image_infos = image_writer_->image_infos_.size();
2454 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2455 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2456 DCHECK(image_info.string_reference_offsets_.empty());
2457 image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2458
2459 for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2460 for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2461 CollectStringReferenceVisitor visitor(image_writer_,
2462 oat_index,
2463 &image_info.string_reference_offsets_,
2464 obj);
2465 /*
2466 * References to managed strings can occur either in the managed heap or in
2467 * native memory regions. Information about managed references is collected
2468 * by the CollectStringReferenceVisitor and directly added to the image info.
2469 *
2470 * Native references to managed strings can only occur through DexCache
2471 * objects. This is verified by the visitor in debug mode and the references
2472 * are collected separately below.
2473 */
2474 obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2475 kVerifyNone,
2476 kWithoutReadBarrier>(visitor, visitor);
2477 }
2478 }
2479
2480 total_string_refs += image_info.string_reference_offsets_.size();
2481
2482 // Check that we collected the same number of string references as we saw in the previous pass.
2483 CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2484 }
2485
2486 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
2487 }
2488
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2489 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2490 size_t old_work_queue_size = work_queue_.size();
2491 VisitReferencesVisitor visitor(this, oat_index);
2492 // Walk references and assign bin slots for them.
2493 obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
2494 visitor,
2495 visitor);
2496 // Put the added references in the queue in the order in which they were added.
2497 // The visitor just pushes them to the front as it visits them.
2498 DCHECK_LE(old_work_queue_size, work_queue_.size());
2499 size_t num_added = work_queue_.size() - old_work_queue_size;
2500 std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2501 }
2502
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2503 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2504 if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2505 // Object is null or already in the image, there is no work to do.
2506 return false;
2507 }
2508 bool assigned = false;
2509 if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2510 AssignImageBinSlot(obj.Ptr(), oat_index);
2511 assigned = true;
2512 }
2513 return assigned;
2514 }
2515
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index)2516 ImageWriter::Bin ImageWriter::LayoutHelper::AssignImageBinSlot(ObjPtr<mirror::Object> object,
2517 size_t oat_index) {
2518 DCHECK(object != nullptr);
2519 Bin bin = image_writer_->GetImageBin(object.Ptr());
2520 AssignImageBinSlot(object.Ptr(), oat_index, bin);
2521 return bin;
2522 }
2523
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index,Bin bin)2524 void ImageWriter::LayoutHelper::AssignImageBinSlot(
2525 ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) {
2526 DCHECK(object != nullptr);
2527 DCHECK(!image_writer_->IsInBootImage(object.Ptr()));
2528 DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr()));
2529 image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin);
2530 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr());
2531 }
2532
AssertOnly1Thread()2533 static inline void AssertOnly1Thread() REQUIRES(!Locks::thread_list_lock_) {
2534 if (kIsDebugBuild) {
2535 Runtime::Current()->GetThreadList()->CheckOnly1Thread(Thread::Current());
2536 }
2537 }
2538
CalculateNewObjectOffsets()2539 void ImageWriter::CalculateNewObjectOffsets() {
2540 Thread* const self = Thread::Current();
2541 Runtime* const runtime = Runtime::Current();
2542 gc::Heap* const heap = runtime->GetHeap();
2543
2544 AssertOnly1Thread();
2545 // Leave space for the header, but do not write it yet, we need to
2546 // know where image_roots is going to end up
2547 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2548
2549 // Write the image runtime methods.
2550 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2551 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2552 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2553 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2554 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2555 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2556 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2557 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2558 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2559 image_methods_[ImageHeader::kSaveEverythingMethod] =
2560 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2561 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2562 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2563 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2564 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2565 // Visit image methods first to have the main runtime methods in the first image.
2566 for (auto* m : image_methods_) {
2567 CHECK(m != nullptr);
2568 CHECK(m->IsRuntimeMethod());
2569 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2570 << "Trampolines should be in boot image";
2571 if (!IsInBootImage(m)) {
2572 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2573 }
2574 }
2575
2576 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2577 // this lock while holding other locks may cause lock order violations.
2578 {
2579 auto deflate_monitor =
2580 // NO_THREAD_SAFETY_ANALYSIS: We don't really hold mutator_lock_ exclusively.
2581 [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2582 NO_THREAD_SAFETY_ANALYSIS { Monitor::Deflate(Thread::Current(), obj); };
2583 heap->VisitObjects(deflate_monitor);
2584 // This does not update the MonitorList, which is thus rendered invalid, and is no longer used.
2585 }
2586
2587 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2588 // We can now assign a BitSlot to each object and store it in its lockword.
2589
2590 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2591 if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) {
2592 // Record the address of boot image live objects.
2593 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2594 vm, image_roots_[0]);
2595 boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast(
2596 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(
2597 ImageHeader::kBootImageLiveObjects)).Ptr();
2598 }
2599
2600 // If dirty_image_objects_ is present - try optimizing object layout.
2601 // Parse dirty-image-objects entries and put them in dirty_objects_ map, which is then used in
2602 // `AssignImageBinSlot` method to put the objects in dirty bin.
2603 if (compiler_options_.IsBootImage() && dirty_image_objects_ != nullptr) {
2604 dirty_objects_ = MatchDirtyObjectPaths(*dirty_image_objects_);
2605 LOG(INFO) << ART_FORMAT("Matched {} out of {} dirty-image-objects",
2606 dirty_objects_.size(),
2607 dirty_image_objects_->size());
2608 }
2609
2610 LayoutHelper layout_helper(this);
2611 layout_helper.ProcessDexFileObjects(self);
2612 layout_helper.ProcessRoots(self);
2613 layout_helper.FinalizeInternTables();
2614
2615 // Sort objects in dirty bin.
2616 if (!dirty_objects_.empty()) {
2617 for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2618 layout_helper.SortDirtyObjects(dirty_objects_, oat_index);
2619 }
2620 }
2621
2622 // Verify that all objects have assigned image bin slots.
2623 layout_helper.VerifyImageBinSlotsAssigned();
2624
2625 // Finalize bin slot offsets. This may add padding for regions.
2626 layout_helper.FinalizeBinSlotOffsets();
2627
2628 // Collect string reference info for app images.
2629 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2630 layout_helper.CollectStringReferenceInfo();
2631 }
2632
2633 // Calculate image offsets.
2634 size_t image_offset = 0;
2635 for (ImageInfo& image_info : image_infos_) {
2636 image_info.image_begin_ = global_image_begin_ + image_offset;
2637 image_info.image_offset_ = image_offset;
2638 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment);
2639 // There should be no gaps until the next image.
2640 image_offset += image_info.image_size_;
2641 }
2642
2643 size_t oat_index = 0;
2644 for (ImageInfo& image_info : image_infos_) {
2645 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2646 vm, image_roots_[oat_index]);
2647 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr()));
2648 ++oat_index;
2649 }
2650
2651 // Update the native relocations by adding their bin sums.
2652 for (auto& pair : native_object_relocations_) {
2653 NativeObjectRelocation& relocation = pair.second;
2654 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2655 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2656 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2657 }
2658
2659 // Update the JNI stub methods by adding their bin sums.
2660 for (auto& pair : jni_stub_map_) {
2661 JniStubMethodRelocation& relocation = pair.second.second;
2662 constexpr Bin bin_type = Bin::kJniStubMethod;
2663 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2664 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2665 }
2666 }
2667
2668 std::pair<size_t, dchecked_vector<ImageSection>>
CreateImageSections() const2669 ImageWriter::ImageInfo::CreateImageSections() const {
2670 dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount);
2671
2672 // Do not round up any sections here that are represented by the bins since it
2673 // will break offsets.
2674
2675 /*
2676 * Objects section
2677 */
2678 sections[ImageHeader::kSectionObjects] =
2679 ImageSection(0u, image_end_);
2680
2681 /*
2682 * Field section
2683 */
2684 sections[ImageHeader::kSectionArtFields] =
2685 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2686
2687 /*
2688 * Method section
2689 */
2690 sections[ImageHeader::kSectionArtMethods] =
2691 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2692 GetBinSlotSize(Bin::kArtMethodClean) +
2693 GetBinSlotSize(Bin::kArtMethodDirty));
2694
2695 /*
2696 * IMT section
2697 */
2698 sections[ImageHeader::kSectionImTables] =
2699 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2700
2701 /*
2702 * Conflict Tables section
2703 */
2704 sections[ImageHeader::kSectionIMTConflictTables] =
2705 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2706
2707 /*
2708 * Runtime Methods section
2709 */
2710 sections[ImageHeader::kSectionRuntimeMethods] =
2711 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2712
2713 /*
2714 * JNI Stub Methods section
2715 */
2716 sections[ImageHeader::kSectionJniStubMethods] =
2717 ImageSection(GetBinSlotOffset(Bin::kJniStubMethod), GetBinSlotSize(Bin::kJniStubMethod));
2718
2719 /*
2720 * Interned Strings section
2721 */
2722
2723 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2724 size_t cur_pos = RoundUp(sections[ImageHeader::kSectionJniStubMethods].End(), sizeof(uint64_t));
2725
2726 const ImageSection& interned_strings_section =
2727 sections[ImageHeader::kSectionInternedStrings] =
2728 ImageSection(cur_pos, intern_table_bytes_);
2729
2730 /*
2731 * Class Table section
2732 */
2733
2734 // Obtain the new position and round it up to the appropriate alignment.
2735 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2736
2737 const ImageSection& class_table_section =
2738 sections[ImageHeader::kSectionClassTable] =
2739 ImageSection(cur_pos, class_table_bytes_);
2740
2741 /*
2742 * String Field Offsets section
2743 */
2744
2745 // Round up to the alignment of the offsets we are going to store.
2746 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2747
2748 // The size of string_reference_offsets_ can't be used here because it hasn't
2749 // been filled with AppImageReferenceOffsetInfo objects yet. The
2750 // num_string_references_ value is calculated separately, before we can
2751 // compute the actual offsets.
2752 const ImageSection& string_reference_offsets =
2753 sections[ImageHeader::kSectionStringReferenceOffsets] =
2754 ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2755
2756 /*
2757 * DexCache arrays section
2758 */
2759
2760 // Round up to the alignment dex caches arrays expects.
2761 cur_pos = RoundUp(sections[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(uint32_t));
2762 // We don't generate dex cache arrays in an image generated by dex2oat.
2763 sections[ImageHeader::kSectionDexCacheArrays] = ImageSection(cur_pos, 0u);
2764
2765 /*
2766 * Metadata section.
2767 */
2768
2769 // Round up to the alignment of the offsets we are going to store.
2770 cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
2771
2772 const ImageSection& metadata_section =
2773 sections[ImageHeader::kSectionMetadata] =
2774 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2775
2776 // Return the number of bytes described by these sections, and the sections
2777 // themselves.
2778 return make_pair(metadata_section.End(), std::move(sections));
2779 }
2780
CreateHeader(size_t oat_index,size_t component_count)2781 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2782 ImageInfo& image_info = GetImageInfo(oat_index);
2783 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2784 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2785 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2786
2787 uint32_t image_reservation_size = image_info.image_size_;
2788 DCHECK_ALIGNED(image_reservation_size, kElfSegmentAlignment);
2789 uint32_t current_component_count = 1u;
2790 if (compiler_options_.IsAppImage()) {
2791 DCHECK_EQ(oat_index, 0u);
2792 DCHECK_EQ(component_count, current_component_count);
2793 } else {
2794 DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2795 << image_infos_.size() << " " << component_count;
2796 if (oat_index == 0u) {
2797 const ImageInfo& last_info = image_infos_.back();
2798 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2799 DCHECK_ALIGNED(image_info.image_begin_, kElfSegmentAlignment);
2800 image_reservation_size = dchecked_integral_cast<uint32_t>(
2801 RoundUp(end - image_info.image_begin_, kElfSegmentAlignment));
2802 current_component_count = component_count;
2803 } else {
2804 image_reservation_size = 0u;
2805 current_component_count = 0u;
2806 }
2807 }
2808
2809 // Compute boot image checksums for the primary component, leave as 0 otherwise.
2810 uint32_t boot_image_components = 0u;
2811 uint32_t boot_image_checksums = 0u;
2812 if (oat_index == 0u) {
2813 const std::vector<gc::space::ImageSpace*>& image_spaces =
2814 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2815 DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2816 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2817 const ImageHeader& header = image_spaces[i]->GetImageHeader();
2818 boot_image_components += header.GetComponentCount();
2819 boot_image_checksums ^= header.GetImageChecksum();
2820 DCHECK_LE(header.GetImageSpaceCount(), size - i);
2821 i += header.GetImageSpaceCount();
2822 }
2823 }
2824
2825 // Create the image sections.
2826 auto section_info_pair = image_info.CreateImageSections();
2827 const size_t image_end = section_info_pair.first;
2828 dchecked_vector<ImageSection>& sections = section_info_pair.second;
2829
2830 // Finally bitmap section.
2831 const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2832 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2833 // The offset of the bitmap section should be aligned to kElfSegmentAlignment to enable mapping
2834 // the section from file to memory. However the section size doesn't have to be rounded up as it
2835 // is located at the end of the file. When mapping file contents to memory, if the last page of
2836 // the mapping is only partially filled with data, the rest will be zero-filled.
2837 *bitmap_section = ImageSection(RoundUp(image_end, kElfSegmentAlignment), bitmap_bytes);
2838 if (VLOG_IS_ON(compiler)) {
2839 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2840 size_t idx = 0;
2841 for (const ImageSection& section : sections) {
2842 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2843 ++idx;
2844 }
2845 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2846 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2847 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2848 << " Image offset=" << image_info.image_offset_ << std::dec;
2849 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2850 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2851 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2852 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2853 }
2854
2855 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2856 // image.
2857 new (image_info.image_.Begin()) ImageHeader(
2858 image_reservation_size,
2859 current_component_count,
2860 PointerToLowMemUInt32(image_info.image_begin_),
2861 image_end,
2862 sections.data(),
2863 image_info.image_roots_address_,
2864 image_info.oat_checksum_,
2865 PointerToLowMemUInt32(oat_file_begin),
2866 PointerToLowMemUInt32(image_info.oat_data_begin_),
2867 PointerToLowMemUInt32(oat_data_end),
2868 PointerToLowMemUInt32(oat_file_end),
2869 boot_image_begin_,
2870 boot_image_size_,
2871 boot_image_components,
2872 boot_image_checksums,
2873 target_ptr_size_);
2874 }
2875
GetImageMethodAddress(ArtMethod * method) const2876 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) const {
2877 NativeObjectRelocation relocation = GetNativeRelocation(method);
2878 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2879 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2880 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2881 }
2882
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2883 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2884 DCHECK(compiler_options_.IsBootImage());
2885 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2886 case IntrinsicObjects::PatchType::kValueOfArray: {
2887 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2888 const uint8_t* base_address =
2889 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2890 MemberOffset data_offset =
2891 IntrinsicObjects::GetValueOfArrayDataOffset(boot_image_live_objects_, index);
2892 return base_address + data_offset.Uint32Value();
2893 }
2894 case IntrinsicObjects::PatchType::kValueOfObject: {
2895 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2896 ObjPtr<mirror::Object> value = IntrinsicObjects::GetValueOfObject(boot_image_live_objects_,
2897 /* start_index= */ 0u,
2898 index);
2899 return GetImageAddress(value.Ptr());
2900 }
2901 }
2902 LOG(FATAL) << "UNREACHABLE";
2903 UNREACHABLE();
2904 }
2905
2906
2907 class ImageWriter::FixupRootVisitor : public RootVisitor {
2908 public:
FixupRootVisitor(ImageWriter * image_writer)2909 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2910 }
2911
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)2912 void VisitRoots([[maybe_unused]] mirror::Object*** roots,
2913 [[maybe_unused]] size_t count,
2914 [[maybe_unused]] const RootInfo& info) override
2915 REQUIRES_SHARED(Locks::mutator_lock_) {
2916 LOG(FATAL) << "Unsupported";
2917 }
2918
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)2919 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2920 size_t count,
2921 [[maybe_unused]] const RootInfo& info) override
2922 REQUIRES_SHARED(Locks::mutator_lock_) {
2923 for (size_t i = 0; i < count; ++i) {
2924 // Copy the reference. Since we do not have the address for recording the relocation,
2925 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2926 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2927 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2928 }
2929 }
2930
2931 private:
2932 ImageWriter* const image_writer_;
2933 };
2934
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2935 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2936 for (size_t i = 0; i < ImTable::kSize; ++i) {
2937 ArtMethod* method = orig->Get(i, target_ptr_size_);
2938 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2939 CopyAndFixupPointer(address, method);
2940 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2941 }
2942 }
2943
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2944 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2945 const size_t count = orig->NumEntries(target_ptr_size_);
2946 for (size_t i = 0; i < count; ++i) {
2947 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2948 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2949 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2950 CopyAndFixupPointer(
2951 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2952 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2953 NativeLocationInImage(interface_method));
2954 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2955 NativeLocationInImage(implementation_method));
2956 }
2957 }
2958
CopyAndFixupNativeData(size_t oat_index)2959 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2960 const ImageInfo& image_info = GetImageInfo(oat_index);
2961 // Copy ArtFields and methods to their locations and update the array for convenience.
2962 for (auto& pair : native_object_relocations_) {
2963 NativeObjectRelocation& relocation = pair.second;
2964 // Only work with fields and methods that are in the current oat file.
2965 if (relocation.oat_index != oat_index) {
2966 continue;
2967 }
2968 auto* dest = image_info.image_.Begin() + relocation.offset;
2969 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2970 DCHECK(!IsInBootImage(pair.first));
2971 switch (relocation.type) {
2972 case NativeObjectRelocationType::kRuntimeMethod:
2973 case NativeObjectRelocationType::kArtMethodClean:
2974 case NativeObjectRelocationType::kArtMethodDirty: {
2975 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2976 reinterpret_cast<ArtMethod*>(dest),
2977 oat_index);
2978 break;
2979 }
2980 case NativeObjectRelocationType::kArtFieldArray: {
2981 // Copy and fix up the entire field array.
2982 auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
2983 auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
2984 size_t size = src_array->size();
2985 memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
2986 for (size_t i = 0; i != size; ++i) {
2987 CopyAndFixupReference(
2988 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
2989 src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>());
2990 }
2991 break;
2992 }
2993 case NativeObjectRelocationType::kArtMethodArrayClean:
2994 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2995 // For method arrays, copy just the header since the elements will
2996 // get copied by their corresponding relocations.
2997 size_t size = ArtMethod::Size(target_ptr_size_);
2998 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2999 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
3000 // Clear padding to avoid non-deterministic data in the image.
3001 // Historical note: We also did that to placate Valgrind.
3002 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
3003 break;
3004 }
3005 case NativeObjectRelocationType::kIMTable: {
3006 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
3007 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
3008 CopyAndFixupImTable(orig_imt, dest_imt);
3009 break;
3010 }
3011 case NativeObjectRelocationType::kIMTConflictTable: {
3012 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
3013 CopyAndFixupImtConflictTable(
3014 orig_table,
3015 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
3016 break;
3017 }
3018 case NativeObjectRelocationType::kGcRootPointer: {
3019 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
3020 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
3021 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
3022 break;
3023 }
3024 }
3025 }
3026 // Fixup the image method roots.
3027 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
3028 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
3029 ArtMethod* method = image_methods_[i];
3030 CHECK(method != nullptr);
3031 CopyAndFixupPointer(
3032 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
3033 }
3034 FixupRootVisitor root_visitor(this);
3035
3036 // Write the intern table into the image.
3037 if (image_info.intern_table_bytes_ > 0) {
3038 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
3039 DCHECK(image_info.intern_table_.has_value());
3040 const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
3041 uint8_t* const intern_table_memory_ptr =
3042 image_info.image_.Begin() + intern_table_section.Offset();
3043 const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
3044 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
3045 // Fixup the pointers in the newly written intern table to contain image addresses.
3046 InternTable temp_intern_table;
3047 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
3048 // that the VisitRoots() will update the memory directly rather than the copies.
3049 // This also relies on visit roots not doing any verification which could fail after we update
3050 // the roots to be the image addresses.
3051 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
3052 VoidFunctor(),
3053 /*is_boot_image=*/ false);
3054 CHECK_EQ(temp_intern_table.Size(), intern_table.size());
3055 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
3056
3057 if (kIsDebugBuild) {
3058 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
3059 CHECK(!temp_intern_table.strong_interns_.tables_.empty());
3060 // The UnorderedSet was inserted at the beginning.
3061 CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
3062 }
3063 }
3064
3065 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
3066 // class loaders. Writing multiple class tables into the image is currently unsupported.
3067 if (image_info.class_table_bytes_ > 0u) {
3068 const ImageSection& class_table_section = image_header->GetClassTableSection();
3069 uint8_t* const class_table_memory_ptr =
3070 image_info.image_.Begin() + class_table_section.Offset();
3071
3072 DCHECK(image_info.class_table_.has_value());
3073 const ClassTable::ClassSet& table = *image_info.class_table_;
3074 CHECK_EQ(table.size(), image_info.class_table_size_);
3075 const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
3076 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
3077
3078 // Fixup the pointers in the newly written class table to contain image addresses. See
3079 // above comment for intern tables.
3080 ClassTable temp_class_table;
3081 temp_class_table.ReadFromMemory(class_table_memory_ptr);
3082 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
3083 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
3084 temp_class_table.VisitRoots(visitor);
3085
3086 if (kIsDebugBuild) {
3087 ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
3088 CHECK(!temp_class_table.classes_.empty());
3089 // The ClassSet was inserted at the beginning.
3090 CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
3091 }
3092 }
3093 }
3094
CopyAndFixupJniStubMethods(size_t oat_index)3095 void ImageWriter::CopyAndFixupJniStubMethods(size_t oat_index) {
3096 const ImageInfo& image_info = GetImageInfo(oat_index);
3097 // Copy method's address to JniStubMethods section.
3098 for (auto& pair : jni_stub_map_) {
3099 JniStubMethodRelocation& relocation = pair.second.second;
3100 // Only work with JNI stubs that are in the current oat file.
3101 if (relocation.oat_index != oat_index) {
3102 continue;
3103 }
3104 void** address = reinterpret_cast<void**>(image_info.image_.Begin() + relocation.offset);
3105 ArtMethod* method = pair.second.first;
3106 CopyAndFixupPointer(address, method);
3107 }
3108 }
3109
CopyAndFixupMethodPointerArray(mirror::PointerArray * arr)3110 void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
3111 // Pointer arrays are processed early and each is visited just once.
3112 // Therefore we know that this array has not been copied yet.
3113 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
3114 DCHECK(dst != nullptr);
3115 DCHECK(arr->IsIntArray() || arr->IsLongArray())
3116 << arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr;
3117 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
3118 const size_t num_elements = arr->GetLength();
3119 CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()),
3120 arr->GetClass<kVerifyNone, kWithoutReadBarrier>());
3121 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
3122 for (size_t i = 0, count = num_elements; i < count; ++i) {
3123 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
3124 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
3125 auto it = native_object_relocations_.find(elem);
3126 if (UNLIKELY(it == native_object_relocations_.end())) {
3127 auto* method = reinterpret_cast<ArtMethod*>(elem);
3128 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
3129 << method << " idx=" << i << "/" << num_elements << " with declaring class "
3130 << Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>());
3131 UNREACHABLE();
3132 }
3133 }
3134 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
3135 }
3136 }
3137
CopyAndFixupObject(Object * obj)3138 void ImageWriter::CopyAndFixupObject(Object* obj) {
3139 if (!IsImageBinSlotAssigned(obj)) {
3140 return;
3141 }
3142 // Some objects (such as method pointer arrays) may have been processed before.
3143 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
3144 if (dst != nullptr) {
3145 FixupObject(obj, dst);
3146 }
3147 }
3148
3149 template <bool kCheckIfDone>
CopyObject(Object * obj)3150 inline Object* ImageWriter::CopyObject(Object* obj) {
3151 size_t oat_index = GetOatIndex(obj);
3152 size_t offset = GetImageOffset(obj, oat_index);
3153 ImageInfo& image_info = GetImageInfo(oat_index);
3154 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
3155 DCHECK_LT(offset, image_info.image_end_);
3156 const auto* src = reinterpret_cast<const uint8_t*>(obj);
3157
3158 bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3159 // Check if the object was already copied, unless the caller indicated that it was not.
3160 if (kCheckIfDone && done) {
3161 return nullptr;
3162 }
3163 DCHECK(!done);
3164
3165 const size_t n = obj->SizeOf();
3166
3167 if (kIsDebugBuild && region_size_ != 0u) {
3168 const size_t offset_after_header = offset - sizeof(ImageHeader);
3169 const size_t next_region = RoundUp(offset_after_header, region_size_);
3170 if (offset_after_header != next_region) {
3171 // If the object is not on a region bondary, it must not be cross region.
3172 CHECK_LT(offset_after_header, next_region)
3173 << "offset_after_header=" << offset_after_header << " size=" << n;
3174 CHECK_LE(offset_after_header + n, next_region)
3175 << "offset_after_header=" << offset_after_header << " size=" << n;
3176 }
3177 }
3178 DCHECK_LE(offset + n, image_info.image_.Size());
3179 memcpy(dst, src, n);
3180
3181 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3182 // word.
3183 const auto it = saved_hashcode_map_.find(obj);
3184 dst->SetLockWord(it != saved_hashcode_map_.end() ?
3185 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3186 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3187 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3188 // safe since we mark all of the objects that may reference non immune objects as gray.
3189 CHECK(dst->AtomicSetMarkBit(0, 1));
3190 }
3191 return dst;
3192 }
3193
3194 // Rewrite all the references in the copied object to point to their image address equivalent
3195 class ImageWriter::FixupVisitor {
3196 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3197 FixupVisitor(ImageWriter* image_writer, Object* copy)
3198 : image_writer_(image_writer), copy_(copy) {
3199 }
3200
3201 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3202 void VisitRootIfNonNull(
3203 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
3204 LOG(FATAL) << "UNREACHABLE";
3205 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3206 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
3207 LOG(FATAL) << "UNREACHABLE";
3208 }
3209
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const3210 void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const
3211 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3212 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset);
3213 // Copy the reference and record the fixup if necessary.
3214 image_writer_->CopyAndFixupReference(
3215 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3216 }
3217
3218 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3219 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3220 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3221 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3222 }
3223
3224 protected:
3225 ImageWriter* const image_writer_;
3226 mirror::Object* const copy_;
3227 };
3228
CopyAndFixupObjects()3229 void ImageWriter::CopyAndFixupObjects() {
3230 // Copy and fix up pointer arrays first as they require special treatment.
3231 auto method_pointer_array_visitor =
3232 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
3233 CopyAndFixupMethodPointerArray(pointer_array.Ptr());
3234 };
3235 for (ImageInfo& image_info : image_infos_) {
3236 if (image_info.class_table_size_ != 0u) {
3237 DCHECK(image_info.class_table_.has_value());
3238 for (const ClassTable::TableSlot& slot : *image_info.class_table_) {
3239 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
3240 DCHECK(klass != nullptr);
3241 // Do not process boot image classes present in app image class table.
3242 DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
3243 if (!IsInBootImage(klass.Ptr())) {
3244 // Do not fix up method pointer arrays inherited from superclass. If they are part
3245 // of the current image, they were or shall be copied when visiting the superclass.
3246 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
3247 }
3248 }
3249 }
3250 }
3251
3252 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3253 DCHECK(obj != nullptr);
3254 CopyAndFixupObject(obj);
3255 };
3256 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3257
3258 // Fill the padding objects since they are required for in order traversal of the image space.
3259 for (ImageInfo& image_info : image_infos_) {
3260 for (const size_t start_offset : image_info.padding_offsets_) {
3261 const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3262 size_t remaining_space =
3263 RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3264 DCHECK_NE(remaining_space, 0u);
3265 DCHECK_LT(remaining_space, region_size_);
3266 Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3267 ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3268 DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3269 Object* end = dst + remaining_space / object_class->GetObjectSize();
3270 Class* image_object_class = GetImageAddress(object_class.Ptr());
3271 while (dst != end) {
3272 dst->SetClass<kVerifyNone>(image_object_class);
3273 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3274 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3275 ++dst;
3276 }
3277 }
3278 }
3279
3280 // We no longer need the hashcode map, values have already been copied to target objects.
3281 saved_hashcode_map_.clear();
3282 }
3283
3284 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3285 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3286 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3287 : FixupVisitor(image_writer, copy) {}
3288
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const3289 void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const
3290 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3291 DCHECK(obj->IsClass());
3292 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3293 }
3294
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3295 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
3296 [[maybe_unused]] ObjPtr<mirror::Reference> ref) const
3297 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3298 LOG(FATAL) << "Reference not expected here.";
3299 }
3300 };
3301
GetNativeRelocation(void * obj) const3302 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) const {
3303 DCHECK(obj != nullptr);
3304 DCHECK(!IsInBootImage(obj));
3305 auto it = native_object_relocations_.find(obj);
3306 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3307 << Runtime::Current()->GetHeap()->DumpSpaces();
3308 return it->second;
3309 }
3310
3311 template <typename T>
PrettyPrint(T * ptr)3312 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3313 std::ostringstream oss;
3314 oss << ptr;
3315 return oss.str();
3316 }
3317
3318 template <>
PrettyPrint(ArtMethod * method)3319 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3320 return ArtMethod::PrettyMethod(method);
3321 }
3322
3323 template <typename T>
NativeLocationInImage(T * obj)3324 T* ImageWriter::NativeLocationInImage(T* obj) {
3325 if (obj == nullptr || IsInBootImage(obj)) {
3326 return obj;
3327 } else {
3328 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3329 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3330 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3331 }
3332 }
3333
NativeLocationInImage(ArtField * src_field)3334 ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) {
3335 // Fields are not individually stored in the native relocation map. Use the field array.
3336 ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>();
3337 LengthPrefixedArray<ArtField>* src_fields =
3338 src_field->IsStatic() ? declaring_class->GetSFieldsPtr() : declaring_class->GetIFieldsPtr();
3339 DCHECK(src_fields != nullptr);
3340 LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields);
3341 DCHECK(dst_fields != nullptr);
3342 size_t field_offset =
3343 reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields);
3344 return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset);
3345 }
3346
3347 class ImageWriter::NativeLocationVisitor {
3348 public:
NativeLocationVisitor(ImageWriter * image_writer)3349 explicit NativeLocationVisitor(ImageWriter* image_writer)
3350 : image_writer_(image_writer) {}
3351
3352 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3353 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3354 if (ptr != nullptr) {
3355 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3356 }
3357 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3358 // with the value we return here. We should try to avoid the duplicate work.
3359 return image_writer_->NativeLocationInImage(ptr);
3360 }
3361
3362 private:
3363 ImageWriter* const image_writer_;
3364 };
3365
FixupClass(mirror::Class * orig,mirror::Class * copy)3366 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3367 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3368 FixupClassVisitor visitor(this, copy);
3369 ObjPtr<mirror::Object>(orig)->VisitReferences<
3370 /*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor);
3371
3372 if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3373 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3374 // values to the parent of that class.
3375 //
3376 // Every time this happens, the parent class has to mutate to increment
3377 // the "Next" value.
3378 //
3379 // If any of these parents are in the boot image, the changes [in the parents]
3380 // would be lost when the app image is reloaded.
3381 //
3382 // To prevent newly loaded classes (not in the app image) from being reassigned
3383 // the same bitstring value as an existing app image class, uninitialize
3384 // all the classes in the app image.
3385 //
3386 // On startup, the class linker will then re-initialize all the app
3387 // image bitstrings. See also ClassLinker::AddImageSpace.
3388 //
3389 // FIXME: Deal with boot image extensions.
3390 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3391 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3392 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3393 }
3394
3395 // Remove the clinitThreadId. This is required for image determinism.
3396 copy->SetClinitThreadId(static_cast<pid_t>(0));
3397 // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3398 // resolved and the class will therefore be re-verified at runtime.
3399 if (orig->ShouldVerifyAtRuntime()) {
3400 copy->SetStatusInternal(ClassStatus::kResolved);
3401 }
3402 }
3403
FixupObject(Object * orig,Object * copy)3404 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3405 DCHECK(orig != nullptr);
3406 DCHECK(copy != nullptr);
3407 if (kUseBakerReadBarrier) {
3408 orig->AssertReadBarrierState();
3409 }
3410 ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>();
3411 if (klass->IsClassClass()) {
3412 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3413 } else {
3414 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3415 Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>();
3416 if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) {
3417 // Make sure all image strings have the hash code calculated, even if they are not interned.
3418 down_cast<mirror::String*>(copy)->GetHashCode();
3419 } else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) ||
3420 klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) {
3421 // Need to update the ArtMethod.
3422 auto* dest = down_cast<mirror::Executable*>(copy);
3423 auto* src = down_cast<mirror::Executable*>(orig);
3424 ArtMethod* src_method = src->GetArtMethod();
3425 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3426 } else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) ||
3427 klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) {
3428 // Need to update the ArtField.
3429 auto* dest = down_cast<mirror::FieldVarHandle*>(copy);
3430 auto* src = down_cast<mirror::FieldVarHandle*>(orig);
3431 ArtField* src_field = src->GetArtField();
3432 CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field);
3433 } else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) {
3434 down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
3435 down_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
3436 } else if (klass->IsClassLoaderClass()) {
3437 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3438 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3439 // ClassLinker.
3440 copy_loader->SetClassTable(nullptr);
3441 // Also set allocator to null to be safe. The allocator is created when we create the class
3442 // table. We also never expect to unload things in the image since they are held live as
3443 // roots.
3444 copy_loader->SetAllocator(nullptr);
3445 }
3446 FixupVisitor visitor(this, copy);
3447 orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
3448 visitor, visitor);
3449 }
3450 }
3451
GetOatAddress(StubType type) const3452 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3453 DCHECK_LE(type, StubType::kLast);
3454 // If we are compiling a boot image extension or app image,
3455 // we need to use the stubs of the primary boot image.
3456 if (!compiler_options_.IsBootImage()) {
3457 // Use the current image pointers.
3458 const std::vector<gc::space::ImageSpace*>& image_spaces =
3459 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3460 DCHECK(!image_spaces.empty());
3461 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3462 CHECK(oat_file != nullptr);
3463 const OatHeader& header = oat_file->GetOatHeader();
3464 return header.GetOatAddress(type);
3465 }
3466 const ImageInfo& primary_image_info = GetImageInfo(0);
3467 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3468 }
3469
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3470 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3471 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3472 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3473 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3474 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3475 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3476
3477 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3478 // trampoline.
3479
3480 // Quick entrypoint:
3481 const void* quick_oat_entry_point =
3482 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3483 const uint8_t* quick_code;
3484
3485 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) {
3486 DCHECK(method->IsCopied());
3487 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3488 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3489 } else {
3490 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3491 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3492 }
3493
3494 bool still_needs_clinit_check = method->StillNeedsClinitCheck<kWithoutReadBarrier>();
3495
3496 if (quick_code == nullptr) {
3497 // If we don't have code, use generic jni / interpreter.
3498 if (method->IsNative()) {
3499 // The generic JNI trampolines performs class initialization check if needed.
3500 quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3501 } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
3502 // The nterp trampoline doesn't do initialization checks, so install the
3503 // resolution stub if needed.
3504 if (still_needs_clinit_check) {
3505 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3506 } else {
3507 quick_code = GetOatAddress(StubType::kNterpTrampoline);
3508 }
3509 } else {
3510 // The interpreter brige performs class initialization check if needed.
3511 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3512 }
3513 } else if (still_needs_clinit_check && !compiler_options_.ShouldCompileWithClinitCheck(method)) {
3514 // If we do have code but the method needs a class initialization check before calling
3515 // that code, install the resolution stub that will perform the check.
3516 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3517 }
3518 return quick_code;
3519 }
3520
ResetNterpFastPathFlags(uint32_t access_flags,ArtMethod * orig,InstructionSet isa)3521 static inline uint32_t ResetNterpFastPathFlags(
3522 uint32_t access_flags, ArtMethod* orig, InstructionSet isa)
3523 REQUIRES_SHARED(Locks::mutator_lock_) {
3524 DCHECK(orig != nullptr);
3525 DCHECK(!orig->IsProxyMethod()); // `UnstartedRuntime` does not support creating proxy classes.
3526 DCHECK(!orig->IsRuntimeMethod());
3527
3528 // Clear old nterp fast path flags.
3529 access_flags = ArtMethod::ClearNterpFastPathFlags(access_flags);
3530
3531 // Check if nterp fast paths are available on the target ISA.
3532 std::string_view shorty = orig->GetShortyView(); // Use orig, copy's class not yet ready.
3533 uint32_t new_nterp_flags = GetNterpFastPathFlags(shorty, access_flags, isa);
3534
3535 // Add the new nterp fast path flags, if any.
3536 return access_flags | new_nterp_flags;
3537 }
3538
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3539 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3540 ArtMethod* copy,
3541 size_t oat_index) {
3542 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3543
3544 CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(),
3545 orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>());
3546
3547 if (!orig->IsRuntimeMethod()) {
3548 uint32_t access_flags = orig->GetAccessFlags();
3549 if (ArtMethod::IsAbstract(access_flags)) {
3550 // Ignore the single-implementation info for abstract method.
3551 // TODO: handle fixup of single-implementation method for abstract method.
3552 access_flags = ArtMethod::SetHasSingleImplementation(access_flags, /*single_impl=*/ false);
3553 copy->SetSingleImplementation(nullptr, target_ptr_size_);
3554 } else if (mark_memory_shared_methods_ && LIKELY(!ArtMethod::IsIntrinsic(access_flags))) {
3555 access_flags = ArtMethod::SetMemorySharedMethod(access_flags);
3556 copy->SetHotCounter();
3557 }
3558
3559 InstructionSet isa = compiler_options_.GetInstructionSet();
3560 if (isa != kRuntimeISA) {
3561 access_flags = ResetNterpFastPathFlags(access_flags, orig, isa);
3562 } else {
3563 DCHECK_EQ(access_flags, ResetNterpFastPathFlags(access_flags, orig, isa));
3564 }
3565 copy->SetAccessFlags(access_flags);
3566 }
3567
3568 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3569 // oat_begin_
3570
3571 // The resolution method has a special trampoline to call.
3572 Runtime* runtime = Runtime::Current();
3573 const void* quick_code;
3574 if (orig->IsRuntimeMethod()) {
3575 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3576 if (orig_table != nullptr) {
3577 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3578 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3579 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3580 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3581 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3582 // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
3583 const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
3584 copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
3585 } else {
3586 bool found_one = false;
3587 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3588 auto idx = static_cast<CalleeSaveType>(i);
3589 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3590 found_one = true;
3591 break;
3592 }
3593 }
3594 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3595 CHECK(copy->IsRuntimeMethod());
3596 CHECK(copy->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_) == nullptr);
3597 quick_code = nullptr;
3598 }
3599 } else {
3600 // We assume all methods have code. If they don't currently then we set them to the use the
3601 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3602 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3603 if (UNLIKELY(!orig->IsInvokable())) {
3604 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3605 } else {
3606 const ImageInfo& image_info = image_infos_[oat_index];
3607 quick_code = GetQuickCode(orig, image_info);
3608
3609 // JNI entrypoint:
3610 if (orig->IsNative()) {
3611 // Find boot JNI stub for those methods that skipped AOT compilation and don't need
3612 // clinit check.
3613 bool still_needs_clinit_check = orig->StillNeedsClinitCheck<kWithoutReadBarrier>();
3614 if (!still_needs_clinit_check &&
3615 !compiler_options_.IsBootImage() &&
3616 quick_code == GetOatAddress(StubType::kQuickGenericJNITrampoline)) {
3617 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3618 const void* boot_jni_stub = class_linker->FindBootJniStub(orig);
3619 if (boot_jni_stub != nullptr) {
3620 quick_code = boot_jni_stub;
3621 }
3622 }
3623 // The native method's pointer is set to a stub to lookup via dlsym.
3624 // Note this is not the code_ pointer, that is handled above.
3625 StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3626 : StubType::kJNIDlsymLookupTrampoline;
3627 copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3628 } else if (!orig->HasCodeItem()) {
3629 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3630 } else {
3631 CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
3632 }
3633 }
3634 }
3635 if (quick_code != nullptr) {
3636 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3637 }
3638 }
3639
GetBinSizeSum(Bin up_to) const3640 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3641 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3642 return std::accumulate(&bin_slot_sizes_[0],
3643 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3644 /*init*/ static_cast<size_t>(0));
3645 }
3646
BinSlot(uint32_t lockword)3647 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3648 // These values may need to get updated if more bins are added to the enum Bin
3649 static_assert(kBinBits == 3, "wrong number of bin bits");
3650 static_assert(kBinShift == 27, "wrong number of shift");
3651 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3652
3653 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3654 DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3655 }
3656
BinSlot(Bin bin,uint32_t index)3657 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3658 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3659 DCHECK_EQ(index, GetOffset());
3660 }
3661
GetBin() const3662 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3663 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3664 }
3665
GetOffset() const3666 uint32_t ImageWriter::BinSlot::GetOffset() const {
3667 return lockword_ & ~kBinMask;
3668 }
3669
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3670 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3671 switch (type) {
3672 case NativeObjectRelocationType::kArtFieldArray:
3673 return Bin::kArtField;
3674 case NativeObjectRelocationType::kArtMethodClean:
3675 case NativeObjectRelocationType::kArtMethodArrayClean:
3676 return Bin::kArtMethodClean;
3677 case NativeObjectRelocationType::kArtMethodDirty:
3678 case NativeObjectRelocationType::kArtMethodArrayDirty:
3679 return Bin::kArtMethodDirty;
3680 case NativeObjectRelocationType::kRuntimeMethod:
3681 return Bin::kRuntimeMethod;
3682 case NativeObjectRelocationType::kIMTable:
3683 return Bin::kImTable;
3684 case NativeObjectRelocationType::kIMTConflictTable:
3685 return Bin::kIMTConflictTable;
3686 case NativeObjectRelocationType::kGcRootPointer:
3687 return Bin::kMetadata;
3688 }
3689 }
3690
GetOatIndex(mirror::Object * obj) const3691 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3692 if (!IsMultiImage()) {
3693 DCHECK(oat_index_map_.empty());
3694 return GetDefaultOatIndex();
3695 }
3696 auto it = oat_index_map_.find(obj);
3697 DCHECK(it != oat_index_map_.end()) << obj;
3698 return it->second;
3699 }
3700
GetOatIndexForDexFile(const DexFile * dex_file) const3701 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3702 if (!IsMultiImage()) {
3703 return GetDefaultOatIndex();
3704 }
3705 auto it = dex_file_oat_index_map_.find(dex_file);
3706 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3707 return it->second;
3708 }
3709
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3710 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3711 while (klass->IsArrayClass()) {
3712 klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
3713 }
3714 if (UNLIKELY(klass->IsPrimitive())) {
3715 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr);
3716 return GetDefaultOatIndex();
3717 } else {
3718 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr);
3719 return GetOatIndexForDexFile(&klass->GetDexFile());
3720 }
3721 }
3722
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3723 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3724 size_t oat_loaded_size,
3725 size_t oat_data_offset,
3726 size_t oat_data_size) {
3727 DCHECK_GE(oat_loaded_size, oat_data_offset);
3728 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3729
3730 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3731 DCHECK(images_end != nullptr); // Image space must be ready.
3732 for (const ImageInfo& info : image_infos_) {
3733 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3734 }
3735
3736 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3737 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3738 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3739 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3740 cur_image_info.oat_size_ = oat_data_size;
3741
3742 if (compiler_options_.IsAppImage()) {
3743 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3744 return;
3745 }
3746
3747 // Update the oat_offset of the next image info.
3748 if (oat_index + 1u != oat_filenames_.size()) {
3749 // There is a following one.
3750 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3751 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3752 }
3753 }
3754
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3755 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3756 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3757 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3758
3759 if (oat_index == GetDefaultOatIndex()) {
3760 // Primary oat file, read the trampolines.
3761 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3762 oat_header.GetJniDlsymLookupTrampolineOffset());
3763 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3764 oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3765 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3766 oat_header.GetQuickGenericJniTrampolineOffset());
3767 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3768 oat_header.GetQuickImtConflictTrampolineOffset());
3769 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3770 oat_header.GetQuickResolutionTrampolineOffset());
3771 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3772 oat_header.GetQuickToInterpreterBridgeOffset());
3773 cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
3774 oat_header.GetNterpTrampolineOffset());
3775 }
3776 }
3777
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const HashMap<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const std::vector<std::string> * dirty_image_objects)3778 ImageWriter::ImageWriter(const CompilerOptions& compiler_options,
3779 uintptr_t image_begin,
3780 ImageHeader::StorageMode image_storage_mode,
3781 const std::vector<std::string>& oat_filenames,
3782 const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
3783 jobject class_loader,
3784 const std::vector<std::string>* dirty_image_objects)
3785 : compiler_options_(compiler_options),
3786 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3787 // If we're compiling a boot image and we have a profile, set methods as being shared
3788 // memory (to avoid dirtying them with hotness counter). We expect important methods
3789 // to be AOT, and non-important methods to be run in the interpreter.
3790 mark_memory_shared_methods_(
3791 CompilerFilter::DependsOnProfile(compiler_options_.GetCompilerFilter()) &&
3792 (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())),
3793 boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3794 boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3795 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3796 image_objects_offset_begin_(0),
3797 image_infos_(oat_filenames.size()),
3798 jni_stub_map_(JniStubKeyHash(compiler_options.GetInstructionSet()),
3799 JniStubKeyEquals(compiler_options.GetInstructionSet())),
3800 dirty_methods_(0u),
3801 clean_methods_(0u),
3802 app_class_loader_(class_loader),
3803 boot_image_live_objects_(nullptr),
3804 image_roots_(),
3805 image_storage_mode_(image_storage_mode),
3806 oat_filenames_(oat_filenames),
3807 dex_file_oat_index_map_(dex_file_oat_index_map),
3808 dirty_image_objects_(dirty_image_objects) {
3809 DCHECK(compiler_options.IsBootImage() ||
3810 compiler_options.IsBootImageExtension() ||
3811 compiler_options.IsAppImage());
3812 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3813 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3814 CHECK_NE(image_begin, 0U);
3815 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3816 CHECK_EQ(compiler_options.IsBootImage(),
3817 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3818 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3819 if (compiler_options_.IsAppImage()) {
3820 // Make sure objects are not crossing region boundaries for app images.
3821 region_size_ = gc::space::RegionSpace::kRegionSize;
3822 }
3823 }
3824
~ImageWriter()3825 ImageWriter::~ImageWriter() {
3826 if (!image_roots_.empty()) {
3827 Thread* self = Thread::Current();
3828 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
3829 for (jobject image_roots : image_roots_) {
3830 vm->DeleteGlobalRef(self, image_roots);
3831 }
3832 }
3833 }
3834
ImageInfo()3835 ImageWriter::ImageInfo::ImageInfo()
3836 : intern_table_(),
3837 class_table_() {}
3838
3839 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3840 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3841 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3842 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3843 "DestType must be a Compressed-/HeapReference<Object>.");
3844 dest->Assign(GetImageAddress(src.Ptr()));
3845 }
3846
3847 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value,PointerSize pointer_size)3848 void ImageWriter::CopyAndFixupPointer(
3849 void** target, ValueType src_value, PointerSize pointer_size) {
3850 DCHECK(src_value != nullptr);
3851 void* new_value = NativeLocationInImage(src_value);
3852 DCHECK(new_value != nullptr);
3853 if (pointer_size == PointerSize::k32) {
3854 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3855 } else {
3856 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3857 }
3858 }
3859
3860 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value)3861 void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value)
3862 REQUIRES_SHARED(Locks::mutator_lock_) {
3863 CopyAndFixupPointer(target, src_value, target_ptr_size_);
3864 }
3865
3866 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value,PointerSize pointer_size)3867 void ImageWriter::CopyAndFixupPointer(
3868 void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) {
3869 void** target =
3870 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3871 return CopyAndFixupPointer(target, src_value, pointer_size);
3872 }
3873
3874 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value)3875 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) {
3876 return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_);
3877 }
3878
3879 } // namespace linker
3880 } // namespace art
3881